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Abstract

In this paper, a 3D equilibrium-based finite element formulation is presented for reinforced
concrete, where the stress unknowns strongly satisfy the equilibrium equations. The con-
crete stress tensor is interpolated using tetrahedral piece-wise linear element with statically
admissible discontinuities, while the rebars are considered as 1D elements embedded into the
concrete, intersecting the triangular mesh. Thus, the global equilibrium is ensured by writing
for each face of the mesh the traction continuity equation, while including the rebar stress
contribution for the intersected triangular faces. The elastic equilibrium formulation is then
written into an equivalent optimization problem, extended to the elastoplastic case by sim-
ply adding semi-definite matrix constraints on the concrete stress tensor, corresponding to a
Rankine or a truncated Mohr-Coulomb criterion. As for the rebars, they are considered to
obey a 1D perfectly elastoplastic behavior. The present formulation is also developed for limit
analysis, to directly obtain an estimate of the lower bound of the collapse load. The resulting
semi-definite programming optimization problems are solved using a in-house interior point
algorithm.

Keywords: Equilibrium finite element method, reinforced concrete, semi-definite program-
ming, limit analysis

1 Introduction:

Reinforced concrete has a complex behavior, mixing ductile reinforcements with the brittle con-
crete, which makes it a particularly hard subject to address. Unlike the steel material for which the
normality flow rule has proved to accord well with reality, it is not obvious to consider reinforced
concrete as a perfectly plastic material, which a priori prevents the use of powerful mathematical
frameworks to deal with non-linearity. However, the study of many test cases showed that the
application of the upper bound and lower bound theorem, formulated simultaneously by Gvozdev
[AA38] and Drucker [DPG52], makes it possible in many cases to predict load-carrying capacity
for concrete structures as illustrated in [NH16]. Actually, this good adequacy strongly depends on
several design principals which are not always fulfilled (see [MS72] for a good discussion on the
strength and limitation of limit analysis). For instance, a too high ratio of tensile reinforcement can
lead to a concrete failure by crushing, which doesn’t comply with the plastic flaw behaviour. Con-
versely, a minimum area of reinforcement is also needed to confer to concrete its plastic behaviour,
as required in EN 1992-1-1([En92]). As soon as those requirements are fulfilled, numerous ap-
proaches based on perfect plasticity exist in order to evaluate RC structures failure, both manually
and numerically, whom a rapid review is done below.
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First of all, a hand-based calculation can often give a good understanding of the overall problem.
Manual methods can roughly be separated into two main families: the lower bound theorem
methods and the upper bound theorem methods.

Applying the lower bound theorem and dealing with an RC structure, one can use the strut-
and-ties method based on the truss analogy introduced in ([Rit99], [Mö08]) and becoming popular
thanks to [SSJ87], making sure that the loading can be in static equilibrium according to a chosen
failure criterion. Even if guidelines exist to prevent such mistakes, this method often overlooks, in
its everyday life application, the cracking effect on the strut resistance and, more generally, does
not ensure that important strains in concrete won’t provoke a hasty failure. Another, quite similar,
application of the lower bound theorem to design RC structures is the stress fields method. A good
description of this method is made in [RM07].

Regarding the upper bound theorem, the yield line theory established by Johansen [Joh72]
illustrates how RC structures can be designed with a kinematic point of view, which amounts
to overestimating the failure loading by guessing a virtual mechanism where plastic strains only
occur along lines. Even so this non-conservative approach could seem unsafe, it gives good results
when the proposed mechanism reflects the reality and, furthermore, it procures an appropriate
complementary understanding to the strut-and-ties static approach. The numerical extension of
those classical manual calculations is at the basis of some nowadays software like LimiteState [2219]
(for yield lines) or CAST [TT02] (for strut-and-ties).

In the above developments, a complementarity between the equilibrium stress field and the
virtual mechanisms of a collapse load appears. This complementarity is indicative of the strong
understanding brought by a dual approach, which proves the necessity of the equilibrium stress
field.

Manual approaches reach their limit relatively quickly, as soon as the complexity of the struc-
tures or of the loading is outside of the framework of the methods. At this point intervene numerical
methods which progressively replace manual design in the engineering world. As for the elastic
theory, the numerical methods implemented in current softwares dealing with non-linear reinforced
concrete, are mainly based on kinematic formulations. Softwares like Athena [CCJS14] or Diana
[D20] are good examples of such kinematic approaches, where the concrete is modeled thanks
to 3D finite elements and the reinforcements are embedded lines, both of them governed by a
displacements variational formulation. As mentioned for the hand-based yield line method, such
non-linear analyses have the interest to provide compatible strains fields at the expense of a stress
field strongly in equilibrium and retrieved a posteriori thanks to the constitutive law [dAM17].

To overcome this limitation, a less common choice is to adopt equilibrium approaches, see
[dAM17] for a very good review. The history of equilibrium formulation started with the three
fields variational principle presented in the concurrent work of Hai-Chang in 1954 [Hc54], Fraeijs
de Veubeke in 1965 [FdV65]), and Washizu in 1968 [Was68]. The work of Pian [PT72] was then
at the origin of a modified complementary energy principle coupled to an hybrid stress model,
which inherits from this three fields variational principle. This extension assumes that equilibrium
is imposed to a discontinuous stress field thanks to Lagrange multipliers that can be seen as
virtual displacements on tetrahedra faces. More recently the work of Kempeneers [KDB10] and
de Almeida and Maunder [dAM17] explored the discretization influences of both stress variables
and generalized displacement to lead to accurate dual analysis and error estimation. To sum up,
those successive improvements allowed efficient equilibrium elements to emerge, making from now
on possible the implementation of numerical static approaches, giving access to stress fields that
respect strongly the equilibrium equations.

To our knowledge, the equilibrium approach was investigated for numerical 3D model of rein-
forced concrete only in ([APO21], [LPN12], [APO22]) and [VABdB18].

In ([APO21], [LPN12], [APO22]), constant stress tetrahedral elements have been used to reduce
computation cost. The reinforcements were modeled as smeared reinforcements or discretized
explicitly using 3D finite elements. As it will be seen later, this constant stress choice downgrades
the equilibrium quality which is one of the reason for the choice of a linear stress field in the present
work.

The present work is an alternative approach to the one presented in [VABdB18]. First of all,
the problem size has been largely reduced thanks to appropriate discretization choices exposed in
2.3. Then, reinforcements are not smeared anymore since they are modeled as embedded lines.
This mixed 1D-3D modelling enables to reduce the high meshing and computation cost of 3D rein-
forcements and avoids an important loss of information when smearing individual reinforcements
into a homogenized region. This choice of reinforcement modeling has been made possible thanks
to an innovative variational formulation exposed in 2.1.
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Another particularity is the optimization method used to retrieve the solution from the varia-
tional formulation. Once the variational formulation is established and the discretization is done,
the resulting discrete potential is viewed as the Lagrangian associated with a non-linear math-
ematical program (see part. 2.2), according to the general method described in [KLSW07]. As
shown in [KLSW07], this approach is widely different from the more traditional ones that iterate
on displacement increment and compute improved elastoplastic stiffness thanks to the constitutive
law. Indeed, this mathematical programming approach offers an unified framework to deal with a
wide range of variational formulations and associated discretization, as well as numerous smooth
and non smooth yield criteria. For the limit analysis case, it gives access, in the case of perfect
plasticity, to upper and lower bounds of a given loading.

Thus, capitalizing on fast and robust methods that recently emerged for convex optimiza-
tion, we choose to comply with the convex framework developed for dual analysis as exposed in
[KLS07], [MM06], and [MM08]. This framework offers a unified approach to dealing with the
elastic, elastoplastic, and yield behavior since non-linearity is taken into account only as additional
conic constraints. This work is in the continuation of ([EBBA+20b],[EBBA+20a],[VABdB18]),
which already stem from the application of convex optimization to deal with frictional contact,
Von Mises criterion and Rankine criterion.

Although, a lot of commercial software can be used in order to solve problems complying with
the convex optimization framework, the presented work is based on a homemade solver taking ad-
vantage of mechanical insight (see part 3.3). Let’s add that the formulation has been implemented
in a commercial software used for civil engineering studies.At the time being, this commercial
software, Digital Structure, already dealt with several real-life studies, such as prestressed webs
of a reinforced concrete box girder, a prestress anchorage block, a curved and hollowed reinforced
concrete wall. This validates the ability of the formulation to cop with the true complexity of
non-academic subjects.

The paper is organized as follows. In section 2, the elastic case is discussed with respect to
the specific variational formulation (2.1), the discretization(2.3), and the establishment of the
discrete Lagrangian needed for the mathematical program (2.2). Section 3 tackles the non-linear
extension to the elastoplastic case (3.1) and the particular formulation of limit analysis (3.2). The
optimization method and the corresponding interior-point algorithm are exposed in section 3.3.
Section 4 deals with three numerical examples that validate the formulation and its numerical
implementation. Finally, conclusions are drawn in section 5.

2 The linear elastic case

2.1 The equilibrium variational formulation for reinforced concrete

For a linear elastic material and linear strains, the equilibrium equation system of a 3D mechanical
problem, subject to an external surface force ttt, body forces are ignored for simplicity, is written in
the following form: 

divσσσ = 000 ,

εεε = ∇suuu ,

σσσ = CCC : εεε ,

σ nσ nσ n = ttt on Γt ,

uuu = ūuu on Γu ,

(1a)

(1b)

(1c)

(1d)

(1e)

where Γ = Γu ∪ Γt is the closed surface of the solid volume V , CCC = 2µIII4 + λIII2 ⊗ III2 is the
symmetric fourth-order elasticity tensor, III4 the fourth-order identity tensor, III2 the second order
identity tensor, and (µ, λ) are the Lamé coefficients. ūuu is the imposed displacement on the Dirich-
let boundary Γu whereas Γt denotes the Neumann boundary where surface tractions ttt are imposed.

The equation system in (1) represents the equilibrium of the 3D solid i.e., the concrete. Let us
now consider a rebar of length Lr and cross-section of area Sr, represented as a 1D line embedded
into the concrete. Its geometric position is given by the curve (ccc(s) where s is the corresponding
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curvilinear coordinate. eeer = dccc(s)
ds is the corresponding tangent vector. Neglecting the rebar weight,

the following additional equations are needed to represent its equilibrium:

dσr

ds
= 0 ,

εr =
dur

ds
,

σr = Erεr ,

σr eeer = tttr on Γr
t ,

(2a)

(2b)

(2c)

(2d)

where σr is the rebar stress, ur = uuur · eeer its axial displacement, Er the Young Modulus, and
Γr
t = {0} ∪ {Lr} the two extremities of the rebar. Finally, an additional bounding constitutive

relation should also specify how concrete and rebar displacements are linked together. This point
will be discussed again later.

The equation systems in (1) and (2) are generally transformed into a weak form by using the
principle of virtual work for a displacement-based formulation. Then, the solution of the problem
is numerically approached by discretizing the unknowns over the structure or solid volume.

The displacement and mixed variational formulations are at the basis of the majority of existing
finite element models, and therefore they have proven their efficiency in solving various engineering
problems. Yet, they have a major drawback: the stress-equilibrium equation in (1a) will not be
strongly verified, but only in a weak sense, leading to non-negligible error on the derivation of the
stress tensor components.

Since there is no “pure” approach to solve analytically the systems in (1) and (2), another
alternative to the classical displacement-based formulation, is to use a stress-based one, by strongly
imposing the stress-equilibrium equations in (1a) and (2a). The starting point of this approach is
the Hu-Washizu principle, for which we need to express the following functionals:

Π(σσσ,εεε,uuu) =
1

2

∫
V

σσσ : CCC−1 : σσσ dV +

∫
V

(∇suuu− εεε) : σσσ dV −
∫
Γt

ttt · uuu dΓ , (3)

Πr(σr, εr, ur) =
1

2

∫
Lr

σr2

Er
ds+

∫
Lr

(ur,s − εr)σr ds− [trur]L
r

0 , (4)

where tr := tttr · eeer.

Integrating by parts and using the constitutive equation in (1c) and (2c) to eliminate the strains
variables form the expression of the functionals, the equations (3) and (4) are transformed into the
following forms:

Π(σσσ,uuu) = −1

2

∫
V

σσσ : CCC−1 : σσσ dV −
∫
V

divσσσ · uuu dV +

∫
Γ

σ nσ nσ n · uuu dΓ−
∫
Γt

ttt · uuu dΓ , (5)

Πr(σr, ur) = −1

2

∫
Lr

σr2

Er
ds−

∫
Lr

σr
,s u

r ds+ [(σr − tr)ur]L
r

0 . (6)

Using the stress equilibrium equations divσσσ = 000 and σr
,s = 0, along with the limit condition

(1e), we obtain:

Π(σσσ,uuu) = −1

2

∫
V

σσσ : CCC−1 : σσσ dV +

∫
Γt

(σ nσ nσ n− ttt) · uuu dΓ +

∫
Γu

σ nσ nσ n · ūuu dΓ , (7)

Πr(σr, ur) = −1

2

∫
Lr

σr2

Er
ds+ [(σr − tr)ur]L

r

0 . (8)
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The Hu-Washizu principle states that the functionals Π and Πr must be stationary at the
equilibrium state, and therefore leading to the following variational equations:

δΠ :=∇∇∇Π ·
{
δσσσ
δuuu

}
⇒

∫
V

σσσ : CCC−1 : δσσσ dV −
∫
Γt

(σ nσ nσ n ·δuuu+δσ nσ nσ n ·uuu) dΓ =

∫
Γu

δσ nσ nσ n · ūuu dΓ−
∫
Γt

ttt ·δuuu dΓ ,
(9)

δΠr :=∇∇∇Πr ·
{
δσr

δur

}
⇒

∫
Lr

σrδσr

Er
ds− [σr δur + δσr ur]L

r

0 = −[tr δur]L
r

0 , (10)

where (δσσσ, δuuu) are the concrete virtual symmetric stress tensor and displacement vector respec-
tively, satisfying the equilibrium equation div δσσσ = 000, and the limit conditions: δσ nσ nσ n = 000 on Γt and
δuuu = 000 on Γu. (δσ

r, δur) are the rebar virtual stress and displacement components, satisfying the
equilibrium equation δσr

,s = 0, and the limit condition δσr = 0 on Γr
t .

For what follows, we introduce the Voigt notation, used for a vectorial representation of the
stress tensor σσσ as follows:

σσσT
v =

{
σxx σyy σzz σxy σyz σxz

}
. (11)

This notation is used in the equation (9), so it can be re-written as follows:

∫
V

σσσT
vCCC

−1
v δσσσv dV −

∫
Γt

(PPPσσσv · δuuu+PPPδσσσv · uuu) dΓ =

∫
Γu

PPPδσσσv · ūuu dΓ−
∫
Γt

ttt · δuuu dΓ , (12)

where:

PPP :=

nx 0 0 ny nz 0
0 ny 0 nx 0 nz
0 0 nz 0 nx ny

 , (13)

and CCCv is the corresponding 6× 6 matrix of elastic moduli.

At this stage, to be able to solve the integral equation in (12), the domain V is discretized with
the aid of 3D finite elements, where the stress components are interpolated over V (see section 2.3
for more details), whereas the displacement components are only interpolated over the external
contour Γt. Nevertheless, to impose for the interpolated stresses to be continuous and to strongly
satisfy div δσσσ = 000 over V , they need to be at least differentiable of class C1 (see [FdV65]), a
condition very difficult to ensure for a three-dimensional interpolation. Indeed, for a tetrahedral
discretization, the interpolation needs to be a polynomial of degree 9 or higher (see [Zha09]), in
order to be C1 over the entire domain.

Instead of using a C1 interpolation over V , we will consider in this work a piece-wise interpo-
lation for the stress components [Kem06, MM08]. The condition div δσσσ = 000 can then be easily
enforced for each element, while allowing statically admissible discontinuities at the interfaces be-
tween elements. For this approach, as it will be shown, the displacement vector will be needed at
the triangular (or quadrilateral) faces of the mesh, and not only at the external contour Γ of the
volume V .

To develop this approach, let us first recast the corresponding equations in the form of a
minimization problem, where the coupling between the concrete and the rebar stresses will be
introduced.
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2.2 Optimization form of the equilibrium-based formulation:

First, let us recall that the equilibrium formulation for reinforced concrete can be equivalently cast
in the form of an optimization problem, expressed as follows:

min
(σσσ,σr)∈SA

ψ(σσσ, σr)−
∫
Γu

σσσnnn · ū̄ūu dΓ ,

s.t. σ nσ nσ n = ttt on Γt ,

σr = tr on Γr
t ,

(14a)

(14b)

(14c)

where:

ψ(σσσ, σr) :=
1

2

∫
V

σσσ : CCC−1 : σσσ dV +
Sr

2

∫
Lr

σr2

Er
ds , (15)

is the complementary energy, and (σσσ, σr) ∈ SA means that the stress fields are statically admissible
stresses i.e., they satisfy the equilibrium equations (1a) and (2a).

To illustrate the equivalence between the optimization problem above and the integral equations
in (9) and (10), we start by writing the Lagrangian of problem (14):

L(σσσ, σr,uuu, ur) = ψ(σσσ, σr)−
∫
Γt

(σ nσ nσ n− ttt) · uuu dΓ−
∫
Γu

σ nσ nσ n · ūuu dΓ− Sr[ (σr − tr)ur ]L
r

0 , (16)

where we used the integral form of the constraints in (14b) and (14c), for which (uuu, ur) can be
interpreted here as their associated Lagrange multipliers. Note that, at this stage, the latter are
defined on Γt and Γu only.

From the expression of the Lagrangian above, the following relation is directly obtained:

L(σσσ, σr,uuu, ur) = −( Π(σσσ,uuu) + SrΠr(σr, ur) ) , (17)

and thus, the optimality conditions for the optimization problem (14) are expressed as follows:

∇∇∇L ·
{
δσσσ
δuuu

}
= −δΠ = 0 , (18)

∇∇∇L ·
{
δσr

δur

}
= −δΠr = 0 , (19)

for any statically admissible stress variation (δσσσ, δσr) ∈ SA and any boundary displacement vari-
ation (δuuu, δur). This proves the equivalence between the optimization problem in (14) and the
equations in (9) and (10), deduced from the Hu-Washizu principle.

Now, to find a numerical solution of (14), we suppose that the volume is discretized into nvol
finite-elements Vi over which a specific discretization of the stress field will be later chosen. As
regards the rebars, they will be discretized into segments corresponding to the intersection with
the triangular faces of the mesh (see Fig.1):

Lr = ∆Lr
1 ∪∆Lr

2 ∪ · · · ∪∆Lr
nrebar

, (20)

where ∆Lr
i = si+1 − si, I

r = {si | i ∈ J1, nrebar +1K} the abscissas of the rebar intersecting the
mesh, and nrebar the total number of 1D elements discretizing the length of the rebar.
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Figure 1: Intersection points between mesh triangular faces of two tetrahedra and a rebar.

The discretized form of the functional (15) is then expressed as follows:

ψ(σσσ, σr) =
1

2

nvol∑
i=1

∫
Vi

σσσi : CCC
−1 : σσσi dV +

1

2

nrebar∑
i=1

∫
∆Lr

i

Srσr
i
2

Er
ds , (21)

where σσσi is the stress field inside the ith tetrahedral element, and σr
i is the rebar stress inside the

ith portion of the rebar.

As explained in 2.1, when a piece-wise interpolation is considered, additional constraints are
necessary to assure statically admissible discontinuities on the interpolated stress. More precisely,
through any interface ∆i between two adjacent elements (see Fig.2), the concrete traction vector
must be continuous i.e. JσσσKnnn = (σσσ2−σσσ1)nnn = 000. Similarly, the rebar stress must also be continuous
at points sj ∈ Ir crossing an arbitrary interface ∆i i.e. JσrK = σr

2 − σr
1 = 0.

Figure 2: A rebar intersecting an interface ∆i.

Thus, the discretized form of the constrained optimization problem in (14) is expressed as
follows: 

min
(σσσ,σr)∈SAb

ψ(σσσ, σr)−
∫
Γu

σσσnnn · ū̄ūu dΓ ,

s.t. σ nσ nσ n = ttt on Γt ,

σr = tr on Γr
t ,

JσσσKnnn = 0 on all ∆i ,

JσrK = 0 on all sj ∈ Ir ,

(22a)

(22b)

(22c)

(22d)

(22e)
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where (σσσ, σr) ∈ SAb means that divσσσ = 000 for each finite volume Vi, and σr
,s = 0 for each rebar

portion ∆Lr
i .

When forming the Lagrangian of the previous system, additional Lagrange multipliers appear
with respect to the last two continuity conditions. Such multipliers can be interpreted as displace-
ment fields uuu (resp. ur) which are now defined over all external faces Γt and internal faces

⋃
i ∆i

(resp. external extremities Γr
t and internal intersection points Ir).

At this stage, the coupling between the concrete variables (σσσ,uuu) and the rebars’ (σr, ur) have
not yet been introduced. In the following, we will make a perfect bonding hypothesis between the
rebars and the concrete. More precisely, we posit that both displacements coincide on the rebar
i.e. ur(si) = eeer · uuu(si). Inspecting the corresponding Lagrangian, one can see that such an as-
sumption can be interpreted as enforcing the continuity of an effective traction vector merging the
contribution of both the concrete and the rebar stress, rather than asking for a continuity of both
stresses separately.

2.3 The finite-element formulation

We now discuss the corresponding finite-element formulation by choosing a specific interpolation
for the unknown fields. We consider in the following that the concrete stress field varies linearly
inside each tetrahedral finite element. As previously stated, the stress components are not contin-
uous over V since they are independently interpolated over each element, while assuring statically
admissible discontinuities over the faces of the tetrahedra through the Lagrange multiplier uuu. Thus,
each tetrahedral finite element has 24 independent stress degrees of freedom. For the displacement
components uuu, they are also interpolated linearly over the faces of the mesh, making 9 displace-
ment degrees of freedom per triangular face (see Fig. 3). The choice of a linear interpolation
over the faces for the displacements components is not arbitrary. Indeed, in the absence of any
reinforcement, a linear uuu on each face is enough to enforce strongly the traction continuity of the
concrete stress since the latter is also linear on a face.

Figure 3: Stress and displacement degrees of freedom of a linear tetrahedron.

For each portion between two intersection points, the rebar stress is constant (σr
,s = 0) and

thus it is associated with only one degree of freedom. Consequently, σr is piece-wise constant over
the total length Lr of the rebar.

Thus, for the equilibrium-based finite element formulation, the total number of degrees of
freedom is computed with the following formula:

ndof = 24× nvol + 9× nface + nrebar , (23)

8



where ndof is the total number of degrees of freedom, nvol the number of tetrahedral finite ele-
ments, and nface the number of triangular faces of the meshing.

For an arbitrary linear tetrahedral element V0, the interpolation of the six stress components
over the volume’s element, and that of the three displacement components over the closed surface
Γ0, formed with the four triangular faces of the tetrahedra will be noted as follows:

σσσv =NNNσ σ̃σσ , uuu =NNNu ũuu , (24)

where NNNσ and NNNu contain the interpolation functions of the stress and displacement components
respectively, σ̃σσ is the stress degrees of freedom vector of dimension 24 (6 per vertex), and ũuu is the
displacement degrees of freedom vector of dimension 36 (9 per triangular face).

For the rebar’s displacement ur, it is needed only at the intersection points ppp1 and ppp2 with Γ0,
at the abscissas s1 and s2 of the rebar, and therefore, it will be linked to the displacement of the
intersected triangular face using the following relation:

ur(sα) = eeer · uuu(pppα) ⇒ ur(sα) =NNNr
u(sα) ũuu , (25)

where NNNr
u(sα) = eeerTNNNu(pppα) and α equal to 1 or 2 for the two extremities of the rebar portion.

Moreover, we recall that the stress tensor σσσ of the concrete must satisfy the equilibrium equa-
tions divσσσ = 000. These are additional constraints that can be easily imposed by using new Lagrange
multipliers, or by reducing the number of tetrahedral stress degrees of freedom from 24 to 21 using
an appropriate choice of shape functions, see [KDB10, Kem06] for more details. In this case, the
total number of degrees of freedom becomes:

ndof = 21× nvol + 9× nface + nrebar . (26)

Note that in presence of a non-zero body force bbb, a particular solution σσσb to the equation
divσσσ = bbb should be found and added to the previous stress unknowns. See [Kem06] for more
details.

Let us now discuss the construction of the corresponding elementary stiffness/flexibility matrix
for an arbitrary element V0. For simplicity, we assume that its closed contour Γ0 does not intersect
the exterior boundary. The contribution of this element to the system Lagrangian reads:

L0 =
1

2

∫
V0

σσσT
vCCC

−1
v σσσv dV +

∫
Γ0

PPP JσσσvK · uuu dΓ +
Sr

2

∫
∆Lr

(σr)2

Er
ds+ Sr[JσrKur]s2s1 . (27)

Using the relations (24) and (25), the variation of this contribution with respect to the concrete
stress degrees of freedom σ̃σσ yields the corresponding equilibrium of element V0:

δσ̃σσ

(∫
V0

NNNT
σCCC

−1
v NNNσ dV

)
σ̃σσ − δσ̃σσ

(∫
Γ0

NNNT
σPPP

TNNNu dΓ

)
ũuu = 0 ∀δσ̃σσ , (28)

which yields the following matrix equation:

FFFσ̃σσ −HHHũuu = 0 , (29)

with

FFF =

∫
V0

NNNT
σ CCC

−1
v NNNσ dV, HHH =

∫
Γ0

NNNT
σ PPP

T NNNu dΓ . (30)
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Similarly, the variation of (27) with respect to the rebar stress yields:

δσr S
r∆Lr

Er
σr − δσrSr(NNNr

u(s2)−NNNr
u(s1))ũuu = 0 . (31)

Introducing HHHr = Sr(NNNr
u(s2)−NNNr

u(s1)), we have for element V0:[
∆LrSr

Er
000 −HHHr

000 FFF −HHH

]σ̃
r

σ̃σσ
ũuu

 =

{
0
0

}
. (32)

Finally, the variation of (27) with respect to the displacement dofs yields the traction continuity
equilibrium equation which links the internal stress state inside V0 with the stress dofs σ̃σσadj and
σr
adj of the adjacent elements. Formally, this continuity equation can be written as:

−HHHT σ̃σσ − (HHHr)Tσr + (HHHadj)
T σ̃σσadj + (HHHr

adj)
Tσr

adj = 000 . (33)

Note that when V0 shares a face with Γt, one has to include the contribution of the imposed
traction vector, resulting in a non-zero right-hand side.

One key property of hybrid mixed methods is that stress variables, namely σ̃r and σ̃σσ are local
to the considered element. These two equations can therefore be reduced by static condensation
of the stress variables inside each element, yielding:{

σ̃r

σ̃σσ

}
= F̄FF

−1
H̄HHũuu , (34)

where:

H̄HH =

[
HHHr

HHH

]
, F̄FF =

∆LrSr

Er
000

000 FFF

 . (35)

Injecting this relation into the elementary Lagrangian (27), the resulting system will involve
only displacement variables which are shared by neighbour elements. The resulting elementary
stiffness matrix of element V0 will then be given by:

KKK = H̄HH
T
F̄FF

−1
H̄HH , (36)

We note that F̄FF is a 25×25 symmetric positive definite matrix, and thus the stiffness matrix
KKK is also a symmetric 36×36 matrix of rank lesser or equal to 25. It implies that KKK has at least
11 zero eigenvalue modes, instead of only 6 for the classical rigid-body modes. The origin of these
spurious modes is very well documented in [KDB10, Kem06, dAM17, MdAR96], and there are dif-
ferent approaches to eliminate them. An efficient and simple method consists in subdividing each
tetrahedral element into four sub-elements by adding a node in the barycentric center. Hence, a
super element is formed by assembling the four sub-tetrahedra that will be construction-free from
any spurious modes.

By introducing the following notations for qqq, the vector of dimension nstress = 24×nvol+nrebar
containing all the stress degrees of freedom of the system, and AAA, the global (flexibility) matrix
assembled from the tetrahedra elementary matrices:

qqqT =
{
σr
1 · · · σr

nrebar
σσσ1 · · · σσσnvol

}
, (37)
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AAA =



∆Lr
1S

r

Er
000

. . .
∆Lr

nrebar
Sr

Er

FFF 1

. . .

000 FFFnvol


, (38)

the optimization problem in (22) can be expressed in a matrix form as follows:
min

qqq∈Rnstress

(
1

2
qqqTA qA qA q − cccTuqqq

)
,

s.t. ĤHHqqq = ccct ,

(39a)

(39b)

where cccu is the imposed displacement loading vector assembled from the corresponding objective
function in (22a), ĤHH corresponds to the global matrix assembled from (33) and ccct is the associated
right-hand side corresponding to the external tractions applied on Γt.

3 The non-linear case

3.1 Elastoplastic analysis

In this work, we benefit from the use of efficient optimization algorithms to formulate an elastoplas-
tic analysis of the equilibrium-based formulation through a convex minimization principle. Rather
than relying on standard strain-driven implementations of plasticity using return mapping algo-
rithms, the proposed formulation enables to consider non-smooth yield surfaces (including apexes
or multi-surface plasticity) without any additional difficulty. It is indeed known that non-smooth
yield surfaces present numerical difficulties in the context of return mapping algorithms. The main
requirement is that the yield surface should be expressed through simple convex constraints in-
volving for instance second-order cones or the cone of semi-definite matrices. Fortunately, most of
the usual yield criteria can be expressed in such a format, see for instance [BP07, Mak10]. Another
interest in formulating elastoplastic problems in the framework of convex optimization is that it
can be easily adapted to limit analysis formulations, in which the limit load of a perfectly elasto-
plastic structure is computed directly, in a single convex optimization resolution, without relying
on a step-by-step analysis up to collapse. This will be the purpose of section 3.2.

Elastoplastic behaviour entails a path-dependent response of the underlying boundary-value
problem. In theory, the path-dependent solution should be obtained by integrating over a loading
path the material constitutive behaviour written in terms of stress and strain rates. In practice
however, a finite-step time discretization is used and rates are approximated with finite increments.
Over such increments, the finite-step evolution is equivalent to a holonomic plasticity formulation
which is a reasonable approximation for radial load paths. Convergence to the real path-dependent
solution is then obtained for sufficient time step discretization, especially when the loading path
deviates from a radial load path. Here, we consider only a monotonous radial load path for sim-
plicity. In this case, a single step holonomic provides a very good estimate of the true solution
[GRM88]. This enables in particular to compute the plastic collapse state in a single computation,
akin to limit analysis formulations. Obviously, in the general case, one should resort to an incre-
mental formulation of plasticity, as done for instance in [KLS07, KLSW07, EBBA+20b], which
would require only minor modifications to the following formulation. Similarly, hardening can also
be consider in the same framework.

The single-step elastoplastic formulation is obtained here by simply introducing plastic yield
conditions as additional constraints into the minimization problem in (14), with respect to the
concrete and rebar stress components, as follows:
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min
(σσσ,σr)∈SA

ψ(σσσ, σr)−
∫
Γu

σσσnnn · ū̄ūu dΓ ,

s.t. σ nσ nσ n = ttt on Γt ,

σr = tr on Γr
t ,

f(σσσ) ≤ 0 on V ,

|σr| ≤ fy on Lr ,

(40a)

(40b)

(40c)

(40d)

(40e)

where the function f(σσσ) represents here the concrete yield criterion and fy is the elastic limit of
the rebars.

Next, we detail two criteria which to model the yield condition for concrete: the truncated
Mohr-Coulomb (TMC): {

KσI − σIII − fc ≤ 0 ,

σI − ft ≤ 0 ,

(41a)

(41b)

and the Rankine (Ra) yield criterion: {− σIII − fc ≤ 0 ,

σI − ft ≤ 0 ,

(42a)

(42b)

where σI and σIII are, respectively, the maximum and minimum principal values of the stress ten-
sor σσσ, fc the compression limit of the concrete, ft its tensile limit, and K := (1+ sinϕ)/(1− sinϕ)
a material constant depending on the friction angle ϕ.

We note that the difference between the classical Mohr-Coulomb criterion and the truncated
one, is the additional constraint in (41b), limiting the tensile strength of the material to a value
ft (near zero for the concrete). This additional condition is necessary for a more realistic charac-
terization of the concrete behavior.

Since the constraints in (41) and (42) are expressed in terms of the principal values of the
stress tensor, the optimization problem in (40) falls into the category of semidefinite programming
(SDP), where the non-linear constraints are expressed in the form of matrices that are subjected
to be positive (or negative) semidefinite. Thus, the constraints in (41) and (42) are reformulated
into the following equivalent forms: 

σσσ − xIII ⪯ 000 ,

− σσσ +KxIII − fcIII ⪯ 000 ,

x ≤ ft ,

(43a)

(43b)

(43c)

and: {− σσσ − fcIII ⪯ 000 ,

σσσ − ftIII ⪯ 000 ,

(44a)

(44b)

where · ⪯ 000(· ⪰ 000) denotes a negative (positive) semi-definite matrix, and x is an additional slack
variable, introduced to be able to express the constraints in (41) in a format suitable for the SDP
optimization framework [MM08, LPN12].

The SDP constraints in (43) or (44) are imposed at each one of the four vertices of the linear
tetrahedra. Thus, the total number of constraints for each criterion is equal to:

nMCT = 12× nvol, nRA = 8× nvol , (45)
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where nMCT and nRa are the number of constraints for the truncated Mohr-Coulomb and Rankine
criterions, respectively.

For the Rankine criterion, we write the final discretized form of the optimization problem (40),
representing the elastoplastic equilibrium-based formulation for reinforced concrete:

min
qqq∈Rnstress

(
1

2
qqqTA qA qA q − cccTuqqq

)
,

s.t. ĤHHqqq = ccct

∀i ∈ J1, nvolK, ∀k ∈ J1, 4K, −σσσi(k)− fcIII ⪯ 000 ,

∀i ∈ J1, nvolK, ∀k ∈ J1, 4K, σσσi(k)− ftIII ⪯ 000 ,

∀i ∈ J1, nrebarK, |σr
i | ≤ fy ,

(46a)

(46b)

(46c)

(46d)

(46e)

where σσσi(k) represents the stress tensor degrees of freedom of the kth vertex of the ith element.

Clearly, the existence of a solution for the problem above is not always assured since it is loading
and material dependent. It allows us to introduce the important concept of the limit load, detailed
in the next section.

3.2 Limit analysis and the lower bound of the collapse load

For a given load direction denoted by (((F )ext, the lower bound limit analysis approach is used to di-
rectly obtain the maximum multiplicative factor λ, for which λ(((F )ext can no longer be equilibrated
by the structure. It supposes a rigid-plastic behavior of the structure, where the elastic phase is
neglected. Thus, this approach can only be applied to sufficiently ductile structures, for which the
coefficient λ can be interpreted as a security factor associated to (((F )ext, and λ(((F )ext is a limit load.

Limit analysis has many applications in civil engineering and is widely used for the safety eval-
uation of steel assemblies (see [EBBA+20b, EBBA+20a]), concrete structures, and geotechnical
works. Compared to the incremental approach, where the external loading is increased step by
step until the numerical solution diverge, the limit analysis approach will directly calculate the
limit load in one increment. It is also naturally adapted to the optimization framework, since we
are looking to maximize the load factor λ in a given load direction, expressed in terms of ttt and tr

(here we assume ū̄ūu = 0).

The lower bound limit analysis problem is expressed in the following form:

max
(σσσ,σr)∈SA

λ ,

s.t. σ nσ nσ n = λttt on Γt ,

σr = λtr on Γr
t ,

f(σσσ) ≤ 0 on V ,

|σr| ≤ fy on Lr ,

(47a)

(47b)

(47c)

(47d)

(47e)

For a given mesh, the optimization problem above is reformulated into the following equivalent
minimization problem:
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min
(σσσ,σr)∈SAb

− λ,

s.t. σ nσ nσ n = λttt on Γt ,

σr = λtr on Γr
t ,

JσσσKnnn = 0 on all ∆i ,

JσrK = 0 on all sj ∈ Ir ,

∀i ∈ J1, nvolK, ∀k ∈ J1, 4K, −σσσi(k)− fcIII ⪯ 000 ,

∀i ∈ J1, nvolK, ∀k ∈ J1, 4K, σσσi(k)− ftIII ⪯ 000 ,

∀i ∈ J1, nrebarK, |σr
i | ≤ fy ,

(48a)

(48b)

(48c)

(48d)

(48e)

(48f)

(48g)

(48h)

and by using the following notations:

qqqλ =

{
qqq
λ

}
, ĤHHλ =

[
ĤHH −ccct

]
, cccλ =

{
000
1

}
. (49)

the optimization problem is expressed in the following final matrix form :

min
qqqλ∈R1+nstress

− cccTλqqqλ ,

s.t. ĤHHλqqqλ = 000

∀i ∈ J1, nvolK, ∀k ∈ J1, 4K, −σσσi(k)− fcIII ⪯ 000 ,

∀i ∈ J1, nvolK, ∀k ∈ J1, 4K, σσσi(k)− ftIII ⪯ 000 ,

∀i ∈ J1, nrebarK, |σr
i | ≤ fy ,

(50a)

(50b)

(50c)

(50d)

(50e)

For limit analysis, the total number of degrees of freedom is equal to nλ = ndof + 1, where we
recall that ndof is the number of degrees of freedom for the elastic and elastoplastic cases.

3.3 Cone programming solver

The optimization problems resulting from the equilibrium finite-element discretization of either
the elastoplastic or limit analysis formulation can be cast into the following generic quadratic cone
programming form:

min
xxx,sss

1

2
xxxTPPPxxx+ cccTxxx

s.t. AxAxAx = bbb
GxGxGx+ sss = hhh
sss ∈ K

(51)

where xxx are the main optimization variables (here qqq or qqq and λ) and sss are conic slack variables
which must belong to a cone K which is supposed to be given by a Cartesian product of smaller
cones i.e.:

K = K1 × . . .×KK (52)

where each Ki can be one of the following elementary cones:

• the positive orthant:
Ki = {yyy s.t. yj ≥ 0} (53)

• the Lorentz second-order cone:

Ki = {yyy = (y0, ȳyy) s.t. ∥ȳyy∥2 ≤ y0} (54)
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• the positive semi-definite cone:

Ki = {yyy s.t. mat(yyy) ⪰ 0} (55)

where mat is the operator which transforms a vector of dimension d(d+1)/2 into a symmetric
d× d matrix.

Depending whether K consists only of positive orthant, the resulting problem belongs to the
class of linear programming, whereas if it contains also the second-order cones, it belongs to the
class of second-order cone programming. In this work, 3D yield criteria of reinforced concrete
naturally involve semi-definite constraints, as discussed before, so that the problem belongs to the
broader class of semi-definite programming.

For such highly structured problems, efficient solvers based on primal-dual interior-point algo-
rithms have been developed. We have implemented our own solver, following the implementation
described in [Van10]. We refer the reader to the mentioned reference for more details on the
algorithmic aspects.

Let us just mention that, in the course of the interior-point solver iterations, Newton systems
involving both xxx,sss but also dual variables yyy and zzz respectively associated with the first two con-
straints in (51) must be solved. It is worth pointing out that primal sss and dual zzz slack variables
are involved in the definition of the yield condition in conic SDP form. As a result, such variables
and the associated constraints are purely local to a given node. They can therefore be efficiently
condensed when solving the Newton system. Similarly, the dual variable yyy essentially corresponds
to the displacement unknowns uuu of the hybrid method. Static condensation of the stress variables
present in x can also be performed when solving the Newton system, as discussed in the elastic case.
As a result, solving the Newton system involves the resolution of a linear system of size approx-
imately equal to the number of displacement unknowns. Accounting for the specific structure of
the underlying optimization problem therefore enables to achieve a more efficient implementation,
rather than using a black-box solver.

4 Numerical examples

In the following examples, the proposed formulation will be validated against other approaches
including analytical solutions of simplified models (plates, truss analogies), experimental results,
or other numerical solutions. Special attention will be paid to both cases of elastoplastic and
limit analysis. For the latter, comparisons will be made against the kinematic upper-bound limit
analysis approach of 3D reinforced concrete structure based on the work of [VABDB20] and which
has been extended to account for 1D rebars instead of 3D smeared regions as considered in the
original paper. In addition to providing an error estimation with respect to the proposed lower-
bound static approach, kinematic results also offer an additional understanding of the underlying
phenomena when inspecting the corresponding collapse mechanisms or plastic dissipation regions.
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4.1 Rectangular concrete slab subjected to uniform load

In this section, we aim at validating our formulation in the context of concrete slabs under bending.
The plastic theory of reinforced concrete has been widely studied using limit analysis approaches,
the most notable being the yield line approach developed by Johansen [Joh62]. In [Mas67] analyt-
ical solutions for concrete slab subjected to uniform load have been derived.

Here, we compare our 3D equilibrium based approach with such analytical yield solutions based
on a thin plate model. The example discussed is the square simply supported slab, uniformly loaded
with q = 1 (fig.4). When considering a normal moment criterion (Johansen yield condition), the
exact solution of such a square plate is given by αyieldLine = 24m/a2, where m is the limit moment
per meter and a the plate side length.

Figure 4: Simply supported square slab, uniformly loaded. Yield lines obtained in [Mas67].

With the proposed approach, a 3D model of a quarter of the plate is considered, taking into
account symmetries. Vertical displacements are fixed for each point of the vertical faces and in-
plane displacements are left free (fig.5).

Figure 5: Slab model load an displacements conditions.

First of all, the case of a fully isotropic material is studied, in adequacy with the analytical
solution. For this purpose, a Rankine criterion with ft = 20MPa and fc = 20MPa is considered.
The geometry is a 2m × 2m square slab of thickness 0.05 m. With such strength limitations the
limit moment is m = 12.5 kN/m, and therefore a theoretical scale factor αtheo = 0.075 is expected
for a uniform loading of 1MN/m2.

Five static lower-bound and kinematic upper-bound limit analysis (see 3.2) are computed from
a very coarse mesh until a mesh consisting of 7911 tetrahedrons (see fig. 6).

Figure 6: Fine mesh of the plate of 7911 tetrahedrons.
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(a) Stress flow associated to the compressive
limit strength (-20 MPa)

(b) Stress flow associated to the tensil limit
strength (+20 MPa)

(c) First analytical distribution of moment
equilibrating the failure loading according to
[Mas67] (Prager radial field)

(d) Second analytical distribution of moment
equilibrating the failure loading according to
[Mas67] (Vallence’s field)

Figure 7: Stress flows (a) and (b) compared to the analytical principal direction of moment (c)
and (d).

Figures 7 (c) and 7 (d) are two static analytical solutions equilibrating the yield line factor
prediction, thereby proving that the upper bound is the true failure loading. Those analytical fields
stem from the work of Prager and Vallance, and, as explained in [Mas67], any linear combination
of those two fields equilibrates the failure load.

On fig.9, we can see that the load factor bracketing of the two dual analysis converges towards
a value close to the theoretical yield line solution. This good adequacy is confirmed by the com-
pressive/tensile stress flow distribution which corresponds to a linear combination of the radial and
diagonal analytical solutions (see fig. 7).

Finally, the generalised displacement obtained from the equilibrium computation are compared
against those obtained from the kinematic upper bound approach (fig. 8). One can see that both
3D displacement fields are in good agreement and indeed correspond to the collapse mechanism
expected from the theoretical yield line solution.

To illustrate the behavior of reinforcement, we then deal with the same example with ft = 2MPa
and one layer of tensile reinforcements. The latter consist of 8 mm diameter bars with a spacing of
7 cm and concrete cover is 1 cm. Reinforcement are laid out parallel to the edges of the square slab
in both directions. For such characteristics, the analytical limit moment becomesm = 12.85 kN/m,
and therefore a theoretical scale factor αtheo = 0.077 is expected for a uniform loading of 1MN/m2.
As for the homogeneous case, five computations are made from a very coarse mesh until a mesh
composed of 7911 tetrahedrons. On fig.11, we can see that the load factor bracketing of the two dual
analyses converges toward a value slightly superior than the analytical expectation but nevertheless
very close (the gap between the kinematic upper bound and the theoretical value is less than 4
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(a) Static generalized displacements

(b) Kinematic displacements

(c) Kinematic plastic strains

Figure 8: Displacements distribution obtained from the proposed static approach (a) compared to
the kinematic solution (b). Kinematic strains (c) illustrate the same mechanism as the yield line
solution.
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Figure 9: Amplification factor of the uniform loading to reach failure according to static analysis,
kinematic analysis, yield line theory.

%). This difference can be explained by the anisotropy brought out by the reinforcements and
the fact that the latter is model in a discrete manner rather than smeared over the whole region.
The compression stress in concrete follows a slightly different pattern than the homogeneous case
since it corresponds to the full radial analytical field. The tensile reinforcements are mobilized to
equilibrate the tensile forces as expected (see fig. 10).
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(a) Stress flow associated to the compressive
limit strength (-20 MPa)

(b) Reinforcements stress

Figure 10: Stress compressive flow (a) and reinforcements stress (b).
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α

αstat
αkine

αyieldLine

Figure 11: Amplification factor of the uniform loading to reach failure according to the static
analyses, the kinematic analyses, and the yield line theory. Reinforcements are modeled thanks to
embedded lines.
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4.2 Lower bound of the collapse load of beams in bending

The article [TD02] aims to establish a curvature-moment law in adequacy with experimentation
when RC beams are in the plastic range. Thus, 22 specimens of reinforced concrete beams are
loaded experimentally until failure, all the specimens being one span simply supported RC beams.
Two loading conditions (11 specimens each) were tested, although for our comparison we only focus
on the case of a single concentrated loading at mid-span. Extensometers were placed in order to
measure the strain in the vicinity of the maximal moment all along the loading process. The scale
effect was investigated by testing three ranges of dimensions while slenderness and height to base
ratio are kept constant. Longitudinal reinforcement ratio ranges between 0.28 to 1.70 and different
stirrups spacing are tested.

Beam
B,
mm

H,
mm

L, mm
Tension rein-
forcement

Compression
reinforce-
ment

ρ, %
Stirrups
diam/spacing
mm/mm

T1A1 100 200 2000 1 ϕ 12 1 ϕ 8 0.56 1ϕ 6/150

T2A1 100 200 2000 2 ϕ 12 2 ϕ 8 1.13 1ϕ 6/150

T3A1 100 200 2000 3 ϕ12 2 ϕ8 1.70 1ϕ6/150

T4A1 200 400 4000 2 ϕ12 2 ϕ10 0.28 1ϕ6/200

T5A1 200 400 4000 4 ϕ12 2 ϕ10 0.56 1ϕ6/200

T6A1 200 400 4000 8 ϕ12 2 ϕ10 1.13 1ϕ6/200

T7A1 200 400 4000 12 ϕ12 2 ϕ10 1.70 1ϕ6/200

T8A1 300 600 6000 2 ϕ12 2 ϕ12 0.13 1ϕ6/150

T9A1 300 600 6000 4 ϕ12 2 ϕ12 0.25 1ϕ6/150

T10A1 300 600 6000 9 ϕ12 2 ϕ12 0.56 1ϕ6/150

T11A1 300 600 6000 18 ϕ12 2 ϕ12 1.13 1ϕ6/150

Table 1: Characteristics of specimens.

For the 11 mid-span loading specimens, we compute a lower bound collapse load thanks to our
equilibrium finite-element limit analysis, taking into account the following assumptions:

- A Rankine yield criterion with ft = 0.1MPa and fc = 27MPa for the bulk concrete,

- A 1D perfectly plastic behaviour with fy = fu = 672MPa for the reinforcements,

- The geometry complies with the description of table 1,

- A mesh of 3900 tetras (fig.12).

Concerning the boundaries conditions (see fig.13):

- All the mesh points of the extremity’s faces have their generalized displacements linked to
the 3 displacements and 3 rotation of the barycenter of the face. The imposed displacement
are prescribed such that the three rotations are free and that each face vertical displacements
are null. Transversal and longitudinal displacement are null at one of the two extremities to
ensure stability.

- The vertical load is applied as a normal pressure at the middle of the beam, along a length
Lload = 0.1× Ltot and on the total width of the beam.

The first interesting set of values to observe consists of both the reinforcement stress and the
stress compressive eigenvectors, as illustrated in figure 14. Compression struts at fc = 27MPa
appear, as expected, while tensile reinforcements are mobilized to their limit strength of fy = fu =
672MPa. Stresses in stirrups do not reach their plastic limit since the experiment was designed in
order to yield a flexural failure.

Integrating the stress state resulting from the limit analysis computation, we can evaluate the
difference between our numerical predictions and the experimental moment measured at collapse
thanks to sensors. The comparison is shown on Fig. 15, 16, 17 for each type of dimension as a
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Figure 12: Mesh composed of 3900 tetrahedrons, specimen T6.

Figure 13: General geometry and loading of test cases.

function of the longitudinal reinforcement ratio. We see that numerical and experimental values
are in broad agreement for all the specimens except for T7 and T11, for which the collapse load is
overestimated by respectively 5% and 10%.

It turns out that this overestimation is a consequence of the assumption made regarding the
concrete constitutive law. Indeed, by assuming a rigid plastic behaviour, we disregard the possi-
bility of any failure resulting from a limitation of the concrete strains in compression. However, it
appears that the two specimens with a particularly high tensile reinforcement ratio, precisely T7
and T11, failed because of the concrete crushing limitation. A safeguard regarding this crushing
limitation would be to analyse the compressive strains resulting from the kinematic elastoplastic
analysis (whom theory is not described in this article but can partly be found in [VABDB20]).

The premature failure observed for a high ratio of reinforcement is actually a direct consequence
of the physical framework we assumed in this paper. In [MS72], a very general reflection is made
on the use of associated perfect plasticity to model reinforced concrete. As it is pointed out by Save
and Massonet (chap. 3.2.3), for a high ratio of reinforcement, plastic rotation capacity decreases
and can even disappear if the concrete fails by crushing before the plastic behavior in reinforcement
is reached. In this case, the plastic redistribution needed to reach the failure mechanism predicted
by limit analysis is not possible and our numerical prediction overestimates the failure loading.
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Figure 14: Lower bound limit analysis results: stress in reinforcements and compressive eigenvec-
tors in concrete, specimen T6.
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Figure 15: Collapse moment at mid-span for half-size specimen T1, T2, T3
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Figure 16: Collapse moment at mid-span for full-size specimen T4, T5, T6, T7

0 0.130.25 0.56 1.13 1.5
0

100

200

300

400

500

600

700

T8 T9 T10 T11

ρ %

M
u
k
N
.m

Mu,e,min

Mu,e,max

Mu,stat

Mu,kine

Figure 17: Collapse moment at mid-span for double-size specimen T8, T9, T10, T11
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4.3 Torsional behavior of a rectangular cross section

In this section the torsional behavior of a RC beam is discussed. In [LT72], a failure model using
a space truss analogy is presented and applied to the case of combined torsion and bending of RC
beam. In this example, we will only deal with the case of pure torsion for simplicity.

On Figure 18, the failure model for reinforced concrete beams subjected to torsion and appli-
cable to general cross sectional shapes established in [LT72] is presented.

Figure 18: Failure Model - Space Truss with Variable inclinations of the Diagonals (ref [LT72]).

This failure model consists of longitudinal reinforcement considered to be concentrated into
stringers at the corner and intermediate shear walls. Stirrups act as posts and the concrete between
the inclined cracks provides the compression diagonals. The angle of the diagonal α is taken to be
constant for each side. The assumption of an under-reinforced section is made so that the failure
is determined by the yield force of the longitudinal stringers or the stirrups. This assumption
is needed to comply with the ductility requirement of the theory of plasticity. Indeed, as it has
already been discussed, the case of a concrete failure by crushing is beyond the scope of a perfectly
plastic material.

For a rectangular cross section in pure torsion, when the failure is due to the yielding of both
stringers and stirrups, the followings results hold:

- The inclination of the compression diagonal α is determined by the proportion of transverse
reinforcement yield force compared to the longitudinal one. The following equality holds:

tan2(α) =
Fst

s

u

Fl
(56)

where Fst and Fl are respectively the force supported by one stirrup and all the longitudinal
reinforcement at yielding, s the stirrups spacing, and u the cross section perimeter.

- The ultimate torque responsible for the yielding of the total amount of reinforcements is:

Tu0 = 2A0

√
Fst

s

u

Fl
(57)

For this failure mechanism, it is possible to evaluate the compression stress in the strut. Indeed,
the concrete compression diagonals carry the force determined by the truss equilibrium. Moreover,
as explained in [LT72], a beam with a solid cross section has the same failure mode as a correspond-
ing hollow section with thickness given by t = min(b/6, (b− 2c)/5) with b the width of the section
and c the concrete cover of the stirrups. Knowing this effective thickness, it becomes possible to
evaluate the compressive stress thanks to the equilibrium equation:

σc = −Tu0
2At

1

sin(α) cos(α)
(58)

To check the ability of our variational formulation and numerical implementation to tackle this
problem, we compare our numerical predictions to this analytical model for 3 particular RC beams
with a square cross section. The assumptions common to the three models are:

- ft = 0.1MPa and fc = 50MPa. A large value of compressive strength is chosen so that the
failure mechanism does not imply concrete crushing.
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- The cross section dimensions : b = 36 cm , h = 72 cm and c = 4.5 cm.

- Longitudinal reinforcements are placed at corner and intermediate shear walls.

- Stirrups of different diameters and spacing are laid out all along the beam.

Computations are made for 3 different reinforcement ratio (stirrups density/longitudinal den-
sity):

Model
Longitudinal
reinforce-
ments

Stirrups
diam/spacing
mm/mm

Tu0 (MN.m) α (deg.) σc (MPa)

A 8 ϕ25 1 ϕ8 / 2.7 cm 0.27 45 30

B 8 ϕ25 1 ϕ8 / 6 cm 0.18 34 21

C 8 ϕ25
1 ϕ12 / 3.1
cm

0.38 55 44

Table 2: Reinforcements characteristics and expected values of the 3 numerical models

We first analyze the three models mesh convergence with respect to the corresponding analytical
prediction in Fig. 19. Clearly, the limit load prediction seems to converge to a value close to the
analytical prediction for all three models.
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αstat (model A)

αstat (model B)

αstat (model C)
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αtheo (model B)

αtheo (model C)

Figure 19: Limit torque for each model.

The generalized displacements correspond to the expected mechanism in pure torsion (fig. 20),
and the static stresses in reinforcements confirm the overall yielding of the reinforcement (fig. 21).
For the model A, the direction of struts concentrated in shear wall are in broad agreement with
the 45° analytical prediction for each panel, and the predicted value of 30 MPa is observed (fig 22).

The evolution of the struts inclination according to the reinforcements ratio, is shown on fig.23.
On those pictures, the predicted values for models A, B and C are retrieved.

Dealing for instance with the model A, it is possible to assess the evolution of the tangent
stiffness all along the loading path from 0 to the limit torque value of 0.27 MN.m using the
elastoplastic formulation (the Young’s modulus is 22 GPa and the Poisson’s ratio is 0.3). For this
purpose, we draw a load-displacement curve (ref. fig. 24), where the ”displacement” is actually
the beam axial rotation obtained at the loading step. It turns out that the reinforcements yielding
begins for a loading torque comprised between 0.2 MN.m and 0.25 MN.m. The plastic flaw appears
clearly for the last increment of 0.01 MN.m until the ultimate value given by limit analysis.
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Figure 20: Generalized displacements in pure torsion given by the static yield analysis. Model A
(6639 Tetras).

Figure 21: Stress in reinforcement. Model A (6639 Tetras).

Figure 22: Stress compression flow corresponds to the analytical prediction: the different subpanels
share the same angle of inclination (45°) and the struts are concentrated in shear walls. Model A
(6639 Tetras).
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(a) Model A : α = 45 and σc = 30MPa

(b) Model B : α = 34 and σc = 21MPa

(c) Model C : α = 55 and σc = 44MPa

Figure 23: Evolution of the compression diagonal inclination and concrete maximal compression
stress value for the 3 models. Analytical predictions are retrieved.
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Figure 24: Limit torque for each model

(a) Model A : Stress in reinforcement load step T = 0.2
MN.m. Neither bar is yielding.

(b) Model A : Stress in reinforcement load step T = 0.25
MN.m. Stirrups and longitudinal bars begin to yield.

Figure 25: Stress evolution in reinforcements at the two loading steps bracketing the beginning of
plastic behaviour.
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5 Conclusion

We have presented in this work a new 3D equilibrium-based finite element formulation for rein-
forced concrete, dual to the more classical displacement-based formulation. The rebars are con-
sidered as 1D elements embedded into the 3D concrete volume. The exact geometrical definition
of the rebars is thus needed, and not only the reinforcement ratio for each direction, as needed in
homogenization-based methods.

The main novelty is, firstly, the proposed method to connect the axial rebar stress with the
3D concrete stresses, in the framework of an equilibrium-based formulation, strongly ensuring the
equilibrium in the solids’ volume. Secondly, it is the use of the SDP optimization framework to
solve the elastoplastic and limit analysis problems of a reinforced concrete material. For a mesh
with linear tetrahedra, the rebars are attached to the concrete by linking their axial displacement
to the one of the triangular faces of the mesh. Hence, the statical equilibrium at each face will be
assured, considering both the rebar and the concrete stresses.

For the elastic case, the equilibrium-based formulation was proven to be equivalent to an op-
timization problem, extended to the elastoplastic case by simply adding SDP constraints for the
concrete stress (Rankine or truncated Mohr-Coulomb), and linear constraints for the rebar stress.
The non-linear SDP optimization problem is then solved using an interior point algorithm.

As it can be seen from the numerical examples presented in the second part of this work, the
proposed approach has proven to be very efficient in solving various reinforced concrete elastoplastic
problems, and successfully providing a limit load, even for large dimension problems. Thus, this
approach represents a reliable alternative to the more rudimentary strut and tie method, and that
can be used in the conception and validation phases of a reinforced concrete structure.

Giving access to a dual approach, this equilibrium formulation opens the door to constitutive
law error estimation. Using this error assessment, a remeshing scheme could be established in
order to reduce the problem size and therefore enhance the efficiency of the resolution.
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