

Effect of water content on permanent deformation of fine/coarse soil mixtures with varying coarse grain contents and subjected to multi-stage cyclic loading

Yu Su, Yu-Jun Cui, Jean-Claude Dupla, Jean Canou

▶ To cite this version:

Yu Su, Yu-Jun Cui, Jean-Claude Dupla, Jean Canou. Effect of water content on permanent deformation of fine/coarse soil mixtures with varying coarse grain contents and subjected to multi-stage cyclic loading. Acta Geotechnica, 2022, 17 (8), pp.3259-3268. 10.1007/s11440-021-01445-w . hal-04155906

HAL Id: hal-04155906 https://enpc.hal.science/hal-04155906

Submitted on 7 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Effect of water content on permanent deformation of fine/coarse soil mixtures
2	with varying coarse grain contents and subjected to multi-stage cyclic loading
3	
4	Yu Su ^{1,2} , Yu-Jun Cui ² , Jean-Claude Dupla ² , Jean Canou ²
5	
6	1: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031,
7	China
8	2: Laboratoire Navier/CERMES, Ecole des Ponts ParisTech (ENPC), France
9	
10	
11	
12	
13	
14	
15	
10	Corresponding outhor
10	V- CU
1/	
18	1. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
19 20	2. Ecole des Ponts ParisTech, Laboratoire Navier/CERMES, 6 – 8 av. Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne – la – Vallée cedex 2, France
21	E-mail address: yu.su@enpc.fr

22 Abstract

An interlayer soil in ancient rail tracks was identified as a mixture of ballast grains and 23 subgrade fines. As the permanent strain ε_1^p of such mixture was affected by water content, 24 cyclic triaxial tests were performed, under varying water contents of fines wf and coarse grain 25 contents f_v . Comparison between present and previous studies showed the significant effect of 26 sample preparation method on ε_1^p . In present study, a constant fine dry density ho_{d-f} was 27 28 maintained, leading to an unchanged suction of mixture whatever the f_v value. In this case, only the reinforcement effect of f_v on ε_1^p was identified. By contrast, in previous studies, the 29 global dry density of mixture ρ_d was kept constant, resulting in a decrease of ρ_{d-f} with 30 increasing f_v and consequently a decrease of suction. In this case, when the negative effect of 31 decreasing suction prevailed on the positive reinforcement effect of increasing f_v , the ε_1^p 32 increased. 33

Keywords: interlayer soil; cyclic triaxial test; permanent deformation; water content; coarse
grain content; fabric/ structure of soils

36 INTRODUCTION

An interlayer was created in most conventional French rail tracks, mainly due to the 37 38 interpenetration of ballast grains and subgrade fine soils. This interlayer was maintained in the railway substructure in the French program of rail track renewal considering its high dry 39 40 density (2.4 Mg/m³, Trinh [1]), Cui et al. [2]) and, hence, bearing capacity. As an important component of rail track, the interlayer soil diffused static and dynamic stresses into the 41 42 substructure, avoiding excessive deformation. In this case, the deformation behavior of interlayer soil appeared to be significant, especially for the long-term stability of rail track. 43 44 Field observation showed that the ballast grain content decreased over depth in the interlayer soil (Trinh [1]). However, the interlayer could be approximately divided into two parts: the 45 46 upper part dominated by ballast grains and the lower part dominated by subgrade fine soil. With the unstable groundwater and climate change (rainfall and evaporation), the water 47 content of interlayer soil can change over time, significantly affecting its permanent 48 49 deformation behavior. Thus, in order to ensure the good serviceability of the tracks, it is essential to understand the effect of water content on the permanent deformation of interlayer 50 51 soil.

The effect of coarse grain content on permanent deformation of soil have been investigated by several investigators. Song and Ooi [3] studied the deformation behaviour of aggregates with varying fine soil contents, and found that increasing fine content gave rise to an increase of permanent deformation of soil mixtures. Wang et al. [4] investigated the effect of coarse grain content f_v (ratio of coarse grain volume to total volume) on permanent strain of interlayer soil by cyclic triaxial tests. They identified a characteristic coarse grain content f_{v-cha}

58	in a narrow range from 25.8% to 27.8%: a large decrease of permanent strain with f_v was
59	observed at $f_v \leq f_{v-cha}$, but a slight decrease of that at $f_v \geq f_{v-cha}$. It is worth noting that these tests
60	were performed under a constant water content of fine soils fraction $w_{opt-f} = 13.7\%$, and the
61	effect of water content was not specifically addressed . Some studies evidenced the effect of
62	water content on permanent deformation of substructures: at saturation, an excess pore water
63	pressure accumulated under traffic loadings led to a decrease of effective stress and an
64	increase of permanent deformation. When the water content decreased, the permanent
65	deformation appeared to decrease, which was attributed to the contribution of suction (Gidel
66	et al. [5]; Werkmeister et al. [6]; Nie et al. [7]; Trinh et al. [8]; Jing [9]; Wan et al. [10]). Gu et
67	al. [11] studied the permanent deformation of unbound granular materials by suction-
68	controlled cyclic triaxial tests, and reported that an increase of suction led to a decrease of
69	accumulated permanent strain exponentially under varying deviator stress amplitudes. Duong
70	et al. [12] investigated the effect of water content on permanent deformation of the upper
71	interlayer soil with varying fine soil contents, and found that the effects of water content and
72	fine content on permanent deformation were strongly related. At saturated state, an increase of
73	fine content gave rise to an increase of permanent deformation, while at unsaturated state, an
74	opposite trend was observed, due to the contribution of suction developed in the fines. Jing [9]
75	studied the deformation behaviour of granular material with varying water contents and fine
76	contents, and also reported that increasing fine content led to an increase of permanent
77	deformation under saturated condition and a decrease of that under unsaturated condition.
78	Note that in most studies, the dry density of fine/coarse soil mixtures remained constant
79	during the sample preparation; thereby a variation of dry density of fine soil fraction was

induced with varying fine contents (or coarse grain contents). In that case, both suction and
coarse grain content varied, rendering the test results difficult to be analysed.

82 This study aims at investigating the effect of water content on the permanent deformation of fine/coarse soil mixtures under various coarse grain contents. A series of cyclic triaxial tests 83 84 were performed for this purpose. Emphasis was put on keeping the fine dry density ρ_{d-f} constant in all samples, allowing a constant suction of soil mixtures whatever the f_v value. A 85 86 multi-step loading procedure at various deviator stress amplitudes of 10, 15, 20, 25 and 30 kPa was applied, with a number of loading cycles at 90000 for each stress amplitude. Two 87 target water contents of fine soil (17.6% and 10.6%) and five coarse grain contents (0%, 10%, 88 20%, 35% and 45%) were considered. 89

90

91 MATERIALS AND SAMPLE PREPARATION

Considering the difficulty of obtaining intact interlayer soil from the field, the reconstituted 92 soils consisting of fine soil and coarse grains were fabricated in the laboratory. For re-93 constituting the fine soil, nine different commercial soils (Table 1) are mixed with the pre-94 determined proportions, to obtain a similar grain size distribution curve of fines from 95 'Senissiat site' (Fig. 1). Note that in this study fines refer to the soil finer than ballast in the 96 field, which correspond to a mixture encompassing grains of clay to sand sizes. The liquid 97 limit and plasticity index of reconstituted fine soil were 32% and 20%, respectively, 98 99 classifying the soil as CL based on the universal soil classification system. Fig. 2 presents the standard proctor compaction curve of fine soil, defining an optimum water content $w_{opt-f} =$ 100 101 13.7% and a maximum dry density $\rho_{\text{dmax-f}} = 1.82 \text{ Mg/m}^3$.

Qi et al. [14] and Su et al. [15-17], which was verified later by Qi et al. [18], micro-ballast 103 was adopted to replace the real ballast in Fig.1. A parameter of coarse grain content f_v (Wang 104 et al. [13]), defined as the ratio of the volume of coarse grains V_c to the total volume of 105 106 fine/coarse mixture V (Eq. (1)), was adopted in this study. All voids and water were assumed to be contained in the fine soil (Fig. 3). Thus, under a given f_v , the dry density of fine soil ρ_{d-f} 107 108 and the water content of fine soil $w_{\rm f}$, the masses of coarse grain $m_{\rm s-c}$, fine grain $m_{\rm s-c}$ and the water content of fine soil m_{w-f} were calculated by Eqs. (2) – (4), respectively. 109 $f_{\rm v} = \frac{V_{\rm c}}{V} = \frac{V_{\rm c}}{V_{\rm c} + V_{\rm f}} = \frac{V_{\rm c}}{V_{\rm c} + V_{\rm s-f} + V_{\rm w-f} + V_{\rm s-f}}$ 110 111 (1)112 where $V_{\rm f}$ is the volume of fine soil; $V_{\rm s-f}$, $V_{\rm w-f}$ and $V_{\rm a-f}$ are the volume of fine grains, water and air in the fine soil, respectively. 113 $m_{s-c} = V_c \cdot G_{s-c} \cdot \rho_w = f_v \cdot V \cdot G_{s-c} \cdot \rho_w$ 114 (2) $m_{s-f} = \rho_{d-f} \cdot V_f = \rho_{d-f} \cdot V \cdot (1 - f_v)$ 115 116 (3) 117 $m_{w-f} = w_f \cdot m_{s-f}$ (4) 118 where G_{s-c} is the specific gravity of coarse grains (= 2.68 Mg/m³); ρ_w is the water unit mass. 119 120 Table 1. Nine different commercial soils 121 The range of grain size Mass proportion Soil classification **Commercial Soil** (%) (mm)0.063 - 0.50 HN34 3.3 Sand

HN31

3.3

For the coarse grains, based on a parallel gradation method applied by Wang et al. [13],

102

0.16 - 0.63

	HN0.4-0.8	6.7	0.25 - 1
	HN0.6-1.6	6.7	0.32 - 2
	HN1-2.5	13.3	0.32 - 3.20
	C4	16.7	0.0009 - 0.50
	C10	20	0.0009 - 0.25
Clay	Speswhite	23.3	0.0003 - 0.01
Clay	Bentonite	6.7	0.001 - 0.01

Fig. 1. Grain size distribution curves of fine soil and micro-ballast (after Wang et al. [4])

Fig. 2. Preparation of samples at two target water contents with respect to compaction curve of the fine soil

126

Fig. 3. Constitution of fine/coarse soil mixture

In order to prepare a sample at a target f_v value and a target water content w_f , the fine soil was prepared at $w_{opt-f} = 13.7\%$, then stored in a container for 24h for the purpose of moisture homogenization. After that, the fine soil was mixed with coarse grains at the pre-determined mass to reach the target f_v value. The soil mixture was then dynamically compacted in three layers, with the equivalent amounts of fine soil and coarse grains for each layer, to attain a

133 size of 100 mm diameter and 200 mm height. Note that the fine soil was kept at the maximum dry density $\rho_{\text{dmax-f}} = 1.82 \text{ Mg/m}^3$ for all samples with varying f_v values. With a higher f_v value, 134 135 more compaction energy was needed for the soil mixtures; thereby, a higher dry density ρ_d of sample is obtained (Table 2). It is worth noting that when $f_v > f_{v-cha}$, the coarse grains 136 137 constitute the skeleton of soil mixture (Wang et al. [4]). For this fabric, two categories of fine soil were identified by Su et al. [19] – dense fine soil between coarse grains and loose fine soil 138 139 surrounded by coarse grains. Accordingly, a relative high ρ_{d-f} and low ρ_{d-f} was obtained for dense fines and loose fines, respectively, even though the global ρ_{d-f} of fine soil remained 140 141 constant (1.82 Mg/m^3) .

After compacting a sample at a target f_v value, either a wetting or a drying process was 142 adopted for the sample to reach the target water contents w_f (Fig. 2): $w_1 = 17.6\%$ ($S_r = 100\%$) 143 on the wet side and $w_2 = 10.6\%$ ($S_r = 60\%$) on the dry side. The approach of wetting or drying 144 from $w_{opt-f} = 13.7\%$ to the target w_f value proposed by Su et al. [19] was applied: in the case of 145 drying, the sample was each time exposed to the air for 1 h in the laboratory, and then covered 146 with plastic film for at least 7 h equilibration. In the case of wetting, 10 g water was sprayed 147 on the sample each time, and then wrapped it with plastic film and conserved for the same 148 equilibration time of at least 7 h. 149

During the wetting and drying processes, the volume change of samples under different f_v values was recorded (Fig. 4). It can be observed that at a given f_v value, the swelling of sample upon wetting from $w_{opt-f} = 13.7\%$ to $w_1 = 17.6\%$ or shrinkage of that upon drying from $w_{opt-f} =$ 13.7% to $w_2 = 10.6\%$ occurred. Moreover, the magnitude of swelling-shrinkage of sample decreased with the increase of f_v , which was attributed to (*i*) a reduction of fine soil, which 155 was sensitive to water content change and (*ii*) part of total stress supported by the coarse grain 156 skeleton at $f_v > f_{v-cha}$ (Wang et al. [4]). This response of fine/coarse soil mixture appeared to be 157 dominated by the fine matrix for $f_v < 20\%$ but the coarse grain skeleton for $f_v > 35\%$ (Fig. 4). 158 The measured dry density ρ_d of sample after wetting or drying is shown in Table 2.

159

Fig. 4. Variations of sample volume with f_v at two target water contents

Table 2. Experimental program of cyclic triaxial tests

fv (%)	Initial water content w _{opt-f} (%)	Target w _f (%)	Target S _r (%)	Target ρ_{dmax-f} (Mg/m ³)	Target ρ_d (Mg/m ³)	Measured $ ho_d$ (Mg/m ³)
0		17.6	100		1.90	1.80
0		10.6	60		1.02	1.85
10		17.6	100		1.91	1.88
		10.6	60			1.93
20	13.7	17.6	100	1.82		1.97
20		10.6	60		1.99	2.01
35		17.6	100		2 1 2	2.11
15		10.6	60	2.12	2.12	2.13
		17.6	100		2 21	2.20
чJ		10.6	60		2.21	2.22

Note: f_v represents the volumetric ratio of coarse grains to fine/coarse soil mixtures. w_{opt-f} , w_{f} , S_r and ρ_{dmax-f} represent the optimum water content, water content, degree of saturation and maximum dry density of fine soil, respectively. ρ_d represents the dry density of soil mixtures sample. Measured ρ_d represents the dry density of soil mixtures sample after wetting or drying from compaction water content w_{opt-f} to target w_{f} .

162

163 CYCLIC TRIAXIAL TESTS

The cyclic triaxial apparatus used by Wang et al. [20] was adopted in this study, hosting a 164 165 sample with 100 mm diameter and 200 mm height. Using a 50 kN hydraulic actuator enabled a force or displacement controlled mode to be applied in both monotonic and cyclic triaxial 166 tests. As for the cyclic loading, different signal shapes, amplitudes, frequencies and large 167 number of cycles (up to several millions) can be applied. A linear variable displacement 168 transducer (LVDT) was adopted to monitor the axial displacement, with a minimum capacity 169 of \pm 0.1mm. Considering the height (= 200mm) of the sample, the corresponding minimum 170 measurement capacity of axial strain was \pm 0.05%. A force sensor installed at the bottom was 171 adopted to monitor the axial force. 172

A series of cyclic triaxial tests were performed on the samples at two target w_f values (w_1 = 17.6% and w_2 = 10.6%) and five f_v values (0%, 10%, 20%, 35% and 45%) with drainage valves open to air. A constant confining pressure σ_3 = 30 kPa was applied, corresponding to the estimated average horizontal stress in the field by the consideration of train loadings, the depth of interlayer soil and the Poisson's ratio (Duong et al. [21]). In the case of w_1 = 17.6% (S_r = 100%), after applying the confining pressure σ_3 = 30 kPa, an overnight consolidation of the sample was adopted, with both the top and bottom porous disks exposed to the air. This allowed for the fully dissipation of generated pore water pressure. On the contrary, in the case of $w_2 = 10.6\%$ ($S_r = 60\%$), after application of the confining pressure $\sigma_3 = 30$ kPa, the cyclic loading was directly applied, because only air was expected to be expelled.

Fig. 5 shows a sine-shaped signal applied at a frequency of 1.78 Hz, corresponding to that 183 excited by two bogies at a train speed of 50 km/h. A multi-step loading procedure proposed by 184 185 Gidel et al. [5], applied later by Wang et al. [4] was adopted, which can not only reduce the number of tests but also avoid experimental dispersion due to the variability of sample. Fig. 6 186 depicts a multi-step loading procedure with various deviator stress amplitudes Δq of 10, 15, 20, 187 25 and 30 kPa, and a number of loading cycles N = 90000 for each Δq value. The deviator 188 stress amplitude Δq was defined as the difference of maximum deviator stress q_{max} and 189 minimum deviator stress q_{\min} . These Δq values corresponded to the vertical stresses at varying 190 depths of interlayer soil in the field, as reported by Lamas-Lopez [22]. The number of loading 191 cycles N = 90000 was considered large enough for the stabilization of permanent strain under 192 a given Δq value, according to the number applied in previous studies (Gidel et al. [5]; Trinh 193 et al. [8]; Duong et al. [12]; Lamas-Lopez et al. [22]). Note that a constant cyclic stress ratio 194 195 $\Delta q / \Delta p = 3$ was adopted, which represented the typical stress path in the interlayer (Trinh et al. [8]). During the tests, the deviator stress and axial strain were recorded. 196

Fig. 5. Typical sine-shaped signals applied in cyclic triaxial tests

Fig. 6. Multi-step loading procedure with various stress amplitudes Δq

199 RESULTS AND DISCUSSIONS

200 Effect of water content on the evolution of permanent strain with loading cycles

Fig.7 depicts the evolution of axial strain ε_1 with loading cycles N at $f_v = 0\%$ and $w_1 = 17.6\%$ 201 under various Δq values ranging from 10 kPa to 30 kPa. It can be observed that under a given 202 Δq value, the axial strain ε_1 increased significantly at the beginning of loading cycles, and 203 then gradually stabilized. With the increase of Δq , the axial strain ε_1 increased significantly. In 204 addition, the axial strain ε_1 could be separated into two parts: a plastic strain ε_1^p and a resilient 205 strain ε_1^r . For the plastic strain ε_1^p , it increased with N and the increasing rate decreased with N 206 under a constant Δq value. On the contrary, the resilient strain ε_1^r remained almost unchanged 207 at a given Δq value and increased with increasing Δq . 208

Fig. 7. Determination of permanent strain and resilient strain

209

Fig. 8 presents the evolutions of ε_1^p with *N* under various Δq values for $f_v = 0\%$ and three water contents. At $w_1 = 17.6\%$, the permanent strain ε_1^p increased with *N* sharply at the initial loading cycles *N*, and then gradually reached stabilization under a specific Δq value. With the increase of Δq , the permanent strain ε_1^p growed significantly. The similar observation can be made in the case of $w_{opt-f} = 13.7\%$ (obtained by Wang et al. [4]) and $w_2 = 10.6\%$. In addition, it can be observed that the decrease of water content from $w_1 = 17.6\%$ to $w_{opt-f} = 13.7\%$ or $w_2 =$ 10.6% led to a pronounced decrease of ε_1^p . This could be explained by the contribution of suction, as reported by Duong et al. [12-] and Jing [24].

Fig. 8. Evolutions of permanent strain with number of cycles at $f_v = 0\%$ and different Δq values for three different water contents

218

Fig. 9 shows the effect of water content on the evolutions of ε_1^p with *N* under various f_v values. In the case of $w_1 = 17.6\%$ (Fig. 9 (a)), under a given f_v value, the increasing trend of ε_1^p versus *N* decreased with the increase of *N* at a constant Δq value. However, ε_1^p increased significantly with the increase of Δq . In addition, it can be found that with the increase of f_v , the permanent strain ε_1^p decreased. This was attributed to the reinforcement effect of coarse

grains in the soil mixtures. Moreover, different decreasing trends of ε_1^p with f_v was evidenced 224 at $f_v \le 20\%$ and $f_v \ge 35\%$: a pronounced decrease of ε_1^p with f_v at $f_v \le 20\%$ and a slight decrease 225 of that at $f_v \ge 35\%$. This could be explained by the transition of two soil fabrics: a fine soil 226 dominated fabric at $f_v \le 20\%$ and a coarse grain dominated fabric at $f_v \ge 35\%$. Note that for the 227 coarse grain skeleton fabric ($f_v > 35$), two categories of fine soil were identified by Su et al. [19] 228 - dense fines (with ρ_{d-f} higher than 1.82 Mg/m³) and loose fines (with ρ_{d-f} lower than 1.82 229 230 Mg/m³). In spite of this inhomogeneous distribution of fine soil in the mixture, the suction of mixture was found to be mainly controlled by the global dry density of fines $\rho_{d-f} = 1.82 \text{ Mg/m}^3$ 231 (Su et al. [25]). The similar observation was made at $w_{opt-f} = 13.7\%$ (Fig. 9 (b)), which was 232 obtained by Wang et al. [4]. At $w_2 = 10.6\%$ (Fig. 9 (c)), the ε_1^p at $f_v = 0\%$ was very small, with 233 a maximum value around 0.05% identified. The ε_1^p at $f_v = 10\%$, 20%, 35% and 45% was 234 expected to be smaller than that at $f_v = 0\%$. Considering the minimum measurement capacity 235 (0.05%) of axial strain by the adopted LVDT, inaccuracy measurements of ε_1^p at $f_v = 10\%$, 236 20%, 35% and 45% were generated. Therefore, these results are not presented in Fig. 9 (c). 237

Fig. 9. Evolutions of permanent strain with number of cycles at different f_v and Δq values for various water contents: (a) $w_1 = 17.6\%$; (b) $w_{opt-f} = 13.7\%$ (after Wang et al. [4]); (c) $w_2 = 10.6\%$

239 Estimation of permanent strain

Considering a multi-step loading procedure applied in this study, the loading history would 240 significantly affect the evolution of permanent strain ε_1^p with N under various water contents 241 and coarse grain contents. Thereby, the estimation approach proposed by Gidel et al. [5] was 242 adopted to eliminate such effect of loading history on permanent strain. As shown in Fig. 10, 243 the permanent strain ε_1^p evolved with N at two successive loading levels: loading level M and 244 loading level M+1. To eliminate the effect of loading level M on permanent strain at loading 245 level M+1, the increment of permanent strain $\delta \varepsilon_1^{p (M+1)}$ at loading level M+1 was transferred 246 to start at $\varepsilon_1^p = 0$ and N = 0, which was the starting point of permanent strain at loading level 247 M. As shown in Eq. (1), the estimated permanent strain $\varepsilon_1^{p(M+1)}$ at loading level M+1 without 248

249 the influence of loading history can be determined:

250

$$\varepsilon_{1}^{p\ (M+1)} = \varepsilon_{1}^{p\ (M)} + \delta\varepsilon_{1}^{p\ (M+1)}$$

where $\varepsilon_1^{p(M+1)}$ represents the estimated permanent strain at loading level M+1, $\varepsilon_1^{p(M)}$ represents measured permanent strain at loading level M, $\delta \varepsilon_1^{p(M+1)}$ represents the increment of permanent strain at loading level M+1. Note that the estimated $\varepsilon_1^{p(M+1)}$ at N = 90000coincides with the measured $\varepsilon_1^{p(M+1)}$ at N = 180000. In addition, the slope θ of estimated $\varepsilon_1^{p(M+1)}$ with N after N = 90000 was kept the same as that in the last cycle of measured $\varepsilon_1^{p(M+1)}$, which enabled a linear increase of estimated $\varepsilon_1^{p(M+1)}$ with N after N =90000 in Fig. 10.

Fig. 11 presents the evolution of the estimated ε_1^p with N at $f_v = 0\%$ and $w_1 = 17.6\%$ under 258 various Δq values. With the increase of Δq , the estimated ε_1^p appears to grow. In addition, it 259 can be found that the estimated ε_1^p was larger than the measure ε_1^p under the same Δq and N 260 values (except $\Delta q = 10$ kPa). For instance, at $\Delta q = 30$ kPa and N = 450000, the estimated $\varepsilon_1^p =$ 261 1.75% was much larger than the measured $\varepsilon_1^p = 1.20\%$. This could be attributed to the effect of 262 loading history. Different from the estimated ε_1^p under a constant $\Delta q = 30$ kPa, the measured 263 ε_1^p experienced a series of lower stress amplitudes $\Delta q = 10, 15, 20$ and 25 kPa prior to $\Delta q = 30$ 264 kPa, which resulted in a smaller value. Considering that a relative good accuracy for the 265 estimated ε_1^p could be obtained at the first loading stage (e.g. $N = 0 \sim 90000$ in this study), as 266 reported by Gidel et al. [5] and confirmed later by Lamas-Lopez [22] and Wang et al. [4], the 267 estimated end-stage permanent strains ε_1^p (at N = 90000) under various Δq values were 268 selected for further analysis. 269

(5)

Fig. 10. Estimation method of ε_1^p proposed by Gidel et al. [5]

Fig. 11. Evolutions of estimated permanent strain with number of cycles at various Δq values for $f_v = 0\%$ and $w_1 = 17.6\%$

271 Effect of water content on the variations of estimated end-stage ε_1^p with Δq

Fig. 12 shows the variations of estimated end-stage ε_1^p with Δq under different f_v values for two water contents. In the case of $w_1 = 17.6\%$ ($S_r = 100\%$, Fig. 12 (a)), the estimated end-stage ε_1^p increased with increasing Δq for various f_v values. Under a given Δq , the ε_1^p decreased with the increase of f_v , evidencing the reinforcement effect of coarse grains. The similar observation was obtained at $w_{opt-f} = 13.7\%$ ($S_r = 78\%$) (Fig. 12 (b)). In addition, the decrease of water content from $w_1 = 17.6\%$ to $w_{opt-f} = 13.7\%$ led to a decline of the estimated endstage ε_1^p , owing to the contribution of suction.

The study of Dong et al. [12] was carried out at a constant dry density of mixture ρ_d for 279 varying f_v values (50.3%, 55.5% and 61.4%), and therefore the fines fraction density ρ_{d-f} 280 decreased as f_v increased (Table 3). Fig. 13 shows that the estimated end-stage ε_1^p increased 281 with Δq for the three f_v values and three w values. Under saturated conditions (w = 12%, Fig. 282 13 (a)), an increase of f_v led to a decrease of ε_1^p under a constant Δq , which was consistent with 283 that observed in Fig. 12 (a). On the contrary, under unsaturated conditions (w = 6% and w =284 4%, Figs. 12 (b) - (c)), an increase of f_v resulted in an increase of the estimated end-stage ε_1^p 285 under a constant Δq , which was contradictory with the observation in Fig. 12 (b). This could 286 be explained by the fact that the permanent strain behavior of soil mixtures was affected by 287 both the reinforcement effect of coarse grains and the effect of suction in fines. Under 288 saturated conditions, without the effect of suction, the reinforcement effect of f_v played a 289 dominant role in the permanent strain behavior of mixtures. In this case, an increase of f_v 290 induced a decrease of ε_1^p (Fig. 12 (a) and Fig. 13 (a)). By contrast, under unsaturated 291 conditions, both the reinforcement effect of coarse grains and the effect of suction in fines 292

293 affected the permanent strain behavior. Note that the suction of fines fraction was strongly related to its p_{d-f} under a constant water content, as evidenced by Romero et al. [26] and Gao 294 and Sun [27]. In the present study, the fine soil was controlled at $\rho_{\text{dmax-f}} = 1.82 \text{ Mg/m}^3$ (Table 295 2), leading to an unchanged suction (= 739 kPa in Wang et al. [13]) at $w_{opt-f} = 13.7\%$ under 296 varying f_v values. This was supported by the findings of Su et al. [25] on the same fine/coarse 297 soil mixture, who reported that the soil-water retention curve was only affected by the dry 298 299 density of fine soil ρ_{d-f} , while independent of coarse grain content f_v . In this case, the reinforcement effect of f_v on the permanent strain behavior was clearly identified: an increase 300 of f_v led to a smaller ε_1^p (Fig. 12 (b)). Conversely, in the study of Duong et al. [12], the ρ_{d-f} of 301 fine soil declines from 1.33 Mg/m³ to 1.17 and 0.94 Mg/m³ with the increasing f_v values from 302 50.3% to 55.5% and 61.4% (Table 3), which would result in a decrease of suction within the 303 fine fraction. In this case, the negative effect of decreasing suction prevailed on the positive 304 reinforcement effect of increasing f_v . As a result, the ε_1^p increased with increasing f_v . (Fig. 13 305 (b) - (c)).306

Fig. 12. Variations of estimated end-stage permanent strain with Δq at different f_v values for various water contents: (a) $w_1 = 17.6\%$; (b) $w_{opt-f} = 13.7\%$

Fig. 13. Variations of estimated end-stage permanent strain with Δq at different f_v values for various water contents: (a) w = 12%; (b) w = 6%; (3) w = 4% (after Duong et al. [12])

Table 3. Soil properties of Duong et al. [12]

$f_{v}(\%)$		w (%)		$S_{\rm r}$ (%)		$ ho_{ m d}$ (Mg/m ³)	$ ho_{d-f}$ (Mg/m ³)
50.3	4	6	12	32	49	100		1.33
55.5	4	6	12	32	49	100	2.01	1.17
61.4	4	6	12	32	49	100		0.94

Note: *w* represents the water content of soil mixtures.

308

309 CONCLUSIONS

To investigate the effect of water content on permanent strain ε_1^p of fine/coarse soil mixtures under varying coarse grain contents, a series of cyclic triaxial tests were performed. For the cyclic triaxial test, a multi-step loading procedure under various stress amplitudes Δq of 10, 15, 20, 25 and 30 kPa was applied, with a number of loading cycles N = 90000 for each Δq value. Two target fines water contents $w_f (w_1 = 17.6\%$ and $w_2 = 10.6\%)$ and five coarse grain contents $f_v (0\%, 10\%, 20\%, 35\%$ and 45%) were considered. The estimation approach of ϵ_1^p proposed by Gidel et al. [5] was adopted to eliminate the effect of loading history on ϵ_1^p . Through the comparison of the present study and the study of Duong et al. [12], the effects of water content and coarse grain content on the permanent strain behavior of fine/coarse soil mixtures were clarified. The following conclusions to be drawn:

A decrease of water content led to a decrease of permanent strain ε_1^p , due to the 320 contribution of suction. An increase of f_v gave rise to a decrease of ε_1^p , owing to the 321 reinforcement effect of f_v . The comparison of present study and the study of Duong et al. [12] 322 323 indicated a significant effect of sample preparation approach on the permanent strain behavior of soil mixtures. In the present study, a constant ρ_{d-f} of fine soil fraction was maintained, 324 leading to an unchanged suction of soil mixtures with varying f_v values. In this case, the 325 reinforcement effect of f_v on the permanent strain behavior was clearly identified: an increase 326 of f_v led to a decrease of ε_1^p . Conversely, in the study of Duong et al. [12], with a global dry 327 density kept constant, an increase of f_v led to a decrease of the dry density of fines ρ_{d-f} and 328 consequently a decrease of suction. In that case, when the negative effect of decreasing 329 suction prevailed on the positive reinforcement effect of increasing f_v , the ε_1^p increased with 330 331 the increase of f_v .

332

333

334 ACKNOWLEDGEMENTS

This work was supported by the China Scholarship Council (CSC) and Ecole des PontsParisTech.

338	REFERENCES
-----	------------

- Trinh, V. N. (2011). Comportement hydromécanique des matériaux constitutifs de
 plateformes ferroviaires anciennes. PhD Thesis, Ecole Nationale des Ponts et
 Chaussées, Université Paris-Est.
- 342 [2] Cui, Y.J., Duong, T.V., Tang, A.M., Dupla, J.C., Calon, N. and Robinet, A., (2013).
- Investigation of the hydro-mechanical behaviour of fouled ballast. Journal of Zhejiang
 University Science A, 14(4), pp.244-255.
- 345 [3] Song, Y., & Ooi, P. S. (2010). Interpretation of shakedown limit from multistage
 346 permanent deformation tests. Transportation research record, 2167(1), 72-82.
- 347 [4] Wang, H.L., Cui, Y.J., Lamas-Lopez, F., Dupla, J.C., Canou, J., Calon, N., Saussine,
- 348 G., Aimedieu, P. and Chen, R.P., (2018). Permanent deformation of track-bed 349 materials at various inclusion contents under large number of loading cycles. *Journal* 350 *of Geotechnical and Geoenvironmental Engineering*, *144*(8), p.04018044.
- Gidel, G., Hornych, P., Breysse, D., & Denis, A. (2001). A new approach for
 investigating the permanent deformation behaviour of unbound granular material
 using the repeated loading triaxial apparatus. Bulletin des laboratoires des Ponts et
 Chaussées, (233).

355	[6]	Werkmeister, S., Dawson, A. R., & Wellner, F. (2001). Permanent deformation
356		behavior of granular materials and the shakedown concept. Transportation Research
357		Record, 1757(1), 75-81.

- Nie, R., Li, Y., Leng, W., Mei, H., Dong, J., & Chen, X. (2020). Deformation
 characteristics of fine-grained soil under cyclic loading with intermittence. *Acta Geotechnica*, 1-14..
- 361 [8] Trinh, V.N., Tang, A.M., Cui, Y.J., Dupla, J.C., Canou, J., Calon, N., Lambert, L.,
 362 Robinet, A. and Schoen, O., (2012). Mechanical characterisation of the fouled ballast
 363 in ancient railway track substructure by large-scale triaxial tests. *Soils and*364 *foundations*, 52(3), pp.511-523.
- Jing, P. (2017). Experimental study and modelling of the elastoplastic behaviour of
 unbound granular materials under large number of cyclic loadings at various initial
 hydric states (Doctoral dissertation).
- Wan, Z., Bian, X., Li, S., Chen, Y., & Cui, Y. (2020). Remediation of mud pumping in
 ballastless high-speed railway using polyurethane chemical injection. Construction
- and Building Materials, 259, 120401.
- Gu, C., Zhan, Y., Wang, J., Cai, Y., Cao, Z., & Zhang, Q. (2020). Resilient and
 permanent deformation of unsaturated unbound granular materials under cyclic
 loading by the large-scale triaxial tests. *Acta Geotechnica*, *15*(12), 3343-3356.
- 374 [12] Duong, T.V., Tang, A.M., Cui, Y.J., Trinh, V.N., Dupla, J.C., Calon, N., Canou, J. and
- Robinet, A., (2013). Effects of fines and water contents on the mechanical behavior of

377

interlayer soil in ancient railway sub-structure. Soils and foundations, 53(6), pp.868-878.

- 378 [13] Wang, H.L., Cui, Y.J., Lamas-Lopez, F., Calon, N., Saussine, G., Dupla, J.C., Canou,
- J., Aimedieu, P. and Chen, R.P., (2018). Investigation on the mechanical behavior of track-bed materials at various contents of coarse grains. *Construction and Building Materials*, *164*, pp.228-237.
- 382 [14] Qi, S., Cui, Y.J., Chen, R.P., Wang, H.L., Lamas-Lopez, F., Aimedieu, P., Dupla, J.C.,
- 383 Canou, J. and Saussine, G., (2020). Influence of grain size distribution of inclusions on
- the mechanical behaviours of track-bed materials. Géotechnique, 70(3), pp.238-247.
- Su, Y., Cui, Y. J., Dupla, J. C., & Canou, J. (2020). Investigation of the effect of water
 content on the mechanical behavior of track-bed materials under various coarse grain
 contents. Construction and Building Materials, 263, 120206.
- 388 [16] Su, Y., Cui, Y. J., Dupla, J. C., Canou, J., & Qi, S. (2020). A fatigue model for track-
- bed materials with consideration of the effect of coarse grain content. Transportation
 Geotechnics, 23, 100353.
- [17] Su, Y., Cui, Y. J., Dupla, J. C., & Canou, J. (2021). Effect of water content on resilient
 modulus and damping ratio of fine/coarse soil mixtures with varying coarse grain
 contents. Transportation Geotechnics, 26, 100452.
- Qi, S., Cui, Y.J., Dupla, J.C., Chen, R.P., Wang, H.L., Su, Y., Lamas-Lopez, F. and
 Canou, J., (2020b). Investigation of the parallel gradation method based on the
- 396 response of track-bed materials under cyclic loadings. Transportation Geotechnics,
- 397 p.100360.

398	[19]	Su, Y., Cui, Y. J., Dupla, J. C., Canou, J., & Qi, S. (2021). Developing a Sample
399		Preparation Approach to Study the Mechanical Behavior of Unsaturated Fine/Coarse
400		Soil Mixture. Geotechnical Testing Journal, 44(4).
401	[20]	Wang, H. L., Cui, Y. J., Lamas-Lopez, F., Dupla, J. C., Canou, J., Calon, N., &
402		Chen, R. P. (2017). Effects of inclusion contents on resilient modulus and damping
403		ratio of unsaturated track-bed materials. Canadian Geotechnical Journal, 54(12), 1672-
404		1681.
405	[21]	Duong, T.V., Cui, Y.J., Tang, A.M., Dupla, J.C., Canou, J., Calon, N. and Robinet, A.,
406		(2016). Effects of water and fines contents on the resilient modulus of the interlayer

- 407 soil of railway substructure. *Acta Geotechnica*, *11*(1), pp.51-59.
- 408 [22] Lamas-lopez, F. (2016). Field and laboratory investigation on the dynamic behavior of
 409 conventional railway track-bed materials in the context of traffic upgrade. PhD Thesis,
 410 Ecole Nationale des Ponts et Chaussées, Université Paris-Est.
- 411 [23] Duong, T. V., Cui, Y. J., Tang, A. M., Dupla, J. C., & Calon, N. (2014). Effect of fine
 412 particles on the hydraulic behavior of interlayer soil in railway substructure. Canadian
 413 geotechnical journal, 51(7), 735-746.
- 414 [24] Jing, P., Nowamooz, H., & Chazallon, C. (2018). Permanent deformation behaviour of
 415 a granular material used in low-traffic pavements. Road Materials and Pavement
 416 Design, 19(2), 289-314.
- 417 [25] Su, Y., Cui, Y. J., Dupla, J. C., & Canou, J. (2021). Soil-water retention behaviour of
- 418 fine/coarse soil mixture with varying coarse grain contents and fine soil dry densities.
- 419 Canadian Geotechnical Journal, (ja).

421	[26]	Romero, E., Gens, A., & Lloret, A. (1999). Water permeability, water retention and
422		microstructure of unsaturated compacted Boom clay. Engineering Geology, 54(1-2),
423		117-127.
424	[27]	Gao, Y., Sun, DA. (2017). Soil-water retention behavior of compacted soil with
425		different densities over a wide suction range and its prediction. Computers and
426		Geotechnics, 91, 17-26.
427		

428 NOTATIONS

ε_1	axial strain
ε_1^r	resilient strain
ε_1^p	permanent strain
$\varepsilon_1^{p(M)}$	measured permanent strain at loading level M
$\varepsilon_1^{p(M+1)}$	estimated permanent strain at loading level M+1
$\delta \varepsilon_1^{p(M+1)}$	increment of permanent strain at loading level M+1
$f_{ m v}$	volumetric coarse grain content
fv-cha	characteristic volumetric coarse grain content
Ν	number of loading cycles
$ ho_{ m d}$	dry density of sample
$ ho_{ ext{d-f}}$	dry density of fine soil
$ ho_{ m dmax-f}$	maximum dry density of fine soil
q	deviator stress

$q_{ m max}$	maximum deviator stress
$q_{ m min}$	minimum deviator stress
Δq	deviator stress amplitude
Δp	mean stress amplitude
Sr	degree of saturation
Wopt-f	optimum water content of fine soil
${\cal W}_{ m f}$	water content of fine soil
σ_3	confining pressure
θ	increasing slope of permanent strain with loading cycles at the end of loading
	cycles for a given stress amplitude

429 LIST OF TABLES

Table 1.	Nine different commercial soils
Table 2.	Experimental program of cyclic triaxial tests
Table 3.	Soil properties of Duong et al. [12]

430

LIST OF FIGURES

- Fig. 1. Grain size distribution curves of fine soil and micro-ballast (after Wang et al. [4])
- Fig. 2. Preparation of samples at two target water contents with respect to compaction curve of the fine soil
- Fig. 3. Constitution of fine/coarse soil mixture
- Fig. 4. Variations of sample volume with f_v at two target water contents
- Fig. 5. Typical sine-shaped signals applied in cyclic triaxial tests
- Fig. 6. Multi-step loading procedure with various stress amplitudes Δq
- Fig. 7. Determination of permanent strain and resilient strain
- Fig. 8. Evolutions of permanent strain with number of cycles at $f_v = 0\%$ and different Δq values for three different water contents and
- Fig. 9. Evolutions of permanent strain with number of cycles at different f_v and Δq values for various water contents: (a) $w_1 = 17.6\%$; (b) $w_{opt-f} = 13.7\%$ (after Wang et al. [4]); (c) $w_2 = 10.6\%$
- Fig. 10. Estimation method of ε_1^p proposed by Gidel et al. [5]
- Fig. 11. Evolutions of estimated permanent strain with number of cycles at various Δq values for $f_v = 0\%$ and $w_1 = 17.6\%$
- Fig. 12. Variations of estimated end-stage permanent strain with Δq at different f_v values for various water contents: (a) $w_1 = 17.6\%$; (b) $w_{opt-f} = 13.7\%$
- Fig. 13. Variations of estimated end-stage permanent strain with Δq at different f_v values for various water contents: (a) w = 12%; (b) w = 6%; (3) w = 4% (after Duong et al. [12])