

Modelling the suction-and deviator stress-dependent resilient modulus of unsaturated fine/coarse soil mixture by considering soil-water retention curve

Yu Su, Yu-Jun Cui

► To cite this version:

Yu Su, Yu-Jun Cui. Modelling the suction-and deviator stress-dependent resilient modulus of unsaturated fine/coarse soil mixture by considering soil-water retention curve. Transportation Geotechnics, 2022, 32, pp.100698. 10.1016/j.trgeo.2021.100698 . hal-04155856

HAL Id: hal-04155856 https://enpc.hal.science/hal-04155856v1

Submitted on 7 Jul2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Modelling the suction- and deviator stress-dependent resilient modulus of
2	unsaturated fine/coarse soil mixture by considering soil-water retention curve
3	
4	Yu Su ^{1,2} , Yu-Jun Cui ² , Jean-Claude Dupla ² , Jean Canou ²
5	
6	1: School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031,
7	China
8	2: Laboratoire Navier/CERMES, Ecole des Ponts ParisTech (ENPC), France
9	
10	
11	
12	
13	
14	
15	
16	Corresponding author
17	Yu SU
18	1. School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China
19 20	2. Ecole des Ponts ParisTech, Laboratoire Navier/CERMES, 6 – 8 av. Blaise Pascal, Cité Descartes, Champs-sur-Marne, 77455 Marne – la – Vallée cedex 2, France
21	E-mail address: yu.su@enpc.fr

22 Abstract

Experimental observations have shown that the resilient modulus M_r of fine/coarse soil 23 mixture can be significantly affected by the coarse grain content f_v , deviator stress σ_d and 24 suction ψ . In this study, a constitutive model incorporating the soil-water retention curve 25 (SWRC) was proposed to describe the effects of ψ and σ_d on M_r . This model was then 26 extended to the effect of f_v . The proposed model implied the resilient modulus at saturation 27 28 condition (M_{r-sat}), the resilient modulus at optimum moisture content (OMC) condition (M_{r-opt}), the suction at OMC (ψ_{opt}) and the parameters related to SWRC. The model was validated 29 using experimental data from five studies reported in literature. Comparisons with three 30 representative existing models showed that the proposed model was capable to well describe 31 32 the suction-dependent effect of deviator stress in the full range of suction, while the existing models gave satisfactory simulation results only in the low suction range. Indeed, 33 34 experimental studies revealed that there was a threshold suction ψ_{th} , and with increasing σ_d , the M_r decreased when $\psi < \psi_{\text{th}}$, but increased when $\psi > \psi_{\text{th}}$. When $\psi < \psi_{\text{th}}$, all models gave 35 good simulations. On the contrary, when $\psi > \psi_{\text{th}}$, only the proposed model gave good 36 simulations, in particular when $\psi_{\text{th}} > \psi_{\text{opt}}$. This showed the performance of the proposed 37 model in describing the variation of resilient modulus of unsaturated fine/coarse soil mixtures 38 with changes in coarse grain content, deviator stress and suction. 39

Keywords: resilient modulus; constitutive model; suction; deviator stress; coarse grain
content; soil-water retention curve

An interlayer soil was naturally created in the French conventional rail tracks, corresponding 43 to a mixture of ballast grains and subgrade fine soil. The in-situ investigation showed a 44 decrease of ballast grain content over the depth of interlayer soil (Trinh [1]). The resilient 45 modulus $M_{\rm r}$, defined as the ratio of cyclic deviator stress to resilient strain, was adopted to 46 characterize the stiffness of interlayer soil (Nie et al. [2]). Wang et al. [3 - 5] and Qi et al. [6] 47 studied the effects of coarse grain content f_v (the ratio of the volume of micro-ballast grains to 48 that of mixture) and deviator stress σ_d on M_r of interlayer soil by cyclic triaxial tests under 49 50 constant suction ψ . Figs. 1(a)-(b) show the grain size distribution curves of fine soil and micro-ballast, among which the micro-ballast was fabricated by a mixture of three coarse 51 52 grains G 4-10, HN 2-4 and G 10-20 (see more details in Wang et al. [3]). The effect of ψ on the M_r of interlayer soil was further investigated by Su et al. [7] through multi-stage deviator 53 stresses cyclic tests. Those experimental results indicated that the $M_{\rm r}$ of such fine/coarse soil 54 mixture was significantly affected by coarse grain content f_v , suction ψ and deviator stress σ_d . 55 56 From a practical point of view, it appears important to develop a constitutive model of M_r for the fine/coarse soil mixture, taking the combined effects of f_v , ψ and σ_d into consideration. 57

Fig. 1. Grain size distribution curves of (a) fine soil and (b) micro-ballast (after Wang et al. [3])

60 The effects of f_v , ψ and σ_d on M_r were addressed in numerous experimental studies and 61 different models were proposed for that. Wang et al. [3] and Cui et al. [8] studied the effect of 62 f_v on the M_r of fine/coarse soil mixture, and defined a characteristic coarse grain content f_{v-cha} 63 separating two fabric kinds for the mixtures: a fine matrix macrostructure at $f_v \leq f_{v-cha}$, and a 64 coarse grain skeleton fabric at $f_v \geq f_{v-cha}$. They found that M_r increased slowly with increasing f_v 65 at $f_v \leq f_{v-cha}$, while quickly at $f_v \geq f_{v-cha}$. No constitutive model has been developed for describing 66 this phenomenon.

The effects of ψ and σ_d on M_r were generally investigated by multi-stage loadings cyclic 67 triaxial tests (Gupta et al. [9]; Nowamooz et al. [10]). Gu et al. [11] performed a series of 68 large-scale cyclic triaxial tests on unbound granular materials, and found that the increase in 69 both ψ and σ_d led to an increase of M_r . Ng et al. [12] studied the effects of ψ and σ_d on the M_r 70 of unsaturated subgrade soil by suction-controlled cyclic triaxial tests. The results showed that 71 in a narrow range of ψ from 0 to 250 kPa, an increase of ψ induced an increase of M_r , and an 72 increase of σ_d led to a reduction of M_r at a constant ψ . Yang et al. [13] performed suction-73 controlled tests on residual mudstone soil with various deviator stresses σ_d . They reported that 74 75 with increasing σ_d , the M_r decreased at low suctions ($\psi = 50$ and 150 kPa), while increased at a high suction ($\psi = 450$ kPa). Similarly, Su et al. [7] studied the effect of w on the M_r of 76 fine/coarse soil mixture through multi-stage loadings cyclic triaxial tests. They found that an 77 increase of w led to a decrease of M_r of soil mixture, due to the effect of ψ . Moreover, in the 78 case of low ψ (smaller than or equal to ψ_{opt} at optimum moisture content OMC), the increase 79 of σ_d resulted in a decrease of M_r , while in the case of high ψ (larger than ψ_{opt}), an opposite 80 81 trend was observed. Han and Vanapalli [14] investigated the effect of ψ on the M_r of unsaturated subgrade soil, and proposed a constitutive model incorporating the soil-water 82 retention curve (SWRC). Oh et al. [15] and Han and Vanapalli [16 - 17] also consider SWRC 83

84 while modeling the effect of ψ on M_r . To date, there are no models for the description of M_r 85 variation with changes in ψ and σ_d for unsaturated fine/coarse soil mixtures.

In this study, a constitutive model of M_r was proposed for unsaturated fine/coarse soil mixtures, accounting for the effects of ψ , σ_d , and f_v . Experimental data collected from literature including the authors' own data were used to validate the model. Comparisons between the proposed model and three representative existing models showed that the proposed model is capable to well describe the variations of M_r with changes in σ_d and f_v in the full range of ψ .

92

93 MODELLING BACKGROUND

Some investigators proposed empirical models to simulate the $M_r - \psi$ relationship. For instance, Sawangsuriya et al. [18] studied the effect of ψ on M_r with four compacted subgrade soils, and proposed Eqs. (1) - (2) by considering two reference M_r values at saturation condition and OMC condition- M_{r-sat} and M_{r-opt} , respectively:

98
$$M_{\rm r}/M_{\rm r-sat} = -5.61 + 4.54\log{(\psi)}$$
 (1)

99
$$M_{\rm r}/M_{\rm r-opt} = -0.24 + 0.25\log{(\psi)}$$
 (2)

Ba et al. [19] proposed Eq. (3) to estimate the variations of M_r of four compacted granular materials with respect to ψ using a resilient modulus ratio of M_r to the M_{r-opt} :

102
$$M_{\rm r}/M_{\rm r-opt} = 0.385 + 0.267\log{(\psi)}$$
 (3)

103 These empirical models were simple and their parameters could be easily determined by 104 regression analysis. However, since they were generally derived from limited experimental 105 data, it appears difficult to be generalized to other materials.

106 The Mechanistic-Empirical Pavement Design Guide (MEPDG) (ARA, Inc., ERES 107 Consultants Division. [20]) recommended the commonly used Eq. (4) to describe the variation 108 of M_r with stress:

109
$$M_{\rm r} = k_1 p_{\rm a} \left(\frac{\theta_{\rm b}}{p_{\rm a}}\right)^{k_2} \left(\frac{\tau_{\rm oct}}{p_{\rm a}} + 1\right)^{k_3} \tag{4}$$

110 where θ_b is the bulk stress, equal to the sum of the three principal stresses σ_1 , σ_2 and σ_3 ; τ_{oct} is 111 the octahedral shear stress, equal to $\sqrt{2}/3(\sigma_1 - \sigma_3)$ in triaxial condition; p_a is the atmospheric 112 pressure; k_1 , k_2 and k_3 are model parameters.

Liang et al. [21] studied the effects of stress state and suction on the M_r of cohesive soil. They proposed Eq. (5) by incorporating ψ into the bulk stress of Eq. (4) using the Bishop's effective stress parameter χ :

116
$$M_{\rm r} = k_4 p_{\rm a} \left(\frac{\theta_{\rm b} + \chi \psi}{p_{\rm a}}\right)^{k_5} \left(\frac{\tau_{\rm oct}}{p_{\rm a}} + 1\right)^{k_6} \tag{5}$$

117 where k_4 , k_5 and k_6 are model parameters.

Similarly, Heath et al. [22] investigated the M_r of unsaturated granular materials, and developed Eq. (6) by modifying Eq. (4) using the Bishop's effective stress parameter χ :

120
$$M_{\rm r} = k_7 p_{\rm a} \left(\frac{\frac{\theta_{\rm b}}{3} - u_{\rm a} + \chi \psi}{p_{\rm a}}\right)^{k_8} \left(\frac{\sigma_{\rm d}}{p_{\rm a}}\right)^{k_9} \tag{6}$$

121 where k_7 , k_8 and k_9 are model parameters; u_a is the pore air pressure.

122 Gupta et al. [9] and Khoury et al. [23] modified Eq. (4) by adding ψ as an independent 123 term, such as $A\psi^B$ in Eqs. (7) and (8) for subgrade soils:

124
$$M_{\rm r} = k_{10} p_{\rm a} \left(\frac{\theta_{\rm b} - 3k_{11}}{p_{\rm a}}\right)^{k_{12}} \left(\frac{\tau_{\rm oct}}{p_{\rm a}} + k_{13}\right)^{k_{14}} + A_1 \psi^{B_1} \tag{7}$$

125
$$M_{\rm r} = k_{15} p_{\rm a} \left(\frac{\theta_{\rm b}}{p_{\rm a}}\right)^{k_{16}} \left(\frac{\tau_{\rm oct}}{p_{\rm a}} + k_{17}\right)^{k_{18}} + A_2 \psi^{B_2} \tag{8}$$

126 where k_{10} - k_{18} , A_1 , B_1 , A_2 and B_2 are model parameters.

127 The MEPDG (ARA, Inc., ERES Consultants Division. [20]) adopted Eq. (9) to predict 128 the variation of M_r with respect to the seasonal variation of water content in the field condition:

129
$$\log\left(\frac{M_{\rm r}}{M_{\rm r-opt}}\right) = a + \frac{b-a}{1 + \exp\left[\ln\frac{-b}{a} + k_{\rm m} \cdot (S_{\rm r} - S_{\rm r-opt})\right]}$$

130 (9)

where S_r is the degree of saturation; M_{r-opt} and S_{r-opt} are the resilient modulus and the degree of saturation at OMC, respectively; *a* and *b* are the minimum and maximum values of log (M_r/M_{r-opt}) , respectively; k_m is a regression parameter. For fine-grained soil, a = -0.5934, b =0.4 and $k_m = 6.1324$; for coarse-grained soil, a = -0.3123, b = 0.3 and $k_m = 6.8157$.

Han and Vanapalli [14] proposed Eq. (10) for compacted subgrade fine soils,
incorporating SWRC:

137
$$\frac{M_{\rm r} - M_{\rm r-sat}}{M_{\rm r-opt} - M_{\rm r-sat}} = \frac{\psi}{\psi_{\rm opt}} \left(\frac{S_{\rm r}}{S_{\rm r-opt}}\right)^{\xi} \tag{10}$$

138 where ξ is the model parameter.

Summarizing, Table 1 presents a summary of model parameters for Eqs. (1) - (10).
Table 1. A summary of parameters for Eqs. (1) - (10)

Reference	Equation	Model parameters
Source couring at al [19]	(1)	ψ and $M_{ ext{r-sat}}$
Sawangsuriya et al. [18]	(2)	ψ and $M_{ ext{r-opt}}$
Ba et al. [19]	(3)	ψ and $M_{ m r-opt}$
ARA, Inc., ERES		
Consultants Division. [20]	(4)	$ heta_{ ext{b}}, au_{ ext{oct}}, p_{ ext{a}}, k_1, k_2 ext{ and } k_3$
Liang et al. [21]	(5)	$ heta_{ m b}, au_{ m oct}, p_{ m a}, \chi \psi, k_4, k_5 ext{ and } k_6$
Heath et al. [22]	(6)	$ heta_{ m b}, p_{ m a}, \chi \psi_{,} u_{ m a}, \ \sigma_{ m d}, \ k_{7}, k_{8} \ { m and} \ k_{9}$
Gupta et al. [9]	(7)	$\theta_{\rm b}, au_{ m oct}, p_{\rm a}, \psi, k_{10}, k_{11}, k_{12}, k_{13}, A_1 \text{ and } B_1$
Khoury et al. [23]	(8)	$\theta_{\rm b}, \tau_{\rm oct}, p_{\rm a}, \psi, k_{15}, k_{16}, k_{17}, k_{18}, A_2 \text{ and } B_2$
ARA, Inc., ERES		
Consultants Division. [20]	(9)	$S_{\rm r,}$ $S_{ m r-opt,}$ $M_{ m r-opt,}$ a,b and $k_{ m m}$
Han and Vanapalli [14]	(10)	$S_{ m r,}S_{ m r-opt,}M_{ m r-opt,}M_{ m r-sat}{ m and}ar{\xi}$

- 142
- 143

144 PROPOSITION OF A NEW MODEL

145 Proposing a model accounting for the effects of ψ and σ_d

Han and Vanapalli [17] reviewed the existing constitutive models of M_r with respect to ψ , and proposed a general form as follows:

148

$$M_{\rm r} = M_{\rm r-sat} + f(\psi), \ f(0) = 0 \tag{11}$$

149 where function $f(\psi)$ represents the contribution of ψ to $M_{\rm r}$.

150 Referring to the existing models (e.g. Eq. (5) in Liang et al. [21] and Eq. (6) in Heath et al. 151 [22]), a factor $\chi\psi$ was adopted to reflect the effect of ψ on the M_r of unsaturated soils. As 152 stated by Han and Vanapalli [16], using factor $\chi\psi$ induced a change of the role of suction ψ 153 from a pore-scale stress to a macroscopic stress which contributed to the constitutive stress 154 and hence the M_r of unsaturated soils. In this study, factor $\chi\psi$ was modified by considering (*i*) a power relationship of $M_r - \psi$ in Eqs. (7) - (8) (Gupta et al. [9] and Khoury et al. [23]) and (*ii*) a parameter χ equal to the effective degree of saturation S_r^e , which was defined as the ratio of $(S_r - S_{r-r})$ to $(1 - S_{r-r})$, where S_{r-r} is the residual degree of saturation (Alonso et al. [24]; Lu et al. [25]). Therefore, a new factor $\psi^B S_r^e$ was generated and Eq. (12) was obtained:

$$M_{\rm r} = M_{\rm r-sat} + A \cdot \psi^B \cdot S_{\rm r}^{\rm e} \tag{12}$$

160 where *A* and *B* are model parameters.

161 Substituting $M_{\text{r-opt}}$ and the corresponding ψ_{opt} and $S_{\text{r-opt}}^{\text{e}}$ (the effective degree of 162 saturation at OMC) into Eq. (12) yields Eq. (13):

163
$$M_{\rm r-opt} = M_{\rm r-sat} + A \cdot \psi^B_{\rm opt} \cdot S^{\rm e}_{\rm r-opt}$$
(13)

164 Dividing Eq. (12) by Eq. (13) leads to the normalized Eq. (14) where parameter A165 vanishes:

166
$$\frac{M_{\rm r} - M_{\rm r-sat}}{M_{\rm r-opt} - M_{\rm r-sat}} = \left(\frac{\psi}{\psi_{\rm opt}}\right)^B \cdot \frac{S_{\rm r}^{\rm e}}{S_{\rm r-opt}^{\rm e}}$$
(14)

167 Eq. (15) (Moossazadeh and Witczak [26]) was commonly used to characterize the effect 168 of σ_d on M_r . Based on Eq. (15), Eq. (16) was proposed for relating σ_d to parameter *B* in Eq. 169 (14):

170
$$M_{\rm r} = k_{19} (\frac{\sigma_{\rm d}}{p_{\rm a}})^{k_{20}} \tag{15}$$

171
$$B = l_1 \cdot \left(\frac{\sigma_d}{p_a}\right)^{l_2} \tag{16}$$

172 where k_{19} , k_{20} , l_1 and l_2 are model parameters.

173 The van Genuchten [27] model was adopted for describing the SWRC:

174
$$S_{\rm r}^{\rm e} = \frac{S_{\rm r} - S_{\rm r-r}}{1 - S_{\rm r-r}} = \left[\frac{1}{1 + (a\psi)^n}\right]^m \tag{17}$$

where S_{r-r} is the residual degree of saturation, assumed to be 0 in this study; *a*, *n* and *m* are model parameters.

177 Substituting Eqs. (16) and (17) into Eq. (14), Eq. (18) was obtained, which allowed 178 prediction of the variation of M_r under the combined effects of ψ and σ_d :

179
$$\frac{M_{\rm r}-M_{\rm r-sat}}{M_{\rm r-opt}-M_{\rm r-sat}} = \left(\frac{\psi}{\psi_{\rm opt}}\right)^{l_1 \cdot \left(\frac{\sigma_{\rm d}}{p_{\rm a}}\right)^{l_2}} \cdot \left[\frac{1+\left(a\psi_{\rm opt}\right)^n}{1+\left(a\psi\right)^n}\right]^m \tag{18}$$

Note that when ψ represented the matric suction, ψ_{opt} was the matric suction at optimum water content (e.g. for soils 1-5 in Table 2 and soils 6-9 in Table 3). On the contrary, when ψ represented the total suction, ψ_{opt} was the total suction at optimum water content (e.g. for soils 10-12 in Table 3). The matric suction was measured using the filter paper in contact with soil (for soils 1-8) or a thermal dissipation sensor (for soil 9), while the total suction was measured using a suction probe (for soil 10) or the filter paper without contact with soil (for soils 11-12).

Table 2 shows the properties of soils 1 - 5 tested by Wang et al. [3] and Su et al. [7], with 186 f_v varying from 0% to 45%. Fig. 2 shows that the same SWRC was obtained for $f_v = 0\%$, 20% 187 and 35% using the filter paper method (Su et al. [28]). This indicated that an increase of f_v led 188 to a constant ψ under a given S_r when keeping the dry density of fine soil constant ($\rho_{dmax-f} =$ 189 1.82 Mg/m³ in Table 2), as expected by Wang et al. [3 - 5] and Qi et al. [6]. Fig. 3 shows the 190 191 comparisons between the measurements by Wang et al. [3] and Su et al. [7] and the calculations by Eq. (18) for the variations of $M_{\rm r}$ with ψ under different deviator stresses $\sigma_{\rm d}$ 192 193 and five f_v values. It can be observed from Fig. 3(a) that M_r increased with the increase of ψ under a constant σ_d , and a reasonably good agreement was obtained between the 194

195	measurements and the calculations. Further examination showed that a threshold suction $\psi_{ m th}$
196	could be identified, corresponding to the intersection of the curves of different deviators
197	stresses (σ_d = 50, 100 and 200 kPa). When $\psi < \psi_{th}$, the M_r decreased with increasing σ_d ,
198	while an opposite trend was observed when $\psi > \psi_{\text{th}}$. In addition, the increase of σ_{d} led to a
199	decrease of model parameter l_1 , keeping parameter l_2 constant (equal to 1.000). The similar
200	phenomenon was observed in Figs. 3(b) - (e) for $f_v = 10\%$ - 45%. It seems that the higher the
201	$\psi_{\rm th}$, the higher the coefficient of determination R^2 for soils 1-5. Overall, a good agreement was
202	obtained between measurements and calculations, with the $R^2 \ge 0.90$. Figs. 3(a) - (e) indicate
203	that an increase of f_v from 0% to 45% resulted in an increase of M_{r-sat} from 11 to 85 MPa.

- 204
- 205

Table 2. Soil properties in Wang et al. [3] and Su et al. [7]

G '1	f					Fin	e soil frac	tion		Soil miz	xture
5011 No	$J_{\rm v}$	G	$W_{\rm L}$	$W_{\rm p}$	$I_{\rm P}$	W_{opt-f}	$ ho_{ m dmax-f}$	S_{r-opt}	USCS	Compaction	$ ho_{ m d}$
INO.	(%)	U _s	(%)	(%)	(%)	(%)	(Mg/m^3)	(%)	classification	$W_{\text{opt-f}}(\%)$	(Mg/m^3)
1	0										1.82
2	10										1.91
3	20	2.68	32	12	20	13.7	1.82	78	CL	13.7	1.99
4	35										2.12
5	45										2.21

206

Note: f_v represents the ratio of the volume of coarse grains to that of mixture (Su et al. [7]). G_s , w_L , I_P , w_{opt-f} and ρ_{dmax-f} represent the specific gravity, liquid limit, plasticity index, optimum water content and maximum dry density of fine soil, respectively. w_{opt-f} and ρ_{dmax-f} were determined by standard Proctor compaction tests for soils 1-5. ρ_d represents the dry density of

- 211 soil mixture sample. USCS refers to the unified soil classification system: CL, low-plasticity
- 212 clay; CH, high-plasticity clay; MH, high-plasticity silt; ML, low-plasticity silt.

Fig. 3. Measured and calculated variations of M_r with ψ under varying σ_d for soils 1-5: (a) soil 1 at $f_v = 0\%$; (b) soil 2 at $f_v = 10\%$; (c) soil 3 at $f_v = 20\%$; (d) soil 4 at $f_v = 35\%$; (e) soil 5 at f_v = 45% (data from Wang et al. [3] and Su et al. [7])

The M_r - σ_d relationship depended on the combined effects of the soil hardening in the 231 loading process and the rebounding in the unloading process. When $\psi < \psi_{\text{th}}$, a matrix 232 structure of fine soil was expected due to the effect of water hydration (Su et al. [29]). On the 233 contrary, the high ψ induced an aggregated fine soil microstructure (Cui and Delage [30]; Ng 234 235 et al. [31]). Upon loading, an increase of σ_d contributed to the compression of fine matrix and the rearrangement of fine aggregates (Werkmeister et al. [32]). Thus, an increase of M_r is 236 237 expected for both fabrics due to the hardening phenomenon. Conversely, in the unloading process, owing to the rebounding effect, the resilient strain increased, which resulted in a 238 decrease of M_r . For the fine matrix fabric ($\psi < \psi_{th}$), due to its larger deformability, the effect 239 of rebounding on M_r appeared to be more significant than the effect of hardening, leading to a 240 decrease of M_r with increasing σ_d . By contrast, for the aggregated fabric ($\psi > \psi_{th}$), owing to 241 its lower deformability, the rebounding effect was not as significant as the hardening effect. In 242 this case, the $M_{\rm r}$ increased with increasing $\sigma_{\rm d}$. This indicated that $\psi_{\rm th}$ could be considered as 243 the threshold value between the fine matrix fabric (at $\psi < \psi_{th}$) and the fine aggregate fabric (at 244 $\psi > \psi_{\text{th}}$). It appeared that ψ_{th} was slightly affected by the coarse grain content f_{v} . At $f_{\text{v}} = 0\%$ -245 20%, a fine matrix macrostructure was obtained for soils 1 - 3, while at $f_v = 35\%$ - 45% the 246 coarse grains were dominant for soils 4 - 5. With increasing f_v , the transition of these two 247 fabrics contributed to a slight decrease of ψ th, for that less fine soil was needed to be 248 transferred from the fine matrix fabric to the fine aggregate fabric. 249

Fig. 4 shows the variations of M_r with f_v under varying ψ and a constant $\sigma_d = 200$ kPa for soils 1-5. Fig. 5 shows a linear variation of parameter l_1 with log (σ_d/p_a), leading to Eq. (19):

252
$$l_1 = \alpha_1 \log\left(\frac{\sigma_d}{p_a}\right) + \beta_1 \tag{19}$$

where α_1 and β_1 are model parameters. Eq. (19) allows the determination of the two parameters ($\alpha_1 = -1.390$, $\beta_1 = 0.967$) with a regression coefficient $R^2 = 0.99$.

255 Substituting Eq. (19) into Eq. (18) yields Eq. (20):

256
$$\frac{M_{\rm r}-M_{\rm r-sat}}{M_{\rm r-opt}-M_{\rm r-sat}} = \left(\frac{\psi}{\psi_{\rm opt}}\right)^{\left[\alpha_1 \log\left(\frac{\sigma_{\rm d}}{p_{\rm a}}\right) + \beta_1\right] \cdot \left(\frac{\sigma_{\rm d}}{p_{\rm a}}\right)} \cdot \left[\frac{1 + \left(a\psi_{\rm opt}\right)^n}{1 + \left(a\psi\right)^n}\right]^m \tag{20}$$

257

Fig. 4 Variations of M_r with f_v under varying ψ and a constant $\sigma_d = 200$ kPa for soils 1-5 (data from Wang et al. [3] and Su et al. [7])

260

261 Extending the model to the effect of f_v

Fig. 6 shows the variation of M_{r-sat} with f_v , measured by Su et al. [7] and Duong et al. [33]. Note that the same fine soil fraction was adopted by Su et al. [7] and Duong et al. [33], while the micro-ballast was adopted by Su et al. [7] as a substitute of ballast adopted by Duong et al.

[33] following the parallel gradation method. The validity of this method was verified by Qi et al. [34]. Since an increase of f_v led to a constant ψ under a given S_r (Fig. 2), the term $f(\psi)$ was independent of f_v in Eq. (11). Similarly, the whole term on the right-hand side of Eq. (20) was also independent of f_v . The effect f_v was reflected on the term M_{r-sat} in Eqs. (11) and (20). It was found from Figs. 3(a) - (e) (Wang et al. [3] and Su et al. [7]) that an increase of f_v from 0% to 45% resulted in an increase of M_{r-sat} from 11 to 85 MPa. This $M_{r-sat} - f_v$ relationship was expressed by Eq. (21):

272
$$M_{r-sat} = M_0 + \frac{M_1 - M_0}{1 + e^{kf_v + l}}$$
(21)

where M_0 and M_1 are the values of M_{r-sat} at $f_v = 0\%$ and 100%, respectively; k and l are model parameters. Eq. (21) provides good simulations of M_{r-sat} - f_v relationship measured by Duong et al. [33] and Su et al. [7] with $R^2 = 0.97$, using parameters $M_0 = 11$ MPa, $M_1 = 200$ MPa, k =-0.163 and l = 7.514.

It appears from Fig. 6 that the M_{r-sat} - f_v curve could be divided into three zones with two 277 critical f_v values: a fine matrix macrostructure zone at $f_v < f_{v1}$, a transition zone at $f_{v1} < f_v < f_{v2}$ 278 and a coarse grain skeleton zone at $f_v > f_{v2}$. Vallejo and Mawby [35] studied the stiffness and 279 shear strength of sand and clay mixture, and found $f_{v1} \approx 26\%$ and $f_{v2} \approx 56\%$. Cui et al. [8], 280 Wang et al. [4] and Su et al. [36] investigated the mechanical behavior of fine/coarse soil 281 mixture subjected to monotonic and cyclic loadings, and defined a characteristic coarse grain 282 content $f_{v-cha} \approx 25\% \sim 33\%$. They found that a fine matrix macrostructure was identified at $f_v \leq$ 283 f_{v-cha} . Obviously, the f_{v-cha} identified corresponded to f_{v1} . 284

Summarizing, Eqs. (20) - (21) allow the determination of the variation of M_r under the combined effects of ψ , σ_d and f_v for the fine/coarse soil mixtures.

Fig. 5. Variation of parameter l_1 with log (σ_d/p_a) for soils 1-5

293

Fig. 6. Measured and calculated variation of M_{r-sat} with f_v

294

295 VALIDATION OF THE PROPOSED MODEL

Table 3 shows the properties of soils 6 - 12 compiled from five different studies. As $f_v = 0\%$ in these studies, Eq. (21) was simplified to Eq. (22):

 $M_{\rm r-sat} = M_0$

Soils 6 - 12 were divided into two categories. Category I included soils 6 - 8 (Zaman and Khoury [37]), soil 9 (Gupta et al. [9]) and soil 10 (Ng et al. [12]), for which M_r decreased with increasing σ_d under a given ψ . The ψ values considered were supposed to be smaller than ψ_{th} . Category II included soils 11 - 12 (Yang et al. [13], [38]), for which a value of ψ_{th} existed separating the ψ into two zones: with increasing σ_d , the M_r decreased at $\psi < \psi_{th}$ but increased at $\psi > \psi_{th}$. It is worth noting that ψ_{th} appeared soil type – dependent: smaller than ψ_{opt} for

(22)

305	soils 11 - 12 (Yang et al. [13], [38]) and larger than ψ_{opt} for soils 1 - 5 (Wang et al. [3]; Su et
306	al. [7]). The plastic limit w_p can be helpful in explaining this phenomenon. With respect to the
307	findings of Delage et al. [39], w_p was the threshold value between the fine matrix fabric and
308	the fine aggregate fabric. For soils 1-5, the plastic limit $w_p = 12\%$ was smaller than $w_{opt-f} =$
309	13.7% (Table 2), leading to $\psi_{\text{th}} > \psi_{\text{opt}}$. On the contrary, for soils 11-12, the $w_p = 34\%$ and 22%
310	were larger than $w_{opt-f} = 18.1\%$ and 16.8% respectively (Table 3), leading to $\psi_{th} < \psi_{opt}$.
311	

Table 3. Soil properties in five different studies

	Fine soil fraction								Soil mixture			
Reference	Soil No.	fv (%)	$G_{\rm s}$	^{WL} (%)	^{wp} (%)	Ір (%)	Wopt-f (%)	$ ho_{dmax-f}$ (Mg/m ³)	S _{r-opt} (%)	USCS classification	Compaction w (%)	$ ho_{ m d}$ (Mg/m ³)
7 1	6										19.5	
Zaman and Khoury [37]	7		N/A	55	25	30	23.5	1.53	N/A	СН	23.5	1.53
Knoury [57]	8										27.5	
Gupta et al. [9]	9	0	2.75	28	17	11	13.5	1.79	70	CL	13.5	1.79
Ng et al. [12]	10		2.73	43	29	14	16.3	1.76	80	ML	16.3	1.76
Yang et al. [38]	11		2.71	54	34	20	18.1	1.76	91	MH	18.1	1.76
Yang et al. [13]	12		2.67	37	22	15	16.8	1.77	88	CL	16.8	1.77

Note: w_{opt-f} and ρ_{dmax-f} were determined by standard Proctor compaction tests for soils 6-11, while modified Proctor compaction test for soils 12; N/A means data not available in the reference.

317 Zaman and Khoury [37] studied the effects of compaction water content and suction on $M_{\rm r}$ for Burleson soil (soils 6, 7 and 8 in Table 3). In their study, the soils were compacted at w 318 = 19.5% (optimum water content of fine soil w_{opt-f} - 4%), 23.5% (w_{opt-f}) and 27.5% (w_{opt-f} + 4%) 319 respectively and at the same maximum dry density of soil $\rho_{\text{dmax-f}} = 1.53 \text{ Mg/m}^3$. Cyclic triaxial 320 tests were performed under a constant deviator stress $\sigma_d = 28$ kPa and a constant confining 321 pressure $\sigma_c = 41$ kPa. The filter paper method was adopted to measure the suction ψ after 322 completion of the cyclic tests. Fig. 7(a) shows the measured and calculated SWRCs for soils 6, 323 7 and 8 using Eq. (17) with the parameters shown in Table 4. The different SWRCs for soils 6, 324 7 and 8 were the consequences of their varying compaction water contents, as reported by 325 Delage et al. [39] and Vanapalli et al. [40]. Figs. 7(b) - (d) depict the variations of M_r with ψ 326 under $\sigma_d = 28$ kPa for soils 6, 7 and 8 respectively. Eq. (20) calculated the variations of M_r 327 with ψ for these three soils using parameter $\alpha_1 = 0$ and $\beta_1 = 2.891$. Comparisons between the 328 measurements and calculations showed a good agreement ($R^2 = 0.95$). 329

- 330
- 331
- 332

	Table 4.	Parameters	of SWRCs	for	soils	1-12
--	----------	------------	----------	-----	-------	------

Soil No.	S _{r-r} (%)	а	п	т	R^2	SWRC type
1						
2						
3	0	4.500*10-4	1.250	0.570	0.97	Drying SWRC
4	0					
5						
6		1.770*10 ⁻³	1.540	0.126	0.91	Apparent

7	6.500 *10 ⁻⁸	0.662	70.750	0.95	SWRC
8	3.200*10-4	1.624	0.306	0.89	
9	1.656*10-4	0.769	1.049	0.99	
10	1.120*10-6	0.688	243.330	0.99	Drving SWRC
11	0.034	2.747	0.021	0.98	Drying 5 wite
12	0.139	0.779	0.197	0.98	

333 Note: Drying SWRC was obtained by following a desaturation path; Apparent SWRC was

334 obtained by the S_r - ψ relationships determined after cyclic tests.

335

339

Fig. 7. Measured and calculated (a) SWRCs and (b)-(d) variations of M_r with ψ for soils 6-8 (data from Zaman and Khoury [37])

344

Gupta et al. [9] investigated the effects of ψ and σ_d on M_r of Duluth slope soil (soil 9 in Table 3). Soil 9 was compacted at $w_{opt-f} = 13.5\%$ and $\rho_{dmax-f} = 1.79 \text{ Mg/m}^3$, defining a suction

 $\psi_{opt} = 245$ kPa, which was measured using a thermal dissipation sensor. The compacted soil 347 was then subjected to a saturation process, followed by a drying process to different target 348 suctions. Cyclic triaxial tests were performed for the M_r measurement, with axis- translation 349 technique and a thermal dissipation sensor adopted for suction control and measurement. A 350 multi-stage loading with $\sigma_d = 30, 50, 70$ and 100 kPa was adopted under a constant $\sigma_c = 14.5$ 351 kPa. Fig. 8(a) shows the measured and calculated SWRCs for soil 9 using Eq. (17). It appears 352 353 from Fig. 8(b) that M_r increased with increasing ψ under a constant σ_d , and the increase of σ_d led to a decrease of M_r in the full measured ψ range. Eq. (20) provides the calculated results 354 using parameters $\alpha_1 = -2.808$ and $\beta_1 = 1.046$. Comparisons between the measurements and 355 calculations showed a good agreement ($R^2 = 0.98$). 356

357

Fig. 8. Measured and calculated (a) SWRC and (b) variations of M_r with ψ for soil 9 (data from Gupta et al. [9])

Ng et al. [12] investigated the variations of M_r with ψ under varying σ_d for a completely 363 decomposed tuff (soil 10 in Table 3). Soil 10 was compacted at $w_{opt-f} = 16.3\%$ and $\rho_{dmax-f} =$ 364 1.76 Mg/m³, and its corresponding $\psi_{opt} = 95$ kPa was measured by a suction probe. The 365 compacted soil was then wetted or dried to different target suctions. Suction-controlled cyclic 366 triaxial tests were performed under varying $\sigma_d = 30, 40, 55$ and 70 kPa and a constant $\sigma_c = 30$ 367 kPa. Fig. 9(a) presents the measured and fitted SWRCs using Eq. (17). Fig. 9(b) depicts the 368 variations of M_r with ψ under varying σ_d measured by Ng et al. [12] and those calculated by 369 Eq. (20) using $\alpha_1 = -4.126$ and $\beta_1 = 1.535$. A good agreement was observed between the 370 measurements and the calculations ($R^2 = 0.96$). 371

Fig. 9. Measured and calculated (a) SWRC and (b) variations of M_r with ψ for soil 10 (data from Ng et al. [12])

379 Yang et al. [38] studied the variations of M_r with ψ under varying σ_d for a compacted subgrade soil (soil 11 in Table 3). Soil 11 was compacted at $w_{opt-f} = 18.1\%$ and $\rho_{dmax-f} = 1.76$ 380 381 Mg/m³, with a suction $\psi_{opt} = 5580$ kPa measured using the filter paper method. The compacted soil was then wetted to higher water contents (lower suctions). Cyclic triaxial tests 382 were performed under varying $\sigma_d = 21, 34, 48, 69, 103$ kPa and a constant $\sigma_c = 21$ kPa. After 383 completion of the tests, the filter paper method was applied to measure the suction ψ . Fig. 384 385 10(a) shows the SWRCs measured by Yang et al. [41] and fitted by Eq. (17). Fig. 10(b) compares the measured $M_{\rm r}$ at different ψ and $\sigma_{\rm d}$ values and the corresponding calculated $M_{\rm r}$ 386 by Eq. (20) with parameters $\alpha_1 = -4.928$ and $\beta_1 = 0.681$. A threshold suction ψ_{th} could be 387 identified, separating the ψ into two zones with different effects of σ_d . 388

389

Fig. 10. Measured and calculated (a) SWRC (data from Yang et al. [41]) and (b) variations of M_r with ψ for soil 11 (data from Yang et al. [38])

Yang et al. [13] investigated the variations of M_r with ψ under varying σ_d for a 395 compacted mudstone soil (soil 12 in Table 3). Soil 12 was compacted at $w_{opt-f} = 16.8\%$ and 396 $\rho_{\text{dmax-f}} = 1.77 \text{ Mg/m}^3$, defining a suction $\psi_{\text{opt}} = 500 \text{ kPa}$ which was measured by the filter paper 397 method. It was then wetted to higher water contents (19.1%, 20.2% and 23.2%) to reach 398 various suctions (450, 150 and 50 kPa respectively). Cyclic triaxial tests were performed with 399 400 suction controlled by the axis-translation technique. Four deviator stresses $\sigma_d = 34, 48, 69$ and 103 kPa were applied in sequence under a constant $\sigma_c = 21$ kPa. Fig. 11(a) shows the 401 measured and fitted SWRCs by Eq. (17). Fig. 11(b) depicts the variations of M_r with ψ under 402 varying σ_d measured by Yang et al. [13] and those calculated by Eq. (20) with parameters α_1 403

404 = -3.943 and β_1 = 1.606. A ψ_{th} was identified from Fig. 11(b), separating the ψ into two zones 405 with different effects of σ_d , which was consistent with the observation in Fig. 10(b).

406

408 Fig. 11. Measured and calculated (a) SWRC and (b) variations of M_r with ψ for soil 12 (data 409 from Yang et al. [13])

Table 5 presents the values of model parameters α_1 and β_1 in the proposed Eq. (20) for soils 1-12, indicating that these parameters are dependent of soil studied. Fig. 12 shows the comparison between the measured and the calculated M_r values using Eq. (20) for soils 1-12 listed in Tables 2 and 3, illustrating that the proposed Eq. (20) provides satisfactory simulations with $R^2 = 0.98$.

It is worth noting that as the coarse grain content $f_v = 0\%$ was obtained for soils 6-12, the 416 proposed model (Eq. (21)) could not be used to demonstrate the effect of f_v on M_r . It should 417 be mentioned that previous studies were difficult to be used for validating Eq. (21), because 418 Eq. (21) was proposed based on the variations of M_{r-sat} with f_v for soils 1-5 (Fig. 6), where the 419 fine soil fraction was kept constant at $\rho_{\text{dmax-f}} = 1.82 \text{ Mg/m}^3$ (leading to a constant ψ for 420 mixture), whatever the f_v values (as shown in Fig. 2). However, in previous studies, the ρ_d of 421 422 mixture was generally kept constant. In that case, an increase of f_v led to a decrease of the dry density of fine soil fraction ρ_{d-f} and thus a decrease of ψ . 423

1	2	1
4	- 24	4

Table 5. Values of model parameters in the proposed Eq. (20) for soils 1-12

Reference	Soil. No	α_1	β_1	R^2
	1			0.90
	2			0.98
wang et al. $[3]$ and Su at al. $[7]$	3	-1.390	0.967	0.96
Su et al. [7]	4			0.92
	5			0.92
	6			0.95
Zaman and Khoury [37]	7	0	2.891	0.95
	8			0.95
Gupta et al. [9]	9	-2.808	1.046	0.98
Ng et al. [12]	10	-4.126	1.535	0.96
Yang et al. [38]	11	-4.928	0.681	0.98
Yang et al. [13]	12	-3.943	1.606	0.98

427 Fig. 12. Comparison between measured and calculated M_r values for soils 1-12 428

429 COMPARISON BETWEEN THE PROPOSED MODEL AND REPRESENTATIVE430 EXISTING MODELS

To better illustrate the performance of the proposed model, a comparison was made with some 431 representative existing models. According to Han and Vanapalli [17], the constitutive models 432 of M_r could be categorized into three groups: group A - empirical models (e.g. Eqs. (1) - (4) 433 and (9)); group B - models incorporating ψ into deviator or mean stresses (e.g. Eqs. (5) - (6)); 434 group C- models considering ψ as an independent term (e.g. Eqs. (7) - (8) and (10)). Three 435 representative models were selected from these three groups: Eq. (9) (ARA, Inc., ERES 436 Consultants Division. [18]), Eq. (5) (Liang et al. [19]) and Eq. (10) (Han and Vanapalli [14]) 437 for groups A, B and C, respectively. Note that Eqs. (9) - (10) incorporated SWRC using Eq. 438 (17). Three studies were adopted for the comparison among (Table 6): soil 10 (Ng et al. [12]) 439

440 of category I ($\psi < \psi_{\text{th}}$), soil 12 (Yang et al. [13]) of category II ($\psi > \psi_{\text{th}}$ and $\psi_{\text{th}} < \psi_{\text{opt}}$) and

- soil 5 (Wang et al. [3]; Su et al. [7]) of category II ($\psi > \psi_{\text{th}}$ and $\psi_{\text{th}} > \psi_{\text{opt}}$).
- 442
- 443

Table 6. Model parameters for three representative existing models

Equation/Decomptor	Category I: $\psi < \psi_{\text{th}}$	ategory I: $\psi < \psi_{\text{th}}$ Category II: $\psi > \psi_{\text{th}}$								
Equation/Farameter	S = :1 10	$\psi_{ m th} \! < \! \psi_{ m opt}$		-	$\psi_{ m th} > \psi_{ m opt}$					
	5011 10	Soil 12	Soil 1	Soil 2	Soil 3	Soil 4	Soil 5			
Eq. (9)										
a	-0.593	-0.593								
b	0.400	0.400								
$k_{ m m}$	6.132	6.132								
R^2	0.94	0.72								
Eq. (5)										
k_4	0.453	0.513								
k_5	3.287	1.337								
k_6	-6.887	-1.303								
R^2	0.97	0.75								
Eq. (10)										
ξ	1.092	0.983	1.105	0.846	0.714	0.637	0.423			
R^2	0.92	0.94	0.88	0.85	0.82	0.68	0.67			

⁴⁴⁴

Fig. 13(a) shows the M_r measured by Ng et al. [12] and that calculated by Eq. (9) using parameters a = -0.593, b = 0.400 and $k_m = 6.132$. A reasonably good agreement was obtained between the measurements and the calculations ($R^2 = 0.94$). The similar phenomenon was observed in Figs. 13(b) - (c): Eqs. (5) and (10) provided satisfactory simulations with parameters presented in Table 6 ($R^2 = 0.97$ and 0.92, respectively). This indicates that in the case of category I ($\psi < \psi_{th}$), all the three representative existing models as well as the proposed Eq. (20) can be used to describe the M_r variations.

⁴⁴⁵

456

457 Fig. 13. Comparisons between the variations of M_r with ψ for soil 10 measured by Ng et al. 458 [12] and those calculated by: (a) Eq. (9) (ARA, Inc., ERES Consultants Division. [20]); (b) Eq. 459 (5) (Liang et al. [21]); (c) Eq. (10) (Han and Vanapalli [14])

461 Fig. 14(a) shows the M_r measured by Yang et al. [13] and that calculated by Eq. (9). Compared with Eq. (20) (the proposed model), Eq. (9) provided less satisfactory simulations: 462 $R^2 = 0.72$ for Eq. (9) against $R^2 = 0.98$ for Eq. (20) (see Fig. 11(b)). More importantly, the ψ_{th} 463 cannot be reproduced by Eq. (9). The similar observations were made from Fig. 14(b) for Eq. 464 (5). On the contrary, Fig. 14(c) shows good simulations by Eq. (10) with $R^2 = 0.94$ using 465 parameter $\xi = 0.983$. Moreover, the ψ_{th} (< $\psi_{\text{opt}} = 500$ kPa in Yang et al. [13]) was identified, 466 separating the ψ into two zones with different effects of σ_d . This indicates that in the case of 467 category II ($\psi > \psi_{\text{th}}$ and $\psi_{\text{th}} < \psi_{\text{opt}}$), among the three representative models, only Eq. (10) can 468 469 be used describe the $M_{\rm r}$ variations.

470

474Fig. 14. Comparisons between the variations of M_r with ψ for soil 12 measured by Yang et al.475[13] and those calculated by: (a) Eq. (9) (ARA, Inc., ERES Consultants Division. [20]); (b) Eq.476(5) (Liang et al. [21]); (c) Eq. (10) (Han and Vanapalli [14])

478	Fig. 15 shows the comparisons between the M_r measured by Wang et al. [3] and Su et al.
479	[7] and that calculated by Eq. (10) for soils 1-5. Since Eqs. (5) and (9) cannot fit well for soil
480	12 of category II ($\psi_{th} < \psi_{opt}$, see details in Figs. 14(a) - (b)), they were excluded for soils 1-5
481	of category II ($\psi_{th} > \psi_{opt}$). Figs. 15(a) - (e) show that Eq. (10) provides simulation results with
482	$R^2 = 0.88, 0.85, 0.82, 0.68$ and 0.67, smaller than $R^2 = 0.90, 0.98, 0.96, 0.92$ and 0.92 by the
483	proposed Eq. (20) for soils 1-5 respectively. Moreover, the increase of σ_d led to a decrease of
484	calculated $M_{\rm r}$ by Eq. (10) in the full ψ range, without identifying $\psi_{\rm th}$. This indicated that Eq.
485	(10) is not suitable for the case of category II ($\psi_{th} > \psi_{opt}$). This can be explained by the
486	consideration of two reference M_r values- M_{r-sat} and M_{r-opt} in Eq. (10). Indeed, through such
487	consideration, the variation of $M_{ m r}$ from the saturated condition to the OMC condition (ψ varies
488	from 0 to ψ_{opt}) is expected to be well depicted (see Fig. 14 (c)). However, when $\psi_{th} > \psi_{opt}$, the
489	good description of Eq. (10) is no longer guaranteed (see Fig. 15).

495 Fig. 15. Comparisons between the variations of M_r with ψ for soils 1 - 5 measured by Wang et

496 al. [3] and Su et al. [7] and those calculated by Eq. (10) (Han and Vanapalli [14]): (a) soil 1 at

45%

- 497 $f_v = 0\%$; (b) soil 2 at $f_v = 10\%$; (c) soil 3 at $f_v = 20\%$; (d) soil 4 at $f_v = 35\%$; (e) soil 5 at $f_v = 10\%$; (f) soil 5 at $f_v = 10\%$; (g) soil 5 at $f_v = 10\%$; (g)
- 498

The comparison of different models indicates that the variation of M_r can be well described by Eqs. (9), (5) and (10) from group A, B and C for category I ($\psi < \psi_{\text{th}}$). For category II ($\psi_{\text{th}} < \psi_{\text{opt}}$), only Eq. (10) among the three representative models can give satisfactory description, while for category II ($\psi_{\text{th}} > \psi_{\text{opt}}$), even Eq. (10) fails. This leads to the conclusion that only the proposed Eq. (20) which incorporates the combined effects of σ_d and ψ on the M_r in the full range of suction can provide good description for both $\psi_{\text{th}} < \psi_{\text{opt}}$ and $\psi_{\text{th}} > \psi_{\text{opt}}$.

It is worth noting that as the existing models incorporating SWRC, such as Eq. (10) (Han and Vanapalli [14]), the hysteresis effect has not been accounted for. Further studies are needed to extend the proposed model to the hysteresis effect.

509

510 CONCLUSIONS

A constitutive model was proposed to describe the variation of resilient modulus $M_{\rm r}$ with 511 suction ψ and deviator stress σ_d . This model was then extended to the effect of coarse grain 512 content f_v based on the experimental data from Wang et al. [3] and Su et al. [7] to describe the 513 variation of M_r for unsaturated fine/coarse soil mixtures. The model incorporates soil-water 514 retention curve (SWRC). The key parameters are the resilient modulus at saturated sate M_{r-sat} , 515 the resilient modulus at optimum state $M_{\text{r-opt}}$, the suction at optimum state ψ_{opt} , soil parameters 516 α_1 and β_1 , as well as the parameters related to SWRC. The proposed model was validated 517 using five different studies. A comparative study was also conducted between the proposed 518

model and three representative existing models from literature. The following conclusions canbe drawn:

The effect of σ_d on M_r was found to be highly dependent on ψ , with a threshold suction 521 ψ_{th} separating ψ into two zones: with an increasing σ_{d} , the M_{r} decreased at $\psi < \psi_{\text{th}}$, while 522 increased at $\psi > \psi_{\text{th}}$. Using the threshold suction ψ_{th} , previous studies from literature could 523 be divided into two categories: category I ($\psi < \psi_{th}$) and category II ($\psi > \psi_{th}$). For category I 524 $(\psi < \psi_{\text{th}})$, the variation of M_{r} could be satisfactorily described by the three representative 525 models. For category II ($\psi > \psi_{\text{th}}$), only Eq. (10) among the three representative models 526 527 provided satisfactory simulations in the case of $\psi_{\text{th}} > \psi_{\text{opt}}$. However, in the case of $\psi_{\text{th}} < \psi_{\text{opt}}$, Eq. (10) failed also. Unlike the three representative models, the proposed model Eq. (20) 528 529 could gave good results in the full ψ range. In addition, the effect of f_v was well incorporated using Eq. (21). Thus, the proposed model constitutes a helpful tool for describing the variation 530 of resilient modulus of unsaturated fine/coarse soil mixtures under the combined effects of 531 deviator stress and suction. 532

533

534 ACKNOWLEDGEMENTS

535 This work was supported by China Scholarship Council (CSC) and Ecole des Ponts ParisTech.536

537 NOTATIONS

 $f_{\rm v}$ coarse grain content

 $f_{\text{v-cha}}$ characteristic coarse grain content

G_{s}	specific gravity
I _P	plasticity index
$M_{ m r}$	resilient modulus
<i>M</i> _{r-sat}	resilient modulus at saturation condition
$M_{ m r-opt}$	resilient modulus at optimum moisture content condition
M_0	$M_{ m r-sat}$ at $f_{ m v}=0\%$
M_1	$M_{\text{r-sat}}$ at $f_{\text{v}} = 100\%$
$ ho_{ m d}$	dry density of soil mixture
$ ho_{ m dmax-f}$	maximum dry density of fine soil
Sr	degree of saturation
S _{r-r}	residual degree of saturation
S _{r-opt}	degree of saturation at optimum moisture content condition
S _r ^e	effective degree of saturation
S_{r-opt}^{e}	effective degree of saturation at optimum moisture content condition
W	water content of soil mixture
Wopt-f	optimum water content of fine soil
Wf	water content of fine soil
WL	liquid limit
ψ	suction
$\psi_{ ext{opt}}$	suction at optimum water content condition
$oldsymbol{\psi}_{ ext{th}}$	threshold suction
$ heta_{ m b}$	bulk stress
$ au_{ m oct}$	octahedral shear stress
X	Bishop's effective stress parameter
$\sigma_{ m d}$	deviator stress

539

- 540
- 541

557

- 543 [1] Trinh, V. N. (2011). Comportement hydromécanique des matériaux constitutifs de
 544 plateformes ferroviaires anciennes. PhD Thesis, Ecole Nationale des Ponts et
 545 Chaussées, Université Paris-Est.
- 546 [2] Nie, R., Li, Y., Leng, W., Mei, H., Dong, J., & Chen, X. (2020). Deformation
 547 characteristics of fine-grained soil under cyclic loading with intermittence. Acta
 548 Geotechnica, 1-14.
- 549 [3] Wang, H. L., Cui, Y. J., Lamas-Lopez, F., Dupla, J. C., Canou, J., Calon, N., & Chen,
- R. P. (2017). Effects of inclusion contents on resilient modulus and damping ratio of
 unsaturated track-bed materials. Canadian Geotechnical Journal, 54(12), 1672-1681.
- 552 [4] Wang, H.L., Cui, Y.J., Lamas-Lopez, F., Calon, N., Saussine, G., Dupla, J.C., Canou,
- J., Aimedieu, P. and Chen, R.P., (2018a). Investigation on the mechanical behavior of
 track-bed materials at various contents of coarse grains. *Construction and Building Materials*, *164*, pp.228-237.
- 556 [5] Wang, H.L., Cui, Y.J., Lamas-Lopez, F., Dupla, J.C., Canou, J., Calon, N., Saussine,

G., Aimedieu, P. and Chen, R.P., (2018b). Permanent deformation of track-bed

558 materials at various inclusion contents under large number of loading cycles. *Journal* 559 *of Geotechnical and Geoenvironmental Engineering*, *144*(8), p.04018044.

560	[6]	Qi, S., Cui, Y.J., Chen, R.P., Wang, H.L., Lamas-Lopez, F., Aimedieu, P., Dupla, J.C.,
561		Canou, J. and Saussine, G., (2020). Influence of grain size distribution of inclusions on
562		the mechanical behaviours of track-bed materials. Géotechnique, 70(3), pp.238-247.
563	[7]	Su, Y., Cui, Y. J., Dupla, J. C., & Canou, J. (2021a). Effect of water content on
564		resilient modulus and damping ratio of fine/coarse soil mixture with varying coarse
565		grain contents. Transportation Geotechnics, 100452.
566	[8]	Cui, Y. J. (2018). Mechanical behaviour of coarse grains/fines mixture under
567		monotonic and cyclic loadings. Transportation Geotechnics, 17, 91-97.
568	[9]	Gupta, S., Ranaivoson, A., Edil, T., Benson, C., & Sawangsuriya, A. (2007).
569		Pavement design using unsaturated soil technology.
570	[10]	Nowamooz, H., Chazallon, C., Arsenie, M. I., Hornych, P., & Masrouri, F. (2011).
571		Unsaturated resilient behavior of a natural compacted sand. Computers and
572		Geotechnics, 38(4), 491-503.
573	[11]	Gu, C., Zhan, Y., Wang, J., Cai, Y., Cao, Z., & Zhang, Q. (2020). Resilient and
574		permanent deformation of unsaturated unbound granular materials under cyclic
575		loading by the large-scale triaxial tests. Acta Geotechnica, 15(12), 3343-3356.
576		
577	[12]	Ng, C. W. W., Zhou, C., Yuan, Q., & Xu, J. (2013). Resilient modulus of unsaturated
578		subgrade soil: experimental and theoretical investigations. Canadian Geotechnical
579		Journal, 50(2), 223-232.

580	[13]	Yang, S. R., Lin, H. D., Kung, J. H., & Huang, W. H. (2008). Suction-controlled
581		laboratory test on resilient modulus of unsaturated compacted subgrade soils. Journal
582		of Geotechnical and Geoenvironmental Engineering, 134(9), 1375-1384.

- 583 [14] Han, Z., & Vanapalli, S. K. (2015). Model for predicting resilient modulus of
 584 unsaturated subgrade soil using soil-water characteristic curve. Canadian Geotechnical
 585 Journal, 52(10), 1605-1619.
- 586 [15] Oh, W. T., Vanapalli, S. K., & Puppala, A. J. (2009). Semi-empirical model for the 587 prediction of modulus of elasticity for unsaturated soils. Canadian Geotechnical 588 Journal, 46(8), 903-914.
- 589 [16] Han, Z., & Vanapalli, S. K. (2016a). Stiffness and shear strength of unsaturated soils
 590 in relation to soil-water characteristic curve. Géotechnique, 66(8), 627-647.
- 591 [17] Han, Z., & Vanapalli, S. K. (2016b). State-of-the-Art: Prediction of resilient modulus
- of unsaturated subgrade soils. International Journal of Geomechanics, 16(4), 04015104.
- 593 [18] Sawangsuriya, A., Edil, T. B., & Benson, C. H. (2009). Effect of suction on resilient
- modulus of compacted fine-grained subgrade soils. Transportation research record,
 2101(1), 82-87.
- 596 [19] Ba, M., Nokkaew, K., Fall, M., & Tinjum, J. M. (2013). Effect of matric suction on
 597 resilient modulus of compacted aggregate base courses. Geotechnical and Geological
 598 Engineering, 31(5), 1497-1510.
- ARA, Inc., ERES Consultants Division. (2004). Guide for mechanistic empirical
 design of new and rehabilitated pavement structures. Final report, NCHRP Project 137A. Transportation Research Board, Washington, D.C.

- [21] Liang, R. Y., Rabab'ah, S., & Khasawneh, M. (2008). Predicting moisture-dependent
 resilient modulus of cohesive soils using soil suction concept. Journal of
 Transportation Engineering, 134(1), 34-40.
- Heath, A. C., Pestana, J. M., Harvey, J. T., & Bejerano, M. O. (2004). Normalizing
 behavior of unsaturated granular pavement materials. Journal of Geotechnical and
 Geoenvironmental Engineering, 130(9), 896-904.
- 608 [23] Khoury, N., Brooks, R., Boeni, S. Y., & Yada, D. (2013). Variation of resilient
- 609 modulus, strength, and modulus of elasticity of stabilized soils with postcompaction
- 610 moisture contents. Journal of Materials in Civil Engineering, 25(2), 160-166.
- 611 [24] Alonso, E. E., Pereira, J. M., Vaunat, J., & Olivella, S. (2010). A microstructurally
 612 based effective stress for unsaturated soils. Géotechnique, 60(12), 913-925.
- 613 [25] Lu, N., Godt, J. W., & Wu, D. T. (2010). A closed-form equation for effective stress
 614 in unsaturated soil. Water Resources Research, 46(5).
- 615 [26] Moossazadeh, J., & Witczak, M. W. (1981). Prediction of subgrade moduli for soil
 616 that exhibits nonlinear behavior. Transportation Research Record, (810).
- 617 [27] Van Genuchten, M. T. (1980). A closed form equation for predicting the hydraulic
 618 conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892619 898.
- 620 [28] Su, Y., Cui, Y. J., Dupla, J. C., & Canou, J. (2021). Soil-water retention behaviour of
 621 fine/coarse soil mixture with varying coarse grain contents and fine soil dry densities.
- 622 Canadian Geotechnical Journal, (ja).

623	[29]	Su, Y., Cui, Y.J., Dupla, J.C., Canou, J., Qi, S., (2021b). Developing a sample
624		preparation approach to study the mechanical behavior of unsaturated fine/coarse soil
625		mixture. Geotechnical Testing Journal. https://doi.org/10.1520/GTJ20190450.
626	[30]	Cui, Y. J., & Delage, P. (1996). Yielding and plastic behaviour of an unsaturated
627		compacted silt. Géotechnique, 46(2), 291-311.
628	[31]	Ng, C. W. W., Baghbanrezvan, S., Sadeghi, H., Zhou, C., & Jafarzadeh, F. (2017).
629		Effect of specimen preparation techniques on dynamic properties of unsaturated fine-
630		grained soil at high suctions. Canadian Geotechnical Journal, 54(9), 1310-1319.
631	[32]	Werkmeister, S., Dawson, A. R., & Wellner, F. (2004). Pavement design model for
632		unbound granular materials. Journal of Transportation Engineering, 130(5), 665-674.
633	[33]	Duong, T. V., Cui, Y. J., Tang, A. M., Dupla, J. C., Canou, J., Calon, N., & Robinet, A.
634		(2016). Effects of water and fines contents on the resilient modulus of the interlayer
635		soil of railway substructure. Acta Geotechnica, 11(1), 51-59.
636	[34]	Qi, S., Cui, Y. J., Dupla, J. C., Chen, R. P., Wang, H. L., Su, Y., & Canou, J. (2020).
637		Investigation of the parallel gradation method based on the response of track-bed
638		materials under cyclic loadings. Transportation Geotechnics, 24, 100360.
639	[35]	Vallejo, L. E., & Mawby, R. (2000). Porosity influence on the shear strength of
640		granular material-clay mixtures. Engineering Geology, 58(2), 125-136.
641	[36]	Su, Y., Cui, Y. J., Dupla, J. C., & Canou, J. (2020). Investigation of the effect of water
642		content on the mechanical behavior of track-bed materials under various coarse grain
643		contents. Construction and Building Materials, 263, 120206.

644	[37]	Zaman, M., & Khoury, N. (2007). Effect of soil suction and moisture on resilient
645		modulus of subgrade soils in Oklahoma (No. ORA 125-6662).
646	[38]	Yang, S. R., Huang, W. H., & Tai, Y. T. (2005). Variation of resilient modulus with
647		soil suction for compacted subgrade soils. Transportation Research Record, 1913(1),
648		99-106.
649	[39]	Delage, P., Audiguier, M., Cui, Y.J. and Howat, M.D., (1996). Microstructure of a
650		compacted silt. Canadian Geotechnical Journal, 33(1), pp.150-158.
651	[40]	Vanapalli, S. K., Fredlund, D. G., & Pufahl, D. E. (1999). The influence of soil
652		structure and stress history on the soil-water characteristics of a compacted till.
653		Geotechnique, 49(2), 143-159.
654	[41]	Yang, S. R., Kung, J. H., Huang, W. H., & Lin, H. D. (2006). Resilient modulus of
655		unsaturated cohesive subgrade soils. Yantu Gongcheng Xuebao(Chinese Journal of
656		Geotechnical Engineering), 28(2), 225-229.

658 LIST OF TABLES

- Table 1.A summary of model parameters for Eqs. (1) (10)
- Table 2.Soil properties in Wang et al. [3] and Su et al. [7]
- Table 3.Soil properties in five different studies
- Table 4.Parameters of SWRCs for soils 1-12
- Table 5. Values of model parameters in the proposed Eq. (20) for soils 1-12
- Table 6.
 Model parameters for three representative existing models

659

LIST OF FIGURES

- Fig. 1. Grain size distribution curves of fine soil and micro-ballast (after Wang et al. [3])
- Fig. 2. Measured and calculated soil-water retention curves at varying f_v values for soils 1-5 (after Su et al. [28])
- Fig. 3. Measured and calculated variations of M_r with ψ under varying σ_d for soils 1-5: (a) soil 1 at $f_v = 0\%$; (b) soil 2 at $f_v = 10\%$; (c) soil 3 at $f_v = 20\%$; (d) soil 4 at $f_v = 35\%$; (e) soil 5 at $f_v = 45\%$ (data from Wang et al. [3] and Su et al. [7]
- Fig. 4. Variations of M_r with f_v under varying ψ and a constant $\sigma_d = 200$ kPa for soils 1-5 (data from Wang et al. [3] and Su et al. [7])
- Fig. 5. Variation of parameter l_1 with log (σ_d/p_a) for soils 1-5
- Fig. 6. Measured and calculated variations of M_{r-sat} with f_v
- Fig. 7. Measured and calculated (a) SWRCs and (b)-(d) variations of M_r with ψ for soils 6-8 (data from Zaman and Khoury [38])
- Fig. 8. Measured and calculated (a) SWRC and (b) variations of M_r with ψ for soil 9 (data from Gupta et al. [9])
- Fig. 9. Measured and calculated (a) SWRC and (b) variations of M_r with ψ for soil 10 (data from Ng et al. [12])
- Fig. 10. Measured and calculated (a) SWRC (data from Yang et al. [42]) and (b) variations of M_r with ψ for soil 11 (data from Yang et al. [39])
- Fig. 11. Measured and calculated (a) SWRC and (b) variations of M_r with ψ for soil 12 (data from Yang et al. [13])
- Fig. 12. Comparison between measured and calculated M_r values for soils 1-12
- Fig. 13. Comparisons between the variations of M_r with ψ for soil 10 measured by Ng et al. [12] and those calculated by: (a) Eq. (9) (ARA, Inc., ERES Consultants Division. [20]); (b) Eq. (5) (Liang et al. [21]); (c) Eq. (10) (Han and Vanapalli [14])
- Fig. 14. Comparisons between the variations of M_r with ψ for soil 12 measured by Yang et al. [13] and those calculated by: (a) Eq. (9) (ARA, Inc., ERES Consultants Division. [20]); (b) Eq. (5) (Liang et al. [21]); (c) Eq. (10) (Han and Vanapalli [14])
- Fig. 15. Comparisons between the variations of M_r with ψ for soils 1 5 measured by Wang et al. [3] and Su et al. [7] and those calculated by Eq. (10) (Han and Vanapalli [14]): (a) soil 1 at $f_v = 0\%$; (b) soil 2 at $f_v = 10\%$; (c) soil 3 at $f_v = 20\%$; (d) soil 4 at $f_v = 35\%$; (e) soil 5 at $f_v = 45\%$