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Stochastic generalized standard materials and risk-averse effective

behavior

Jeremy Bleyera,∗

aLaboratoire Navier, Ecole des Ponts, Univ Gustave Eiffel, CNRS
Cité Descartes, 6-8 av Blaise Pascal, 77455 Champs-sur-Marne, FRANCE

Abstract

In this work, we develop a theoretical formulation for describing dissipative material behav-
iors in a stochastic setting, using the framework of Generalized Standard Materials (GSM).
Our goal is to capture the variability inherent in the material model while ensuring thermo-
dynamic consistency, by employing the mathematical framework of stochastic programming.
We first show how average behaviors can be computed using the expected value of the free
energy and dissipation pseudo-potentials. We then introduce the concept of a risk-averse
effective measure, which provides both an optimistic and a pessimistic estimate of the un-
certain material behavior. To this end, we utilize the Conditional Value-at-Risk, a widely
used risk measure in mathematical finance. We also demonstrate how these concepts can be
extended to variational problems at the structure scale, allowing us to compute the effective
response of a structure composed of a stochastic material.

Keywords: uncertainty, dissipative materials, convexity, risk measure, stochastic method,
variational principle, conditional value-at-risk

1. Introduction

When modeling and simulating real materials, it is important to account for uncertainties
in material properties that are inevitable. In traditional deterministic constitutive modeling,
material models are typically calibrated using a set of experimental data. However, even
though these experimental data sets generally exhibit statistical distribution, the models are
often calibrated based solely on the mean of the data, disregarding any information about
uncertainties.

Advanced techniques of uncertainty quantification (UQ) aim to propagate the uncertain-
ties in material properties from the material scale to the structural scale. These techniques
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are particularly important for designing and optimizing structures under uncertain operat-
ing conditions or environmental loads. They can be classified into two different categories:
intrusive and non-intrusive ones, see [15, 41, 42] for a general review. Non-intrusive ap-
proaches are a class of techniques used to propagate uncertainties through computational
models without modifying the models themselves. The basic idea behind non-intrusive UQ
methods is to use the model as a black box and construct a surrogate model, which is a
computationally efficient approximation of the original model. The surrogate model is then
used to perform the uncertainty quantification. The main advantage of non-intrusive UQ
is that it can be applied to any existing computational model without the need for ad-
ditional code development. Typical techniques involve Monte-Carlo sampling, polynomial
chaos expansion, surface response methods or machine-learning techniques.

Conversely, intrusive UQ methods involve modifying the original computational model
by including additional terms to propagate uncertainty through the system. They are called
intrusive because they require direct modification of the original simulation code, which
may be computationally expensive and time-consuming. However, they might be more ac-
curate than non-intrusive approaches. A typical example is stochastic finite element method
(SFEM) [16], which involves introducing probabilistic models for material properties, loads,
and boundary conditions into the finite element model of the structure. The probabilistic
models are then propagated through the finite element analysis to obtain probabilistic esti-
mates of the structural response. This approach is however difficult to generalize to highly
non-linear material behavior such as elastoplasticity. This is notably due to the important
coupling between elasticity, plastic yield surfaces and hardening which can all be stochas-
tic but also due to the history-dependent character of elastoplastic behavior. Some works
have attempted to include a stochastic modeling of elastoplastic behaviors. In [13], a ther-
momechanical elasto-plastic framework for random heterogeneous materials is proposed .
In [22],the probabilistic yielding of 1D elastoplasticity is considered and models the elasto-
plastic evolution using nonlocal Fokker–Planck–Kolmogorovn equations. This methodology
has then been extended to other plastic behaviors in 3D Jeremić and Sett [21], Karapiperis
et al. [24]. In Arnst and Ghanem [3], stochastic variational inequalities were considered with
application to unilateral contact and elastoplasticity. The latter have been approximated us-
ing a polynomial chaos expansion, collocation of the inequality constraints and subsequently
solved using discrete optimization solvers.

In an engineering context, it is often desirable to characterize the tail of the probability
distribution of some quantity of interest. In this case, the problem is often reformulated as
computing the probability that the quantity of interest exceeds a certain threshold, which is
characterized by the ”failure” of the system. Such structural reliability methods [12, 25] may
rely on Monte-Carlo sampling but they quickly become prohibitive when computing events
of low probability. Other techniques may involve importance sampling or approximations
based on first-order/second-order reliability method (FORM/SORM). In the present work,
we will also aim at characterizing the tail of the material probability distribution to provide
engineers with a pessimistic estimate of the response which can be used for safe design.

The proposed contribution falls into the class of intrusive UQ and aims at developing
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a stochastic variational formulation for the response of a structure consisting of non-linear
and non-smooth material behavior, possibly rate and history-dependent. In particular, our
work will be positioned in the context of standard generalized materials which characterize
complex material non-linear behavior by a set of internal state variables, a free energy and
dissipation pseudo-potential. By considering that both of them are convex potentials, the
fulfillment of thermodynamic consistency is guaranteed by construction. This level of gen-
erality permits the description of a broad range of non-linear material constitutive relations
including viscoplasticity, elastoplasticity, damage or a combination thereof. Despite the the-
oretical importance of this framework, it is surprising that only little attention has been paid
to the study of GSM in a stochastic framework where material properties characterizing the
material behavior are uncertain. Our first goal is therefore to provide a thermodynami-
cally consistent formulation of stochastic GSM. Let us point out that a large body of work
has been devoted to the modeling and generation of uncertain material parameters, e.g.
in elasticity [17, 18], hyperelasticity [9, 30], etc. This aspect is not covered in this work
and assumes that we can describe a stochastic material behavior with certain parameters of
known probability distribution.

Second, we will use the framework of stochastic programming [5, 40] to formulate an in-
cremental stochastic variational principle describing the evolution of such materials. To our
knowledge, this is the first contribution which formulates the evolution equations of stochas-
tic dissipative materials using the concepts of stochastic programming. Convex stochastic
programming is a well studied field which considers convex optimization problem formulated
on cost functions and constraints which depend on random parameters of known probabil-
ity distributions. In our case, the use of stochastic programming offers several advantages.
First, it will enable to preserve a key aspect of the GSM framework which is the convexity
of the thermodynamic potential. We can therefore hope to formulate an effective behavior
based on convex effective potentials which will still belong to the GSM framewok, ensur-
ing thermodynamic consistency. Second, it will allow us to distinguish more clearly the
dependence of various state variables with respect to the uncertainty.

Finally, stochastic programming often relies on the use of the expected value of the
cost function over all realizations. However, a structure is not expected to operate well on
average only, but with respect to all realizations up to a given confidence level. The general
aim is that its probability of failure should be sufficiently low i.e. that the risk of failure
is acceptable. The expected value therefore ignores the occurrence of undesirable events in
the tail distribution. Similarly, in finance, a portfolio must be chosen in order to safeguard
against large losses. It then becomes more relevant to consider a risk-averse measure of
the objective function which will also minimize the risk of undesirable events in the design
process rather than the average behavior. In the following, we will discuss the choice of a
risk-averse measure to be used in a stochastic programming approach. Our objective is to
obtain a pessimistic estimate of the structural performance for some given confidence level.
Typically, the resulting pessimistic estimate should reflect a material with weaker stiffness
and strength properties than the average behavior, see Figure 1.

To do so, we will rely on developments in convex risk measures used in finance such as the
Conditional Value-at-Risk (CVaR), which we recently introduced in the context of stochastic
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Figure 1: A stochastic material or structural behavior and its average, optimistic and pessimistic effective
behavior. Dashed blue/red lines represent slightly less optimistic/pessimistic estimates than the solid ones.

elastic materials [7]. To apply this concept to the underlying GSM framework, we will also
need to define a dual CVaR (dCVaR) which, to our knowledge, was never investigated in
the previous mathematical literature.

To summarize, the proposed manuscript contributions are threefold.

• We propose and analyze stochastic programming formulations for deriving the average
behavior of stochastic GSM models.

• We introduce CVaR and dCVaR risk measures to formulate risk-averse (either opti-
mistic or pessimistic) effective behaviors of a stochastic GSM.

• We extend the derived risk-averse formulations to global variational principles for a
structure consisting of a stochastic dissipative material.

Section 2 provides a brief overview of the GSM framework in a deterministic setting and dis-
cusses primal and dual incremental principle which can be used to solve the corresponding
evolution equations. Section 3 introduces the stochastic programming formalism of ran-
dom GSM and discusses different formulations of the effective behavior using the expected
value operator. Section 4.1 introduces the concept of coherent risk measures and studies
the mathematical properties of the CVaR. The novel dual CVaR risk measure is presented
and analyzed. Both risk measures are then used in Section 5 to formulated optimistic and
pessimistic effective behaviors of a stochastic GSM. Finally, Section 6.2 extends the same
concepts to the computation of a risk-averse effective response of a structure. Section 7
closes the manuscript with some conclusions and perspectives for future research.
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Notations: Bold-face symbols indicate tensors (stress, strain) or vectors. E [X] denotes
the expected value of a random variable X. E [P ] [Y ] denotes the probability of an event Y .
The convex conjugate f ∗(y) of a convex function f(x) is defined as:

f ∗(y) = sup
x
x · y − f(x) (1)

For other concepts of convex analysis and convex optimization, we refer the reader to the
seminal books of Rockafellar [36] and Boyd and Vandenberghe [8].

2. Deterministic generalized standard materials and variational principles

Building upon the works of Ziegler [45] and Moreau [32] who introduced the notion of
a pseudo-potential of dissipation, Halphen and Nguyen [19] formalized such concepts more
generally with the frameworks of Generalized Standard Materials (GSM). Such a setting
enables in particular to easily construct constitutive laws which automatically satisfy the
principles of thermodynamics.

2.1. Generalized Standard Materials

Let us consider a material described by the total strain ε and a set of internal state vari-
ables α which can describe various irreversible phenomena such as plasticity, viscoplasticity
or damage. The GSM framework postulates the existence of:

• a Helmholtz free energy density ψ(ε,α) depending on the state variables (ε,α)

• a dissipation pseudo-potential φ(ε̇, α̇) depending on the rate of state variables (ε̇, α̇).
Note that φ might also depend on the state itself but we do not discuss this case for
simplicity.

Moreover, both potentials ψ and φ are assumed to be convex function of their respective
variables and are supposed to be non-negative and to vanish at the origin:

ψ(ε,α) ≥ 0 ∀(ε,α) and ψ(0, 0) = 0 (2)

φ(ε̇, α̇) ≥ 0 ∀(ε̇, α̇) and φ(0, 0) = 0 (3)

In duality to internal state variables, there exist associated thermodynamic forces. The
constitutive equations (state laws) relating forces to state variables are obtained from the
corresponding potentials:

σ = σnd + σd (4a)

0 = Y nd + Y d (4b)

(σnd,Y nd) ∈ ∂(ε,α)ψ(ε,α) (4c)

(σd,Y d) ∈ ∂(ε̇,α̇)φ(ε̇, α̇) (4d)
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where the subscript ?nd (resp. ?d) refers to a non-dissipative (resp. dissipative) quantity
and where ∂ generally denotes the subdifferential. Note that, in most cases, the free energy
is a smooth function so that the subdifferential often reduces to a classical differentiation
whereas the pseudo-potential is often non-smooth in many applications (e.g. plasticity).
Moreover, the Young-Fenchel property also provides the inverse constitutive relations using
the corresponding conjugate potentials:

(ε,α) ∈ ∂(σnd,Y nd)ψ
∗(σnd,Y nd) (5a)

(ε̇, α̇) ∈ ∂(σd,Y d)φ
∗(σd,Y d) (5b)

Finally, if equations (4) describe the constitutive relations for a generic GSM materials,
we must mention two important specific cases. The first one is the case where the total strain
ε is not considered as a dissipative variable e.g. (visco)elasticity, elasto(visco)plasticity, dam-
age, etc. Then, σd = 0 and σ = σnd. The second important case is that of rate-independent
behaviors such as elastoplasticity, as opposed to elastoviscoplasticity for instance. Such cases
correspond to a homogeneous dissipation pseudo-potential. This specific situation results
in (4d) being an inclusion in a convex set and (5b) being an inclusion in the corresponding
normal cone.

2.2. Primal incremental variational principle

The quasi-static evolution over [0;T ] of a system Ω made of a GSM material can be
expressed as the following time-continuous variational principle:

inf
u(t),α(t)

∫ T

0

∫
Ω

(
d

dt
ψ(ε,α) + φ(ε̇, α̇;α)

)
dΩ dt−

∫ T

0

Pext(u̇) dt (6)

under appropriate initial conditions α(0) = α0 and kinematic boundary conditions. The
minimizers (u(t),α(t)) provide the evolution of the system over the whole time interval
[0;T ].

In practice, solving the above evolution is achieved using a time discretization scheme.
Dividing the total interval into finite time intervals [tn; tn+1], an approximate solution
(un+1,αn+1) is computed based on the knowledge of the solution at the previous time step
(un,αn). There may exist different strategies for choosing a time discretization scheme.
The most common strategy is to discretize in time the evolution equations (4), using a fully
implicit Euler scheme or a θ-scheme. The nonlinear resolution of the constitutive equations
is then embedded into a global Newton-Raphson method solving for the system equilibrium.
In some instances, the resulting time-discrete system may loose some structural properties
of the original evolution equation, leading for instance to non-symmetric tangent operators.

Another approach relies on a discretization of the original time-continuous principle (6).
Following [27–29, 34], we replace in (6) written over [tn, tn+1], the rates with finite increments
i.e.:

ε̇ ≈ ∆ε

∆t
, α̇ ≈ ∆α

∆t
(7)
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where ∆? = ?n+1−?n. Moreover, we approximate the power of external forces over [tn; tn+1]
by the corresponding work at time tn+1:∫ tn+1

tn

Pext(u̇) dt ≈ Wext,n+1(u) =

∫
Ω

fn+1 · u dΩ +

∫
∂ΩN

T n+1 · u dS (8)

where f and T are applied body forces and surface tractions respectively.

The solution (un+1,αn+1) is computed from the resolution of the following incremental
variational problem:

(un+1,αn+1) = arg inf
u∈Uad,α

∫
Ω

(
ψ(ε,α) + ∆tφ

(
∆ε

∆t
,
∆α

∆t

))
dΩ−Wext,n+1(u) (9)

where Uad is the space of kinematically admissible displacements satisfying, for instance,
zero Dirichlet boundary conditions u = 0 on ∂ΩD = ∂Ω \ ∂ΩN.

The incremental variational problem (9) therefore amounts to solving for displacement
and internal state variables increments a potential which is parameterized by the previous
state. We see that the resulting problem is convex and can also be formally written in a
more compact form as:

un+1 = arg inf
u∈Uad

J(ε; εn,αn)−Wext,n+1(u) (10)

where J(ε; εn,αn) =

∫
Ω

j(ε; εn,αn) dΩ (11)

j(ε; εn,αn) = inf
α
ψ(ε,α) + ∆tφ

(
ε− εn

∆t
,
α−αn

∆t

)
(12)

where J can be seen as an incremental global potential and j is the associated volume
density. The latter is obtained through an implicit minimization over the state variables
α as a function of the observable state variable ε. Both of them are parameterized by the
values (εn,αn) of the state variables at the previous time step. The optimality condition:

σ ∈ ∂j(ε; εn,αn) (13)

represents the final stress/strain relation where internal state variables are implicitly solved
for in the partial minimization. Akin to variational time integrators, using such variational
formulations of constitutive relation updates [20, 34] enables to preserve properties of the
underlying variational structure, such as symmetries of the tangent operator for instance.

2.3. Dual incremental variational principle

Using classical results from convex analysis, there exist a dual principle to (9) which
involves stresses σ and thermodynamic forces Y rather than strain and internal variables
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as primary unknowns:

(σn+1,Y n+1) = arg inf
σ,Y ,σnd,σd,Y nd,Y d

∫
Ω

(
ψ∗(σnd,Y nd) + ∆tφ∗(σd,Y d) + σd : εn + Y d ·αn

)
dΩ

s.t. divσ + fn+1 = 0 in Ω
σn = T n+1 on ∂ΩN

σ = σnd + σd

0 = Y nd + Y d

(14)
In the case where ε is not considered to be a dissipative variable, it reduces to:

(σn+1,Y n+1) = arg inf
σ,Y

∫
Ω

(ψ∗(σ,−Y ) + ∆tφ∗(Y ) + Y ·αn) dΩ

s.t. divσ + fn+1 = 0 in Ω
σn = T n+1 on ∂ΩN

(15)

where we introduced Y = Y d = −Y nd. This expression is consistent with the one derived
by De Angelis and Cancellara [10] in the viscoplastic case.

In the case of rate-independent materials, φ is a homogeneous function so that (9) sim-
plifies as:

(un+1,αn+1) = arg inf
u∈Uad,α

∫
Ω

(ψ(ε,α) + φ (α−αn)) dΩ−Wext,n+1(u) (16)

This results in φ∗ being the indicator of some convex set G and (15) reduces to:

(σn+1,Y n+1) = arg inf
σ,Y

∫
Ω

(ψ∗(σ,−Y ) + Y ·αn) dΩ

s.t. divσ + fn+1 = 0 in Ω
σn = T n+1 on ∂ΩN

Y ∈ G in Ω

(17)

3. Stochastic generalized standard materials

We will now revisit the above GSM formulation of material behavior in the stochastic
setting. As we have seen before, dissipative materials can be described by the incremental
potential j which is obtained through an implicit minimization over the state variables α as
a function of the observable state variable ε. The incremental potential j is parameterized by
the values (εn,αn) of the state variables at the previous time step. For the sake of simplicity,
we will drop the explicit mention of such a dependency in the following. In this section, we
work at the material point level and thus do not explicitly mention the dependency of the
density j upon the position vector x ∈ Ω.
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3.1. Formulation of an effective material behavior

We now assume that the incremental potential depends upon uncertain parameters ζ
i.e. j(ε; ζ) is now a stochastic convex function. In practice, uncertainty can affect material
parameters describing the behavior. In this case, such parameters become random variables.
Alternatively, material properties can also vary in space so that uncertain material param-
eters become random fields. In either case, uncertainty is encoded via the vector of random
parameters ζ which are supposed to have a known probability distribution.

Now, let us discuss our main objective. Many UQ techniques aim at describing the prob-
ability distribution of some quantities of interest based on the input probability distribution
of uncertain input parameters. Here, our goal is different in the sense that we would like
to be able to describe the effective behavior of the material with respect to the uncertainty
ζ. In other words, we would like to formulate a deterministic behavior which captures the
essential features of the underlying uncertainties in some way, which remains to be specified.
Formally, we introduce the following effective potential:

jeff(ε) = R [j(ε; ζ)] (18)

where R refers to some effective measure of j over all realizations ζ. Since j is defined as a
minimum problem involving an uncertain objective function, the computation of jeff there-
fore falls into the scope of stochastic programming. Working with a stochastic programming
framework will indeed prove to be extremely fruitful for defining, in a consistent manner,
the effective state and evolutions associated with the effective material behavior.

Obviously, the choice of the effective measure R heavily relies on our wanted definition
of the corresponding behavior. The most classical choice is the expected value R[j] =
E [j] which considers the average behavior of the material. In this case, variance and low
probability events are discarded when using the corresponding behavior for a computation
at the structure scale. Borrowing from the finance vocabulary, the expected value is a
risk-neutral effective measure.

However, engineering applications often require to consider scenarios of low probability
which might be more detrimental to the structural safety. In such a context, the choice of
the effective measure could be aimed at reproducing some kind of pessimistic estimate of the
underlying material behavior (e.g. smaller stiffness and strength than the average behavior
etc.). In this case, we look for a risk-averse effective measure. Conversely, one could also
be interested in computing an optimistic estimate of the corresponding uncertain behavior
using a risk-seeking measure. If optimistic estimates may be less useful from a safety anal-
ysis point of view, they could serve as defining some kind of confidence interval when used
in conjunction with a pessimistic estimate. One major difficulty in choosing such measures
is that we would like to preserve fundamental mathematical properties such as convexity
and positivity of the material behavior potentials. Fortunately, we will be able to do so by
introducing later in section 4.1 the notion of convex risk measures.
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Before that, let us first discuss the more classical case where R[j] = E [j]. In this case,
most observations will bear some similarities with the setting of homogenization of random
media. In particular, we show that there exist two possible ways of defining an effective
behavior, based either on the primal strain-based variational principle (9) or on the corre-
sponding dual stress-based principle (14). Moreover, we show that a particular attention
must be paid to the definition of internal state variables when using both formulations,
especially when yield conditions are involved.

3.2. Internal state variables in the stochastic setting

In the stochastic setting, the first question which arises indeed concerns the dependency
of the different state variables with respect to the uncertainty. Since we are interested in
computing an effective behavior of the material, we consider the total strain ε to be imposed
by the external observer. In a global structural analysis, ε will for instance be obtained by
minimizing the effective potential associated with jeff, see section 6.2. In the vocable of
stochastic programming, ε is referred to as a first-stage variable since its value is chosen
independently from the exact realization of the uncertainty ζ. On the contrary, the implicit
state variables α are referred to as second-stage variables i.e. their value directly depends
on the uncertainty realization. To make this dependency more explicit, we will now use the
subscripted notation αζ.

Another important step in the GSM framework is to define the list of internal state
variables. In the elastoplastic deterministic case, one can equivalently introduce the elastic
εel and plastic strain εp as internal state variables or one could also just introduce εp and
replace εel with ε−εp. In the stochastic setting, this choice is less innocent than it appears.
Assuming that εp

ζ is the uncertainty-dependent plastic strain, a first possibility is to define
the elastic strain as:

εel
ζ = ε− εp

ζ (19)

so that:
ε = εel

ζ + εp
ζ almost surely (20)

i.e. the sum of the random elastic and plastic strains is equal to the deterministic total
strain ε with probability 1. Note that a similar approach is considered in Einav and Collins
[13].

Another approach would consist in enforcing the last relation on average only. More
precisely, we assume that there exists a random elastic strain εel

ζ such that:

ε = E
[
εel
ζ + εp

ζ

]
(21)

Both approaches are obviously not equivalent. In (21), we have explictly introduced an
additional internal state variable εel

ζ which is related to the total strain in average only.

Both approaches can also be reformulated as follows. Considering the observable strain
ε, we also introduce the uncertain total strain deviation from average eζ with the property
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E [eζ] = 0. This strain deviation is such that the real uncertain total strain is εζ = ε + eζ
and such that E [εζ] = ε. We therefore consider eζ as an ”internal” state variable which is
not observable from the perspective of the effective structural behavior. The elastic strain
is then defined as:

εel
ζ = εζ − εp

ζ = ε+ eζ − εp
ζ (22)

We then see that the first approach (19) corresponds to the situation where we impose that
the deviation is zero eζ = 0 whereas the second approach (21) corresponds to the assump-
tion that the deviation is zero on average only.

In fact, this point of view involving eζ as an additional state variable is not specific to
elastoplasticity but generalizes to any material behavior in the sense that:

jeff(ε) = inf
eζ ,αζ

E [ψ(ε+ eζ,αζ)] + E [φ (ε+ eζ − εn − en,ζ,αζ −αn,ζ)]
s.t. eζ = 0

(23)

for the first approach or:

jeff(ε) = inf
eζ ,αζ

E [ψ(ε+ eζ,αζ)] + E [φ (ε+ eζ − εn − en,ζ,αζ −αn,ζ)]
s.t. E [eζ] = 0

(24)

for the second approach.

For instance, in the case of linear elasticity characterized by an uncertain elasticity tensor
Cζ, the first approach with eζ = 0 yields:

jeff(ε) = E
[

1

2
ε : Cζ : ε

]
=

1

2
ε : E [Cζ] : ε (25)

whereas the second approach yields:

jeff(ε) = inf
eζ

E
[

1

2
(ε+ eζ) : Cζ : (ε+ eζ)

]
=

1

2
ε : E

[
C−1
ζ

]−1
: ε

s.t. E [eζ] = 0
(26)

We therefore see that the first approach will produce an elastic behavior characterized by
the average elastic moduli whereas the second expression is associated with the harmonic
average of the elastic moduli. Note that both quantities are not equal in general, as we only

have E [Cζ] � E
[
C−1
ζ

]−1
where inequality is understood in the sense of quadratic forms.

Note that a result similar to (26) can also be found in [23].

In the general case, the effective dual potential (jeff)∗(σ) where σ is the observable stress
is given by:

(jeff)∗(σ) = sup
ε,eζ ,αζ

σ : ε− E [ψ(ε+ eζ,αζ)]− E [φ (ε+ eζ − εn − en,ζ,αζ −αn,ζ)]

s.t. eζ = 0 or E [eζ] = 0
(27)

11



For the first approach (23), one obtains:

(jeff)∗(σ) = inf
σnd

ζ ,σd
ζ ,Y ζ

E
[
ψ∗(σnd

ζ ,−Y ζ)
]

+ E
[
φ∗(σd

ζ,Y ζ)
]

+ E
[
σd
ζ : εn + Y ζ ·αn,ζ

]
s.t. σ = E

[
σnd
ζ + σd

ζ

]
(28)

whereas for the second approach (24), one obtains:

(jeff)∗(σ) = inf
σnd

ζ ,σd
ζ ,Y ζ

E
[
ψ∗(σnd

ζ ,−Y ζ)
]

+ E
[
φ∗(σd

ζ,Y ζ)
]

+ E
[
σd
ζ : (εn + en,ζ) + Y ζ ·αn,ζ

]
s.t. σ = σnd

ζ + σd
ζ a.s.

(29)
We therefore see that when we do not consider the strain deviation eζ as an internal state
variable, the thermodynamic stress σnd

ζ +σd
ζ should be considered as a second-stage variable

which is equal to the observable stress σ only on average. On the contrary, when we do
consider the strain deviation eζ as an internal state variable, the thermodynamic stress be-
comes deterministic. For instance, in the case where ε is not a dissipative variable, σd

ζ = 0

and σζ = σnd
ζ . Thus, one has either E [σζ] = σ or σζ = σ respectively.

To conclude, this discussion bears striking similarities with Voigt and Reuss bounds in
periodic homogenization. Indeed, if dependence upon the uncertainty ζ is replaced with
a spatial dependence and expectation is replaced with a spatial average, (23) is akin to
compute the average potentials with a uniform strain ε in space. This indeed leads to a
”stiff” Voigt estimate of the elastic effective modulus as in (25). On the contrary, (29) is
akin to imposing a uniform stress field σ in space, leading to a ”soft” Reuss estimate as in
(26) in the elastic case.

3.3. Illustrative application in 1D

We close this section by illustrating the different stochastic formulations on the example
of a one-dimensional elasto-plastic behavior with isotropic power-law hardening. The inter-
nal state variables are α = (εp, p) where p is the cumulated plastic strain. The corresponding
1D potentials are given by:

ψ(ε, εp, p) = ψel(ε, ε
p) + ψh(p) (30)

ψel(ε, ε
p) =

1

2
E(ζ)(ε− εp)2 (31)

ψh(p) =
1

1 + 1/m
H(ζ)p1+1/m (32)

φ(ε̇p, ṗ) =

{
σ0(ζ)ṗ for |ε̇p| ≤ ṗ

+∞ otherwise
(33)

We consider that the Young modulus E(ζ), hardening modulus H(ζ) and yield stress σ0(ζ)
are independent random variables following a lognormal distribution. We assume the power-
law exponent to be deterministic (m = 3 in the following numerical simulations).
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The stochastic programming formulation (23) where we consider the total strain to be
fully deterministic reads:

jeff(ε) = inf
εpζ ,pζ

1

2
E
[
E(ζ)(ε− εp

ζ)
2
]

+
1

1 + 1/m
E
[
H(ζ)p

1+1/m
ζ

]
+ E [σ0(ζ)(pζ − pn,ζ)]

s.t. |εp
ζ − εp

n,ζ| ≤ pζ − pn,ζ
(34)

The corresponding dual potential is given by:

(jeff)∗(σ) = inf
σζ ,Rζ

1

2
E
[

1

E(ζ)
σ2
ζ

]
+

1

1 +m
E
[

1

H(ζ)m
R1+m
ζ

]
+ E

[
σζε

p
n,ζ −Rζpn,ζ

]
s.t. |σζ| ≤ σ0(ζ) ∀ζ

σ = E [σζ]

(35)

The second stochastic programming formulation (24) where we consider the additional
total strain deviations reads:

jeff(ε) = inf
eζ ,ε

p
ζ ,pζ

1

2
E
[
E(ζ)(ε+ eζ − εp

ζ)
2
]

+
1

1 + 1/m
E
[
H(ζ)p

1+1/m
ζ

]
+ E [σ0(ζ)(pζ − pn,ζ)]

s.t. |εp
ζ − εp

n,ζ| ≤ pζ − pn,ζ
(36)

The corresponding dual potential is given by:

(jeff)∗(σ) = inf
Rζ

1

2
E
[

1

E(ζ)
σ2

]
+

1

1 +m
E
[

1

H(ζ)m
R1+m
ζ

]
+ E

[
σεp

n,ζ −Rζpn,ζ
]

s.t. |σ| ≤ σ0(ζ) ∀ζ
(37)

Figure 2a represents the corresponding effective behavior for both formulations in the
case where E [E] = 20, E [H] = 1 and E [σ0] = 1 and a 20% standard deviation for both E
and H and 10% for σ0. The effective behavior is obtained by discretizing the imposed total
strain in 30 increments. Each increment is obtained by solving either formulation (34) (in
blue) or (36) (in red). In both cases, expectations have been computed using a Monte-Carlo
sampling approximation with a sample size N = 500. Minimization over the N different
state variables is performed using the cvxpy package [1, 11].

First, it can be seen that both approaches lead to a very similar behavior, the second
formulation (36) being slightly softer than the first one due to the presence of additional
total strain variables. Interestingly, the obtained effective behavior is close to the nominal
deterministic behavior except that it exhibits an earlier and progressive onset of plasticity
since it accounts for a distribution of yield stress with different values.

This is further confirmed in Figure 2b which corresponds to an almost perfectly-plastic
behavior with E [H] = 0.01. We can observe that the effective behavior corresponding to
(34) admits an initial hardening phase before reaching a perfectly plastic plateau. A sim-
ilar behavior is obtained from the approach proposed in [13]. Moreover, in the ultimate
perfectly plastic regime, the elastic term vanishes so that εp

ζ = ε. One can then see that

(34) gives approximately jeff(ε) ≈ E [σ0] |ε − εn| in the asymptotic regime of the perfectly

13
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(a) Hardening case with E [H] = 1
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(b) Nearly perfectly plastic case with E [H] = 0.01

Figure 2: Effective behavior of a stochastic hardening elastoplastic material. The black dashed line corre-
sponds to the nominal deterministic case where all parameters take their average value. Thin black lines
correspond to 100 independent realizations of the stochastic behavior.

plastic case. The final plastic plateau is therefore given by the average yield stress E [σ0] = 1.

Conversely, formulation (36) clearly fails at reproducing a reasonable effective behavior.
This can indeed be well understood when inspecting the dual formulation (37) in which
the last constraint will enforce the observable stress to satisfy the plasticity criterion for
any possible realization of the yield stress σ0(ζ). As a result, this constraint can in fact be
reformulated as |σ| ≤ infζ σ0(ζ) which is overly conservative. Note that we obtain here a
non-zero yield stress due to the fact that we have a finite set of samples but, in theory for
a lognormal distribution, this minimum should be zero.

3.4. A soft-constrained formulation

We might therefore be tempted to conclude that the second formulation (36) allowing
such non-zero total strain deviations eζ is not relevant. However, when inspecting again the
dual formulation (37), we can see that a minor modification could lead to a relevant effective
estimate, yet different from (34)-(35). Indeed, the last constraint can also be formulated as
g(σ; ζ) ≤ 1 ∀ζ where g(σ; ζ) = |σ|/σ0(ζ) is the gauge function of the corresponding yield
criterion. Since the second formulation involves a deterministic stress, we then see that
satisfying the yield condition almost surely is too restrictive. Another classical approach in
stochastic programming is to replace such a hard constraint by a soft counterpart such as
imposing that the constraint is satisfied on average only, hence E [g(σ; ζ)] ≤ 1. In the present
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case, this amounts to imposing |σ| ≤ 1

E
[

1

σ0(ζ)

] . The new dual formulation therefore reads:

(jeff)∗(σ) = inf
Rζ

1

2
E
[

1

E(ζ)
σ2

]
+

1

1 +m
E
[

1

H(ζ)m
R1+m
ζ

]
+ E

[
σεp

n,ζ −Rζpn,ζ
]

s.t. E [|σ|/σ0(ζ)] ≤ 1 ∀ζ
(38)

Going back to the corresponding primal formulation, (38) is the dual to the following primal
formulation:

jeff(ε) = inf
eζ ,ε

p
ζ ,pζ

1

2
E
[
E(ζ)(ε+ eζ − εp

ζ)
2
]

+
1

1 + 1/m
E
[
H(ζ)p

1+1/m
ζ

]
+ max

ζ
[σ0(ζ)(pζ − pn,ζ)]

s.t. |εp
ζ − εp

n,ζ| ≤ pζ − pn,ζ
(39)

where the only difference with (36) is that the effective measure of the dissipation potential
is no longer the expectation but the worst-case value.

Figure 3 shows the obtained effective estimate using this third formulation involving
soft yield constraints. Clearly, we can see that this formulation removes the deficiencies of
(36) which we identified earlier. Besides, it yields an effective behavior which is close to
formulation (34), the main difference being that there is no progressive onset of plasticity in
this case. This is due to the fact that the yield constraint is determinisitic. Note that for a
lognormal variable X we have:

E
[
X−1

]−1
= E [X]

(
1 +

var[X]

E [X]2

)−1

≈ E [X] (40)

when the variance is small as in the present case. This explains for instance in Figure 3b
why the effective yield stress are very close for both formulations (roughly only 1% difference
since we have a 10% standard deviation on σ0). However, let us point out that we might see
more differences for other types of distributions than a lognormal one.

To conclude, we have seen that there exist different possible formulations of an effective
behavior for a stochastic dissipative material. Depending on the chosen hypothesis regarding
whether total strain is considered as a first-stage or second-stage variable, the associated
thermodynamic stress should be respectively considered as a second-stage or a first-stage
variable. Depending on the chosen hypothesis, we have also seen that the retained effective
measure plays an important role, especially concerning the dissipation potential. These
various formulations seem to yield very close effective behavior which can question the
usefulness of having such a discussion. However, we considered here the expectation as an
effective measure of the behavior. In the following, we will now discuss other choices, in
particular risk measures which can take into account low probability events rather than
average behavior. In such a case, the distinction between these different formulations will
be crucial.
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(b) Nearly perfectly plastic case with E [H] = 0.01

Figure 3: Effective behavior of a stochastic hardening elastoplastic material using the soft constraint formu-
lations (39).

4. Risk-averse measures

As discussed before, we now aim at departing from a risk-neutral effective behavior
and rather aim at representing some pessimistic (or risk-averse) effective behavior of the
underlying stochastic material. To do so, we first introduce the concept of coherent risk
measures.

4.1. Coherent risk measures

In financial mathematics, a risk measure is a functional which amounts to quantify the
level of risk of a given random variable X where X can be, for instance, some financial loss
or cost, see [37] for a broad overview. In the subsequent presentation, we follow the tradition
in optimization where costs should be minimized. Therefore, we consider that large positive
values of X are disliked. The choice of a proper risk measure will aim at guarding against
large values of X. Many possibilities of risk measures can be considered, depending on how
the decision-maker evaluates risks. Typical examples are for instance:

• the expected value:
R[X] = E [X] (41)

• the safety margin using k standard deviations:

R[X] = E [X] + k std[X], for k > 0 (42)

• the worst-case value:
R[X] = supX (43)

• the Value-at-Risk (VaR) for a level β ∈ [0; 1] (or the β-quantile):

R[X] = VaRβ(X) = inf{Z s.t. P [Z ≥ X] ≥ β} (44)

16



• and many more...

Recently, the finance community has devoted its attention to the use of so-called coherent
risk measures which are a specific class of risk measures benefiting from desirable properties
proposed by Artzner et al. [4] such as:

• R[C] = C for all constants C

• convexity: R[(1− λ)X + λY ] ≤ (1− λ)R[X] + λR[Y ] for all X, Y and λ ∈ [0; 1]

• monotonicity: R[X] ≤ R[Y ] if X ≤ Y almost surely

• positive homogeneity: R[λX] = λR[X] for λ > 0

Based on the first two properties, a coherent measure of risk will also be translationally
invariant i.e. R[X + C] = R[X] + C for any constant C. Finally, one key property in the
present work is that convexity is preserved under coherent risk measures i.e.:

if f(x; ζ) is convex wrt x, then R[f ](x) is convex in x (45)

As a first example, the expected value (41) is a coherent risk measure but it is not very
useful in quantifying the amount of risk since it does not take into account events in the
distribution tail. This measure is therefore termed risk-neutral. Risk measures satisfying
R[X] > E [X] are instead called risk-averse measures.

The safety margin measure (42) is for instance risk-averse but is not coherent. Con-
versely, the worst-case value (43) fulfills both coherency and risk-aversion but is not useful
in practice due to being severely conservative. The Value-at-Risk VaRβ(X) might be an
interesting risk-averse measure as it gives an estimate of X which is exceeded only with
probability 1− β. It is however not convex and hence does not fall into the class of coher-
ent risk measures. As a result, stochastic programs in which an uncertain convex function
j(ε, ζ) is replaced with VaRβ(j)(ε) would not be convex anymore which is extremely un-
desirable from the computational and theoretical perspective. A very popular risk-averse
measure closely linked to the VaR and which overcomes this drawback is the Conditional
Value-at-Risk (CVaR).

4.2. Conditional Value-at-Risk and risk-averse estimates

4.2.1. Definition

For a continuous distribution, the CVaR is defined as the expected value of X above
VaRβ (see Figure 4):

CVaRβ (X) = E [X s.t. X ≥ VaRβ(X)] (46)

The above definition is slightly more technical when considering discrete distributions, we
refer the reader to [38] for a rigorous definition.
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Figure 4: Illustration of the CVaR definition

The CVaR is then a coherent risk measure and a key result due to [39] is that CVaR
benefits from the following convex optimization characterization:

CVaRβ (X) = inf
λ
λ+

1

1− βE
[
〈X − λ〉+

]
(47)

where 〈?〉+ = max{?, 0} denotes the positive part. From this definition, it is clear that
CVaR0(X) = E [X]. Let us also point out that, if the minimum of (47) is unique, then the
optimal value is exactly λ = VaRβ(X).

The CVaRβ of |x| for a vector x ∈ RN can also be interpreted as a norm parameterized
by β. Indeed, for β = 0, it reduces to the L1-norm scaled by a factor 1

N
, whereas for β = 1

it reduces to the L∞-norm. For intermediate values, it can be seen as an average of the k
largest values of |x| where k/N = 1− β, see [26, 35] for a more precise definition.

4.2.2. Application to an elastic potential

Applying such concepts from financial optimization to mechanics requires to decide what
would be the ”loss” function against which we want to be immunized. This not necessarily an
obvious question to answer. Let us first investigate what would be obtained when considering
the CVaR as an effective measure R in (18) in the simple case where the behavior is linear
elastic, hence here j(ε) = ψ(ε) = 1

2
ε : C : ε. We assume that uncertainty affects only the

material Young modulus so that E(ζ) is a random variable and C(ζ) = E(ζ)C0 for some
reference C0 material with unit Young modulus. Then, one easily sees that:

ψeff(ε) = CVaRβ (ψ) (ε) =
1

2
ε : CVaRβ (E)C0 : ε (48)

i.e. one obtains a linear elastic material with an effective Young modulus Eeff = CVaRβ (E).
In the following, we use the more compact notation Eβ = CVaRβ (E) to denote the CVaR
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effective value. The CVaR estimate enjoys the following properties:

E0 = E [E] (49)

E1 = supE (50)

Eβ ≥ VaRβ(E) (51)

Eβ ≤ E
β
′ ∀β ≤ β′ (52)

For β ∈ [0; 1], the effective modulus therefore varies from its mean value to its supremum
(which can be infinite). In practice, β is often chosen close to 1 e.g. β = 0.95 or 0.99 so
that Eβ provides a best-case estimate of the material Young modulus. It might therefore
appear strange to consider this stiff estimate as being a useful risk measure from the engi-
neering point of view, since stiff materials are generally looked for. As it will be clear later,
considering a CVaR in a primal displacement-based principle will yield an overestimation of
the mechanical performance compared to its mean value. Structural performance underes-
timation will instead be obtained through duality. The confidence level β will enable us to
reach tail behaviors (both left and right) when β is close to 1. We will therefore use in the
following the term risk or risk-averse measure to denote a measure of the deviation from
the mean value, irrespective of the fact that such a value can be beneficial or detrimental
from the engineering point of view. We will also refer to β as the risk-aversion level.

4.2.3. Generic effective stress-strain relationship

Let us now study the stress-strain relationship which would be obtained when considering
an effective free energy CVaRβ (ψ) (ε) for a generic uncertain free energy ψ(ε; ζ). To avoid
technicalities, let us consider that uncertainty is represented by a finite distribution of N
scenarios ζi of probabilities pi. The effective free-energy therefore reads:

ψeff(ε) = CVaRβ (ψ) (ε) = inf
λ
λ+

1

1− β
N∑
i=1

pi 〈ψ(ε; ζi)− λ〉+ (53)

Using classical convex analysis arguments, the associated stress σ ∈ ∂ψeff(ε) can be obtained
as the solution to the following maximization problem:

sup
ε
σ : ε− ψeff(ε) = − inf

ε,λ
λ+

1

1− β
N∑
i=1

pi 〈ψ(ε; ζi)− λ〉+ − σ : ε (54)

which is characterized by the following optimality conditions:

1 =
1

1− β
N∑
i=1

pi Heav (ψ(ε; ζi)− λ) (55)

σ =
1

1− β
N∑
i=1

pi
∂ψ

∂ε
(ε; ζi) Heav (ψ(ε; ζi)− λ) (56)
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where Heav (x) = 1 if x > 0 and 0 otherwise. As a result, we can see from (55) that λ is
obtained, for a given ε, as the optimal level set of the uncertain free energies such that the
set A of active scenarios, i.e. scenarios which have ψ(ε; ζi) ≥ λ occur with probability 1−β.
Knowing such a partition A of active scenarios, condition (56) can also be rewritten as:

σ =
1

1− β
∑
i∈A

piσi (57)

That is, the effective stress σ is obtained as the weighted sum of the stress states σi =
∂ψ(ε; ζi)/∂ε corresponding to each active scenario. Note that if ψ is non-smooth the latter
relations should be understood in the sense of set membership.

4.3. Dual Conditional Value-at-Risk (dCVaR)

We see from characterization (57), that the obtained CVaR constitutive relation is indeed
optimistic in the sense that it retains the scenarios with the highest free energy levels,
resulting in a stiff estimate in general. In this section, we would like to derive a corresponding
pessimistic estimate which would retain only scenarios with low free energy levels.

4.3.1. Quadratic elastic potentials

In Bleyer [7], we proposed to obtain the pessimistic estimate of an elastic potential ψ by
taking the conjugate function of the CVaR of the conjugate i.e. (ψ∗)∗

β
. In the elastic case,

we easily see that:

(ψ∗)β(σ) =
1

2
σ : CVaRβ

(
E−1

)
S0 : σ (58)

(ψ∗)∗
β
(ε) =

1

2
ε : (CVaRβ

(
E−1

)
)−1C0 : ε (59)

where S0 = (C0)−1. This defines an elastic material with an effective Young modulus given
by:

Eeff = Eβ = CVaRβ

(
E−1

)−1
= ((E−1)β)−1 (60)

where we introduced the dual Conditional Value-at-Risk (dCVaR) notation Eβ which enjoys
the following properties:

E0 = E
[
E−1

]−1
(61)

E1 = inf E (62)

Eβ ≤ VaRβ(E−1)−1 (63)

Eβ′ ≤ Eβ ∀β ≤ β′ (64)

In the generic case of a convex function f(x), one has the following convex formulation:

(f ∗)∗
β
(x) = inf

x̂,z
E [zf(x̂/z)]

s.t. E [x̂] = x

0 ≤ z ≤ 1

1− β
E [z] = 1

(65)
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Unfortunately, we see that this definition is not suitable for all convex functions. Indeed, for
positive homogeneous functions for instance, the objective simplifies to E [f(x̂)] and the aux-
iliary variable z, and thus β, play no role. For instance, in the case where f(x) = k(ζ)‖x‖p,
f(x) is the support function of a Lq-ball of radius k(ζ) with 1

p
+ 1

q
= 1, one can easily see

that (65) yields the ball of smallest radius i.e. (f ∗)∗
β
(x) = {inf k(ζ)}‖x‖p. This is obviously

not what we are looking for as this worst-case estimate is way too conservative and does not
depend on β. We can remark that we recover an issue similar to that encountered previously
with formulation (37) of the effective behavior.

4.3.2. Polar-based definition

One important property of the CVaR is that if f ≤ g, then CVaRβ (f) ≤ CVaRβ (g).
The use of f ∗ in the definition of the dCVaR was motivated by the fact f ∗ ≥ g∗, so that:

(CVaRβ (f ∗))∗ ≤ (CVaRβ (g∗))∗ (66)

Moreover, we then have:

(CVaRβ′(f
∗))∗ ≤ (CVaRβ (f ∗))∗ ∀β ≤ β′ (67)

which inverts the ordering of the standard CVaR with respect to β. Hence, R[f ] =
(CVaRβ (f ∗))∗ would define another convex risk measure. Unfortunately, it is not coher-
ent because it lacks the homogeneity property.

To obtain a coherent convex risk-measure, we look for another operation on convex
functions which would invert ordering. It turns out that for the specific class of non-negative
convex function which vanish at the origin, as our thermodynamical potentials, there exists
another transform than the convex conjugate which enjoys this property [31]. This transform
is the polar f ◦ of a positive convex function f which is defined as [36, Th. 15.4]:

f ◦(x) = inf{µ ≥ 0 s.t. x · y − µf(y) ≤ 1 ∀y} (68)

= inf{µ ≥ 0 s.t. µf ∗(x/µ) ≤ 1} (69)

which also satisfies f ◦ ≥ g◦ for f ≤ g. Moreover f ◦◦(x) = f(x).

As a result, we define the dual CVaR as:

dCVaRβ (f) (x) = (CVaRβ (f ◦))◦(x) (70)

and use fβ as a short-hand notation for dCVaRβ (f).
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4.3.3. Properties

In the case of quadratic convex functions, f ◦ = f ∗ so that the polar definition (70)
coincides with that given in Bleyer [7] in the context of linear elasticity.

Moreover, in the case where the uncertain function f(x; ζ) = k(ζ)g(x) where k(ζ) > 0
and g is a non-negative convex function, we have that:

f ◦(x; ζ) = (k(ζ)g(x))◦ =
1

k(ζ)
g◦(x) (71)

so that:

dCVaRβ (f) (x) =

(
CVaRβ

(
1

k(ζ)

)
g◦(x)

)◦
(72)

=
1

CVaRβ (k−1(ζ))
g◦◦(x) (73)

=
1

CVaRβ (k−1(ζ))
g(x) (74)

In particular, for the previous example involving a homogeneous function f(x) = k(ζ)‖x‖p,
the new dCVaR estimates results in dCVaRβ (f) (x) = CVaRβ (k−1(ζ))

−1 ‖x‖p which is
much less pessimistic than infζ k(ζ). Moreover, we therefore recover the same definition as
for quadratic elastic potentials.

As a conclusion, the dCVaR can hence be defined for any constant function (random
variable k(ζ)) as follows:

kβ := dCVaRβ (k(ζ)) = (CVaRβ

(
k−1(ζ)

)
)−1 = (k−1

β
)−1 (75)

Note that one has:

fβ′ ≤ fβ ≤ f0 = E [f ◦]◦ ≤ f0 = E [f ] ≤ fβ ≤ fβ′ ∀ 0 ≤ β ≤ β′ < 1 (76)

Let us also recall that the optimal value of λ in the CVaR definition (47) corresponds
to the VaR. Then, g◦ = VaRβ(f ◦) is such that Ff◦(g

◦) = β. But one also has Ff◦(g
◦) =

P [f ◦ ≤ g◦] = P [f ≥ g] so that:

Ff◦(g
◦) = 1− Ff (g) = β ⇒ Ff (g) = 1− β (77)

We conclude that g = VaRβ(f ◦)◦ corresponds to the (1 − β)-quantile of f(x; ζ). However,
fβ does not correspond to the expectation below this (1− β)-quantile but rather the ”polar

expectation” E [f ◦]◦ below this quantile.

Finally, we have the following convex representation of dCVaRβ (f) (x):

dCVaRβ (f) (x) = inf
v≥0,x̂

max

{
E [vf(x̂/v; ζ)] ; (1− β) sup

ζ
{vf(x̂/v; ζ)}

}
s.t. E [x̂] = x

E [v] = 1

(78)
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Besides, the Lengendre-Fenchel conjugate of the dCVaR is given by:

dCVaRβ (f)∗ (y) = inf
z≥0

sup
ζ
{zf ∗(y/z; ζ)}

s.t. CVaRβ (z) ≤ 1
(79)

Note that when f is a homogeneous function, we can ignore the auxiliary variables v
in (78). Besides, in this case f ∗ is the indicator of some convex set G which is represented
via its gauge function g = f ◦ as follows: G = {y s.t. f ◦(y) ≤ 1}. In this case, (79) now
becomes:

dCVaRβ (f)∗ (y) =

{
0 if CVaRβ (f ◦) (y) ≤ 1

+∞ otherwise
(80)

[ToDo: proofs]

5. Risk-averse behavior of stochastic GSM

In this section, we discuss the application of the CVaR and dCVaR to derive a risk-averse
effective behavior of a stochastic GSM. To illustrate this objective on the example of the
elastoplastic 1D behavior of section 3.3, we would like to formulate:

• optimistic effective free energy and dissipation potentials which would result in an
effective 1D behavior corresponding to an upper enveloppe of the bundle of stochastic
material responses shown in Fig. 2 for instance. The resulting effective behavior is
expected to exhibit a stiffer elastic response, a stronger hardening and a larger yield
stress than the average or the nominal behavior.

• pessimistic effective free energy and dissipation potentials which would result in an ef-
fective 1D behavior corresponding to a lower enveloppe of the same bundle of stochastic
material responses. The resulting effective behavior is expected to exhibit a more com-
pliant elastic response, a weaker hardening and a smaller yield stress than the average
or the nominal behavior.

5.1. Optimistic estimate

A natural extension of the CVaR concepts introduced in section 4.1 is to replace both
stochastic free energy potential and stochastic dissipation pseudo-potential with their CVaR
risk measure:

ψeff(ε,αζ) = CVaRβ (ψ(ε,αζ; ζ)) (81)

φeff(ε̇, α̇ζ) = CVaRβ (φ(ε̇, α̇ζ; ζ)) (82)

Note however that the above notation is slightly abusive in the sense that internal state vari-
ables αζ are second-stage variables which depend on the uncertainty and cannot be replaced
a priori with a finite-set of observable internal state variables which do not depend on the
uncertainty anymore. The resulting effective potentials are not practically effective since we

23



still have to track the uncertainty-dependent state variables. This issue is very similar to
the homogenization of a heterogenous GSM. Indeed, the mathematical structure of GSM is
preserved by up-scaling [43, 44] but this has to be done at the expense of introducing an
infinite number of internal variables which represent the local state variables microscopic
fields. Here again, the dependence on the local spatial variable is similar to the dependence
on the uncertainty.

Nevertheless, taking into account these optimistic effective potentials in lieu of the ex-
pected value in the incremental potential (23) results in the following definition of the
optimistic incremental potential jeff(ε):

jeff(ε) = inf
αζ

CVaRβ (ψ(ε,αζ)) + CVaRβ (φ (ε− εn,αζ −αn,ζ)) (83)

Similarly to section 4.2.3, we consider here the case of finite scenarios i = 1, . . . , N with
probabilities pi. The set of internal state variables is therefore a collection {αi} of N state
variables. In this case, the effective potential can be written as:

jeff(ε) = min
λ,η,αi

λ+
1

1− β
N∑
i=1

〈ψ(ε,αi; ζi)− λ〉+ +

η +
1

1− β
N∑
j=1

〈
φ
(
ε− εn,αj −αn,j; ζj

)
− η
〉

+

(84)

We remark in particular that the definition of this optimistic effective potential introduces
only two additional scalar auxiliary variables λ and η arising from the CVaR convex repre-
sentation (47).

The optimality condition with respect to λ and η results in the characterization of two
sets of active scenarios Aψ and Aφ associated with both potentials:

1 =
1

1− β
N∑
i=1

pi Heav (ψ(ε,αi; ζi)− λ) =
1

1− β
∑
i∈Aψ

pi (85)

1 =
1

1− β
N∑
j=1

pj Heav
(
φ(ε− εn,αj −αn,j; ζj)− η

)
=

1

1− β
∑
j∈Aφ

pj (86)

Note that the sets of active scenarios Aψ and Aφ are not necessarily the same since some
realizations can represent materials associated with a large free energy and a low dissipation
potential, and conversely. One realization can therefore be active with respect to the free
energy but inactive with respect to the dissipation potential.

The optimality condition with respect to the total stress σ results in:

σ =
1

1− β
∑
i∈Aψ

pi
∂ψ

∂ε
(ε,αi; ζi) +

1

1− β
∑
j∈Aφ

pj
∂φ

∂ε̇
(ε− εn,αj −αj,n; ζj) (87)

=
1

1− β
∑
i∈Aψ

piσ
nd
i +

1

1− β
∑
j∈Aφ

pjσ
d
j (88)
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where we see that the total stress is still the sum of a non-dissipative stress σnd and a
dissipative stress σd. The non-dissipative stress is obtained as a weighted sum of non-
dissipative stresses σnd

i associated with the active scenarios i ∈ Aψ whereas the dissipative
stress is obtained as a weighted sum of dissipative stresses σd

j associated with the active
scenarios j ∈ Aφ. Finally, the complementary laws characterizing the thermodynamic forces
Y nd

k ,Y
d
k are obtained from the optimality conditions with respect to the αk as follows:

0 =
∑
i∈Aψ

δik
∂ψ

∂αk
(ε,αi; ζi) +

∑
j∈Aφ

δjk
∂φ

∂α̇k
(ε− εn,αj −αj,n; ζj) (89)

=


Y nd

k + Y d
k if k ∈ Aψ, k ∈ Aφ

Y nd
k if k ∈ Aψ, k /∈ Aφ

Y d
k if k /∈ Aψ, k ∈ Aφ

0 if k /∈ Aψ, k /∈ Aφ
5.2. Pessimistic estimate

The dual pessimistic estimate is obtained by replacing both stochastic free energy po-
tential and stochastic dissipation pseudo-potential with their dCVaR risk measure:

ψeff(ε,αζ) = dCVaRβ (ψ(ε,αζ; ζ)) (90)

φeff(ε̇, α̇ζ) = dCVaRβ (φ(ε̇, α̇ζ; ζ)) (91)

Again taking into account these pessimistic effective potentials in lieu of the expected
value in the incremental potential (23) results in the following definition of the optimistic
incremental potential jeff(ε):

jeff(ε) = inf
αζ

dCVaRβ (ψ(ε,αζ)) + dCVaRβ (φ (ε− εn,αζ −αn,ζ)) (92)

In order to have a better feeling of how this dual formulation works, let us now consider
the case where ε is non-dissipative. In the case of discrete scenarios and using the convex
characterization (78), we obtain:

jeff(ε) = min
vi≥0,ri,si,ε̂iαi

‖r‖β + ‖s‖β

s.t.
N∑
i=1

pivi = 1

N∑
i=1

piε̂i = ε

viψ(ε̂i/vi,αi/vi; ζi) ≤ ri ∀i = 1, . . . , N
φ(αi −αn,i; ζi) ≤ si ∀i = 1, . . . , N

(93)

where ‖x‖β is the composite norm of a vector x ∈ RN defined as:

‖x‖β = max

{
N∑
i=1

pixi, (1− β)‖x‖∞
}

(94)
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Variables ri and si have been introduced to express the problem in convex form.

Interestingly, the use of dCVaR naturally introduces an auxiliary field ε̂ which must be
equal to ε on average. We therefore recover the formulation the same ideas as in formulation
(24) where the total strain was considered to be adjustable. Here, we can consider that
ε̂i = ε+ ei where e are the total strain deviations introduced earlier.

Moreover, in the case β = 0, the composite norm degenerates to the ∞-norm: ‖x‖0 =
‖x‖∞. We therefore recover that the term related to the dissipation pseudo-potential is in
fact dCVaR0(φ) = supζ φ(αζ −αn,ζ) as in the soft-constrained formulation of section 3.4.

5.3. Illustration on the 1D elastoplastic behavior

We reconsider the elastoplastic behavior with power-law hardening introduced in section
3.3. Clearly, applying formulation (84) to this case with β = 0 is equivalent to formulation
(34) since the CVaR degenerates to the expected value. However, the above dCVaR formu-
lation (92) for β = 0 is slightly different than formulation (39) in the case β = 0 beacause
dCVaR0(ψ) = E [ψ] only when ψ is quadratic, otherwise the expression is slightly different.
Since hardening is not quadratic in this case, ψ is not quadratic and the expression is slightly
different, although very close.

Figure 5 represents the corresponding optimistic and pessimistic effective behavior for
various values of the risk-aversion level β. First, we can notice, as expected, that the
risk-neutral case yields effective responses very similar to those of Figure 3. Second, we
observe that, for β = 0.5 and β = 0.95, we indeed obtain risk-averse effective behaviors
either on the optimistic side with the CVaR or on the pessimistic side with the dCVaR. The
resulting behavior exhibits a similar elastoplastic behavior characterized by a first elastic
stage followed by a hardening stage. With a moderate risk-aversion level β = 0.5, we
obtain responses which are in-between extremal and nominal behaviors. On the contrary,
for a stronger risk-aversion level β = 0.95, the resulting behavior is much closer to extremal
behaviors. Note however that we plotted only 250 realizations over 500 for better readability
of the figures. Both estimates therefore capture the effective behavior of both tails of the
stress distribution at fixed strain level but without being associated with a single best or
worst case realization.

This is further confirmed by results of Figure 6 which correspond to the nearly perfectly
plastic case. Again, the risk-aversion level enables to yield effective behavior which pro-
gressively evolve from being close to the nominal behavior for β = 0 to the extreme upper
and lower envelopes of the material responses when β progressively approaches 1. As be-
fore, it is worth noting that the optimistic behaviors result in a pseudo-hardening even if
the underlying stochastic behavior is always nearly perfectly plastic. This is attributed to
the progressive yielding of different realizations associated with different yield stresses when
combining the total stress using the partial weighted sum of (57). However, as regards the
pessimistic estimate, we have seen that the stress is deterministic and that we have yield-
ing when reaching the yield stress (σ0)β. The resulting behavior is therefore also perfectly
plastic.
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Figure 5: Optimistic (CVaR) and pessimistic (dCVaR) effective behaviors of a stochastic elastoplastic be-
havior (hardening case with E [H] = 1) for various values of the risk aversion level β.
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Figure 6: Optimistic (CVaR) and pessimistic (dCVaR) effective behaviors of a stochastic elastoplastic be-
havior (nearly perfectly plastic case with E [H] = 0.01) for various values of the risk aversion level β.
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(a) hardening case (E [H] = 1) (b) nearly perfectly plastic case (E [H] = 0.01)

Figure 7: Comparison with elastoplastic behaviors associated with optimistic/pessimistic values of the
material parameters (β = 0.95).

Finally, let us point out that this 1D example is quite simple since each uncertain po-
tential is of the form f(x; ζ) = k(ζ)g(x) where k is an uncertain material parameter and
g a reference convex potential. Moreover, the three material parameters (E,H and σ0) are
independent random variables. In such a case, a simpler way of formulating an effective
behavior could consist in replacing each material parameter with its corresponding CVaR
(resp. dCVaR) estimate kβ (resp. kβ) resulting in an equivalent deterministic behavior
with optimistic/pessimistic material parameters. Figure 7 illustrates the difference between
such a behavior based on equivalent parameters with the results from Figure 6 based on
CVaR/dCVaR effective potentials. We can notice that the pessimistic behaviors are quite
close to each other, especially in the perfectly plastic case where they match exactly. As
regards optimistic estimates, the differences are larger, certainly owing to the fact that the
coupling between internal state variables is absent in the equivalent deterministic behav-
ior. This results in a perfectly plastic behavior in absence of hardening whereas the CVaR
variational formulation exhibits a stochastic hardening due to the coupling between state
variables.

6. Risk-averse stochastic programming of the structural response

To ease notations, we will consider in the subsequent developments only the rate-independent
case when ε is not a dissipative variable such as in (16) and (17).

In this section, we investigate how the previous conceps can be applied to compute a
risk-averse global response of a structure consisting of a stochastic GSM.

6.1. A truss example

We will illustrate the proposed formulations on the 2D truss structure of Figure 8 made
of M = 30 members. Each member is of identical cross-section S = 1 and assumed to
follow the hardening elastoplastic behavior of (30)-(33). As before, the Young modulus
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Figure 8: Truss structure with reference loading consisting of downwards vertical forces of intensity 1 on the
middle nodes and 0.5 on the end nodes.

E, the hardening modulus H and the yield stress σ0 for each member are assumed to
be independent random variables following a lognormal distribution of mean E [E] = 20,
E [H] = 1 and E [σ0] = 1. Unless stated otherwise, the corresponding standard deviations
are again taken to be of 20% for the elastic moduli E and H and 10% for the yield stress
σ0. The reference loading F represented in Figure 8 consists of vertical forces applied to
the upper face. We will use a displacement-controlled path-following strategy by driving
the associated work-conjugate displacement U = F Tu and report the corresponding load
factor.

To fix ideas, Figure 9 represents the bundle of structural responses for each of N = 500
realizations. It also reports the resolution of the corresponding deterministic problem when
each bar material property is affected an optimistic value (Eβ, Hβ, (σ0)β) or a pessimistic
(Eβ, Hβ, (σ0)β). Clearly, we see that simply taking such values is way too optimistic (resp.
pessimistic) since it assumes that each bar will take vary large (or very small) material
properties simultaneously, which is highly unlikely.

6.2. Structural effective response

To extend the previous concepts to the structural effective response, we consider the
incremental variational principle (10) where the global potential J is replaced by a certain
risk measure R[J ].

When using the risk-neutral measure R = E, we have:

R[J ](ε) = E
[∫

Ω

j(ε; ζ) dΩ

]
=

∫
Ω

E [j] (ε) dΩ =

∫
Ω

R[j](ε) dΩ (95)

In this case, the effective global potential Jeff = R[J ] is equal to the global potential asso-
ciated with the effective density jeff = R[j] = E [j]. However, this is no longer true when
considering more complex nonlinear risk measures such as CVaR which are not additive.
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Figure 9: Stochastic structural response for 500 realizations and deterministic responses using optimistic
and pessimistic values for each material property.

In the more general case, we therefore need to consider the following stochastic program:

un+1 = arg inf
u∈Uad

R [J(ε; ζ)]−Wext,n+1(u) (96)

where J is defined in (11) and is stochastic due to the stochastic free energy and dissipation
potentials. For later use, we also introduce the global potentials:

Ψ(ε,α; ζ) =

∫
Ω

ψ(ε,α; ζ) dΩ (97)

Φ(ε,α; ζ) =

∫
Ω

φ(ε,α; ζ) dΩ (98)

We assume for simplicity that the loading and boundary conditions, and thus the set of
kinematically admissible displacements Uad and Wext,n+1, are deterministic.

The displacement field u should, in theory, change its value according to each realization
of the uncertainty ζ. We are however interested in finding an effective response of the
structure accounting for the stochastic nature of its constitutive material. For this reason,
the displacement field u and the corresponding strain ε = ∇su are considered to be first-
stage variables in (96). As before, the implicit state variables α are considered as a second-
stage variables.

6.3. Primal risk-averse formulation

Similarly to what has been proposed in section 5, we propose to define a risk-averse
effective structural response by considering the CVaR of the global potentials Ψ and Φ.
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This results in the following stochastic program:

un+1 = arg inf
u∈Uad

inf
αζ

CVaRβ (Ψ) (ε,αζ) + CVaRβ (Φ) (αζ −αn,ζ)−Wext,n+1(u) (99)

Introducing the convex formulation (47) in lieu of the CVaR operator will result in (99)
being a convex stochastic program where αζ are second-stage variables and u, ε and the
two λ parameters associated with each CVaR terms are first-stage variables.

This risk-averse stochastic program can be numerically solved by adopting a Monte-Carlo
sampling approximation based on N realizations ζi of the uncertainty. Introducing auxiliary
variables to reformulate the CVaR operator yields the following equivalent deterministic
problem:

inf
u∈Uad,αi,Ψ

(i)
+ ,Φ

(i)
+ ,λΨ,λΦ

λΨ +
1

1− β
1

N

N∑
i=1

Ψ
(i)
+ + λΦ +

1

1− β
1

N

N∑
k=1

Φ
(i)
+ −Wext,n+1(u)

s.t.

∫
Ω

ψ(ε,αi; ζi) dΩ− λΨ ≤ Ψ
(i)
+ ∀i = 1, . . . , N∫

Ω

φ(αi −αn,i; ζi) dΩ− λΦ ≤ Φ
(i)
+

0 ≤ Ψ
(i)
+

0 ≤ Φ
(i)
+

(100)
In the case when β = 0, we recover a classical equivalent deterministic problem based on
the expected value:

inf
u∈Uad,αi,Ψ(i),Φ(i)

1

N

N∑
i=1

Ψ(i) +
1

N

N∑
k=1

Φ(i) −Wext,n+1(u)

s.t.

∫
Ω

ψ(ε,αi; ζi) dΩ ≤ Ψ(i) ∀i = 1, . . . , N∫
Ω

φ(αi −αn,i; ζi) dΩ ≤ Φ(i)

(101)

In all cases, spatial discretization of the displacement field is performed using the finite-
element method. Moreover, most GSM behaviors, such as the considered elastoplastic be-
havior (30)-(33), can be expressed using conic-representable functions, see [6]. The resulting
problem therefore belongs to the class of convex conic programs which can be easily formu-
lated using tools such as cvxpy and solved using dedicated interior-point algorithms such
as MOSEK [33]. Note that the introduction of the CVaR measure only adds two additional
variables scalar variables λΨ and λΦ compared to a formulation based on the expectation. It
introduces some additional non-linearity in the problem due to the presence of the positive
part in (47). The latter can however be considered as very minor compared to the material
non-linearity. Obviously, solving the above effective problem is computationally intensive
since a large number of realizations must be considered in order for the Monte-Carlo sam-
pling approximation to converge and the problem size scales with N . A large body of works
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in the literature is therefore devoted to improving the efficiency of computing the corre-
sponding effective behavior using various techniques such as variance reduction, adaptive
sampling, scenario reductions, etc. We will however leave this important aspect to future
research.

6.4. Dual risk-averse formulation

Similarly and using the developments of section 4.3, the dual risk-averse formulation
which is aimed to yield pessimistic estimates of the structural response is obtained by con-
sidering the dCVaR measure of the global potentials Ψ and Φ as follows:

un+1 = arg inf
u∈Uad

inf
αζ

dCVaRβ (Ψ) (ε,αζ) + dCVaRβ (Φ) (αζ −αn,ζ)−Wext,n+1(u) (102)

In particular, since Φ is a homogeneous potential, we have:

dCVaRβ (Φ) (αζ −αn,ζ) = max

{
E [Φ(αζ −αn,ζ)] , (1− β) sup

ζ
{Φ(αζ −αn,ζ)}

}
(103)

Besides, when computing the corresponding dual problem, we obtain:

σn+1 = arg inf
σ,Y ζ

dCVaRβ (Ψ)∗ (σ,−Y ζ) + E [Y ζ ·αζ,n]

s.t. divσ + fn+1 = 0 in Ω
σn = T n+1 on ∂ΩN

CVaRβ (Φ◦) (Y ζ) ≤ 1

(104)

in which we used result (80).
In the present case, we have

Φ∗(Y ζ) =

∫
Ω

φ∗(Y ζ) dΩ (105)

where each φ∗(Y ζ) defines a convex yield domain in the space of thermodynamic forces Y ζ

which we can represent by its gauge function g = φ◦ as g(Y ζ) ≤ 1. We therefore have:

Φ∗(Y ζ) =

{
0 if g(Y ζ) ≤ 1 ∀x ∈ Ω

+∞ otherwise
(106)

Φ◦(Y ζ) = sup
Ω
g(Y ζ) (107)

We see in particular that the corresponding risk-averse yield criterion will involve the CVaR
of the maximum value of the gauge function g attained on Ω. In the risk-neutral case β = 0,
this reduces to E [g(Y )] ≤ 1 which coincides with the yield constraint proposed in (38).
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Finally, using (78), we have:

σn+1 = arg inf
σ,Y ζ ,zζ

sup
ζ

{∫
Ω

zζψ
∗(σ/zζ,−Y ζ/zζ; ζ) dΩ

}
+ E [Y ζ ·αζ,n]

s.t. divσ + fn+1 = 0 in Ω
σn = T n+1 on ∂ΩN

CVaRβ

(
sup

Ω
g(Y ζ)

)
≤ 1

CVaRβ (zζ) ≤ 1
zζ ≥ 0

(108)

As before, both problems (102) and (108) are convex stochastic problems which can be
approximated using a Monte-Carlo sampling approximation and discretized in space using a
FE formulation. In practice, we use the same FE approximation and Monte-Carlo sampling
to approximate (99) and (102). We simply change the CVaR risk measure to the dCVaR
measure between both problems. As (100), the equivalent deterministic problem resulting
from the discretized version of (102) is a conic optimization problem which is formulated
and solved in the same fashion.

6.5. Illustrative application

We first analyze the effective response of the truss structure in the risk-neutral β = 0.
Figure 10 shows the corresponding response obtained when solving the risk-neutral stochastic
programs (99) and (102). As in Figure 5a, a small duality gap between both formulations is
obtained since CVaR and dCVaR yield slightly different effective measures. However, both
formulations yield a good approximation of the average structural response when comparing
with the empirical distribution of load-displacement curves (colored symbols).

We then consider the resolution of both problems in the risk-averse case with β = 0.95
with a sample size of N = 100. Figure 11 shows the obtained optimistic and pessimistic
responses when considering different types of uncertainty.

On Figure 11a, we assume that uncertainty affects only the Young modulus. In this case,
the bundle of responses is quite thin and the behavior has much less variance in the final
hardening stage of the response. Both formulations are however able to correctly account for
a best-case and a pessimistic estimate of the response. On Figure 11b, uncertainty affects
only the hardening modulus which results in a much wider spread of the responses after a
first deterministic elastic stage. Again, both risk-averse estimates are of very good quality
compared to the empirical distribution. They coincide in the first deterministic elastic stage
and then exhibit a hardening behavior with a different slope, following that of the response
distribution. A similar observation can also be made concerning Figure 11c which considers
only a yield strength uncertainty. Here, the difference is that both risk-averse estimates
show a similar hardening response but the onset of plasticity occurs at different load levels,
closely matching that of the empirical distribution. Finally, Figure 11d is the most interest-
ing since it considers a simultaneous uncertainty on all three mechanical parameters. Again,
the agreement is also excellent in this case. As a conclusion, these results show that the
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Figure 10: Risk-neutral β = 0 structural responses using the primal CVaR measure (99) and the dual
dCVaR measure (102). Colored symbols indicate the empirical distribution of the structural response for
fixed values of the imposed displacement. Color and size of the marker denote the frequency of the observed
response.

characteristics of the risk-averse estimates which have been observed on the material point
response in section 5 transpose also to the global structural behavior.

As regards this last case of uncertainty on all mechanical parameters, Figure 12 displays
the deformed configurations of the truss structure for two different load levels corresponding
to an imposed displacement U = 2 and U = 4. The effective responses obtained from the
resolution of both risk-averse formulations (99) and (102) have been compared against 25 of
the uncertain realizations. First, we can see that the spread of nodal displacements can be
quite large for some nodes and such a spread increases with the load level. Let us point out
that, since we have a displacement control, all deformed configuration have the same equiv-
alent displacement U which corresponds to a weighted-average of the vertical displacement
of the top surface. However, each deformed configuration will be associated with a very
different state of internal forces. This is particularly highlighted by Fig. 12b which shows
that the pessimistic effective response using dCVaR (in red) is subject to large straining, see
the vertical members on both supports. On the contrary, the optimistic estimate (in blue)
seems to be much stiffer for the same imposed displacement.

Figure 13 investigates the influence on the risk-aversion level β on the obtained risk-
averse estimates. As expected, going from 0 to 1 yields a stiffer and stronger response for
the CVaR optimistic estimate. Conversely, a softer and weaker response is obtained with
the dCVaR pessimistic estimate. One can see that going from β = 0.95 to β = 0.995 does
not have too much of an influence here. However, we must moderate this observation since
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(a) Uncertainty on E only
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(b) Uncertainty on H only
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Figure 11: Risk-averse estimates for various types of uncertainty
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Figure 12: Effective deformed configurations: optimistic CVaR (blue), pessimistic dCVaR (red) and 25
random realizations
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Figure 13: Influence of risk-aversion level and number of sampling realizations on risk-averse estimates

we used only a small sample size in order to limit the computational cost. To further assess
this aspect, Figure 13b investigates the influence of the sample size N for β = 0.95. It seems
that reasonable estimates are already obtained with N = 50. In particular, it does not seem
that one formulation is more sensitive than the other to the chosen sample size.

Finally, we further assess the efficiency of the proposed formulations on the much more
challenging problem of a cyclic loading. In Figure 14, the displacement amplitude is varied
as U : 0 → 3 → 0 → 5 → 0. We can first observe that the cyclic behavior of the
truss is correctly reproduced. Moreover, in the plastic evolution phases, both formulation
indeed produce the correct pessimistic and best-case estimates, even after load direction
has flipped signs. However, we can notice that in the elastic unloading/reloading phases,
there is a crossover between the pessimistic and best-case estimates. To explain this, let us
consider the first unloading from U = 3 to 0. Even if the best-case estimate is stiffer than
the pessimistic one, at U = 3, the best-case response is associated with smaller plastic strain
levels than the pessimistic. Elastic unloading therefore occurs at different levels of plastic
strain and this strain difference is then later compensated by stiffer/stronger response in the
unloading stage.

7. Conclusions and perspectives

In this work, we have used the tools of stochastic programming to propose a new approach
to the treatment of stochastic behaviors in the framework of Generalized Standard Materials.
The proposed methodology tackles the case of convex free-energy and dissipation pseudo-
potential which both depend on uncertain parameters in a very general manner.

In a first part, we have proposed a formulation describing the effective material behavior
by considering the expected value for both potentials. We have also proposed an alternate
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Figure 14: Risk-averse structural responses for a cyclic loading.

dual formulation which must consider the total strain to be an adjustable variable with a
fixed expected value associated with the observable total strain of the effective behavior.
Moreover, we have shown, for such a dual formulation, that the dissipation pseudo-potential
should be replaced with its supremum over all realizations. When inspecting the resulting
formulation for an elastoplastic behavior, we have seen that this formulation is associated
with satisfying the yield condition in an average sense.

In a second part, we have introduced the notion of coherent risk measures which have
been successfully introduced in the financial mathematics community. The Conditional
Value-at-Risk (CVaR) is one example of a coherent risk measure which is able to account for
the tail behavior of a stochastic potential while preserving convexity. Applying this concept
to both potentials results in an optimistic estimate of the effective material behavior.

To extend this concept in order to obtain a pessimistic estimate, we had to introduce a
new risk measure, the dual Conditional Value-at-Risk (dCVaR), which is defined using the
polar transform of positive convex functions. To the best of our knowledge, we did not find
any reference of such a definition in the mathematical literature. The use of the dCVaR is
consistent with the dual formulation which we studied in the first part and is indeed able to
produce a pessimistic estimate of the material response.

One of the key point in the success of such formulations is that convexity of both poten-
tials is preserved. By construction, our optimistic and pessimistic effective behaviors both
satisfy the definition of a GSM which ensures consistent thermodynamical properties. More-
over, the use of an incremental variational principle accounting for the history of internal
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state variables, as opposed to a deformation theory of plasticity for instance, enables to treat
cyclic loadings or non-proportional loadings without any additional difficulty.

Finally, even if our contribution does not address the modeling of constitutive laws since
we assume given uncertain parameters with given probability distribution, our framework
provides a way to perform up-scaling and propagate uncertainty from one spatial level to
an other while preserving the GSM structure.

The treatment of stochastic material behavior within the tools of stochastic program-
ming paves the way to numerous developments which could benefit from the developments of
this mathematical community. One key challenge is however the numerical cost associated
with an extensive number of internal state variables when using Monte-Carlo sampling. Al-
though the equilibrium equations do not depend on the sample size since we are computing
an effective structural response, the nonlinear constitutive law must be solved simultane-
ously for N samples, resulting in significant computational expense. To alleviate this issue,
one potential strategy is to identify the set of active scenarios, for instance during global
Newton iterations, which would significantly reduce the cost of evaluating the constitutive
law. Indeed, when using the CVaR with a large risk-aversion level, we should expect only a
small fractions of scenarios to be active at a given increment. Additionally, using linear or
non-linear decision rules [14] for second-stage variables instead of sampling could be a viable
alternative to reduce this cost. Finally, we should also mention current works developing
Domain Specific Languages which aim at simplifying the formulation of stochastic programs
[2].
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