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Generating a missing half of multifractal fields with a blunt extension 

of discrete cascades

Despite strong limitations, discrete random multiplicative cascades are often used

to address scale issues which are ubiquitous in geosciences. A blunt extension 

based on the parsimonious framework of Universal Multifractals has recently 

been suggested. It preserves its simplicity and intuitiveness while overcoming its 

non-stationarity features. It relies on smoothing through a geometrical moving 

average the increments at each cascade step. Here a space-time extension is 

suggested. Theoretically expected multifractal behaviour is retrieved on 

numerical simulations for typical rainfall parameters. A new algorithm to 

generate the missing half of multifractal fields in 1D, 2D or 3D is developed and 

tested on rainfall fields and numerical simulations. It basically consists in 

stochastically generating half of the increments and deterministically iteratively 

reconstructing the others to retrieve the available data and ensure a smooth 

transition with the unknown portion while preserving the multifractal behaviour. 

Potential applications to nowcasting of hydro-meteorological extremes are 

discussed.

Keywords: word; another word; lower case except names

Introduction

The use of multiplicative cascades to model turbulence emerged from the need to better 

understand the underlying processes and notably the consequences of Navier-Stokes 

equations' scale invariance (Kolmogorov 1941). Given that these features are assumed 

to be transferred to the (unknown) equations governing other atmospheric fields such as 

rainfall for example (Schertzer and Lovejoy 1987, Hubert et al. 2001), scale issues are 

ubiquitous in atmospheric sciences and more generally in geosciences. Universal 

Multifractals (UM, see Schertzer and Tchiguirinskaia 2020 for recent review) are a 

theoretical framework relying on this concept which enables to characterize and 

simulate geophysical fields exhibiting extreme variability over wide range of space-time

scales, with the help of only three parameters with physical meaning. In such process, 



an average intensity, homogeneously distributed over a large scale structure, is 

iteratively distributed in space and time to smaller scale structures.

Because they are simple and intuitive, discrete multiplicative cascades have been

extensively used in geosciences Gupta and Waymire 1993, Over and Gupta 1996, 

Olsson 1998, Menabde and Sivapalan 2000, Gaume et al. 2007, Licznar et al. 2011, 

Rupp et al. 2012, Gires et al. 2013, Müller and Haberlandt 2016). At each step (i) of 

such process, a structure is divided into λ1
d sub-structures (d is dimension of the 

embedding space). The intensity affected to a sub-structure is equal to the intensity of 

the parent structure multiplied by a random 'multiplicative increment' denoted b i. Such 

cascade step is then iteratively repeated. Hence, after n steps, i.e. at resolution λ=λ1
n
=λn

(the resolution λ  is defined as the ratio between the outer scale L and the observation 

scale l; λ=L/ l, a value of the generated field ε n is equal to the product of all the 

corresponding multiplicative increments: 

ε n=ε 0∏
i=1

n

(b i) (1)

The complex space-time variability naturally arises from the iteration of a 

simple cascade step. The process is said to be scale invariant because the way structures 

are divided into substructures and the probability distribution of the random 

multiplicative increments are the same at all scales (i.e. cascade steps). It should be 

mentioned that this scale discretisation is not physical which is why Schertzer and 

Lovejoy (1987) suggested to overcome such limitation by introducing continuous in 

scale cascades. A kind of intermediate solution enabling to address the lack of 

stationarity of discrete cascades while preserving its simple structure was introduced 

recently by Gires et al. (2020). It basically consists in introducing at each cascade step 



the final resolution and performing a geometric interpolation of the increments over 

moving windows whose size is tuned at each scale to preserve scale invariance. It is 

called blunt extension of discrete cascades and will be further developed and used in 

this paper.

On the other hand, the issue of missing data has also become ubiquitous and 

crucial, notably because of the extensive development of data driven approaches and the

need to validate model at higher and higher resolution. The interested reader is referred 

to Ben Aissia et al. (2017) for a recent review in the field of hydrology, keeping in mind

that the topic goes beyond geosciences (Garciarena and Santana 2017). A solution 

explored by various authors to infill missing data is to rely on the underlying scaling 

features of the studied field (Salvadori et al. 2000, Tchiguirinskaia et al. 2004 , Gires et 

al 2021). Gires et al. (2021) specifically used discrete cascades to achieve this for binary

fields. More precisely they used a -model (Frisch et al. 1978), i.e. the simplest possible

discrete cascade process where the increments have only two possible values (zero or 

one). Reconstructing a field from an underlying cascade process requires to assess all 

the increment at the various cascade steps. Hence the overall idea suggested consisted in

deterministically finding the increments needed so that the simulated fields had the 

expected value where data is available and stochastically simulating the others while 

ensuring the expected fractal behaviour is retrieved. The process was then successfully 

implemented on rainfall occurrence patterns and imperviousness maps.

In this paper, we suggest a new algorithm to generate the missing half of a 

multifractal field, i.e. the next time steps of a time series in 1D, the adjacent map in 2D 

or the maps for the next time steps in a space-time framework. If the process is applied 

to the specific context of real time applications, i.e. guessing what will happen in the 

coming minutes, it is called nowcasting in the field of geoscience. For rainfall 



applications, continuous cascades have been used for this (Macor 2007), and also with 

other approaches involving some scale invariant features (Seed et al. 2003, Bowler et al.

2006). In this paper, it is assumed that the underlying field exhibits UM features, i.e. 

that it can be generated through a blunt discrete UM cascade process. One should note 

that the issue of guessing the missing half of a field is actually a sort of extreme case of 

infilling missing data where half of the field is missing. Hence, as in Gires et al. (2021), 

the whole purpose is to assess a set of increments enabling to generate a field that has 

the expected value on the available half and exhibits the expected same multifractal 

behaviour on the other half. In a similar way, some increments will be stochastically 

generated while the others will be deterministically reconstructed.

In section 2, the framework of blunt discrete UM cascades will be extended to 

space-time process, which notably requires to properly address the tricky issue of 

increments renormalization. In section 3, a new algorithm to generate the missing half 

of a multifractal field is suggested. The algorithm is then implemented and validated in 

section 4, first in 1D with rainfall disdrometer time series, then in 2D with rainfall 

weather radar maps and finally in a space-time context with numerical simulations. 

Space-time blunt extension of UM discrete cascades

Reminder on UM discrete cascades

Only the required elements on the framework of Universal Multifractals (UM), which 

were already presented similarly in Gires et al. (2020) are reminded here and the 

interested reader is referred to a recent review by Schertzer and Tchiguirinskaia (2020) 

for more details. 

Let us consider a field B λ at a resolution λ. For multifractal fields, the moment 

of order q of the field is power law related to the resolution: 



⟨ B λ
q ⟩ ≈ λK (q)           (2)

where K (q ) is the scaling moment function that fully characterizes the variability across 

scales of the field. In the specific framework of Universal Multifractals (UM) (Schertzer

and Lovejoy, 1987; 1997), towards which multiplicative cascades processes converge,

K (q ) for conservative fields is defined with the help of only two parameters with 

physical interpretation: 

 C 1, the mean intermittency co-dimension, which measures the clustering of the 

(average) intensity at smaller and smaller scales. C1=0 for a homogeneous field;

 α , the multifractality index (0≤ α ≤ 2), which measures the clustering variability 

with regards to the intensity level.

For UM, we have:

K (q )=
C1

α−1
(qα

−q) (3)

A multifractal analysis consists in checking that these features are indeed 

observed. The quality of the scaling can be assessed with the help of Trace Moment 

(TM) analysis which basically consists in plotting in log-log Eq. 1. Straight lines should

be retrieved and the slope gives K (q ). The field at various resolution is obtained by up-

scaling to lower resolution the field measured at its maximum resolution. It should be 

stressed that such process does not enable to retrieve the exact values of the increments 

used for generating a field. See Schertzer and Lovejoy (1987) for a complete discussion 

of the difference between what is denoted in the literature bare (obtained during the 

generation) and dressed (obtained after up-scaling from the maximum resolution) fields.



The Double Trace Moment (DTM) technique is tailored for UM fields and 

enables robust estimation of UM parameters (Lavallée et al., 1993). Hence it will be 

used in this paper. More precisely, it relies on the fact the field B λ
(η), obtained by up-

scaling the field raised to the power η at maximum resolution , scales as : 

¿           (4)

and in the UM framework, we have:

K (q ,η )=ηα K (q) (5)

In a DTM analysis, K (q , η ) is first obtained by plotting Eq. 4 in log-log. The 

slope of the retrieved line givesK (q , η ). The quality of the linear regression gives an 

indication on the quality of the scaling behaviour of the studied field. Then K (q , η ) is 

plotted against η in log-log and the slope and intercept of the linear portion give access 

to α  and C 1 respectively.

It is possible to generate UM fields with the help of discrete multiplicative 

cascades as described in the introduction. We start by a large scale structure with a 

given intensity B0 and take the random increment b as:

b=

exp[( C1ln λ1

|α−1| )
1/α

L(α )]
λ1

C1

α−1

 (6)

where L(α ) is an extremal Lévy-stable random variable of index α . It is 

generated with the help of the procedure given by Chambers et al. (1976), and has the 

following property: 

⟨ exp  [qL(α)] ⟩=exp [qα ] (7)



Combining Eqs. 7 and 8, we find:

⟨ bq ⟩=
⟨exp [q (

C1 ln λ1

|α−1| )
1 /α

L(α)]⟩
λ1

q
C1

α−1

=λ1

C1

α−1
(qα−q )(8)

Finally, given that the increments b i in Eq. 1 are independent and identically 

distributed, and keeping in mind that λ1
n
=λn we can demonstrate that the field simulated 

is indeed a UM one : 

⟨ Bn ,i
q ⟩=B0

q ⟨bq ⟩
n
=λn

C1

α−1
(qα−q ) (9)

For non-conservative fields, an additional parameter H  called non-conservative 

parameter, is added and H=0 for conservative fields. It can be either positive or 

negative. For a more practical interpretation, greater values H  correspond to stronger 

correlations within the studied field. H  is typically between 0 and 1 for geophysical 

fields. In this framework, a non-conservative fields (B λ
' ) is decomposed as follow:

Bλ
' ≈ Bλ

❑ λ−H  (10)

Where Bλ
❑

 is a conservative field and the portion corresponding to the variations 

of the average field has been separated. In such case the slope  of the spectra E(k ) 

(where k is the wave number)

E(k )≈ k−β  (11)

is related to H as follows: 

β=1+2 H−K (2) (12)



Eq. 12 is used to estimate H after carrying out a spectral analysis (Eq. 11 in log-log) 

which is also an indicator of the quality of the scaling (Lavallée et al. 1993).

Blunt extension of UM discrete cascades

The blunt extension was introduced in details in Gires et al. (2020), and only the main 

and required elements are reminded here. Interested readers can refer to the cited paper 

for a more step by step introduction of this new process. The only difference with 

regards to Gires et al. (2020) is the renormalization of the increments. This point is 

specifically discussed in the next sub-section.

The overall idea of the blunt extension is straightforward: (i) introduce the final 

resolution at all the steps of the cascade process (ii) perform at each cascade step a 

geometric interpolation of the increments over adjacent increments (iii) renormalize the 

obtained increments. Detailed equations presented below may appear tricky but simply 

correspond to the implementation of the stated process.

The process is illustrated in Fig. 1 in 1D. Let us consider a standard discrete 

cascade process with N steps, hence corresponding to a total length of λ1
N (usually λ1

❑
=2

). Actually, in the blunt extension an average is made between over the two last cascade 

steps. Hence, N+2 steps need to be considered. The standard increments are denoted

bn ,i, where n  corresponds to the cascade step (n⊂ [ 1,…, N+2 ]) and i  to the position of 

the increment in the series for a given cascade step n (i⊂ [1 ,…, λ1
n ]). 

The first step of the process is to introduce the final resolution at each cascade 

step. Let us call lN +2 the length of a time step for the last cascade steps. Hence at 

cascade level n, the 'duration' corresponding to an increment is actually ln=λ1
N +2−n lN+2. 

Indeed, the same total duration must be covered at each cascade step, meaning that we 



have ln λ1
n
= λ1

N +2 lN +2. Introducing the final resolution will therefore simply consists in 

repeating 
ln

lN +2

=λ1
N +2−n

. times the same increment. This enables to have for each cascade

steps a series of 2N+2 increments all corresponding to a duration of lN +2. The standard 

increments can now be denoted bn , j where n corresponds to the cascade step (

n⊂ [ 1, …, N+2 ]) and j to the position of the increment in the series for a given cascade 

step j ( j⊂ [1 , …, λ1
N +2 ]). The final value of field for a given time step is then simply 

equal to the product of all the increments at each cascade steps for the same time step. It

should be stressed that this manipulation does not affect at all the cascade process which

for now remains identical to a standard one. It is not more than an update of the 

presentation.

The next step consists in performing at each cascade step a weighted geometric 

interpolation of the increments bn , j over moving windows of size sn  centred on it. This 

enables to smooth the sharp transitions between standard increments. A normalization is

added to ensure that the wanted Universal Multifractal behaviour is retrieved. The new 

increment of this blunt extension is denoted an , j and we have : 

an , j=

∏
k=1

sn

b
n, j−

sn−1

2
+k

ck

λ1

C1

α−1
(Sn , j( α ,h )−1 )

(13)

where: 

 ck is the weight affected to each element of the moving window (k⊂ [1 ,…, sn ]). 

We have∑
k =1

sn

ck=1. For practical implementation in the paper, we chose a 



uniform distribution of the weight, i.e. ck=1 /sn. Nevertheless, the formalism is 

written in a generic way, meaning that more complex distributions can easily be 

tested.

 sn is determined to remain in a scale invariant framework. More precisely, a new

parameter h is introduced and corresponds to the number of 'true' adjacent 

increments (i.e. the bn ,i) over which the interpolation is computed. Practically, 

this yields sn=1+ floor (h λ1
N +1−n ). The size of the moving window is basically 

always multiplied by the same factor doubles when going from one cascade step 

to the previous which is what is expected in a scale invariant framework. h=0 

corresponds to the sharp case of standard cascades. Correlations within the 

cascade process, and hence H  will be increased with greater values of h.

 Sn , j (α , h )= ∑
increments

❑

( ∑
l∈portion of increments

c l)
α
 with n being the cascade level and j the 

position within the series. This quantity is different for each time step because 

the moving window does not always start on the same position within a portion 

of an increment.

With these notations and using Eq. 7, one can easily obtain:

⟨an , j
q ⟩=λn

C1

α−1
Sn , j (α ,h )(qα−q) (14)

Finally, the scaling behaviour of the process A must be studied. In general

Sn , j (α ,h ) depends on both the cascade step n and the position within the series j. 

However scaling behavior corresponds to an average one, where all the possible values 

of j should be accounted for, which means that the quantity of interest is actually



Sn
1 D ( α , h )=(∑

k=¿

sn

( Sc, k (α , h ) ))/sn. The '1' refers to dimension of the embedding space which

is equal to 1 here. It turns out that the quantity Sn
1 D ( α , h ) rapidly (i.e. after few cascades 

steps) converges toward an asymptotic value denoted S❑

1 D ( α , h ) (see Gires et al. 2020 for

more details). Because of this small change with the cascade step, it is needed to 

implement two additional steps and average the final values over 4 successive steps to 

generate the wanted field (again see Gires et al. 2020 for more explanations). The 

behaviour of S❑

1 D ( α , h )  as a function of α  or h is displayed in Fig. 2.

Given the previous computations, it is possible to write the scaling moment 

function Kblunt (q) of the process A as : 

Kblunt (q)=
C1 S1 D (α , h )

α−1
( qα

−q )=S1D
(α , h ) K (q) (15)

which yields simple relations between the UM parameters of the blunt process 

and the ones from the standard process: 

αblunt ¿ α

C1, blunt ¿ S1 D
(α ,h ) C1

(16)

It can be noted that when h=0, which corresponds to the sharp case of standard 

cascades, S1D ( α ,h ) meaning that common Eq. 3 is found back.

Brief discussion on the renormalization of the increments

Before developing the extension to 3D fields, the issue of renormalisation should be 

discussed, i.e. the denominator in Eq. 13. Indeed, a slight small difference in introduced 

here with regards to Gires et al. (2020). In the latter, Sn
1D ( α ,h ) was used and not

Sn , j
❑

(α ,h ) as done in this paper. 



The issue is illustrated in Fig. 3 where the average for each time step over 10 

000 realisations in various configuration is displayed. Simulations of length 256 (i.e. 10 

cascade steps followed by an average over the two last ones) with α=1.8, C1=0.2 and

h=1  as input parameters are used. Similar patterns are retrieved for other input 

parameters. The series in black corresponds to standard discrete cascades and exhibits 

values always close to one, which is what is expected. With the previous normalization 

(i.e. with Sn
1D ( α ,h ) in the denominator of Eq. 13), which is displayed in red, a clear 

problem on both sides of the series is visible with average values significantly 

increasing. This is due to the fact that the formula does not take into account side effects

properly with unique normalisation independent of the position within the time series. 

Given that in Gires et al. (2020), only the middle portions of the simulated series were 

used, the issue was not addressed. In this paper, the whole fields will be used, since we 

aim at generating the missing halves and that we are working in a 3D framework which 

is more computationally expensive. Hence, it needs to be handled. The normalisation is 

therefore changed and tailored to the actual weighting coefficients used in the geometric

average of the adjacent increments for each given time step. The corresponding 

outcome of this strategy is displayed in blue in Fig. 3. Value continuously close to one 

and following in a slightly dampened way the ones of the standard case (i.e. the black 

curve) are found, which highlights the validity of this strategy.

Extension to 2D and 3D: methodology and validation

The extension of the blunt process in 2D is straightforward and was actually already 

introduced in Gires et al. (2020). It simply consists in generating sharp increments with 

a discrete cascade process and then doing the geometric interpolation over the adjacent 

increments with the moving window successively on each line and then row. In a 



similar way as in 1D, a  S2D ( α , h ) can be defined and it is easy to show that it is equal to

S1 D ( α , h )  raised to the power 2 : 

S2 D
( α ,h )=[ S1 D

(α ,h ) ]
2
         (17)

It is displayed along with S1 D ( α , h )  in Fig. 2.

The extension in 3D, i.e. space-time processes, is also theoretically not 

complicated, except for the fact that a scaling anisotropy coefficient (H t) between space

and time should be accounted for (Deidda 2000, Gires et al. 2011). More precisely, it 

means that when the spatial scale is changed by a ratio of λxy, the temporal scale should 

be changed by a ratio of λ t= λxy
1−H t. By combining Kolmogorov's formulation 

(Kolmogorov 1962) and the scale invariance of Navier-Stokes equations, one can show 

that H t=1/3 is expected (Marsan et al. 1996). Biaou et al. (2005) initially suggested to 

use λxy=3 and λ t=2, which are integer ratios enabling to remain close to the theoretical 

expectations given that 31−1 /3 ≈ 2.08. Such combination of ratios already reused in Gires 

et al. (2014a, 2014b) is implemented here to generate the sharp increments and the 

standard cascade process. Hence, at each step of a discrete cascade process, a parent 

structure is divided into 18 (=3 x 3 x 2) sub-structures. 

Once the sharp increments are simulated, the same process of geometric 

interpolation as the one described in section 2.2 for 1D fields is implemented 

successively in the two spatial directions (taking λ1=λxy=3) and then in the temporal 

direction (taking λ1=λt=2). Similarly, this yields to a correction coefficient S3 D (α ,h ) 

for the simulated C 1 defined as : 

S3 D
(α , h )= [Sxy

1D
(α ,h ) ]

2
St

1 D
(α , h )         (18)



Behaviour of S3 D (α , h ) as a function of α  or h is displayed in Fig. 2. Similar 

patterns as in 1D or 2D are retrieved with values yielding stronger differences between 

the C 1 used as input and the one assessed from simulation.

Fig. 4 and Fig. 5 display the successive time steps of one realisation of a 

simulated UM space-time cascade process of final size 27 x 27 x 8 with α=1.7,

C1=0.4 and h=2 used as input parameters. The former corresponds to the standard case

while the latter is the blunt process with the same sharp increments to enable relevant 

comparison. The effect of the blunting that removes unrealistic square structure and 

sharp transitions is clearly visible.

The last step consists in checking that the simulated fields exhibit the correct 

expected multifractal behaviour. It is done by performing a space-time DTM analysis 

(i.e. fields are upscaled by a ratio of λxy=2 and λ t=2 at each cascade steps). An 

illustration is displayed in Fig. 6 for an ensemble analysis of 100 independent 

realisations forα=1.6,  C1=0.2 and h=1. Fig. 6 shows that an excellent scaling 

behaviour is found with r2 coefficients greater than 0.99 (Fig. 6.a) and expected shape 

with a visible linear portion on the UM parameters determination curve (Fig. 6.b). 

Similar behaviour is found for other input parameters.

In order to check if simulated UM parameters are in agreement with 

expectations, i.e. that same α  are retrieved and that C 1 assessed is simply the one input 

multiplied by S❑

3 D (α ,h ), all the possible combinations of UM parameters for

α⊂ [0.2,0 .4,0 .6,1,1.2,1 .4,1.6,1 .8 ] and C1⊂ [ 0.1,0 .2,0.3,0 .4,0 .5 ] for h=1 are tested. 

Ensembles of 100 realisations of independent fields of final size 27 x 27 x 8 are 

simulated and then analysed. Assessed UM parameters are displayed in Fig. 7 along 

with theoretical expectations (solid lines) for standard discrete fields. The input 



parameters are properly retrieved on the simulated fields, which is expected. Same 

results for the blunt process are shown in Fig. 8. Results are more contrasted. Same α  

parameter as the input one are almost retrieved for α >1 (Fig. 8.a). The expected 

decreasing trend for C 1 as a function of α input is retrieved but the differences between 

simulation outputs and expectations tend to significantly increase for α <1 (Fig. 8.a). 

Hence it can be said that theoretical expectations are retrieved for great values of α  (>1)

and small values of C 1 (<0.3-0.4). Typical UM parameters for rainfall fall within this 

range of values. For smaller values of α  and greater values of C 1, some discrepancies 

appear. It should be reminded here that fields with α <1 are intrinsically harder to 

simulate, notably because for example their mean is not theoretically defined. Also, 

only 3 (or more precisely 5-2) cascade steps are used, meaning that it may not be 

enough to ensure that the expected multifractal behaviour is fully developed. 

A new algorithm to generate a missing half of a multifractal field

The purpose of this section is to describe a new algorithm to generate the missing half 

of a multifractal field assuming that it is generated through a 'blunt discrete cascade 

process'. The studied field is also assumed to be normalized to one. The methodology is 

explained in 1D with the corresponding illustration but the same process can actually be

implemented in 2D and 3D using the same generalization as presented in section 2.4.

A scheme of the situation is displayed in Fig. 9. The available data which 

corresponds to the input of the algorithm consists in a series which is shown in blue on 

the left. The data to be guessed which corresponds to the output of the algorithm (in 

green) is the follow up of the initial series. The field is assumed to be generated through 

a blunt discrete cascade, meaning that it is fully determined by its underlying sharp 

increments. Hence the whole purpose of this algorithm consists in determining these 



increments while ensuring that the field has the required multifractal properties and has 

values as close as possible to the actual ones on the available portion. To summarize, a 

portion of the increments is stochastically simulated (red rectangles) and the rest is 

deterministically reconstructed through an iterative process (purple rectangles). Given 

that half of the data is known, it is a rather natural choice to look for deterministically 

reconstructing half of the increments and stochastically generating the others. Other 

options, notably for the increments close to the transition could be tested in future 

improvements of the algorithm. Before going on, it should be mentioned that the overall

concept of deterministically reconstructing a portion of the field and stochastically 

simulating the other has been well used in previous work on forecasting (Marsan et al. 

1996, Schertzer and Lovejoy 2004, Macor 2007, Macor et al. 2007) or sparse network 

measurements (Salvadori et al. 2000, Tchiguirinskaia et al. 2004, Paz et al. 2020). It 

relied on the use of continuous UM cascades. Here we are keen to remain within the 

framework of discrete cascades for the reasons mentioned in the introduction.

Let us now describe in detail the algorithm which is made of two successive 

steps. In the first step, an initial guess of the increments is computed. The ones 

corresponding more to the portion to be guessed (i.e. in red in Fig. 9) are stochastically 

simulated using Eq. 6 with given α  and C 1 (computed from the available data) and set to

a definitive value. The others (in purple in Fig. 9) are simply set to one divided by the 

average renormalization factor at each cascade step. The purpose is to ensure that the 

blunt field will have values close to its average value of one for this portion. 

The second step consists in an iterative process to tune the 'purple' increments so

that the blunting of these sharp increments yields the wanted value on the known 

portion of the series (in blue in Fig. 9). This step of the algorithm is actually the trickiest



and various heuristic approaches have been tested. The one yielding the best results is 

the following:

 A first estimate of the blunt simulation (denoted ¿blunt) is computed from this first

guess of sharp increments. At this first iteration, it will obviously be quite far 

from the known data.

 The ratio of the data to  ¿blunt  (  Ratio=data /¿blunt) is computed. For the second 

half of the series, this Ratio is simply set to one. Since the data is normalized to 

one and the sharp increments were initially chosen to ensure that ¿blunt  is close to 

one, the average of Ratio will be close to one which is what we want for the next

step.

 The sharp increments yielding to this field (Ratio) then are assessed. This is 

done by using at each scale (or cascade step) the same matrices as in the 

blunting process to obtain a 'smoothed' field. Taking the ratio between two 

successive cascade steps then yields to the dressed blunt increments. The sharp 

ones are then assessed by taking the average at the corresponding scale. This 

approach assumes that the field is normalized to one. Given the choice of initial 

increments, this is approximately the case. However, a small correction is 

implemented with the total average of the field, by taking it and distributing it 

uniformly over all the scales (to ensure that the initial average is retrieved).

 The purple sharp increments are then updated by multiplying the current ones 

with the 'dressed ones from Ratio '.

 Finally, the process is repeated, i.e. a new blunt simulation is computed from 

these updated sharp increments, leading to a new ratio enabling a new update of 



sharp increments.

Few iterations of the process are displayed for an example in Fig. 10 for the 

successive simulations and in Fig. 11 for the ratios. The initial series which has a length 

of 128 time steps is in black in Fig. 10. α=1.6, C 1=0.2 (actually divided by S❑

1D ( α ,h ) to

retrieve the correct value at the end) and h=2 are used.  It can be seen that after very 

few iterations, the Ratio is becoming always close to one (except for time steps with 

very small value) and the simulation close to the initial data which is what we wanted. 

In the lower part of Fig. 10, the transition between the initial data and the stochastically 

generated second half is visible. It can be seen that value at step 127 is strongly 

increased to reach the one of the data, which also increases the values of the next steps. 

The corresponding increments (both sharp and blunt) are displayed in Fig. 12. The 

blunting process enables a smooth transition at all scales between the known and 

generated portion of the field. It can also be seen that the fluctuations of the increments 

on the known portion of the data (i.e. the ones obtained by dressing the field) are 

smaller than the ones of the stochastically simulated portion, which is a behaviour to be 

expected. One can note (this is visible on the last cascade steps) that sharp increments 

have a smaller average value on the dressed part than the simulated one (typically 0.85 

vs. 1), while the same average of ≈ 1 is retrieved on the blunt increments. This is due to 

the fact the renormalization of the blunt increments assumes that sharp ones are 

distributed as UM ones with given α  and C 1. This is the case for the simulated ones but 

not exactly for the dressed ones.

Before implementing the algorithm in next section, two remarks should be 

made. First, in the developed process, the values of the deterministically reconstructed 

increments actually depend on the value of the stochastically simulated ones. This is 

done to ensure a smooth realistic transition at all cascade steps between the known and 



generated portion of the field. Second, the process is stochastic, meaning that ensemble 

of realistic realisations can be simulated enabling to compute quantiles. 

Implementation and validation of the algorithm

In this section, we implement the new algorithm to generate a missing half of fields in 

1D, 2D and 3D to illustrate and validate the process. Rainfall disdrometer data is used in

1D, weather radar rainfall estimates map is used in 2D and numerical simulations in 3D.

In 1D with rainfall disdrometers time series

In this subsection, the algorithm is tested with the help of a rainfall time series that was 

collected on 30 May 2016 by a OTT Parsivel2 disdrometer (Battaglia et al. 2010, OTT 

2014) located on the roof of the Carnot building of the Ecole des Ponts ParisTech 

campus. It is part of the TARANIS observatory of the Fresnel Platform of École des 

Ponts ParisTech (https://hmco.enpc.fr/portfolio-archive/fresnel-platform/). A series with

1 min time steps lasting 256 min is used here. It is shown in Fig. 14 in black. Only the 

first half of the data is used as input for the algorithm, while the second half is only 

displayed for validation purposes. Full presentation and associated references of the data

can be found in Gires et al. (2018) which describes the measurement campaign. A UM 

analysis on the whole series showed that it exhibited an excellent scaling behaviour with

α=1.53, C1=0.21 andH=0.62 (with a spectral slope β=1.88). Given the high value of

β, the TM and DTM analysis was carried out on the fluctuations of the field in order to 

ensure that a conservative field is studied (Lavallée et al. 1993). Before going on, it 

should be stressed that a similar analysis was carried out on the two halves 

independently and highlighted some differences. Indeed, we findα=1.85, C1=0.30 and

H=0.64 (with a spectral slope β=1.73) for the first half and α=1.30, C1=0.20 and



H=0.67 (with a spectral slopeβ=2.03) for the second half with a slightly worse 

scaling. The determination coefficient r2 in the TM analysis is of 0.93 for the second 

half while it is of 0.98 for the first half, and of 0.95 considering the whole series. TM 

curve for the first half is displayed in Fig. 13 for illustration. Scaling properties are 

ensemble ones, so one should be cautious while interpreting results for single short 

series. However, it should be mentioned that, currently, potential variations of UM 

parameters between the first and second half are not accounted for and values on the 

whole time series with h=6 are used. The value of C 1 is actually divided by S❑

1D ( α ,h )  

to retrieve the correct value at the end. An ensemble of 1000 realisations was generated.

One sample is displayed in red in Fig. 14.

First, a UM analysis on the simulated portion (i.e. the second half) was carried 

out. It is displayed in Fig. 15. It can be seen that an excellent scaling behaviour is 

retrieved with α=1.47, C1=0.18 andβ=1.61. The UM parameters are close to the ones 

used as inputs. The spectral slope is slightly smaller (-0.17) than the one of the original 

series. Despite this slight difference, the auto-correlation within the simulated series can

be considered as similar to the expected one. Hence, the simulated portion of the field 

exhibits the expected (i.e. the one used as input) multifractal behaviour which is one of 

the wanted features for the developed algorithm. It should be reminded here that scaling

behaviour encompasses statistics for all moments. Hence its preservation means that the

scale dependence of commonly used statistics such as coefficient of variations, 

skewness or flatness are also preserved (Schertzer et al. 2010).  Fig. 14 also displays the

5, 50, and 95 % quantiles which have been computed for each time step over the 1000 

realisations. Through the analysis of the quantile curves, it can be seen that the influence

of the 'known portion' of the initial data lasts few time steps (roughly 5 min). It can also 



be seen that the immediate follow up of the series is well captured within the 90 % 

quantile margins. This confirms the relevancy of the developed algorithm.

In 2D with rainfall weather radar maps

In this sub-section, the new algorithm is tested to generate the missing half of a rainfall 

map measured on 16 September 2015 by a X-band radar operated by Ecole des Ponts 

ParisTech on its campus. The pixel size of the data provided by the radar is 250 m x 250

m, and the data corresponding to the average rain rate over a 3 min and 40 s time step 

that started at 09:06 UTC is used. The 64 x 128 pixels used in the analysis are displayed

on Fig. 16 (top-left). Actually, only the left half (i.e. an area of 64 x 64 pixels) is used as

input, while the other half is shown only for comparison purposes with the algorithm's 

outputs. A multifractal analysis, implemented on the 64 x 128 initial area (considering 

to samples of size 64 x 64), showed that the field exhibited a very good multifractal 

behaviour with α=1.97, C 1=0.096, H=0.57 (with a spectral slope β=1.95). Given the 

elevated value of H  the analysis was implemented on the fluctuations. As for the 1D 

case, it should be mentioned that both portion of the field exhibit slightly different 

values of UM parameters. Indeed we find α=2.09 (which is slightly greater than the 

maximum value of 2, indicating that simply taking the fluctuation may not be sufficient 

to retrieve the conservative underlying field), C1=0.10, H=0.62 (with a spectral slope

β=2.03) for the left portion; andα=1.58, C 1=0.089, H=0.56 (with a spectral slope

β=1.97). The parameters (with the standard correction for C 1) obtained by analysing 

both portions along with h=6 are used for the stochastic generation of the missing half. 

100 realisations are generated

Fig. 16 displays two specific realisations where the smooth transition between 

the initial data (left) and stochastic generation (right) is visible. It should be stressed that



it is more visible for the first sample than for the second one. It also hints at a possible 

need to improve the transition in further versions of the algorithm which appears to be 

quite sensitive to the renormalization of the first guess of increments.  In general, it can 

also be seen that the generated halves exhibit similar pattern as the initial data, which 

was expected since same UM parameters are used. More precisely, as for the 1D case, 

an ensemble UM analysis was performed on the set of 100 samples for the generated 

portion of the field. Similar curves as in Fig. 15 are obtained and therefore not shown.

α=1.84, C1=0.10 and β=1.62 are found which is close to the input values. There is a 

slight underestimation of the spectral slope (more pronounced than in the 1D case) 

resulting in slighter auto-correlation than in the original field. The 5, 50 and 95 % 

quantiles computed for each pixel over the 100 realisations are displayed on the left part

of Fig. 16. Same comments as for the case in 1D can be made, i.e. the influence of the 

known data remains strong for only few pixels and the actual data for the generated half 

falls within the 90% quantiles margin of the stochastically simulated missing halves.

In 3D with numerical simulations

Only numerical simulations are used to illustrate the potential use of the algorithm to 

generate the following time steps of a space-time process. More precisely, a space time 

field of size 27 x 27 x 8 is generated with the help of a blunt discrete cascade process 

(see section 2.4) and the algorithm is implemented to generate a realistic potential 

realisation of the next 8 time steps. 

Fig. 17 displays an example obtained withα=1.7, C1=0.9 (meaning that the 

actual C 1 of the final field is 0.083, see Eq. 18), and h=4 as input. The first 8 time steps

are obtained from a simulation, and the next ones (i.e. from time step 8 to 15) are 

obtained through the new algorithm using only the final field (i.e. not the increments) as



input. A rather soft transition is visible and corresponds to the wanted feature, along 

with the fact that the two portions of the fields exhibit the same multifractal behaviour.

Conclusion

In this paper we first suggested an extension to space-time processes of the previously 

developed blunt extension of UM discrete cascades (Gires et al. 2020). This model was 

initially suggested to lessen the lack of stationarity of discrete random multiplicative 

cascades which is one of their main limitations. At each cascade step of such process, a 

parent structure is divided into substructures and the value affected to a substructure is 

the parent's one multiplied by a random increment. Hence the process is actually 

determined by the succession of all the increments at each cascade steps. The blunt 

extension of discrete cascades consists in introducing the final resolution at each 

cascade step and geometrically interpolating the increments in order to smooth the 

transition between them. The size of the moving window over which the interpolation is

implemented is defined by a parameter h which corresponds to the number of 

multiplicative increments at a given cascade level that are influencing the blunt ones.

The model was initially developed in 1D and 2D, and an extension to space-time

processes is introduced here, where two dimension corresponds to space and one to 

time. A scaling anisotropy between space and time is accounted for as commonly done 

(Biaou et al. 2005). The extension required to solve a renormalization issue affecting 

mainly the sides of the numerical simulations. It is established that the generated fields 

should also exhibit a multifractal behaviour with the same multifractal index α  and 

mean intermittency codimension C 1 changed to C1 Sd
(α ,h). Such expectations are 

numerically confirmed only on a limited range of UM parameters (typically for α >1 

and C1<0.3−0.4). For other ranges of parameters some strong deviations are noted, 



which limits potential applications. It should be noted that common rainfall UM 

parameters (1.5<α <2 and 0.05<C1<0.2) fall within the range of validity of the 

developed blunt model.

The second step of this paper consists in developing a new algorithm to generate

the missing half of multifractal fields in 1D, 2D or 3D. The overall idea was to remain 

in the rather simple and intuitive framework of discrete cascades. Indeed, despite some 

drastic limitations which have been pointed out since Schertzer et al. (1987) and are 

acknowledged by Gires et al. (2020), discrete cascades process enables to reproduce 

complex patterns exhibiting extreme variability and intermittency over a wide range of 

spatio-temporal scales. It is done by computing a set of increments that once blunted 

yield a field with the expected value on the available data and the wanted scaling 

properties. This is achieved by stochastically generating half of the increments and 

deterministically reconstructing step by step the others. Such method intrinsically 

follows a scale invariant approach throughout the whole process, although only over 

discrete scales. Indeed, the shift from the deterministically reconstructed part to the 

stochastically simulated one is handled in the same way at all the scales, defined by the 

(discrete) cascade steps, through the 'blunting'. Such behaviour is partly consistent with 

the expected behaviour inherited from the (continuous) scale symmetries of the 

underlying Navier-Stokes equations. This process enables to generate not only a single 

deterministic guess but also ensembles of realistic guesses of the missing half which can

be used later for uncertainty quantification. Finally, it should be stressed that the 

developed approach is parsimonious since it relies only on the three UM parameters α  

and C 1, and H  (represented by h in the process). The algorithm is then implemented and

validated with actual rainfall with disdrometer time series and rainfall maps. It is finally 

implemented in space-time with numerical simulations as a proof of concept. 



There are still some limitations to the developed algorithm. Indeed, as pointed 

out in section 4, it appears that the algorithm is quite sensitive to how the reconstruction

of the so-called known part of the increments is handled. Currently, a rather natural 

approach is implemented and further sensitivity analysis should be carried out. Another 

issue that should be studied deeper is the potential variations of underlying UM 

parameters between the two halves of the field. Indeed, currently average values are 

used but it was shown that strong variations may exist. New studies on the variations of 

these parameters in both space and time should be carried out. An important feature of 

rainfall fields which has not been addressed yet in the blunt extension framework, and 

should be in future, is spatial anisotropy. In order to achieve this, the approaches 

discussed by Seed et al. (2003) and Niemi et al. (2014) could be helpful. Additionally, 

improving the simulations of the zeros of the rainfall fields could be beneficial (see 

Gires et al. 2013 for a complete discussion and lead of developments). Such application 

to space-time processes is actually a first step toward the nowcasting of geophysical 

fields such as rainfall. It enables to account for the increase or decrease of rainfall cells. 

However, it does not address advection which should be handled separately and is 

outside the scope of this paper. Accounting for advection will enable comparison with 

currently available rainfall nowcasting algorithms. 
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Figures and captions: 

Figure 1: Schematic description of the generation of a blunt multiplicative cascade 

process A from a standard one B.



Figure 2: (a) Sd ( α , h ) vs. α  for  h=1 in 1D, 2D and 3D. (b) Sd ( α , h )  vs.h for α=1.6 in 

1D, 2D and 3D.



Figure 3: Time series of the average over 10 000 realisations of standard discrete 

cascades (in black) along with same computation for blunt process with the old (in red) 

and new normalization (in blue). α=1.8, C1=0.2 and h=1 are used as input parameters.

256 long times series are simulated.



Figure 4: Display of the successive time steps of one realisation of a simulated standard 

space-time discrete cascade process of final size 27 x 27 x 8 with α=1.7,  C1=0.4 used 

as input parameters.

Figure 5: Same as Fig. 4 for the corresponding blunt process with h=2.



Figure 6: Space-time multifractal analysis of 100 realisations of the space-time blunt 

cascade process A with α=1.6,  C 1=0.2 and h=1. (a) Scaling in the DTM (Eq. 4 in log-

log) and (b) UM parameters determination curve in the DTM analysis (Eq. 5 in log-log).

Figure 7: Comparison for space-time fields (ensembles of 100 3D realizations of size 27

x 27 x 8) of UM parameters estimated on numerical simulations for standard UM 

discrete cascade process with regard to parameters input to the simulations.



Figure 8: Same as in Fig. 7 but for blunt simulations. h=1 for the results displayed in 

this figure.

Figure 9: Scheme illustrating the newly developed process to generate a missing half of 

a multifractal field.



Figure 10: Illustration of the successive iterations of the process enabling to simulate a 

realistic follow-up of the initial series (of length 128) which is displayed in black. The 

lower part is simply a zoom of the upper one during the transition between the initial 

data and the stochastically generated second half.



Figure 11: Illustration of the successive 'ratios' computed to obtain the simulations 

displayed in Fig. 10.



Figure 12: Increments for all the cascade steps obtained for the last iteration (i.e. the 

fifth) displayed in Fig. 10. Sharp increments are in black while the blunt ones are in red.



Figure 13: TM analysis, i.e. Eq. 2 in log-log, of the first half of the data used for 

application in 1D.



Figure 14: Illustration of the output of the newly developed algorithm on initial data (in 

black) corresponding to a rainfall 30 s time step series of total length 128. In red, one 

realisation of a realistic follow up. In yellow, 5, 50 and 95% quantiles computed over 

1000 realisations. The lower part is simply a zoom of the upper one during the transition

between the initial data and the stochastically generated second half.



Figure 15: UM analysis of the ensemble of 1000 simulated guessed portion of the field 

in 1D (one sample is visible in red in Fig. 14. (a) Spectral analysis, i.e. Eq. 11 in log-

log. (b) TM analysis, i.e. Eq. 2 in log-log and (c) DTM curve, i.e. Eq. 5 in log-log.



Figure 16: Illustration of the outputs of the newly developed algorithm on initial data 

(top left) corresponding to a radar rainfall map of 64 x 64 pixels. Only the left half 

(black vertical line corresponds to the split) is used, and the right half is here only for 

comparison purpose. Two specific realisations, as well as the 5, 50 and 95 % quantiles 

computed over 100 realisations are displayed.



Figure 17: Illustration of the implementation of the newly developed algorithm in a 

space-time framework. Numerical simulations of a field made of 27 x 27 pixels over 8 

time steps (from 1 to 7 in) are used as input for the algorithm to generate the next 8 

(from 8 to 15).α=1.7, C1=0.9 (meaning that the actual C 1 of the final field is 0.083, see

Eq. 18), and h=4 are used as parameters.
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