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Abstract

The aim of this paper is to define a new, simple and efficient method of solu-
tion of elasticity problems for 3D bodies containing cracks slightly perturbed out of
their original plane or surface. This method extends that proposed by Rice (1985,
1989), from a re-formulation of Bueckner (1987)’s 3D weight function theory, for
the treatment of coplanar crack perturbations. First, a general formula is derived
for the variation of total energy of a cracked elastic body, resulting from some small
but otherwise arbitrary geometric perturbation of the embedded crack(s). This for-
mula, which involves integrals over both the front and the surface of the crack, is
derived from an expression of deLorenzi (1982) and Destuynder et al. (1983) in the
form of a volumic integral, originally limited to purely tangential crack perturba-
tions but duly extended here to arbitrary perturbations having both tangential and
normal components. It is then used to derive a general expression of the variation
of displacement arising from a general perturbation of the crack(s), anywhere in the
cracked body. The reasoning here basically follows the same lines as in the works of
Rice (1985, 1989), but for the presence of an additional normal component of the
crack perturbation. The possible use of the formalism developed to treat problems
of out-of-plane, or out-of-surface perturbations of cracks is finally briefly evoked;
the straightforwardness of the new method proposed is hoped to permit future ap-
plications to non-coplanar crack problems too complex to be accessible by more
conventional methods.

Keywords : extended Bueckner-Rice theory, out-of-plane crack perturbations, varia-
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1 Introduction

Problems of perturbations of cracks in 3D elastic bodies have gradually attracted more and
more attention in time, following the development of 3D linear elastic fracture mechanics.
The perturbations envisaged may be purely tangential (the front of the crack is perturbed
but not its surface) or include a component normal to the crack surface (both the crack
front and surface are perturbed). The fundamental theoretical study of the first kind
of perturbations started with the seminal work of Rice (1985); no less than 13 years,
however, then elapsed before the first fully correct theoretical treatment of perturbations
of the second, more complex type was proposed by Movchan et al. (1998). Many papers,
too numerous to be all cited here, were then devoted to applications. Among these, those
related to coplanar perturbations of plane cracks essentially pertained to (i) the study of
the deformation of crack fronts due to inhomogeneities of the fracture properties; and (ii)
the problem of evaluating the resulting “overall fracture toughness” - see, among many
others, the works of Rice (1985); Gao and Rice (1986, 1987a,b); Gao (1988); Rice (1989);
Bower and Ortiz (1991); Gao (1992); Leblond et al. (1996); Lazarus and Leblond (2002a,b);
Roux et al. (2003); Favier et al. (2006a,b); Legrand et al. (2010a); Pindra et al. (2010a);
Leblond et al. (2012); Patinet et al. (2013); Vasoya et al. (2013); Démery et al. (2014);
Vasoya et al. (2016); Lebihain (2021). Applications related to out-of-plane perturbations
were mainly devoted to (i) the theoretical interpretation of the well-documented instability
of coplanar crack propagation under mixed-mode I+III loading conditions, leading to
formation of tilted fracture facets; and (ii) the influence of the circumventing of fracture
obstacles through off-plane excursions of cracks upon the overall toughness in pure mode
I - see notably the works of Pons and Karma (2010); Leblond et al. (2011); Leblond and
Lazarus (2015); Leblond et al. (2018); Vasudevan et al. (2019); Lebihain et al. (2020, 2021,
2023).

In order to apply suitable propagation criteria - generally Griffith (1920)’s energetic con-
dition combined with Goldstein and Salganik (1974)’s principle of local symmetry - to
predict crack propagation, all works of this type require, as a necessary prerequisite,
theoretical expressions of the stress intensity factors (SIFs) in the perturbed crack config-
urations considered. The elasticity problems on perturbed cracked geometries implied are
inevitably complex. Indeed they are of the singular perturbation type, in the sense that
the expansions of the mechanical fields in powers of the small perturbation parameter
cannot converge uniformly - as is evident from the fact that the successive terms of these
expansions exhibit different singularities near the crack front. A boundary layer, analogous
to those encountered in fluid mechanics, must necessarily exist in the vicinity of the crack
front, and consideration of this layer is compulsory to get the perturbed SIFs.

There are two basic types of methods to obtain the distribution of the SIFs along the
perturbed crack front.

• General methods of solution consist of fully solving the elasticity problems implied,
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that is of calculating the mechanical fields (displacements and stresses) everywhere in
the body, through various approaches.
· For in-plane perturbations of plane cracks, the first, prototype treatment of this kind,
proposed by Rice (1985), was devoted to in-plane perturbation of the front of a semi-
infinite, mode I crack in an infinite body. Use was made in this work of the representa-
tion of elastic fields through Papkovich-Neuber potentials (Papkovich, 1932; Neuber,
1934). Rice (1985)’s first-order perturbation analysis was extended to the second or-
der by Adda-Bedia et al. (2006), again by some general method. Another example of
such a method was Legrand et al. (2011)’s study of coplanar perturbation of a crack
lying on the mid-plane of a plate of arbitrary thickness. The basis of the treatment
was the Love-Kirchhoff theory of plates in the limiting case of an infinitesimal thick-
ness, supplemented by Rice (1985)’s results in the opposite case of an infinite body
(equivalent to a plate of infinite thickness), and completed by finite element compu-
tations for intermediary thicknesses. Other related plate problems were treated by
Adda-Bedia and Mahadevan (2006), Xia et al. (2013) and Budzik and Jensen (2014),
with applications to problems of peeling of thin films. Finally one must mention in
this context the work of Piccolroaz et al. (2007) on the in-plane perturbation of an
interface crack (lying between different elastic materials).

· For out-of-plane perturbations of cracks, the only fully correct theoretical treatment -
again based on a general method - seems to be that of Movchan et al. (1998), devoted
to the case of a semi-infinite, initially plane crack in an infinite body. Extension of this
treatment to other crack configuration does not appear trivial, inasmuch as it made a
fundamental use of the Fourier transform, which is well-suited to infinite geometries
only.

• Specialmethods of solution represent an appealing alternative to general ones. Instead of
targeting a full solution to the elasticity problems implied, they concentrate on the sole
main quantities of interest, essentially the SIFs along the perturbed crack front. This
results in a generally much simpler treatment. In the case of coplanar perturbations of
the crack front, an approach of this type was proposed by Rice (1985, 1989). 1 The basis
was a re-formulation of the theory of Bueckner (1987)’s 3D weight functions, leading to
a general expression of the first-order variation of displacement at any point of a cracked
body due to some small, but otherwise arbitrary in-plane perturbation of the crack front.
Inspection of the variation of the displacement discontinuity across the crack surface
near some arbitrary point of the front then led to expressions of the corresponding local
variations of the three SIFs. Using such a method, Rice (1985) treated the problem of
in-plane perturbation of a semi-infinite crack in an infinite body subjected to some
mode I loading. His work was extended to the same geometry but arbitrary mixed-
mode loadings by Gao and Rice (1986); to a penny-shaped crack loaded in mode I
or mixed-mode I+II+III by Gao and Rice (1987a) and Gao (1988); and to a mode I
external circular crack by Gao and Rice (1987b). Basically using the same approach,

1 Rice (1985)’s paper thus included two methods of solution of the problem considered, one
general mentioned above, and one special referred to here.
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Leblond et al. (1996) treated the problem of in-plane perturbation of a tunnel-crack
loaded in mode I in an infinite body, and Lazarus and Leblond (2002a,b) extended their
work to arbitrary loadings. Similarly, Pindra et al. (2010b) and Legrand et al. (2010b)
considered the in-plane perturbation of a system of two parallel tunnel-cracks loaded in
pure mode I. The case of an interface crack (between different elastic materials) was also
considered by Lazarus and Leblond (1998a,b) using an adapted version of Rice (1985,
1989)’s re-formulation of Bueckner (1987)’s weight function theory. In addition, Rice
(1985, 1989)’s method was used by Leblond et al. (2012) and Vasoya et al. (2013, 2016)
in a second-order analysis of the in-plane perturbation of a semi-infinite crack in a plate
of arbitrary thickness, or in some infinite body. Finally, it is worth mentioning that the
method also led to the definition of efficient numerical methods for the simulation of
the propagation of planar cracks of arbitrary contour in infinite bodies; see notably the
works of Bower and Ortiz (1990), Lazarus (1999) and Favier et al. (2006a).

For non-coplanar perturbations of cracks, such a special method of solution does not exist
at present. This situation is unfortunate, since the formal simplicity of such approaches
potentially permits to envisage a greater variety of problems than with general methods
- the difficulty of extending Movchan et al. (1998)’s solution for the out-of-plane pertur-
bation of a semi-infinite crack in an infinite body has already been mentioned. This is
what motivates the development, in the present paper, of a special method of solution for
problems of out-of-plane or out-of-surface perturbations of cracks in arbitrary 3D elastic
bodies, based on some extension of Rice (1985, 1989)’s approach for coplanar perturba-
tions.

The development of the new method will follow three successive steps, which naturally
define the organization of the paper:

• In Section 2, we begin by providing a general formula for the first-order variation of the
total energy of a 3D elastic body resulting from some small, but otherwise arbitrary geo-
metric perturbation of an embedded geometrically regular hole, or system of such holes.
The treatment is largely inspired from those of deLorenzi (1982) and Destuynder et
al. (1983) devoted to tangential perturbations of cracks (with the numerical calculation
of the energy-release-rate in mind). The fresh proof provided here permits to extend
deLorenzi (1982)’s and Destuynder et al. (1983)’s formula to general perturbations of
holes of arbitrary shape (though geometrically regular at this stage). A comparison is
offered with Eshelby (1951)’s seminal work on the closely related topic of perturbation
of an ensemble of point singularities or inhomogeneities.

• In Section 3, using the formula obtained in Section 2 for holes, we derive a similar
formula for the variation of energy due to perturbation of a crack or ensemble of cracks.
This is done by “thickening” the crack(s) into geometrically regular holes, and then
letting their thickness go to zero. (The reason for using such a detour instead of directly
dealing with cracks is that direct application of the reasonings of Section 2 to such
geometrically singular objects would lead to difficulties and ambiguities arising from
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momentarily divergent integrals). The expression obtained stands as an extension of
deLorenzi (1982)’s and Destuynder et al. (1983)’s formula, limited in their works to
tangential crack perturbations, to general perturbations including a normal component.
It is first derived in the form of a volume integral rather unfit to theoretical analyses,
but an integration by parts permits to put it into a more convenient format. The links
with the famous works of Rice (1968) and Knowles and Sternberg (1972) are finally
explored.

• In Section 4, building on the results obtained previously, we show how the variation
of displacement induced at any point of the body by a small, but otherwise arbitrary
perturbation of the crack, may be deduced from that of the total energy. This is done by
adapting Rice (1985, 1989)’s reasoning, initially limited to tangential crack perturba-
tions, to general perturbations. The treatment makes a fundamental use of a Legendre
transform of the energy, and Bueckner (1987)’s concept of 3D weight functions. It leads
to a general expression of the first-order variation of the displacement at any point of
the cracked body, in the form of a sum of integrals over the crack front and surface,
respectively.

2 Variation of energy due to arbitrary perturbation of a system of geomet-
rically regular holes

As a necessary prerequisite, this Section is devoted to the derivation of a formula for the
variation of energy of an elastic body resulting from some small but otherwise arbitrary
geometrical perturbation of an embedded ensemble of geometrically regular holes. It is
essentially based on deLorenzi (1982)’s and Destuynder et al. (1983)’s approach of the
problem, limited in the works of these authors to the case of tangential perturbation of a
crack or system of cracks. The extension of their approach to the situation considered here
is seized as an occasion to provide a fresh, hopefully more natural and simpler derivation.

2.1 Presentation of the problem - Notations

We thus consider (Fig. 1) a homogeneous, linearly elastic 3D body Ω - not necessarily
isotropic at this stage - with external boundary ∂Ω. 2 This body is subjected to standard
mixed boundary conditions: u = up on ∂Ωu

T = σ.n = Tp on ∂ΩT

(1)

2 By definition, we do not include within ∂Ω the internal boundary consisting of the union of
the boundaries of the enclosed voids.
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where u and σ denote the displacement vector and stress tensor, T and n the traction
vector and outward unit normal vector to the external boundary ∂Ω, ∂Ωu and ∂ΩT com-
plementary parts of ∂Ω, and up and Tp prescribed values of u and T on ∂Ωu and ∂ΩT .
There are no body forces.

Ω

∂ΩT

∂Ωu

up

Tp

ñ
ω

n

Fig. 1. Arbitrary perturbation of an ensemble of geometrically regular holes in a homogeneous
elastic body.

This body contains an arbitrary, geometrically regular, traction-free hole, or an ensemble
of such holes, collectively denoted ω. The boundary ∂ω of this hole or ensemble of holes
is slightly but otherwise arbitrarily displaced by the quantity

ϕ(x) = ηθ(x) (∀x ∈ ∂ω) (2)

where η is a small parameter and θ a given, fixed, smooth function. We wish to evaluate
the variation of total energy resulting from such a perturbation of the hole or ensemble
of holes, under constant loading {up,Tp} applied on ∂Ωu ∪ ∂ΩT .

The principle of deLorenzi (1982)’s and Destuynder et al. (1983)’s approach of the problem
consists in performing a Lagrangian calculation of the energy in the perturbed configura-
tion Ωη, by expressing it as an integral over the original (unperturbed) configuration Ω.
The aim is to thus permit to evaluate the derivative of an integral taken over an invari-
able domain. This procedure makes it necessary to define a one-to-one correspondence
between the original and perturbed domains. This is done by considering the following
transformation (change of variable):

x ∈ Ω 7→ xη = x+ ϕ(x) = x+ ηθ(x) ∈ Ωη (3)

where ϕ = ηθ is some extension, over the entire domain Ω, of the function ϕ = ηθ initially
defined only on ∂ω. This extension is requested to be smooth and vanish over the external
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boundary ∂Ω, so as to correctly map the original domain Ω onto the perturbed one Ωη,
but may otherwise be chosen arbitrarily.

In the sequel mechanical quantities like the displacement vector, stress tensor etc. defined
over the perturbed configuration Ωη will be denoted with an upper index η: uη, ση etc.,
in order to distinguish them from those defined over the original configuration Ω, devoid
of such a symbol.

2.2 Lagrangian calculation of the variation of energy

First, the connection between the elementary volume elements dΩ and dΩη in the original
and perturbed configurations is easily derived from equation (3) defining the transforma-
tion x 7→ xη:

dΩη = det

(
∂xη

∂x

)
dΩ = det

(
1+ η

∂θ

∂x

)
dΩ =

[
1 + η divθ +O(η2)

]
dΩ. (4)

The next task is to relate the densities of elastic energy in the original and perturbed
configurations,

w =
1

2
σ : ε and wη =

1

2
ση : εη (5)

where ε and εη denote the strain tensors in the two configurations. We begin by noting
that at every point y,

wη(y) = w(y) + η
∂wη

∂η
(y) +O(η2)

where the derivative with respect to η, like all similar derivatives in the sequel, is taken
at η = 0. At the point y = xη, this relation yields

wη(xη) = w(xη) + η
∂wη

∂η
(xη) +O(η2) = w(xη) + η

∂wη

∂η
(x) +O(η2) (6)

where the last equality stems from the fact that the difference xη − x being O(η), so is
also the difference ∂wη

∂η
(xη)− ∂wη

∂η
(x). We then remark that the material being assumed to

be homogeneous, the density of elastic energy has no explicit dependence upon position;
that is, w depends on x only because it is a function of ε which itself depends on x. It
follows that

w(xη) = w(x) +
∂w

∂εij
(ε(x)) εij,k(x) (x

η
k − xk) +O(η2)

= w(x) + ησij(x)ui,jk(x) θk(x) +O(η2)

(7)

where use has been made of the symmetry of the tensor σ; the indices i, j, k here refer to
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some arbitrary Cartesian coordinate system. Combining equations (6) and (7), we get

wη(xη) = w(x) + ησij(x)ui,jk(x) θk(x) + η
∂wη

∂η
(x) +O(η2). (8)

Note that as clearly evidenced by this equation, there are two origins to the difference
between wη(xη) and w(x): first the densities of elastic energy are different in the two con-
figurations (wη ̸= w), because the mechanical fields change when the voids are perturbed;
second they are not observed at the same point (xη ̸= x), as required by the Lagrangian
calculation of the variation of the total energy.

We may now compare the total elastic energies

W =
∫
Ω
w(x) dΩ and W η =

∫
Ωη

w(xη) dΩη (9)

in the original and perturbed configurations. If, in the expression of W η, one integrates
over Ω instead of Ωη, one gets from equations (4) and (8):

W η =
∫
Ω

[
w(x) + ησij(x)ui,jk(x) θk(x) + η

∂wη

∂η
(x) +O(η2)

] [
1 + η divθ(x) +O(η2)

]
dΩ

= W + η
∫
Ω

[
w(x) divθ(x) + σij(x)ui,jk(x) θk(x) +

∂wη

∂η
(x)

]
dΩ +O(η2).

(10)

The next task is to compare the opposites of the potential energies of the prescribed forces
in the two configurations,

Φ =
∫
∂ΩT

Tp(x).u(x)dS and Φη =
∫
∂ΩT

Tp(x).uη(x)dS. (11)

Note that in these two expressions: (i) the prescribed traction-vectors Tp are the same
(since the variation of the total energy is to be evaluated under constant loading); (ii)
there is no distinction between x and xη, nor between dS and dSη (since θ is taken nil
over ∂Ω). It follows that Φη differs from Φ only because of the variation of displacement
induced on ∂ΩT by the perturbation of the holes:

Φη =
∫
∂ΩT

Tp(x).

[
u(x) + η

∂uη

∂η
(x) +O(η2)

]
dS

= Φ+ η
∫
∂ΩT

Tp(x).
∂uη

∂η
(x) dS +O(η2).

(12)

We may now compare the total potential energies

P = W − Φ and Pη = W η − Φη (13)
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in the two configurations. By equations (10) and (12),

Pη = P + η
∫
Ω
(w divθ + σij ui,jk θk) dΩ

+η

(∫
Ω

∂wη

∂η
dΩ−

∫
∂ΩT

Tp.
∂uη

∂η
dS

)
+O(η2)

(14)

where indications of dependence upon x are henceforward discarded in order to lighten
the notations. But the last term η(...) in the right-hand side here is zero. To establish this
property, let us first note that wη depends on η only because it is a function of the strain
tensor εη which itself depends on the perturbation of the holes; hence

∂wη

∂η
=

∂wη

∂εη
:
∂εη

∂η
= ση :

∂εη

∂η
= σ :

∂εη

∂η

at η = 0. Also,∫
∂ΩT

Tp.
∂uη

∂η
dS =

∫
∂ΩT

T.
∂uη

∂η
dS =

∫
∂ΩT∪∂Ωu

T.
∂uη

∂η
dS =

∫
∂Ω

T.
∂uη

∂η
dS

since on ∂Ωu, u
η = up which is independent of η. It follows from these elements that∫

Ω

∂wη

∂η
dΩ−

∫
∂ΩT

Tp.
∂uη

∂η
dS =

∫
Ω
σ :

∂εη

∂η
dΩ−

∫
∂Ω

T.
∂uη

∂η
dS = 0 (15)

by the principle of virtual work, applied in the unperturbed configuration to the stress
field {σ} and the “velocity” field {∂uη

∂η
}; this establishes the property announced.

Equation (15) implies that the expression (14) of Pη reduces to

Pη = P + η
∫
Ω
(w divθ + σij ui,jk θk) dΩ +O(η2). (16)

The disappearance in this expression of all derivatives of mechanical fields with respect
to η (the parameter characterizing the perturbation of the holes), although surprising at
first sight, is not altogether fortuitous. It means that to first order in η, the variation of
the total potential energy depends on the mechanical fields only through their values on the
original, unperturbed configuration of the body, independently of the manner in which they
vary (under constant loading) when the holes are perturbed. This property is well-known
at least for tangential perturbations of cracks - being conspicuous for instance in Irwin
(1958)’s famous formula relating the energy-release-rate to the stress intensity factors in
the unperturbed configuration.

The final step is to transform part of the right-hand side in equation (16) through some
integration by parts:∫

Ω
σij ui,jk θk dΩ =

∫
∂Ω

σij ui,k θk nj dS +
∫
∂ω

σij ui,k θk ñj dS −
∫
Ω
(σij θk),j ui,k dΩ

9



where n and ñ denote the unit normal vectors to ∂Ω and ∂ω, oriented outwards and
toward the holes, respectively (see Fig. 1). Now θk = 0 on ∂Ω and σij ñj = 0 on ∂ω;
hence the surface integrals here are zero. Furthermore within Ω, (σijθk),j = σijθk,j since
σij,j = 0. It follows that ∫

Ω
σij ui,jk θk dΩ = −

∫
Ω
σij ui,k θk,j dΩ .

Insertion of this result into equation (16) yields the final expression of the total potential
energy in the perturbed configuration:

Pη = P + η
∫
Ω
(w divθ − σij ui,k θk,j) dΩ +O(η2) = P + η

∫
Ω
Pjk θk,j dΩ +O(η2) (17)

where the quantities
Pjk = w δjk − σij ui,k (18)

are the components of Eshelby (1951)’s energy-momentum tensor. This formula may al-
ternatively be written in the following equivalent forms:

∂P
∂η

=
∫
Ω
Pjk θk,j dΩ ⇔ δP =

∫
Ω
Pjk ϕk,j dΩ ; (19)

in these expressions and subsequent ones, indications of dependence of quantities upon
η in derivatives ∂

∂η
|η=0 are discarded for simplicity, and the symbol δ applied to some

quantity represents its variation evaluated at first order in the perturbation ϕ = ηθ.

2.3 Connection with the work of Eshelby (1951)

Consider now, following Eshelby (1951), the special case of a perturbation ϕ corresponding
to a mere small translatory motion of the ensemble of holes:

ϕ(x) = η eℓ ⇔ θk(x) = δkℓ (∀x ∈ ∂ω) (20)

where eℓ is the unit vector parallel to the direction xℓ of the Cartesian frame considered.
For such a uniform perturbation, one may choose an extension of the function θ(x) tak-
ing the constant value eℓ between the boundary of the holes and some closed surface S
enclosing all of them (Fig. 2).

For such an extension of θ, since this function appears in equation (19)1 only through
its gradient which is zero in the domain enclosed within S, the domain of integration Ω
may be reduced to that domain D extending between S and the external boundary ∂Ω.
Integration by parts then yields

∂P
∂η

=
∫
D
Pjk θk,j dΩ =

∫
∂Ω

Pjk θk nj dS +
∫
S
Pjk θk ñj dS −

∫
D
Pjk,j θk dΩ

10



Fig. 2. A closed surface completely surrounding the ensemble of holes.

where again n and ñ denote the unit normal vectors to ∂Ω and S, oriented outwards and
inwards, respectively (see Fig. 2). But θ = 0 on ∂Ω, and Eshelby’s tensor P obeys the
well-known property Pjk,j = 0 within Ω (for a homogeneous material). It follows that

∂P
∂η

=
∫
S
Pjk θk ñj dS = −

∫
S
Pjk θk nj dS = −

∫
S
Pjℓ nj dS

since θk = δkℓ on S; n = −ñ now represents the unit normal vector to S oriented outwards
(see Fig. 2). Equivalently, the variation of energy induced by the perturbation amounts
to

δP = −η
∫
S
Pjℓ nj dS . (21)

Equation (21) is identical to the result obtained by Eshelby (1951) by a completely dif-
ferent method - for an ensemble of point singularities or inhomogeneities instead of holes,
but the difference with the situation considered here is only superficial. 3 It should be
recalled, however, that Eshelby (1951)’s result is recovered only in the case considered by
this author of a translatory motion of the ensemble of defects. It was logical to focus in
his work on this sole case, insofar as what he was interested in was the “configurational
force” acting on the ensemble of defects, related to the variation of total potential energy
resulting from a global, rigid-body displacement of these defects. 4 However, with the
aim we have in view here, detailed in the Introduction, such a reduction to very special
perturbations of the holes will not be possible, and use of the more general formulae (19)
will be indispensable.

3 As is obvious from the very fact that the variation of total potential energy due to some
translatory motion of the defects can be expressed as an integral over some distant enclosing
surface, independently of their physical nature.
4 The interpretation of certain variations of total potential energy due to specific perturbations
as components of a “configurational force” will not be needed here, and will not be referred to
any further.
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3 Variation of energy due to arbitrary perturbation of a system of cracks

Our main interest in this paper lies in the case of a crack or system of cracks. However,
as detailed below, directly dealing with such a situation using the approach of Section
2 would lead to mathematical difficulties, tied to momentarily divergent integrals. This
was the reason for first considering, in Section 2, the case of geometrically regular holes,
for which such issues do not arise. The case of an ensemble of cracks is now envisaged
as a limiting situation in which the holes become infinitely thin. The formula for cracks
is obtained by directly taking the limit in that previously derived for regular holes, thus
circumventing the intermediary appearance of divergent integrals.

3.1 The extended deLorenzi-Destuynder formula

We thus consider (Fig. 3) the same problem as before, but now for an ensemble of cracks
instead of geometrically regular holes.

Ω
∂Ωu

∂ΩT

up

Tp

n

Fig. 3. Arbitrary perturbation of an ensemble of cracks in a homogeneous elastic body.

The first task is to study the asymptotic behaviour of some quantities near the crack
front F , so as to examine the convergence or divergence of some integrals encountered
previously, when now considered for cracks instead of geometrically regular holes. Let
r denote the orthogonal distance from the observation point of mechanical fields to the
crack front. Then near F , as is well-known, σ, ui,j and ε behave like r−1/2, consequently
w and P like r−1, ui,jk like r−3/2. Also, wη behaves like (rη)−1 where rη is the distance
to the perturbed crack front, depending on η; hence ∂wη/∂η behaves like r−2. Finally
the convergence or divergence of a volume integral near F is to be assessed using local
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cylindrical coordinates r, θ, z, for which the infinitesimal volume element dΩ = rdθdz is
proportional to r. It follows that several of the integrals encountered in Subsection 2.2, if
considered for cracks instead of holes, diverge logarithmically at the crack front F because
the radial integral is of the type

∫
0
dr
r
. This notably occurs in the integral

∫
Ω

∂wη

∂η
dΩ in the

left-hand side of equation (15), and in the integral
∫
Ω σij ui,jk θk dΩ in the right-hand side

of equation (16). Such divergences prohibit direct application of the reasoning of Subsection
2.2 to cracks.

However such a divergence does not occur in the integrals appearing in the final result
(19), because the integrand in the radial integral asymptotically behaves (accounting for
the infinitesimal volume element dΩ) like r0 = 1 instead of r−1, as a consequence of the
preceding integration by parts. Hence the solution to the problem just raised is simple:
(i) apply the final result (19) to an ensemble of elongated, thin but geometrically regular
holes; and then (ii) let the thickness of these holes go to zero. In this limit the quantities
∂P
∂η

and δP in the left-hand sides go to the derivative and first-order variation of energy
corresponding to an ensemble of cracks; and the integrals in the right-hand sides tend
toward the same - still convergent - integrals but with an Eshelby tensor P corresponding
to cracks instead of holes. The natural conclusion of this procedure is that equation (19)
applies unmodified to an ensemble of cracks.

Equation (19), as applied to cracks, was first established almost simultaneously and inde-
pendently by deLorenzi (1982) and Destuynder et al. (1983), for purely tangential pertur-
bations. 5 But the derivation presented here unambiguously shows that it in fact applies
to arbitrary perturbations of the cracks including both tangential and normal components.
For this reason it will be referred to as the XdLD (eXtended deLorenzi-Destuynder) for-
mula in the sequel.

3.2 Expression of the variation of energy as a sum of integrals over the crack front and
surface

From a numerical point of view, the XdLD formula (19) possesses many virtues, the
discussion of which is not the topic of this paper. From a theoretical point of view, however,
its very format in the form of a volume integral makes it cumbersome to use, because it
hides some important features of the derivative or first-order variation of energy:

• the fact that it depends on the perturbation function ϕ or θ only through its values on
the crack surface S and front F , and not on its (largely arbitrary) extension over the
entire body Ω;

5 This restriction on the perturbations envisaged was clearly stated in both works, but it remains
unclear at what step of the derivations it was used, or even if it was really needed at all.
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• the similar fact that - as will be detailed below - it also depends upon the mechanical
fields only through their values on S and F .

The obvious remedy to this shortcoming of the XdLD formula is to perform an integration
by parts of the volume integral. When doing so, however, one must beware of the geomet-
ric singularity introduced by the cracks. Dealing with this additional difficulty requires
introducing some notations. First, let s denote some curvilinear abscissa along the crack
front F . Then for every point s on F and every small, positive number ϵ, let D(s; ϵ) denote
the circular disk lying within the plane orthogonal to F at the point s, of centre s and
radius ϵ. Let ωϵ denote the union of such disks when the point s sweeps the entire front;
ωϵ is the “circular tube” centered on F , of radius ϵ. Finally let us define the “shrinked
domain” Ωϵ = Ω−ωϵ. All these geometric notions are illustrated in Fig. 4, which provides
a schematic view of a planar section of the geometry.

Fig. 4. 2D view (planar section) of the geometry, with a small “circular tube” enclosing the crack
front.

The boundary ∂Ωϵ of the shrinked domain Ωϵ consists of three parts (see Fig. 4): (i) the
external boundary ∂Ω; (ii) the boundary ∂ωϵ of the tube ωϵ, consisting of the union of the
boundaries ∂D(s; ϵ) of the disks D(s; ϵ); (iii) that “shrinked” part Sϵ of the crack surface
S consisting of points located at a distance larger than ϵ from the crack front F . Like
before, the outward unit normal vector to ∂Ω is denoted n, and the unit normal vector
to ∂ωϵ ∪ Sϵ oriented toward the crack, ñ.

The convergence of the integral
∫
Ω Pjk θk,j dΩ noted above, combined with the fact that

the volume of the tube ωϵ goes to zero with ϵ, implies that

∫
Ω
Pjk θk,j dΩ = lim

ϵ→0+

∫
Ωϵ

Pjk θk,j dΩ .

14



It then follows from the XdLD formula (19)1 and integration by parts that

∂P
∂η

= lim
ϵ→0+

∫
Ωϵ

Pjk θk,j dΩ

= lim
ϵ→0+

(∫
∂Ω

Pjk θk nj dS +
∫
∂ωϵ∪Sϵ

Pjk θk ñj dS −
∫
Ωϵ

Pjk,j θk dΩ
)
,

that is, account being taken of the properties θ = 0 on ∂Ω and Pjk,j = 0 in Ω:

∂P
∂η

= − lim
ϵ→0+

(∫
∂ωϵ

Pjk θk nj dS +
∫
Sϵ

Pjk θk nj dS
)

(22)

where now n = −ñ represents the unit normal vector to ∂ωϵ or Sϵ oriented outwards.

The integrals over ∂ωϵ and Sϵ in equation (22) must be evaluated separately. It is now
time to introduce the hypothesis that the material is isotropic, with Young’s modulus E
and Poisson’s ratio ν. Also we introduce, at each point s of the crack front F , a local
“adapted” Cartesian frame (s, x, y, z) with axis (sx) parallel to the direction of crack
propagation, axis (sy) orthogonal to S, and axis (sz) parallel to F , oriented in the same
way as the curvilinear abscissa s (Fig. 5).

Fig. 5. The local Cartesian frame “adapted” to the crack.

(1) Calculation of the integral over ∂ωϵ. When ϵ goes to zero, the tube ωϵ becomes more
and more similar to a circular cylinder. It then follows, by splitting the double integral
over ∂ωϵ into simple “axial” and “orthoradial” integrals, that

lim
ϵ→0+

∫
∂ωϵ

Pjk θk nj dS = lim
ϵ→0+

∫
F

(∫
∂D(s;ϵ)

Pjk θk nj dℓ

)
ds

=
∫
F

(
lim
ϵ→0+

∫
∂D(s;ϵ)

Pjk θk nj dℓ

)
ds.

(23)

To evaluate the integral over the circle ∂D(s; ϵ) in the limit ϵ → 0+, one must use the
asymptotic expressions of the mechanical fields near the point s of the crack front,
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and integrate with local polar coordinates (r, θ) (see Fig. 5). Since the elementary
length dℓ = ϵ dθ along the circle is proportional to ϵ, it is sufficient to consider
only, in these asymptotic expressions, the main terms involving the local SIFs KI(s),
KII(s), KIII(s) generating a contribution proportional to ϵ−1 in Pjk. A sketch of the
calculation is provided in Appendix A. The result is classical and reads

lim
ϵ→0+

∫
∂D(s;ϵ)

Pjk θk nj dℓ = G(s) θx(s)− 2
1− ν2

E
KI(s)KII(s) θy(s) (24)

where G(s) is the local energy-release-rate, given by Irwin (1958)’s famous formula

G(s) =
1− ν2

E

[
K2

I (s) +K2
II(s)

]
+

1 + ν

E
K2

III(s), (25)

and θx(s) and θy(s) are the local components of the perturbation function θ(s) paral-
lel to the direction of propagation and perpendicular to the crack surface, respectively.
Using the result (24) in equation (23), we finally get

lim
ϵ→0+

∫
∂ωϵ

Pjk θk nj dS =
∫
F

[
G(s) θx(s)− 2

1− ν2

E
KI(s)KII(s) θy(s)

]
ds. (26)

(2) Calculation of the integral over Sϵ. We first note that in the integral over Sϵ of
equation (22), the term −σij ui,k of the expression (18) of Pjk makes no contribution,
since σijnj = 0 on S; it follows that∫

Sϵ

Pjk θk nj dS =
∫
Sϵ

w θ.n dS.

Next we introduce a distinction between the “upper” (+) and “lower” (−) parts
of the crack surface S, according to the convention and notations shown in Fig. 5.
We also define, with obvious notations, the discontinuity [[w]](x) = w+(x) − w−(x)
of the density of elastic energy at the point x of the crack surface S. Regrouping
the contributions of S+

ϵ and S−
ϵ in the preceding integral, and noting that θ takes

identical values on S+
ϵ and S−

ϵ whereas n changes sign, we get∫
Sϵ

Pjk θk nj dS =
∫
S+
ϵ

[[w]](x)θ(x).n+(x) dS. (27)

It remains to take the limit ϵ → 0+ in the last integral. It would seem at first sight
that this integral diverges in this limit, because the principal terms in the asymptotic
expression of the mechanical fields, involving the SIFs, generate a term proportional
to r−1 in the density of elastic energy w, and therefore, apparently, a logarithmically
divergent radial integral of the form

∫
0
dr
r
. This is not so, however, because as shown

in Appendix B, the contribution of these principal terms in w takes identical values
on S+

ϵ and S−
ϵ , so that the corresponding discontinuity is zero. This means that the

term proportional to r−1 in [[w]] is in fact zero, so that the integral in the right-hand
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side of equation (27) converges in the limit ϵ → 0+, and

lim
ϵ→0+

∫
S+
ϵ

[[w]](x)θ(x).n+(x) dS =
∫
S+

[[w]](x)θ(x).n+(x) dS.

Using this result in equation (27), we finally get

lim
ϵ→0+

∫
Sϵ

Pjk θk nj dS =
∫
S+

[[w]](x)θ(x).n+(x) dS. (28)

Combining equations (22), (26) and (28), we get the expressions of the derivative and
first-order variation of the total potential energy in the following final equivalent forms:

∂P
∂η

=
∫
F

[
−G(s) θx(s) + 2

1− ν2

E
KI(s)KII(s) θy(s)

]
ds−

∫
S+

[[w]](x)θ(x).n+(x) dS

δP =
∫
F

[
−G(s)ϕx(s) + 2

1− ν2

E
KI(s)KII(s)ϕy(s)

]
ds−

∫
S+

[[w]](x)ϕ(x).n+(x) dS.

(29)
A number of particular cases of these expressions, corresponding to crack perturbations
of various special types, have been derived before - see the brief discussion in the next
Subsection. However with the degree of generality envisaged here - small but otherwise
completely arbitrary crack perturbations - they are, to the best of the authors’ knowledge,
new.

3.3 Connections with the works of Rice (1968) and Knowles and Sternberg (1972)

In this Subsection, in order to emphasize essential similarities and differences with impor-
tant previous works, it will be sufficient to consider the sole 2D case. In this context the
integrals over the crack front F in equations (29) reduce to local terms at the crack tip,
and the integrals over the upper part S+ of the crack surface become integrals over the
upper crack lip.

For a 2D straight crack, Rice (1968) derived the following expression of the energy-release-
rate G:

G = Jx =
∫
Γ
Pjx nj dℓ =

∫
Γ
(w nx − σij ui,x nj) dℓ

where Γ denotes any contour with both ends on the crack lips and enclosing the crack
tip. 6 Now taking θx = 1 and θy = 0 (tangential crack perturbation) in our equation (24),
we get

G = lim
ϵ→0+

∫
∂D(s;ϵ)

Pjx nj dℓ.

6 The integral Jx, and the integral Jy introduced below, are often denoted J1 and J2 in the
literature because of use of the notations x1, x2 instead of x, y for the local coordinates near the
crack tip.
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The two preceding expressions of G are identical except for one small difference: the
contour Γ in Rice’s integral Jx is arbitrary, whereas it is a circle of vanishingly small
radius in the formula just above. The possibility of choosing Γ arbitrarily in Rice (1968)’s
definition of Jx is tied to the path-independence of the integral in the specific case he
considered of a straight crack; for a general, curved crack the integral is no longer path-
independent (because nx ̸= 0 on the crack lips), and it must be considered over some path
of infinitesimal length surrounding the crack tip.

Rice and other authors also considered the integral - now necessarily for some infinitesi-
mally small contour Γ, in the absence of any property of path-independence:

Jy =
∫
Γ
Pjy nj dℓ =

∫
Γ
(w ny − σij ui,y nj) dℓ = −2

1− ν2

E
KIKII

(where the last equality results from equation (24) with θx = 0 and θy = 1). This other
integral is currently interpreted as tied to the “variation of energy arising from some
displacement of the crack tip perpendicularly to the direction of propagation”. This in-
terpretation is not basically incorrect, since Jy does appear in the expressions (29) of the
derivative and first-order variation of the energy, as a cofactor of θy in the local term at
the crack tip. But our results show that it is incomplete, insofar as a displacement of the
crack tip in the direction y orthogonal to the crack lips must necessarily be accompanied
by a motion of these lips in the same direction, which unavoidably generates an additional
variation of energy apparent in the integrals over the upper lip of expressions (29).

It would seem tempting to try and salvage the popular interpretation of Jy just mentioned,
by arguing that the values of the perturbation function ϕ or θ at the crack tip and on the
lips being largely independent, one may consider perturbations more and more localized
within the immediate vicinity of the tip; this would permit to minimize, and ultimately
totally erase, the contribution of the integrals over the upper lip in expressions (29). But
this temptation must be firmly resisted. Indeed expressions (29) provide the derivative
or first-order variation of energy for a perturbation function ϕ of the form (2), with η
some small parameter and θ some fixed, smooth function; confining more and more the
perturbation to the vicinity of the crack tip would mean ultimately considering a function
θ discontinuous at this tip, which would make no sense.

Again in the 2D case, Knowles and Sternberg (1972) defined line integrals providing the
variation of total potential energy generated by a global rotation and a uniform expansion
(homothetical transformation) of the crack. These integrals again appear as special cases
of the general expressions (29).
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4 Variation of displacement field due to arbitrary perturbation of a crack or
system of cracks

In addition to their intrinsic interest, expressions (29) offer the possibility to derive an
expression of the variation of the whole displacement field arising from some arbitrary
perturbation of the crack(s). The object of this Section is to do this by extending Rice
(1985, 1989)’s reformulation of Bueckner (1987)’s weight function theory, initially limited
to tangential crack perturbations, to arbitrary ones.

4.1 Preliminary considerations

The principle of Rice (1985, 1989)’s reasoning consists of (i) adding to the “primary”
loading, resulting from the boundary conditions (1), a “secondary” loading consisting
of a point force Pei exerted at some arbitrary point x in the body; and (ii) studying
the variations of the total potential energy resulting from simultaneous variations of the
position of the crack(s) (described by some perturbation function of the form (2)) and
this point force, the primary loading remaining fixed.

In fact, as remarked by Rice (1985), strict application of such a force would generate
an indeterminate/infinite displacement at the point x, which would raise difficulties and
ambiguities in the mathematical reasoning to follow. For this reason, in a first step the
force Pei will be uniformly spread over a spherical ball B(x; ϵ) of center x and small
radius ϵ, thus eliminating the occurrence of an infinite displacement at x; note that the
elementary work done by the force is then Pdūϵ

i(x), where ūϵ
i(x) is a short notation for

the average value ⟨ui⟩B(x;ϵ) of the component ui of the displacement over the ball B(x; ϵ).
In a second step, it will be harmless to let ϵ go to zero in the final formula obtained.

4.2 Detailed derivation

We envisage infinitesimal variations of both the parameter η characterizing the perturba-
tion of the crack(s) and the intensity P of the “point” force. We claim that for any such
variations, the differential of the total potential energy is given by

dW = dΦ + Pdūϵ
i(x) +

{∫
F

[
−G(s) θx(s) + 2

1− ν2

E
KI(s)KII(s) θy(s)

]
ds

}
dη

−
{∫

S+
[[w]](x′)θ(x′).n+(x′) dS ′

}
dη

(30)

where Φ is the opposite of the potential energy of the sole primary loading, defined by
equation (11)1. Indeed:
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• At constant P and variable η, equation (30) is equivalent to (29)2. (Note that the total
potential energy P of the body, including the contribution of the slightly spread point
force, is W − Φ− Pūϵ

i(x)).
• At constant η and variable P , it is a consequence of the principle of virtual work.

We now define the quantity

Ψ = Pūϵ
i(x)−W + Φ. (31)

Note that Ψ is simply, as just remarked, the opposite of the total potential energy P ; but
a different notation is used here because Ψ will be considered, somewhat unusually, as
a function of the force P instead of the displacement ūϵ

i(x). One may also remark that
according to equation (30), Ψ is the Legendre transform of the energy W −Φ with respect
to the variable ūϵ

i(x) at fixed η.

By equation (30), the differential of Ψ is given by

dΨ = Pdūϵ
i(x) + ūϵ

i(x)dP − dW + dΦ

= ūϵ
i(x)dP +

{∫
F

[
G(s) θx(s)− 2

1− ν2

E
KI(s)KII(s) θy(s)

]
ds

}
dη

+
{∫

S+
[[w]](x′)θ(x′).n+(x′) dS ′

}
dη.

It follows, Ψ being considered as a function of η and P , that


∂Ψ

∂P
= ūϵ

i(x)

∂Ψ

∂η
=
∫
F

[
G(s) θx(s)− 2

1− ν2

E
KI(s)KII(s) θy(s)

]
ds+

∫
S+

[[w]](x′)θ(x′).n+(x′) dS ′

(32)
and therefore, by the symmetry of second cross-derivatives, that

∂ūϵ
i(x)

∂η
=
∫
F

[
∂G(s)

∂P
θx(s)− 2

1− ν2

E

∂[KI(s)KII(s)]

∂P
θy(s)

]
ds

+
∫
S+

∂([[w]](x′))

∂P
θ(x′).n+(x′) dS ′.

(33)

When this equality is applied at the point (η, P ) = (0, 0), the derivative ∂
∂η

in the left-hand
side is taken in the absence of the point force Pei, which implies that the displacement
field is simply that generated by the primary loading, which is perfectly smooth at the
point x. Hence in the limit ϵ → 0+ the average value ūϵ

i(x) simply becomes identical to
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the local displacement ui(x) due to this primary loading, and equation (33) becomes

∂ui(x)

∂η
=
∫
F

[
∂G(s)

∂P
θx(s)− 2

1− ν2

E

∂[KI(s)KII(s)]

∂P
θy(s)

]
ds

+
∫
S+

∂([[w]](x′))

∂P
θ(x′).n+(x′) dS ′

(34)

where it is understood that the derivatives ∂
∂P

in the right-hand side are taken at the
point (η, P ) = (0, 0), and for a true (not spread) point load (ϵ = 0).

It remains to ascribe expressions to the derivatives ∂G(s)/∂P , ∂[KI(s)KII(s)]/∂P and
∂([[w]](x′))/∂P in equation (34). We first note that owing to linearity, the local SIFs in
the presence of the point load Pei are given by

Kα(s) = K0
α(s) + Ph(i)

α (x; s) (α = I, II, III) (35)

where K0
α(s) is the SIF of mode α at s ∈ F due to the sole primary loading, and h(i)

α (x; s)
- a Bueckner 3D weight function - that generated at the same point by application of
a unit point force in the direction ei at the point x ∈ Ω, with the boundary conditions
u = 0 on ∂Ωu and T = σ.n = 0 on ∂ΩT (and the crack faces). It then follows from Irwin
(1958)’s formula (25) that

∂G(s)

∂P
= 2

1− ν2

E

K0
I (s)h

(i)
I (x; s) +K0

II(s)h
(i)
II (x; s) +

K0
III(s)h

(i)
III(x; s)

1− ν

 . (36)

Similarly,
∂[KI(s)KII(s)]

∂P
= K0

I (s)h
(i)
II (x; s) +K0

II(s)h
(i)
I (x; s). (37)

Moreover, by the symmetries of the elastic stiffness and stress tensors, at any point x′ ∈ Ω,

∂w(x′)

∂P
= σ0(x′) :

∂ε(x′)

∂P
= σ0

jk(x
′)
∂uj,k(x

′)

∂P
(38)

where σ0 denotes the stress field generated by the sole primary loading. Furthermore the
components of the displacement field in the presence of the point load Pei are given by

uj(x
′) = u0

j(x
′) + PU

(i)
j (x;x′) (39)

where u0
j(x

′) and U
(i)
j (x;x′) are the j-th components of the displacement at x′ due to the

sole primary loading, and to a unit point force exerted in the direction ei at the point x
(with u = 0 on ∂Ωu and T = σ.n = 0 on ∂ΩT ), respectively. Combination of equations
(38) and (39) yields

∂w(x′)

∂P
= σ0

jk(x
′)
∂U

(i)
j (x;x′)

∂x′
k

. (40)
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In this equation and subsequent ones, spatial derivatives are noted explicitly in the form
“ ∂

∂x
”rather than with commas, in order to avoid ambiguities between derivatives with

respect to the coordinates of x and x′.

Equation (40) could be used to get an expression of the derivative ∂ui(x)/∂η looked for.
However, it will reveal more convenient in applications to deal with a point force applied
at the integration point x′ ∈ S+, rather than at the observation point x ∈ Ω of ∂ui/∂η.
This may easily be achieved by applying Betti’s theorem to the two loadings consisting
of unit point forces parallel to ei and exerted at x, and parallel to ej and exerted at x′

(with u = 0 on ∂Ωu and T = σ.n = 0 on ∂ΩT ). This yields the “symmetry relation”

U
(i)
j (x;x′) = U

(j)
i (x′;x) (41)

which permits to transform the expression (40) of ∂w(x′)/∂P into

∂w(x′)

∂P
= σ0

jk(x
′)
∂U

(j)
i (x′;x)

∂x′
k

. (42)

Insertion of expressions (36), (37) and (42) into equation (34) yields the final expression
of the derivative of the displacement field with respect to the perturbation parameter η,
or equivalently of its first-order variation:



∂ui(x)

∂η
= 2

1− ν2

E

∫
F

{K0
I (s)h

(i)
I (x; s) +K0

II(s)h
(i)
II (x; s) +

K0
III(s)h

(i)
III(x; s)

1− ν

 θx(s)
−
[
K0

I (s)h
(i)
II (x; s) +K0

II(s)h
(i)
I (x; s)

]
θy(s)

}
ds

+
∫
S+

[[
σ0
jk(x

′)
∂U

(j)
i (x′;x)

∂x′
k

]]
θ(x′).n+(x′) dS ′

δui(x) = 2
1− ν2

E

∫
F

{K0
I (s)h

(i)
I (x; s) +K0

II(s)h
(i)
II (x; s) +

K0
III(s)h

(i)
III(x; s)

1− ν

ϕx(s)

−
[
K0

I (s)h
(i)
II (x; s) +K0

II(s)h
(i)
I (x; s)

]
ϕy(s)

}
ds

+
∫
S+

[[
σ0
jk(x

′)
∂U

(j)
i (x′;x)

∂x′
k

]]
ϕ(x′).n+(x′) dS ′.

(43)
Equation (43) constitutes the output of the extended Bueckner-Rice theory developed.
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4.3 Comments

For a purely tangential perturbation (θy = 0 on F , θ.n = 0 on S), the expression (43)1
of ∂ui(x)/∂η or (43)2 of δui(x) reduces to that part of the integral over the crack front
F involving the tangential component θx of the perturbation function. The formula then
becomes exactly identical to that derived by Rice (1985, 1989) for crack perturbations
of this kind. Introduction of a component of the perturbation function orthogonal to
the crack surface makes the formula notably more complex, by generating not only an
additional term proportional to θy in the integral over the crack front F , but an extra
integral over the entire crack surface S. (Just like for the variation of the total potential
energy, this was to be expected since an arbitrary perturbation of the crack implies a
motion of all points of its surface, not only of its front).

In principle, equation (43) provides the full first-order solution to the elasticity problem
considered on the perturbed cracked geometry, since it gives the perturbed displacement
at all points of the body. (Note however that equation (43) may be put to use only pro-
vided that one knows the elastic solution for a point force applied anywhere in the original
unperturbed geometry - which of course depends upon this entire geometry and the type
of boundary conditions). In practice, however, one is generally mainly interested in the
asymptotic behaviour of the mechanical fields in the vicinity of the perturbed crack front,
and especially in the distribution of the SIFs along this front. Such features of the per-
turbed solution may be obtained from a detailed study of the first-order variation δui(x)
of the displacement, in the limit where its point of observation x gets close to some arbi-
trary point on the crack front. This was precisely what Rice and coworkers and followers
did for in-plane perturbations of planar cracks, in a number of interesting geometric and
mechanical configurations (Gao and Rice, 1986, 1987a,b; Gao, 1988; Leblond et al., 1996;
Lazarus and Leblond, 2002a,b; Legrand et al., 2010b; Pindra et al., 2010b; Leblond et al.,
2012; Vasoya et al., 2013; Leblond and Lazarus, 2015; Vasoya et al., 2016). (Note again,
however, that this was possible only because in the cases considered, one knew the distri-
butions of the SIFs - if not the full elastic solution - due to application of a point force on
the unperturbed geometry, that is Bueckner (1987)’s weight functions for the geometry
and boundary conditions considered). This is also what equation (43) should now permit
to do for more general crack perturbations including an out-of-plane component.

What is remarkable in this “special” method of solution - in the terminology of the
Introduction - based on the extended Bueckner-Rice theory, is that it permits to totally
circumvent the search and definition of a full method of solution for the elasticity problem
posed on the perturbed cracked geometry. This is all the more advantageous since there
is no systematic method of solution for 3D elasticity problems, and an approach devised
for some specific situation will most often not apply to others; for instance Movchan et al.
(1998)’s “general” method of solution for the out-of-plane perturbation of a semi-infinite
crack in an infinite body made a heavy use of Fourier transforms, adapted to infinite

23



geometries only. The special method of solution proposed here reduces the problem to
the purely mathematical, perhaps cumbersome and heavy, but basically straightforward
task of finding the limits of certain integrals for certain limiting values of their defining
parameters.

In a forthcoming paper, we shall illustrate the simplicity and power of the method by
applying it to the prototype problem of the out-of-plane perturbation of a semi-infinite
crack in an infinite body. (A foretaste of the treatment is given in the next Subsection for
a simple special loading). The results will be compared to those of Movchan et al. (1998)
derived from their general method. It may be appropriate to make here, in anticipation, a
few remarks on the solution. According to Movchan et al. (1998)’s results, the expressions
of the SIFs at some observation point on the perturbed front involve three kinds of terms:

• purely local terms involving only the values and spatial derivatives of the mechanical
fields and the perturbation function at the observation point considered;

• semi-local terms in the form of integrals over the crack front;
• fully non-local terms in the form of integrals over the entire crack surface.

It is easy to foresee how results derived from equation (43)2 will fit into this scheme.
Indeed, letting the point of observation of the displacement in this equation go to some
point on the crack front, one will obviously get semi-local terms arising from the integral
over F , and non-local terms arising from the integral over S+. Local terms, on the other
hand, will have several, more subtle origins. 7

Up to now, the infinite body containing a semi-infinite crack is the only configuration
for which the out-of-plane crack perturbation problem has been solved. But the method
proposed permits to envisage other cracked geometries of practical interest - provided that
the solution for the unperturbed geometry subjected to a point force loading is known.
A typical example is the penny-shaped crack in an infinite body, under general loading
conditions. This configuration is similar, to a large extent, 8 to that used in Sommer
(1969)’s classical experimental study of the well-known out-of-plane instability of the
crack in mode I+III; and it is hoped that a theoretical analysis of the problem based on
the method proposed here will be useful to improve the interpretation of his observations.

4.4 Illustration of the method in a simple case

To provide the reader with a foretaste of the method of solution proposed, we shall consider
here Movchan et al. (1998)’s problem of the out-of-plane perturbation of a semi-infinite

7 It suffices to note here, in anticipation, that all local terms will be of universal character,
that is identical for all conceivable cracked geometries, in contrast to the semi-local and fully
non-local terms.
8 The difference residing in the finite dimensions of the specimens in the experiments.
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crack in an infinite body, for a special type of loading allowing for an appealingly simple
treatment. The unperturbed geometry is depicted schematically in Fig. 6; the loading is
special in that it consists only of uniform far stresses σ∞

xx, σ
∞
zz , σ

∞
xz which do not generate

any SIFs on this geometry, but only non-singular stresses T 0
xx = σ∞

xx, T
0
zz = σ∞

zz , T
0
xz =

σ∞
xz uniform along the crack front. (This type of situation may correspond to the stable

propagation of shear ruptures along frictional interfaces, governed by Coulomb’s friction
law: in such a case K0

I = 0 as the crack is loaded in compression, and K0
II = K0

III = 0 as
required by energy balance (Sáez et al., 2022)).

Fig. 6. A semi-infinite crack in an infinite body, loaded through far stresses generating only
non-singular stresses.

In this situation, the expression (43)2 of the variation of the displacement field simply
becomes (since the initial stresses are merely identical everywhere to the non-singular
stresses):

δui(x) =
∫
S+∪S−

T 0
jk

∂U
(j)
i (x′;x)

∂x′
k

ϕ(x′).n(x′) dS ′

where the upper S+ and lower S− crack surfaces over which one integrates have been
distinguished again for clarity, and the indices j and k only take the values x and z. Now
for any point x of coordinates (x, y, z), let xs denote the symmetric point with respect to
the unperturbed crack surface, of coordinates (x,−y, z). Substracting from the preceding
equation the same equation but taken at this symmetric point, one gets

δvi(x) =
∫
S+∪S−

T 0
jk

∂V
(j)
i (x′;x)

∂x′
k

ϕ(x′).n(x′) dS ′

where

δvi(x) = δui(x)− δui(x
s) and V

(j)
i (x′;x) = U

(j)
i (x′;x)− U

(j)
i (x′;xs).

A double passage to the limit is now in order:
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• First we apply the preceding result to some point x̄ located above the crack surface
S+, and let this point go to the point x+ of this surface (the symmetric point x̄s

goes to the point x− of the surface S−). The quantities δvi(x̄) and V
(j)
i (x′; x̄) go to

the discontinuities (with respect to x) δvi(x) = δui(x
+) − δui(x

−) and V
(j)
i (x′;x) =

U
(j)
i (x′;x+)− U

(j)
i (x′;x−).

• Second, we renote x̄ the point x ∈ S in the result just obtained, and then let x̄ go to
some point of the crack front F , again noted x. We replace the discontinuities δvi(x̄)
by their asymptotic expressions in terms of the local perturbed SIFs δKα(x), and the

discontinuities V
(j)
i (x′; x̄) by their asymptotic expressions in the terms of the crack-

face weight functions k(j)
α (x′;x) - k(j)

α (x′;x) is the SIF of mode α at the point x ∈ F
generated through application of a unit point force in the direction ej at the point
x′ ∈ S+ ∪ S−.

This procedure yields the expressions of the local perturbed SIFs δKα(x):

δKα(x) =
∫
S+∪S−

T 0
jk

∂k(j)
α (x′;x)

∂x′
k

ϕ(x′).n(x′) dS ′ =
∫
S+

T 0
jk

∂
[[
k(j)
α (x′;x)

]]
∂x′

k

ϕy(x
′) dS ′.

In the last expression the contributions of the crack surfaces S+ and S− have been grouped
again, using the notation [[ . ]] for a discontinuity with respect to x′ - note that

[[
k(j)
α (x′;x)

]]
thus represents the α-th SIF at the point x ∈ F generated by a pair of opposite unit point
forces in the direction ej applied at the points x′+ ∈ S+ and x′− ∈ S−.

In a final step, we use the expressions of the crack-face weight functions
[[
k(j)
α (x′;x)

]]
for

a semi-infinite crack in an infinite body, provided for instance in (Gao and Rice, 1986);
the final results read, after some integrations by parts aimed at simplifying expressions:

δKI(x, z) = 0

δKII(x, z) = −
√
2

π3/2

∫ x

−∞
dx′

∫ +∞

−∞

√
x− x′

(x− x′)2 + (z − z′)2
×{[

1 +
2ν

2− ν

(x− x′)2 − (z − z′)2

(x− x′)2 + (z − z′)2

] [
T 0
xx

∂ϕy

∂x′ (x
′, z′) + T 0

xz

∂ϕy

∂z′
(x′, z′)

]

+
4ν

2− ν

(x− x′) (z − z′)

(x− x′)2 + (z − z′)2

[
T 0
xz

∂ϕy

∂x′ (x
′, z′) + T 0

zz

∂ϕy

∂z′
(x′, z′)

]}
dz′

δKIII(x, z) = −
√
2

π3/2

∫ x

−∞
dx′

∫ +∞

−∞

√
x− x′

(x− x′)2 + (z − z′)2
×{

4ν

2− ν

(x− x′) (z − z′)

(x− x′)2 + (z − z′)2

[
T 0
xx

∂ϕy

∂x′ (x
′, z′) + T 0

xz

∂ϕy

∂z′
(x′, z′)

]

+

[
1− 2ν

2− ν

(x− x′)2 − (z − z′)2

(x− x′)2 + (z − z′)2

] [
T 0
xz

∂ϕy

∂x′ (x
′, z′) + T 0

zz

∂ϕy

∂z′
(x′, z′)

]}
dz′.

26



In these expressions x denotes the position of the unperturbed crack front within the
crack plane, and z the position of the point of observation of the SIFs on this front. These
results coincide (in a more explicit form) with those obtained by Movchan et al. (1998)
by their general method of solution, and confirmed by Lebihain et al. (2023) by a third
method (differing from that used here).

Consider for instance, following Movchan et al. (1998), an out-of-plane crack perturbation
independent of x′ and sinusoidal in z′ (so that the perturbed crack surface assumes the
shape of a corrugated sheet),

ϕy(x
′, z′) = A cos(kz′)

where A and k are parameters, with k > 0. Then calculation of the integrals yields

δKI(x, z) = 0

δKII(x, z) = A

√
2k

2− ν

[
2T 0

xz sin(kz)− νT 0
zz cos(kz)

]
δKIII(x, z) = A

√
2k

2− ν

[
−νT 0

xz cos(kz) + 2(1− ν)T 0
zz sin(kz)

]
.

Again, these results coincide with those of Movchan et al. (1998), as corrected for some
errors of sign by Lebihain et al. (2023).

5 Concluding summary

Bueckner-Rice’s classical theory for 3D cracked elastic bodies, which was developed by
Rice (1985, 1989) using a re-formulation of Bueckner (1987)’s theory of 3D weight func-
tions, provided a general expression of the first-order variation of the displacement field
arising from some small, but otherwise arbitrary tangential perturbation of the crack or
cracks considered. Its major output lied in the possibility to evaluate the perturbed SIFs
along the crack front from inspection of the asymptotic form of the perturbed displace-
ment near this front; this paved the way to applications to problems of crack propagation
in various configurations of practical interest.

The object of this paper was to extend the theory to general perturbations of the crack(s)
including a component perpendicular to the crack surface. The essential aim was to enlarge
the possibility of evaluating the distribution of the SIFs along the perturbed front from the
asymptotic behaviour of the perturbed displacement, to small but otherwise completely
arbitrary perturbations; and thus offer the perspective, in the future, of a much simpler
and more direct treatment of out-of-plane crack perturbation problems than before.
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The first step, expounded in Section 2, consisted of deriving a general formula for the
first-order variation of the total potential energy of a 3D elastic body, resulting from some
arbitrary perturbation of an embedded ensemble of geometrically regular holes. The mo-
tivation for dealing with such geometric objects, rather than cracks directly, was to avoid
ambiguities tied to the momentary occurrence of divergent integrals in the mathematical
analysis. The treatment, although new, was inspired from those of deLorenzi (1982) and
Destuynder et al. (1983) for tangential perturbations of cracks, in that it adopted their
strategy of performing a Lagrangian calculation of the energy in the perturbed configu-
ration. The final result obtained stood as an extension of that of Eshelby (1951) for a
translatory (rigid-body) motion of an ensemble of defects, to general perturbations.

Section 3 was devoted to the second step wherein the same problem was considered, but
for embedded cracks instead of geometrically regular holes. In order to avoid divergent
integrals which would result from repetition of the entire reasoning of Section 2 for cracks,
these geometrically singular objects were dealt with by applying the final result of this
Section to elongated voids, and letting their thickness go to zero. The formula obtained for
the variation of energy was identical to that derived by deLorenzi (1982) and Destuynder
et al. (1983), except for the extension of its domain of validity, initially limited to tan-
gential crack perturbations, to completely arbitrary ones. The volume integral found was
transformed through some integration by parts into a sum of integrals over the crack front
and surface, better fit to theoretical analyses; careful attention was paid in the derivation
to the geometric singularity at the crack front. Comments on the connections with the
works of Rice (1968) and Knowles and Sternberg (1972) devoted to special cracked ge-
ometries and perturbations were finally provided, with special emphasis on the somewhat
controversial mechanical interpretation of Rice’s second integral, Jy or J2.

In a third and final step, in Section 4, we drew inspiration from the works of Rice (1985,
1989) to show how the first-order variation of the entire displacement field may be deduced
from that of the total energy. In spite of the greater complexity of the expression of the
variation of energy than in the previous works, due to consideration of general crack
perturbations instead of purely tangential ones, Rice (1985, 1989)’s arguments based on
a Legendre transform of the energy and Bueckner (1987)’s theory of 3D weight functions,
could be adapted without any major additional difficulty. It led to a more complex final
expression of the local variation of displacement than that found by Rice (1985, 1989),
including not only a complementary term in the integral over the crack front, but also an
extra integral over the entire crack surface.

Forthcoming papers will be devoted to the application of the extended Bueckner-Rice
theory thus defined to the evaluation of the distribution of the SIFs along the front of
slightly perturbed cracks, in various configurations of practical interest. We shall consider
first the simplest case of an initially plane, semi-infinite crack in an infinite body, for
which a solution of the out-of-plane perturbation problem is available from the work of
Movchan et al. (1998). The aim here will be to confirm - and extend somewhat - the results
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of Movchan et al. (1998), and illustrate how use of the extended Bueckner-Rice theory can
lead to a simpler and more versatile treatment of such problems than general methods of
solution of elasticity problems. In a second step, we shall envisage more complex cracked
configurations for which no solution of the out-of-plane perturbation problem is known
at present - first of all that of a penny-shaped crack embedded in an infinite body, of
special interest in view of Sommer (1969)’s seminal experimental study of the out-of-
plane instability of a mode I+III crack in a very similar geometric configuration.

A final additional remark pertains to the potential use of Bueckner-Rice’s theory, in both
its original and extended versions, for applications other than the evaluation of the SIFs
along the perturbed crack front. The expressions of the variation of the full displacement
field, derived in Rice (1985, 1989)’s works and in a more general context here, obviously
provide much more than the distribution of the perturbed SIFs. Little use has however
been made of this displacement field up to now - notable exceptions including the works
of Gao (1992) and Leblond and Lazarus (2015) on the distribution of the non-singular
stresses along the front of a crack slightly perturbed within its plane. But much more
could be extracted from the variation of the displacement field; the perturbation of the
displacement discontinuity across the crack surface, for instance, could be of major interest
in crack studies using cohesive zone models - see for instance the very recent work of
Lebihain et al. (2022).

Dedication

This paper is dedicated to our dear friend and colleague, Professor James R. Rice of
Harvard University, as a token of our deep affection and admiration.
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A Appendix - Elements for the calculation of the integral
∫
∂D(s;ϵ) Pjk θk nj dℓ in

the limit ϵ → 0+

In this Appendix, we provide useful indications on how to calculate the limit of the
integral

∫
∂D(s;ϵ) Pjk θk nj dℓ for ϵ → 0+, without insisting on unnecessary details. We start

by providing a number of required formulae.

• Asymptotic mechanical fields in cylindrical coordinates and components: 9

* Stresses:



σrr =
KI

4
√
2πr

(
5 cos

θ

2
− cos

3θ

2

)
+

KII

4
√
2πr

(
−5 sin

θ

2
+ 3 sin

3θ

2

)

σθθ =
KI

4
√
2πr

(
3 cos

θ

2
+ cos

3θ

2

)
+

KII

4
√
2πr

(
−3 sin

θ

2
− 3 sin

3θ

2

)

σzz = ν(σrr + σθθ) = 2ν
KI√
2πr

cos
θ

2
− 2ν

KII√
2πr

sin
θ

2

σrθ =
KI

4
√
2πr

(
sin

θ

2
+ sin

3θ

2

)
+

KII

4
√
2πr

(
cos

θ

2
+ 3 cos

3θ

2

)

σrz =
KIII√
2πr

sin
θ

2

σθz =
KIII√
2πr

cos
θ

2
.

(A.1)

* Displacements:



ur =
1 + ν

2E
KI

√
r

2π

[
(5− 8ν) cos

θ

2
− cos

3θ

2

]

+
1 + ν

2E
KII

√
r

2π

[
(−5 + 8ν) sin

θ

2
+ 3 sin

3θ

2

]

uθ =
1 + ν

2E
KI

√
r

2π

[
(−7 + 8ν) sin

θ

2
+ sin

3θ

2

]

+
1 + ν

2E
KII

√
r

2π

[
(−7 + 8ν) cos

θ

2
+ 3 cos

3θ

2

]

uz =
4(1 + ν)

E
KIII

√
r

2π
sin

θ

2
.

(A.2)

9 Asymptotic expressions of the stresses and displacements are classically provided using polar
coordinates but Cartesian components; however cylindrical components are much more adapted
to the calculation in question here.
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• Cylindrical components of the gradient of displacement:
(∇u)rr = ur,r

(∇u)θr = uθ,r

(∇u)zr = uz,r

;


(∇u)rθ = 1

r
(ur,θ − uθ)

(∇u)θθ = 1
r
(uθ,θ + ur)

(∇u)zθ = 1
r
uz,θ.

(A.3)

Components (∇u)αz are not provided here because they are of order O(r1/2), and
therefore negligible with respect to components (∇u)αr and (∇u)αθ which are of or-
der O(r−1/2).

• Expression of the quantity Pjk θk nj over ∂D(s; ϵ):
On the boundary ∂D(s; ϵ) of the circular disk D(s; ϵ), the unit outward normal vector

n coindices with the unit radial vector er, and θ = θxex+θyey = (θx cos θ+θy sin θ) er+
(−θx sin θ+ θy cos θ) eθ. If follows, using the definition (18) of Eshelby’s tensor P, that

Pjk θk nj = wθ.n− σij nj ui,kθk = wθ.er − Ti ui,k θk (where T = σ.er)

= w(θx cos θ + θy sin θ)−T.∇u.θ,
(A.4)

with

w =
1

2
[σrr(∇u)rr + σθθ(∇u)θθ + σrθ(∇u)rθ + σrθ(∇u)θr + σrz(∇u)zr + σθz(∇u)zθ]

(A.5)
and - Greek indices referring to cylindrical components:

T.∇u.θ = Tα(∇u)αβ θβ

= [σrr(∇u)rr + σrθ(∇u)θr + σrz(∇u)zr] (θx cos θ + θy sin θ)

+ [σrr(∇u)rθ + σrθ(∇u)θθ + σrz(∇u)zθ] (−θx sin θ + θy cos θ).

(A.6)

Combination of equations (A.4), (A.5) and (A.6) yields

Pjk θk nj = θx
{
1
2
cos θ [−σrr(∇u)rr + σθθ(∇u)θθ + σrθ(∇u)rθ − σrθ(∇u)θr

−σrz(∇u)zr + σθz(∇u)zθ] + sin θ [σrr(∇u)rθ + σrθ(∇u)θθ + σrz(∇u)zθ]}

+θy
{
1
2
sin θ [−σrr(∇u)rr + σθθ(∇u)θθ + σrθ(∇u)rθ − σrθ(∇u)θr

−σrz(∇u)zr + σθz(∇u)zθ]− cos θ [σrr(∇u)rθ + σrθ(∇u)θθ + σrz(∇u)zθ]} .
(A.7)

Equations (A.1), (A.2), (A.3) and (A.7) permit to calculate the integral
∫
∂D(s;ϵ) Pjk θk nj dℓ

in the limit ϵ → 0+. The calculation is heavy but a number of useful remarks, listed below,
permit to simplify it to some extent.
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• About the term proportional to θx.
* Apply a symmetry with respect to the plane (sxy) to both the geometry and the

loading. In this transformation the quantitiesKI ,KII ,KIII , θx becomeKI ,KII , −KIII ,
θx respectively. Furthermore the variation of total energy obviously does not change.
It follows that the terms in KIKIIIθx and KIIKIIIθx in the integral

∫
∂D(s;ϵ) Pjk θk nj dℓ

must be zero.
* Now apply a symmetry with respect to the plane (sxz). The quantities KI , KII ,

KIII , θx become KI , −KII , −KIII , θx and the variation of energy still does not change;
hence the term in KIKIIθx (and again that in KIKIIIθx) in the integral must be zero.
* Hence the term proportional to θx in the integral can only include contributions

in K2
I θx, K

2
IIθx and K2

IIIθx. Furthermore accounting for the nonzero stress components
in each mode, one sees that to calculate the terms in K2

I θx and K2
IIθx, it suffices to

consider, within the right-hand side of equation (A.7), the expression

θx
{1
2
cos θ [−σrr(∇u)rr + σθθ(∇u)θθ + σrθ(∇u)rθ − σrθ(∇u)θr]

+ sin θ [σrr(∇u)rθ + σrθ(∇u)θθ]
}
,

whereas for the term in K2
IIIθx, the expression

θx
{1
2
cos θ [−σrz(∇u)zr + σθz(∇u)zθ] + sin θσrz(∇u)zθ

}
is sufficient.

• About the term proportional to θy.
* Consideration of a symmetry with respect to the plane (sxy), in which the quantities

KI , KII , KIII , θy become KI , KII , −KIII , θy now yields that the terms in KIKIIIθy
and KIIKIIIθy in the integral

∫
∂D(s;ϵ) Pjk θk nj dℓ must be zero.

* Similarly consideration of a symmetry with respect to the plane (sxz), in which KI ,
KII , KIII , θy become KI , −KII , −KIII , −θy, reveals that the terms in K2

I θy, K
2
IIθy,

K2
IIIθy (and again that in KIIKIIIθy) must also be zero.
* Hence the term proportional to θy in the integral can only include a contribution in

KIKIIθy. Accounting for the nonzero stress components in modes I and II, one sees that
to calculate this contribution, it suffices to consider in equation (A.7) the expression

θy
{1
2
sin θ [−σrr(∇u)rr + σθθ(∇u)θθ + σrθ(∇u)rθ − σrθ(∇u)θr]

− cos θ [σrr(∇u)rθ + σrθ(∇u)θθ]
}
.

• Final reduction of the number of terms.
The problem is reduced to calculating the integral, from θ = −π to π, of expressions

of the form σαβ(∇u)γδ × (cos θ or sin θ). All components σαβ and (∇u)γδ are sums
of terms in cos(θ/2), sin(θ/2), cos(3θ/2) and sin(3θ/2). Using classical trigonometric
formulae, each product σαβ(∇u)γδ may be expressed as a sum of terms in cos(nθ) and
sin(nθ) where n is an integer. But, among these terms, one need only consider those
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in cos θ, if the product is to be multiplied by cos θ prior to integration, or in sin θ, if
it is to be multiplied by sin θ; indeed all other terms yield a zero contribution in the
integral. This greatly reduces the amount of calculation required.

B Appendix - Convergence of the integral
∫
S+ [[w]](x)θ(x).n+(x) dS at the crack

front

The aim of this Appendix is to show that the principal term of the expansion of the
discontinuity [[w]] of the density of elastic energy w on the crack surface, proportional
to the inverse of the distance to the crack front, is zero, resulting in convergence of the
integral

∫
S+ [[w]](x)θ(x).n+(x) dS.

The principal term of the expansion of [[w]] arises from the singular terms in the expansion
of the stress components, involving the SIFs; hence it suffices to consider only these
singular terms, given by equations (A.1).

On the crack faces, because of the boundary conditions (in local cylindrical coordinates)
σθr = σθθ = σθz = 0, there are only three nonzero stress components, σrr, σzz and σrz.
But σzz is tied to σrr through the plane strain condition 10 σzz = ν(σrr + σθθ) = νσrr;
hence there are in fact only two independent nonzero stress components, σrr and σrz. The
density of elastic energy w is a weighted sum of the squares of these two components.

Now for the singular terms of the stress expansion, see equations (A.1):

• σrr is nonzero only in mode II, and then takes opposite values on the two faces of the
crack;

• σrz is nonzero only in mode III, and similarly changes sign from one face to the other.

Thus, if one considers only the principal term of the expansion of w, this quantity takes
identical values on the two faces of the crack so that the corresponding discontinuity [[w]]
is zero, as announced.

10 This seemingly “purely 2D” condition applies even in 3D to the singular terms of the stress
expansion; see Leblond and Torlai (1992).
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