
HAL Id: hal-03899611
https://enpc.hal.science/hal-03899611

Preprint submitted on 14 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About the structural stability of Maxwell fluids:
convergence toward elastodynamics

Sébastien Boyaval

To cite this version:
Sébastien Boyaval. About the structural stability of Maxwell fluids: convergence toward elastody-
namics. 2022. �hal-03899611�

https://enpc.hal.science/hal-03899611
https://hal.archives-ouvertes.fr


About the structural stability of Maxwell fluids:
convergence toward elastodynamics

Sébastien Boyaval

Abstract Maxwell’s models for viscoelastic flows are famous for their potential
to unify elastic motions of solids with viscous motions of liquids in the continuum
mechanics perspective. But rigorous proofs are lacking. The present note is a con-
tribution toward well-defined viscoelastic flows proved to encompass both solid and
(liquid) fluid regimes. In a first part, we consider the structural stability of particular

viscoelastic flows: 1D shear waves solutions to damped wave equations. We show the
convergence toward purely elastic 1D shear waves solutions to standard wave equa-
tions, as the relaxation time _ and the viscosity ¤̀ grow unboundedly _ ≡ 1

�
¤̀ → ∞

in Maxwell’s constitutive equation

_
^

3 +3 = 2 ¤̀J (u)

for the stress 3 of viscoelastic fluids with velocity u. In a second part, we consider the
structural stability of general multi-dimensional viscoelastic flows. To that aim, we
embed Maxwell’s constitutive equation in a symmetric-hyperbolic system of PDEs
which we proposed in our previous publication [ESAIM:M2AN 55 (2021) 807-831]
so as to define multi-dimensional viscoelastic flows unequivocally.Next, we show the
continuous dependence of multi-dimensional viscoelastic flows on _ ≡ 1

�
¤̀ using the

relative-entropy tool developped for symmetric-hyperbolic systems after C. M. Dafer-
mos. It implies convergence of the viscoelastic flows defined in [ESAIM:M2AN 55
(2021) 807-831] toward compressible neo-Hookean elastodynamics when _ → ∞.
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2 Structural stability of Maxwell fluids toward elastodynamics

1 Maxwell fluids as links between solids and Newtonian fluids

We consider the viscoelastic motions of a fluid body occupying on times C ∈ [0, ))
a subset Ω ⊂ R3 of the Euclidean ambiant space equipped with a Cartesian system
of coordinates {G8 , 8 = 1 . . . 3}.

Denoting u = D8e8 the velocity field of the fluid, d the mass density (a scalar
field), f a bulk force field, we assume the following mass and momentum balances

mCd + div (du) = 0 (1)

mC (du) + div (du ⊗ u − 2) = d f (2)

using a model of Maxwell type [9] for the extra-stress 3 in Cauchy 2-tensor 2 =

−?% + 3, ?(d) being a pressure in the fluid and % the identity 2-tensor, i.e.:

_
^

3 +3 = 2 ¤̀J (u) . (3)

In Maxwell’s constitutive equation (3), ¤̀ > 0 is a viscosity parameter, _ > 0 is a

relaxation-time parameter, and
^

3 is an objective time-rate operator see e.g. [12].

It is widely admitted that Maxwell fluid models (i.e. those using (3)) can link fluids

where 3
_→0−−−→ 2 ¤̀J (u) in the Newtonian limit, denoting J (u) =

1
2

(

∇u + ∇u)
)

as usual, with solids governed by elastodynamics when _ ≡ 1
�
¤̀ → ∞. Besides,

in applications, one often considers the Upper-Convected Maxwell (UCM) model,

with objective time-rate
^

3 in (3) defined by the Upper-Convected (UC) derivative

▽

3:= mC3 + (u · ∇)3 − (∇u)3 − 3(∇u)) (4)

since the formal limit of (3) when _ ≡ 1
�
¤̀ → ∞ i.e.

▽

3= 2�J(u) is compatible

with Hookean elastodynamics, i.e. the case when 3 =
¤̀
_

(

LL) − O
)

and L is the
deformation gradient associated with u, governed by

(mC + u · ∇)L = (∇u)L . (5)

But we are not aware of a rigorous proof of such a structural stability result
for Maxwell fluid models that would link general multi-dimensional motions of
(Hookean) solids with Newtonian fluids.

One-dimensional (1D) shear waves can be defined unequivocally with (1)–(2)–

(3). The Newtonian fluid limit 3
_→0−−−→ 2 ¤̀J(u) of such 1D shear waves is established

in [10] as a consequence of the structural stability of linear UCM models. But we
are not aware of a rigorous proof of the elastodynamics limit _ ≡ 1

�
¤̀ → ∞, though.

Multi-dimensional time-continuous motions cannot be defined unequivocally
with (1)–(2)–(3) in general, even on a small time interval using smooth initial
conditions on the whole space R3, because the quasilinear system (1)–(2)–(3) may
not be hyperbolic. So the question of structural stability cannot be properly addressed
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for general multi-dimensional viscoeastic flows as such with (1)–(2)–(3), i.e. as one
usually “defines” viscoeastic flows of Maxwell type in the literature.

In Sec. 3, we extend the study of [10] (for linear Maxwell equations) to the
convergence toward solid elastodynamics when _ ≡ 1

�
¤̀ → ∞, specifically for the

1D shear waves solutions to (1)–(2)–(3) which are recalled in Sec. 2. Such specific
studies are a first step toward the structural stability of more general (nonlinear)
models of Maxwell type, and to a fully rigorous link between solid and fluid regimes
using Maxwell models.

Next, to address the structural stability of physically-relevant (nonlinear) Maxwell
models, a further step is to first unequivocally define multi-dimensional motions
through solutions to (1)–(2)–(3). We propose here to build upon our former work [2],
thus to consider the structural stability of unequivocal viscoelastic flows defined as
solutions to a quasilinear system of PDEs with a symmetric-hyperbolic reformulation
that implies (3).

In a nutshell, our reformulation of Maxwell flows interprets the extra-stress as
3 = d� (LGL) −O), with a view to extending to Maxwell fluids with finite parameters

¤̀, _ ≡ 1
�
¤̀ > 0 an elastodynamics system where L is the deformation gradient

associated with u and d. That is the reason why our reformulation [2] requires

mC (dL) − ∇ ×
(

dL) × u
)

= 0 (6)

like in elastodynamics, along with the famous involution termed Piola’s identity

div(dL) ) = 0 . (7)

Notice that (6)–(7)–(1) together imply (5). Moreover, we assume

_(mC + u · ∇)G + G = L−1L−) (8)

for the symmetric positive definite 2-tensor G. Then, a constitutive equation of
Maxwell-type (3) holds (for smooth compressible flows [1]), and solutions to the
system (1)–(2)–(6)–(7)–(8) without source term, where 3 = d� (LGL) − O) and
? = −md−140 with 40 convex in d−1, additionally satisfy a conservation law for a
scalar quantity that is convex in a conserved variable U(u, L, d, G) (see [2]):

[ :=
d

2
|u |2 + d40 + d

�

2
LG : L . (9)

That is, using notations of [6, Chap. V] and denoting b =
1
_

> 0, there exists a
variable change in a convex domain U ∈ O such that our system rewrites 1

mtU + mUGU (U) = bΠ(U) (10)

with smooth vector fluxes GU, and smooth fluxes QU (U) exist so that [(U) satisfies

1 Involutions are keys here, we refer to the short summary [4] for instance.
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mt[(U) + mUQU (U) = bDU[(U) · Π(U) . (11)

Consequently, our system (1)–(2)–(6)–(7)–(8), equiv. (10) after a variable change,
admits a symmetric-hyperbolic formulation, see [2], and one can define unequivo-
cally time-continuous flows of Maxwell fluids on small time intervals given general
smooth initial conditions. So the question of structural stability can be consid-
ered for our reformulation of Maxwell fluids, in particulat using standard results for
symmetric-hyperbolic systems [6]. Note to that aim that, in the hyperbolicity domain
O ∋ U1,U2, the source term Π(U) is such that

|Πm(U1) − Πm(U2) | ≤ Cm‖U1 − U2‖2 (12)

for each component m = 1 . . . 1 + d + d2 + d(d+1)
2 of the system (10).

In Sec. 4, we show the continuous dependence on _ ≡ 1
�
¤̀, of general multi-

dimensional viscoelastic flows defined unequivocally following [2], using the
relative-entropy tool developped for symmetric-hyperbolic systems after C. M. Dafer-
mos. It implies the following structural stability result: convergence of our viscoelas-
tic flows toward compressible neo-Hookean elastodynamics when _ ≡ 1

�
¤̀ → ∞.

2 Setting of the problem for 1D viscoelastic shear waves

A shear wave u = D(C, H)eG , 3 = gGH (C, H)eG ⊗ eH solution to (1)–(2)–(3) on {C ≥ 0,
G2 ≡ H ∈ Ω} := (Hmin, Hmax) ⊂ R, can be built unequivocally given initial conditions

D(C = 0, H) = D0(H) gGH (C = 0, H) = g0 (H)

plus boundary conditions at H ∈ mΩ when necessary (when Hmin, Hmax finite), as
briefly recalled below. Indeed, (1)–(2)–(3) reduces to:

mCD = mHg
GH + 5 G , (13)

_mCg
GH + gGH = ¤̀mHD , (14)

when one assumes d constant (this is natural for the 1D motion along eG ≡ eG1 of a
2D body with a Lagrangian description using material coordinates 0 = G − - (C, H),
1 = H ≡ G2 in a Cartesian frame, such that D ≡ mC- , gGH ≡ mH- , as it is the case for
our reformulation of Maxwell fluids in [2]).

When Ω ≡ {H > 0} for instance, the Stokes first problem for (13–14), with
D0 ≡ 0 ≡ g0, D(C, H = 0) = *� (C) (* ∈ R+∗ , � denoting Heaviside’s function), can
be solved analytically by particular 1D shear waves [11]. Next, for those particular
1D shear waves, the Newtonian fluid limit _ → 0 can be established directly using
an analytical expression of the solution, see e.g. [8, (4.3)–(4.4)].

However, the same structural stability result can be established much more gen-
erally, i.e. for a class of well-defined solutions, by an energy method, i.e. an analysis
using energy estimates satisfed by the solutions. For instance, the Newtonian fluid
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limit of well-defined solutions to (13–14) is a direct consequence of the structural
stability established in [10], for a large class of solutions to linear Maxwell models
(with limited physical relevance, though).

In the sequel, we use arguments similar to [10] (i.e. energy estimates satisfied by
the solutions) to analyze the structural stability, when _ ≡ 1

�
¤̀ or equivalently when

b := 1
_
→ 0 keeping � fixed, of the damped wave system (13–14) which we rewrite

using g := gGH (C, H), 5 := 5 G for simplicity:

mCD − mHg = 5 (15)

mCg − �mHD = −bg . (16)

Note that contrary to the limit _ → 0 studied in [10], the limit b := 1
_

→ 0
studied here is “easier” because it is a non-singular limit: only a lower-order term
vanishes when b → 0, which does not change the hyperbolic type of (15–16) in the
limit. A detailed proof is nevertheless useful with a view to extending the structural
stability result to general multi-dimensional viscoelastic flows solutions to a complex
quasilinear system of PDEs. Introducing the variables|± = g±

√
�D, it is also useful

to rewrite (15–16) as

mC|
± ∓

√
�mH|

±
= ±

√
� 5 − b

2
(|+ + |−) . (17)

3 Structural stability of 1D shear waves when 1
,
≡ / → 0

Given b ≥ 0 and an open subset Ω := (Hmin, Hmax) ⊂ R, time-continuous solutions
D(C, H), g(C, H) to (13–14) on C ≥ 0, with value in !2(Ω), are well-defined given

D(C = 0, H) = D0(H) ∈ !2 (Ω) g(C = 0, H) = g0 (H) ∈ !2 (Ω) 5 (H) ∈ !2 ( (0, )) ×Ω)

when H ∈ Ω ≡ R. We recall that D(C, H), g(C, H) in fact take values in �1(Ω) ⊂ !2(Ω)
then, see [6].

When Hmin, Hmax are finite, time-continuous solutions D(C, H), g(C, H) to (13–14)
remain well-defined on additionally specifying boundary conditions at H ∈ mΩ,
typically maximally dissipative given 6 ∈ !2 ((0, )) × mΩ) as follows

I−; :=2D; D + 2g; g = 6; with 2D; 2
g
; < 0, 2g; ≠ −

√
�2D; at Hmin , (18)

I+A :=2DA D + 2gA g = 6A with 2DA 2
g
A > 0, 2gA ≠

√
�2DA at Hmax . (19)

The latter solutions satisfy the following energy estimate
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3

3C

∫

Ω

1

2

(

||+ |2 + ||− |2
)

+
√
�

22D
;
2g
;

|I+; |2Hmax
+

√
�

22DA 2
g
A

|I−A |2Hmax

+ b

∫

Ω

(|+ + |−)2
=

∫

Ω

5 (|+ − |−) +
√
�

22D
;
2g
;

62
; +

√
�

22DA 2
g
A

62
A (20)

where I−
;
= 2DD − 2gg, I−A = 2DD − 2gg, on multiplying (13) by �D and (14) by g.

Consider now two solutions (D1, g1) and (D2, g2) for two parameter values b1 ≥
b2 ≥ 0, with same initial conditions and source term. On Ω, they satisfy

mC (D1 − D2) − mH (g1 − g2) = 0 , (21)

mC (g1 − g2) − �mH (D1 − D2) = −b1(g1 − g2) − (b1 − b2)g2 , (22)

and homogeneous boundary conditions on mΩ i.e. (18–19) with 6; = 0 = 6A , hence

3

3C

∫

Ω

1

2

(

||+
1 − |+

2 |2 + ||−
1 − |−

2 |2
)

+
√
�

22D
;
2g
;

|I+1,;−I+2,; |2Hmax
+

√
�

22DA 2
g
A

|I+1,A −I+2,A |2Hmax

+ b1

∫

Ω

(g1 − g2)2
= −(b1 − b2)

∫

Ω

g2 (g1 − g2) (23)

with obvious notations, on multiplying (21) by � (D1 − D2) and (22) by (g1 − g2).
Using Cauchy-Schwarz and Young inequalities with (23), one finally obtains:

Proposition 1 Given two parameter values b1 ≥ b2 ≥ 0, two solutions (D1, g1) and

(D2, g2) of the damped wave system (15–16) with same conditions satisfy

3

3C

∫

Ω

1

2

(

||+
1 − |+

2 |
2 + ||−

1 − |−
2 |

2
)

+
√
�

22D
;
2g
;

|I+1,;−I
+
2,; |

2
Hmax

+
√
�

22DA 2
g
A

|I+1,A −I
+
2,A |

2
Hmax

b1 + b2

2

∫

Ω

(g2 − g1)2 ≤ b1 − b2

2

∫

Ω

g2
2 (24)

i.e. continuous dependence on the relaxation parameter

(D1, g1)
b1→b2−−−−−→ (D2, g2)

in !2 (Ω) for all times C ≥ 0, as well as in !2(0, )) on the boundary mΩ.

When b2 = 0 in particular, the latter structural stability result of Prop. 1 yields
convergence of (D1, g1) solution of the damped wave system (15–16) toward (D2, g2)
solution of a standard wave system that coincides with 1D elastodynamics.

So convergence toward elastodynamics is quite a simple structural-stability result
for the 1D viscoelastic shear waves solutions to (linear) Maxwell equations – in
comparison with a singular limit like convergence toward Newtonian fluids [10].

However, that non-singular limit is not easy anymore when considering non-
linear equations for general multi-dimensional motions, defined e.g. through our
reformulation in [2].
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4 Structural stability of general Maxwell flows when 1
,
≡ / → 0

To establish convergence toward elastodynamics of general multi-dimensional vis-
coelastic flows, we consider our reformulation [2] of Maxwell flows using a
symmetric-hyperbolic system of conservation laws (10) with variable U, and we
use the standard comparison tool introduced by C. M. Dafermos: the relative en-

tropy [6, Chap. V]. Precisely, consider two classical solutions U1,U2 using same
conditions but two relaxation parameters b1, b2. It holds

mt ([(U1) − [(U2) − DU[(U2) · (U1 − U2))
+ mU (QU (U1) − QU (U2) − DU[(U2) · (GU (U1) − GU (U2)))

= b1 (DU[(U1) − DU[(U2)) · Π(U1)
− (mtDU[(U2)) · (U1 − U2) − (mUDU[(U2)) · (GU (U1) − GU (U2))

= b1 (DU[(U1) − DU[(U2)) · Π(U1) − b2(U1 − U2) · D2
UU[(U2) · Π(U2)

− mUU2 · D2
UU[(U2) · (GU (U1) − GU (U2) − DUGU (U2) · (U1 − U2)) (25)

which can be compared to [6, (5.2.10)]: our relative-entropy equality holds for two
classical solutions U1,U2, with an additional source term (first line of RHS in (25)).

Then, we suggest to compare two well-defined classical solutions U1,U2 that use
the same conditions in the hyperbolicity domain O on complementing [6, (5.2.14)]
as follows to take into account the additional source term. In (25) we use:

b1 (DU[(U1) − DU[(U2)) · Π(U1) − b2(U1 − U2) · D2
UU[(U2) · Π(U2)

= (DU[(U1) − DU[(U2)) · (b1Π(U1) − b2Π(U2)) + b2Z(U1,U2) · Π(U2)
= b1 (DU[(U1) − DU[(U2)) · (Π(U1) − Π(U2))

+ (b2 − b1) (DU[(U1) − DU[(U2)) · Π(U2) + b2Z(U1,U2) · Π(U2) (26)

where / (*1,*2) is quadratic in *1 −*2.
We conclude using (12) with Cauchy-Schwarz and Young inequalities for any

C ∈ (0, )), A > 0, to complement [6, (5.2.16)] in our case with source terms. Note
that by contrast with the linear case of Sec. 3, coercivity does not hold i.e.

c0 |DU[(U1) − DU[(U2) |2 + (DU[(U1) − DU[(U2)) · (Π(U1) − Π(U2))

cannot be guaranteed non-positive for all U1,U2 whatever 20 > 0 ! Still, ∀f ∈ (0, C)

∫

|x |≤A+2 (C−f)
|*1 (C) −*2(C) |2 ≤

∫ f

0
3B

∫

|x |≤A+2 (C−B)
3x

(

� (b1 − b2)2 |*2 (B) |2

+ � ′
(

1 + b2
1

)

|*1 (B) −*2(B) |2
)

(27)
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holds given positive constants 2, �, � ′ depending solely on the initial conditions
and U2, b2 but not b1. So Gromwall’s inequality allows one to conclude about the
structural stability of general multidimensional Maxwell flows:

Proposition 2 Given two parameter values b1 ≥ b2 ≥ 0 bounded above, consider

two smooth solutions U1,U2 to (10) on [0, )) × R3 with same initial condition of

bounded support. There exists CT (U2) such that

‖U1 (t) − U2 (t)‖L2 (R3) ≤ CT |b1 − b2 | ∀t ∈ (0, T) .

When b2 = 0 in particular, the structural stability result of Prop. 2 yields conver-
gence of U1 solution to our formulation in [2] of viscoelastic Maxwell flows toward
U2 solution of an elastodynamics system for compressible hyperelastic materials of
Neo-Hooken type.

5 Conclusion and Perpsectives

In this short note, we have completed the structural stability results of [10] for
global-in-time linear Maxwell flows (Proposition 1 for 1D shear waves) in the
“easy” elastodynamics limit case _ ∼ ¤̀ → ∞, as opposed to the singular Newtonian
fluid limit _ → 0 in [10]. Note that in a particular case with smoother solutions,
our elastodynamics solid limit case _ ∼ ¤̀ → ∞ was already covered by a structural
stability result from [7].

Moreover, using our recent reformulation of Maxwell’s models [2] so as to un-
equivocally define viscoelastic flows as solutions to symmetric-hyperbolicPDEs, we
could extend in Prop. 2 the structural stability result to generic multi-dimensional vis-
coelastic flows: as widely believed, multi-dimensional viscoelastic flows of Maxwell
type can be rigorously linked with solid elastodynamics (of compressible hyperelas-
tic Neo-Hooken materials) when the relaxation time grows unboundedly.

The result should still hold in the case of non-isothermal Maxwell flows de-
fined similarly in [3] using a symmetric-hyperbolic reformulation which extends
our former work [2] (to non-isothermal Maxwell flows, as well as to viscoelastic
flows with finite-extensibility effects and various objective time-rates). But a second
step in structural stability should then furthermo cover more physical liquid-solid
transitions, driven by temperature changes. And it remains a challenge to estab-
lish structural stability results for multidimensional solutions of physically-relevant
Maxwell models in the singular Newtonian-limit case _ → 0.

Acknowledgements The author acknowledges the partial support of the ANR project 15-CE01-
0013 SEDIFLO: “Modelling and simulation of solid transport in rivers”.
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