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Abstract. Weather radars measure rainfall in altitude,
whereas hydro-meteorologists are mainly interested in rain-
fall at ground level. During their fall, drops are advected by
the wind, which affects the location of the measured field.

The governing equation of a rain drop’s motion relates the
acceleration to the forces of gravity and buoyancy along with
the drag force. It depends non-linearly on the instantaneous
relative velocity between the drop and the local wind, which
yields complex behaviour. Here, the drag force is expressed
in a standard way with the help of a drag coefficient ex-
pressed as a function of the Reynolds number. Corrections
accounting for the oblateness of drops greater than 1-2 mm
are suggested and validated through a comparison of the re-
trieved “terminal fall velocity” (i.e. without wind) with com-
monly used relationships in the literature.

An explicit numerical scheme is then implemented to
solve this equation for a 3+1D turbulent wind field, and hence
analyse the temporal evolution of the velocities and trajecto-
ries of rain drops during their fall. It appears that multifrac-
tal features of the input wind are simply transferred to the
drop velocity with an additional fractional integration whose
level depends on the drop size, and a slight time shift. Us-
ing an actual high-resolution 3D sonic anemometer and a
scale invariant approach to simulate realistic fluctuations of
wind in space, trajectories of drops of various sizes falling
form 1500 m are studied. For a strong wind event, drops lo-
cated within a radar gate in altitude during 5 min are spread
on the ground over an area of the size of a few kilometres.
The spread for drops of a given diameter is found to cover a
few radar pixels. Consequences on measurements of hydro-
meteorological extremes that are needed to improve the re-
silience of urban areas are discussed.

1 Introduction

During their fall, drops are advected by wind. Quantitative
rainfall estimation with the help of weather radars is af-
fected by this issue since drops can be displaced horizon-
tally between their measurement location in altitude and
their ground impact location, which is of interest for hydro-
meteorologists. This effect is usually called wind drift in the
literature and sometimes wind advection. The potential bias
and uncertainty introduced in radar measurements is stronger
at higher resolution, i.e. typically with pixel sizes smaller
than 1-2 km?, which are needed for urban applications, for
example. Collier (1999) suggests that correction schemes
should be implemented for this kind or higher radar resolu-
tion. Lauri et al. (2012) reported that far from the radar (i.e.
typically more than 150 km), even with low elevation (0.3°),
displacements of few tens of kilometres are found, which ac-
tually distort the measured area.

Most correction schemes rely on the use of 4D wind pro-
files derived from numerical prediction models (Mittermaier
et al., 2004; Lack and Fox, 2007; Lauri et al., 2012; Sandford,
2015) or a combination of them with reanalysis (Dai et al.,
2013, 2019; Yang et al., 2020). The latter also accounts for
drop size distribution (DSD). They report an improvement
by ~ 3 % of the correlation between radar and rain gauge
measurement and a reduction of discrepancy of ~ 18 % over
eight selected events. Lack and Fox (2007) directly used
Doppler radar wind measurement at 2.5 km scale to adjust
for the wind drift effect. In general, correction schemes use
wind data of rather coarse resolution (typically km(s)) and
assume a constant wind shear. Nevertheless, some variabil-
ity at smaller space-time scales is usually acknowledged, es-
pecially during convective events, i.e. those for which wind
drift causes the greatest uncertainty (Lack and Fox, 2007).

Published by Copernicus Publications on behalf of the European Geosciences Union.



5862

Wind effects on rainfall drops is also reported to gener-
ate discrepancies between the vertical velocities measured
and expected terminal fall velocities. For example, Montero-
Martinez and Garcia-Garcia (2016) studied events with calm,
light and moderate wind with various rainfall levels and
found a widening of the fall velocity distribution under windy
conditions. They found super-terminal drops only for diam-
eters < 0.7 mm and more often under wind conditions. Sub-
terminal fall velocities for drops of sizes up to 2 mm are re-
ported. Bringi et al. (2018) found that under low wind speed
and turbulence, no discrepancies with expectations are found,
while under high wind speed and turbulence, there is a clear
widening of the distribution. A linear decrease of the mean
fall velocity with increasing turbulence intensity is reported.
Maximum decreases of 25 %—-30 % are observed. Thurai et
al. (2019) also found such decreases for drops greater than
2mm in high turbulence intensity conditions. It is associ-
ated to an asymmetry that also appears in the drop shape.
They also found that horizontal drop velocities in both direc-
tion and magnitude show a “remarkable agreement” with the
wind sensor at 10 m. Stout et al. (1995) explored the effect
of the nonlinear drag coefficient on the fall velocity through
numerical simulations. They showed that even heavy drops
exhibited a reduced settling velocity in isotropic turbulence.

Turbulence is found to have contradictory effects on the
distribution of the fall velocity. Indeed, increasing the turbu-
lence level in windy and rainfall conditions will yield more
collision and breakup, resulting in smaller drops inheriting
the speed of larger parent drops, and hence observations of
super-terminal velocities. On the other hand, turbulence is
said to yield a decrease in fall velocities because drops (es-
pecially ones of < 1 mm) are more affected by eddies.

Such findings on the discrepancies between observed and
expected fall velocities have effects on the relation between
rainfall and kinetic energy, i.e. the erosivity “power” of rain-
fall (Pedersen and Hasholt, 1995) and also building perfor-
mance to outdoor conditions (Tian et al., 2018; Blocken et
al., 2011).

The studies previously mentioned basically do not account
for small-scale wind fluctuations in both space and time. In
this paper, we suggest studying the behaviour of individ-
ual rainfall drops of various sizes in a high-resolution turbu-
lent wind field. The variability of the wind is accounted for
through the framework of universal multifractals (UM) (see
Schertzer and Tchiguirinskaia, 2020, for a recent review).
Such a physically based framework is designed to analyse
and simulate geophysical fields exhibiting extreme variabil-
ity over a wide range of space-time scales as wind. Drop
oblateness is also accounted for.

The paper is organised as follows. In Sect. 2, a deter-
ministic equation for the fall of individual oblate drops in a
3D field is derived and validated through the comparison of
the terminal fall velocity obtained with commonly used for-
mulas. In Sect. 3, the framework of universal multifractals
is described briefly. Then, the drops are subjected to sim-
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ulated multifractal fields as the wind input and multifractal
behaviour of the horizontal drop velocity is assessed. Finally,
in Sect. 4, 3D wind is reconstructed from high-resolution 3D
sonic anemometer data and strong scaling assumptions. This
field is used to study the trajectories of drops between falling
from 1500 m to the ground.

2 A deterministic equation for oblate drops in a wind
field

2.1 Formulation of the equation

Let us denote (x, y, z) the horizontal, lateral and vertical co-
ordinates in a standard Cartesian framework with unit vectors
(e, ¢y, e,). We aim at writing the motion equation of a parti-
cle of water (a drop) of velocity v ,, density p, and falling in

the atmosphere under the influence of the gravity g = —ge,

(where g = 9.81 ms~2) and the wind v,,;,4 (With three com-
ponents). The density of the atmosphere is denoted p,ir. The
water particle is characterised by its equivolumic diameter
Degq, which corresponds to the diameter of the sphere having
the same total volume. Hence we have Vol = %ng. Finally,
the relative velocity between the wind and the falling particle
IS Vo] = Uying — Y, (Ure 18 the vector with three components,
while vy is its Euclidean norm).
The drop is subjected to three forces:

— The gravity equal to p, Volg.

— The buoyancy equal to — p,ir Volg.

— The drag, which is commonly written as
2 .

%%chairvrelyrel. Re is the common Reynolds

number Re = Lar%elD  where o is the absolute

viscosity of air; cDmis the drag coefficient and depends
in general on Re and Dcq. The next section is devoted
to its determination.

As a consequence, the equation of motion of the falling
particle is given by Newton’s second law, which equals the
mass times the acceleration to the net force (here, it was di-
vided by the mass):
dyp 3 Pair

Pp — Pair
VrelVpe) +8— -

—_r _ = 0 1
dr 4DCD Op Pp )

2.2 Determination of the drag coefficient

Before discussing how the drag coefficient is determined, it
should be recalled that the rainfall drops considered in this
paper are not spherical. Indeed, drops greater than typically
1.5 mm become oblate in their fall. This oblateness increases
with size. A very commonly used model consists in an ellip-
soid with an axis ratio varying depending on the size. Thurai
et al. (2007) showed that such model is too simplistic since
drops are not symmetric in the direction perpendicular to
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their fall. Following an in-depth analysis of the drop shape
assessed with the help of a 2D-video disdrometer (Kruger
and Krajewski, 2002) in the measurement campaign of an ar-
tificial rainfall experiment, they suggested the following for-
mula for the shape:

1= () o () ][ (2) ]

=f@ ()
with:
o= 1(0.02914DZ+09263Deq +0.07791)
a = —0.01938 D2, + 0.4698 Deq + 0.09538
az = —0.06123D], + 1.3880D2, — 10.41D], +28.34 3
az=  —0.01352D3, +0.2014DZ, — 0.8964D,

+1.226 if Deq > 4mm

a4 = 0 if 1.5mm < Deg <4mm.

This shape corresponding to a solid of revolution around
the z axis is used in this paper. It is displayed in Fig. 2a
for drops with equivolumic diameter ranging from 1.5 to
5.5 mm. It should be mentioned that computing the volume

as an integral of the shape (Vol = [ Zzl:i‘z*n f(2)%dz, see Fig. 1)
3
yields minor differences with the expected volume of %.

They are highlighted in Fig. 2b. In order to account for this
small difference, once an equivolumic diameter is set, the
corresponding one that would lead to the expected volume
from Eqgs. (2) and (3) is computed from a correspondence ta-
ble. The relationship, which is obviously close to the bisector,
is displayed in Fig. 2c with the horizontal axis corresponding
to the real Deq of the drop and the vertical axis to the Deq to
be input in Egs. (2) and (3) to retrieve the correct expected
volume. A consequence is that the oblateness of drops will be
considered only from an equivolumic diameter greater than
1.527 mm.

For non-spherical shapes, it is quite tricky to compute the
corresponding drag coefficient as a function of the Reynolds
number. The literature about this issue is quite abundant, and
the interested reader is referred to Chap. 4 of the PhD disser-
tation of Bagheri (2015) or Holzer and Sommerfeld (2008)
for details. In the approach that they implemented, three pa-
rameters are used to characterize the non-spherical shapes
of the falling particle with the help of three dimensionless
parameters: the sphericity, the crosswise sphericity and the
lengthwise sphericity. The latter two depend on the orienta-
tion of the particle with regards to the flow. Here, it is as-
sumed that drops are oriented perpendicularly to the flow,
i.e. the “z” axis of Eq. (2) is parallel to v. In the general
case, these parameters may be complex to assess but with
the shape derived from Eq. (2) (Thurai et al., 2007), theoret-
ical formula can be obtained. See Fig. 1 for an illustration of
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the computations via integral calculus. The three parameters
are:

— The sphericity v, which is equal to ratio between the
surface area (SA) of the equivolumic sphere to the ac-
tual surface area of the particle. It is equal to 1 for sphere
and decreases for increasingly and fewer spherical par-

. i D2 L

ticles; ¥ = m. That is, within the framework of

this paper, we have SA= [ 27 f (2)y/1+ f'(2)2dz.

— The crosswise sphericity v , which is equal to the ra-
tio between the projected area of the volume equivalent

sphere and the projected area of the particle normal to
2

the falling direction (here, e_); ¥ = DD%. It is equal to

1 for sphere and decreases for larger drops since they

become oblate.

— The lengthwise sphericity v, which is defined as the
cross-sectional area of the volume equivalent sphere di-
vided by the difference between half the surface area

and the mean projected longitudinal cross-sectional area

Deq \2

of particle (MPA ); ¥ = m. In the specific drop
2 I

model of this paper, we have MPA | = [ Zf:::"Z f(@dz Gt
basically corresponds to the 2D area of the drop plotted
in Fig. 1).

The evolution of these parameters as a function of Deg
for the drops considered is shown in Fig. 2d. The increasing
oblateness of drops with increasing size is translated through
the fact that the parameters are getting further away from 1.
In order to define the drag coefficient, the corrections sug-
gested by Holzer and Sommerfeld (2008) to account for non-
sphericity of particles are then implemented in the formula
of White (1974), previously used by Stout et al. (1995) who
worked only on spherical drops. This yields

8 16 6
b= Rem+Rem+ (14 v/Re) yr3/4

)0.2

0.25 x 1004 logV
+
L
The evolution of ¢p as a function of Re for various drop

parameters is displayed in Fig. 2e and follows standard pat-
terns.

“4)

2.3 Validation of the formula

In order to validate the developed equation, the retrieved
terminal fall velocity is assessed for each equivolumic di-
ameter. It corresponds to the velocity of the permanent
regime with no wind, i.e. the drag plus the buoyancy ex-
actly compensate the gravity. Computations are carried out
with pair = 1.205kgm ™3, e = 1.81 x 107 kgm ™' m~2,

Atmos. Meas. Tech., 15, 5861-5875, 2022
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2] v =6 o \ir= I+
1 dz dz = f'(2)dz ‘
g ,
g 0 e\ | ) Vzmaac
N 1] Vol = / 7f(2)%dz
N SA = 2nf(z)dr

MPA = /m 2f(2)dz

Zmin

Figure 1. Illustration of how the volume (Vol), the surface area (SA) and the mean projected longitudinal cross-sectional area (MPA ) of the
particle used in this paper can be computed via integral calculus. The drop is actually a solid of revolution around the “z” axis.

(b) (c)
3 2501 Vol via Thurai et al. 2007 81 o bisector
501 — Vol of a sphere —— Deq via Thurai et al. 2007
2
200
1
£ "’E 150
g o S
N 3
> 100
-1
-2 50
-3
0
2 3 5 6 7 8 2 3 4 5 6 7 8
D(mm) D (mm)
1.00 1.50
125 12
pn
0.95 'n
1.00 )
g 10
0.90 075 2
~ S s
) Q
s < o0s0 b
Loss § 2> .
L2 o025 8
0.80 0.00 2., —— V_D_Lhermitte_1988
g V_D_Beard_1977
P J—
025 B V_D_Best_1950
=, —— V_D_Atlas_1973
0.75
050 —— Term_fall_vel_sph
—— Term_fall_vel_obl
0
2 3 2 5 6 0 1 3 4 5 1 2 3 4 5 6

D (mm)

logio (Re)

D(mm)

Figure 2. (a) Drop shape model used in this paper; (b) drop volume vs. equivolumic diameter; (¢) diameter relation to retrieved wanted
volume; (d) parameters characterising non-spherical shape of drops vs. equivolumic diameter; (e) drag coefficient cp vs. Re number and

(f) terminal fall velocity vs. equivolumic diameter.

Pwater = 998.2 kgm_3 g =938l ms~2, as in Stout et al.
(1995).

The relation between the terminal fall velocity obtained vs.
the equivolumic diameter is displayed in red in Fig. 2f. The
developed equations enable us to retrieve the commonly used
relation (Beard, 1977; Lhermitte, 1988; Best, 1950; Atlas et
al., 1973) for drops of diameters of up to 4 mm. The devia-
tions found when considering spherical drops (in green) are

Atmos. Meas. Tech., 15, 5861-5875, 2022

visible for diameters greater than 2 mm, which highlights the
need to account for drop oblateness.

2.4 Numerical scheme for solving the equation

Equation (1) is solved numerically through the implementa-
tion of a simple Eulerian numerical scheme. Within such a
framework: (i) a discretization of time with time step At is
introduced yielding discrete time steps #, = n x At, where n
is an integer; (ii) we aim at finding an approximation of v,

https://doi.org/10.5194/amt-15-5861-2022
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at time step n denoted v oo (iii) the first derivative in Eq. (1)

. . dv v —v .
is approximated as — (t,) ~ W This leads to the

following equation for the numerical scheme:

3 Pair Pp — Pair
Vpntl =Up,+ Al [ECDJL Evrel,nﬁrel’n +g P , 5)

where v, , and ¢p , are computed at time step 7, using the
formulas discussed in Sects. 2.1 and 2.2. Assuming some ini-
tial conditions (always no horizontal velocity and a vertical
one equal to the terminal fall for the corresponding diameter),
it is then possible to reconstruct the time series of velocity for
the drops. From this, the temporal evolution of the position
(i.e. the trajectory) is derived. It is necessary to properly as-
sess the wind accounting for the current position of the drop.
A time step of Ar =0.01s is used in this paper, and it was
checked that it ensured a stability of the numerical scheme.

3 Behaviour of horizontal drop velocity with
multifractal input

3.1 Brief recollection of the universal multifractal
framework

It is outside the scope of the paper to introduce the frame-
work of universal multifractals (UM) in detail. Hence, only
the most important elements are recalled here, and interested
readers are referred to the references mentioned or to a re-
cent review by Schertzer and Tchiguirinskaia Schertzer and
Tchiguirinskaia (2020) for more details.

Let us consider a field €, at a resolution A defined as the
ratio between the outer scale (L) and the observation scale
(), » = L/1. For multifractal fields, the moment of order ¢
of the field is a power law related to the resolution:

(e) =A% @, (©)

where K(g) is the scaling moment function. It fully char-
acterizes the variability across scales of the field. Within
the specific framework of UM (Schertzer and Lovejoy,
1987, 1997), towards which multiplicative cascades pro-
cesses converge, only two parameters with physical inter-
pretation are needed to characterize K (q) for conservative
fields:

— C\, the mean intermittency co-dimension, which mea-
sures the clustering of the (average) intensity at smaller
and smaller scales; C1 = 0 for an homogeneous field;

— «, the multifractality index (0 <« <2), which mea-
sures the clustering variability with regards to the in-
tensity level.

For UM, we have:

Cy

@ —q. @)
a—1

K(q) =

https://doi.org/10.5194/amt-15-5861-2022
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A non-conservative field (), i.e. whose mean is not pre-
served across the scale can be written as ), &~ € AT where
H is the non-conservativeness parameter; H = 0 for conser-
vative fields. Positive values correspond to a fractional in-
tegration to go from €, to v, and to stronger correlations
within the field v,. Negative values correspond to a frac-
tional differentiation; H is typically between O and 1 for geo-
physical fields.

The first step of a multifractal analysis usually consists in
a spectral analysis. For multifractal fields, the power spectra
(E) should scale with wave number k:

Ek) =k, ®)
with the spectral slope S
B=1+2H - K.(2), 9

where K, is the scaling moment function (Eq. 7) of the con-
servative part of the field. To analyse the latter, a trace mo-
ment (TM) is implemented. It notably enables us to assess the
quality of the scaling behaviour. It basically consists in plot-
ting Eq. (6) in log—log. Straight lines should be retrieved, and
the slope gives K (¢). Finally, UM parameters are estimated
with the help of the double trace moment (DTM) technique,
which is tailored for UM fields and enables robust estimation
of UM parameters (Lavallée et al., 1993).

3.2 Methodology

In this section, the scaling behaviour of the horizontal drop
velocity is assessed using numerical simulations. Working
with such input whose features are fully known is helpful
to understand how drops react to wind.

More precisely, a horizontal input vy wing for Eq. (1) is
simulated with the help of blunt multifractal discrete cas-
cades (Gires et al., 2020). Such a process yields only posi-
tive values, which is not realistic for wind. Hence, a standard
“complex trick” was used to generate a field with both pos-
itive and negative values (Schertzer and Lovejoy, 1995). To
implement it, two fields X and X, are generated with the
wanted features, and a third one is obtained with the help of
the following equation (Real is the real part):

X :Real[exp(logX1 +i10gX2)]. (10)

Such a field divided by 2 was used as input. With UM pa-
rameter « = 1.7 and C; = 0.2 1024 long time step series are
generated, which corresponds to typical values for turbulent
wind fields (Fitton et al., 2011). The time step is assumed to
be 0.01 s, which means that drops are basically studied over
10s. For the initial conditions, drops are assumed to have
no horizontal velocity and a vertical component equal to its
corresponding terminal fall velocity. Since scaling is a sta-
tistical behaviour, an ensemble of 100 independent samples
was generated, and the corresponding ensemble of horizon-
tal drop velocity was simulated using Eq. (5) for drops of
various sizes (Deq C [0.1,0.2,0.4,0.6,0.8,1,1.5,2, 3, 4]).

Atmos. Meas. Tech., 15, 5861-5875, 2022
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3.3 Results and discussion

Figure 3 displays the temporal evolution of drops’ horizon-
tal velocity over 10s for a sample of wind input (shown
in black). Three drop diameters are displayed (0.1, 0.6 and
2 mm). It can be seen, notably on the zoomed in part of the
figure (lower panel) that the smaller drop (Deq = 0.1 mm,
shown in blue) follows wind fluctuations well, with only
a limited dampening of the fluctuations. A small delay (~
0.01s) corresponding to a reaction time is noted. As can be
expected, larger drops (Deq = 0.6 mm, shown in green; and
Deq = 2 mm, shown in red) tend to dampen wind fluctuations
even more.

In order to quantify this qualitative behaviour more pre-
cisely, a multifractal analysis on the retrieved ensembles was
performed. Figure 4 displays the outcome of spectral and TM
analyses for drops of equivolumic diameter ranging from 0.1
to 2mm. The spectral analyses reflect a good scaling be-
haviour over the whole range of scales. Spectral slopes (8
in Eq. 8) of 0.86 and 2.25, respectively, are retrieved. For the
2 mm drop, the value corresponds to non-conservative fields.
In order to ensure that a conservative field is studied in TM
analysis, which is necessary (Lavallée et al., 1993), a frac-
tional differentiation with an exponent (8 —1)/2 is imple-
mented on the field before implementing this TM analysis.
TM analysis is displayed in the right-hand column of Fig. 4.
For the 0.1 mm drop, an excellent scaling behaviour is re-
trieved with the coefficient of determination r2 for ¢ = 1.5
greater than 0.99. DTM analysis yields estimates of UM
parameters «, C; and H equal to 1.68, 0.21 and 0.12, re-
spectively, which is close to the features of the input series.
For the 2 mm drop, the scaling is slightly degraded but re-
mains good (r2 =0.95 for ¢ = 1.5), and we find o = 1.69,
Cy=0.14and H =0.79.

Figure 5 displays a summary of the UM analysis carried
out on the generated series for the various drops. The scal-
ing behaviour is excellent for small drops and remains good
for all drop sizes with r2 for ¢ = 1.5 always greater than
0.95 (Fig. Se). The need for a fractional differentiation be-
fore implementing TM analysis is visible with the very poor
scaling found when analysing the field directly. The non-
conservativeness parameter rapidly increases from 0.1 to 0.8
with the drop size increasing from 0.1 to &~ 1-1.5 mm. For
larger drops, it remains rather stable. This increase of H
is basically a quantification of the increased dampening of
wind fluctuations observed for larger drops, shown in Fig. 3.
With respect to the UM parameters o and Cy, the former re-
mains stable and close to the input value of 1.7 for all drop
sizes. The latter exhibits a small decrease with larger drops.
It should be recalled that this approach is somehow artificial
since all drops perceive the same wind, which would not be
the case in reality because they do not fall at the same ver-
tical speed. In summary, this investigation shows that hor-
izontal drop velocity basically reproduces the multifractal
properties of the wind input with an increased level of non-
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conservativeness H; H increases strongly for drops smaller
than 1 mm and then stabilizes.

4 Ground impact location of drops falling in a
turbulent wind field

4.1 Methodology

The purpose of this section is to investigate where drops
falling from a height of 1500 m reach the ground. Given the
time step of 0.01 s used in the equation and the fact that drops
move in space during their fall, this means that it is necessary
to have high-resolution space-time 3D wind data over an area
of the typical size of a few kilometres to fully address the
issue. Such data is unfortunately not available. Hence, we
suggest here to reconstruct a somehow realistic wind from a
punctual measurement relying on previous findings on turbu-
lence.

4.1.1 Wind data

More precisely, we use 100Hz 3D sonic anemometer data
collected at by a device installed at 78 m on a meteorolog-
ical mast located on the Pays d’Othe wind farm within the
framework of the ANR RW-Turb project. The wind farm is
roughly 120 km south-east of Paris on a slightly sloppy area.
More details can be found in the data paper under discussion
at ESSD (Gires et al., 2022) and in the data set (Gires et al.,
2021). Two wind series with very different average horizon-
tal wind speeds (i.e. 1.8 vs. 11.8ms~!) were extracted for
this study. They were later denoted low wind event and strong
wind event. The corresponding time series of the three com-
ponents of the wind for both events are displayed in Fig. 6
over approximately 900 s. The low wind event was collected
on 20 January 2021, while the strong one occurred on 6 Jan-
uary 2021.

4.1.2 Generation of an anisotropic 3D turbulent field

In this section, we discuss how to stochastically generate a
turbulent field reproducing the physics of such a flow con-
straint as well as possible to have the empirical velocity
values v(x, y,z,t) of the 3D sonic anemometer located at

(x,y,2,0).
Scaling and anisotropy

It is quite obvious that gravity has such a strong impact on
drop trajectories and dynamics of drops that classical scal-
ing approaches just fail because they presuppose isotropy.
On the contrary, the anisotropy between the vertical and the
horizontal induced by gravity is so ubiquitous in geophysics
that it has led to the general concept and framework of “gen-
eralized scale invariance” for the analysis and simulation of
anisotropic fields (Schertzer and Lovejoy, 1985, 1988, 1989;

https://doi.org/10.5194/amt-15-5861-2022
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Figure 3. (a) Temporal evolution of the drop horizontal velocity during 10 s for various drop diameters (the equivolumic diameter is indicated)
with the same multifractal wind input (black). (b) A zoom of the above curve on a shorter period.
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in this paper.

Lazarev et al., 1994; Schertzer et al., 2012), and new exten-
sions have been developed for vector fields (Schertzer and
Tchiguirinskaia, 2015, 2020). While classical approaches
consider scaling only after assuming isotropy, general scale
invariance first posit scaling and then study the remaining
non-trivial symmetries. Because this paper deals with scalar
discrete cascades, and, therefore, their limitations, we con-
sider an oversimplification of the generalised scale invari-
ance. Recall that for the simplest case of generalised scale
invariance, a v horizontal component of a statistically transla-
tion invariant velocity field satisfies the following self-affine
scale invariance:

Av (T, Ax) £ 2P Av(Ax), (11

Atmos. Meas. Tech., 15, 5861-5875, 2022

where < stands for equality in distribution, Ax for a (vector)
pair separation, Av = |v()_c + Ax) — v()_c)| for the induced
velocity component shear, H}, for the horizontal scaling ex-
ponent (Hy = 1/3 for Kolmogorov’s scaling) and T) for a
self-affine change of scale:

; (12)

1 0 0
T, =16 =explog(AG); G=|0 1 0
0 0 H,

H

Z

where G is the generator of Ty, H, = Hy/H, is the scaling
anisotropy exponent and H, the scaling exponent along the
vertical; H, = 3/5 for a Bolgiano—Obukhov scaling along
the vertical, and, therefore, H, = 5/9, while for isotropic 3D
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turbulence H, = 1, Hy = Hy. The main property of 7) is that
it broadly generalises in a straightforward manner scales |.|
from classical isotropic frameworks (H; = 1) to generalised
scales ||.|| of anisotropic frameworks (e.g. H; # 1), so that
any isotropic cascade can be transformed in this manner into
an anisotropic cascade without anything else. Just recall the
canonical example of generalised scales for a diagonal gen-
erator (p > 1):

Gij=gidis: lallp = (O l1P/e)V/”

1

= [Taxllp = Aixllp, 13)

which displays the (generalised) scaling property of the gen-
eralised scales.

Equation (11) is valid for any direction of Ax (x =
(x,y,2)), in particular along the horizontal Ax and the verti-
cal Az:

Av(LAY) L AH Ap(AX): Av(LAZ) LA Av(AY),  (14)
which, respectively, can be interpreted as:
Av(Ax) L e(Ax)® AxH; Av(Az) L p(A)Y A, (15)

with scaling exponents ap = 1/3 for the kinetic energy flux
density € and ay = 1/5 for the buoyancy force flux density ¢.
Due to the fact that eddies can be defined as structures having
a given velocity shear Av, we have, in fact, the following
balance between both flux densities:

e(Ax)® Ax i L g (AZ)™ Az (16)
and finally:
e(A0)™ L 3(AD)®, with: AxTh ~ Az, (17)

due to the respective scaling of the horizontal and vertical
eddy sizes defined by the scale change 7) (Eq. 12).

This confirms that ¢ and & are both sides of the same coin
(Eqg. 11). In summary, what is only needed is an anisotropic
cascade defined by an anisotropic scale compatible (e.g.
Eq. 14) with the anisotropic scale change 7, (Eq. 12), the
intermittency being introduced either by the flux density ¢ or
¢ (Eq. 15), which respect their equivalence (Eq. 17).

Practical difficulties only occur with discrete scales be-
cause they cannot easily deal with arbitrary H,.

https://doi.org/10.5194/amt-15-5861-2022
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Discrete scales and an ad-hoc approximation

To get around these difficulties, it was tentatively proposed
to consider the following 3D model:

Vx(x +Ax,y+ Ay, 72+ Az, t)

=vx(x,y,2,t) +ce,ex(x + Ax, y+ Ay, 1) Al
+co, 0y (2 + Az, )W Az

vy(x +Ax,y+ Ay, z+ Az, 1)
:vy(x,y,z,t)+c€yey(x+Ax,y+Ay,t)“hAth (18)
+co,0y(z + Az, 1) Az

v, (x +Ax,y+ Ay, z+ Az, t)

=v(x,y,2,1) +Ce, €(x + Ax,y+ Ay, 1) Al
+c0,0;(z+ Az, )™ Az,

where Al =+/Ax24 Ay? is the (classical), horizontal dis-
tance from the anenometer and 6 is the buoyancy force flux
but is supposed independent of ¢ contrary to ¢ (Eq. 17). Un-
fortunately, this model suffers from a number of basic prob-
lems:

— Equalities in distribution are replaced by deterministic
equalities, which oversimplify and trivialise the dynam-
ics for each realisation.

— The flux density ¢ is defined only along three directions
instead along all directions (Eq. 11), whose correspond-
ing components (&y, €y, &;) are supposed to be indepen-
dent, which is not a tenable assumption.

— The introduction of 6 independent of ¢ is purely ad hoc
to additively(!) introduce a second isotropic scaling (!),
and therefore the change of scaling is reduced to a linear
Cross-Over.

— The scale of the flux densities ¢ and 6 is implicitly taken
as the scale of the simulation resolution instead of the
pair separation scale (Eq. 15). The resulting mismatch
between both scales will introduce a statistical bias.

— Moreover, the density values are arbitrarily taken at the
locations (x + Ax, y+ Ay for €) and z + Az for 6. This
introduces a dissymmetry that is not without conse-
quences.

— All time steps are fully independent, with the exception
of the empirical velocity values v(x, y, z,#) measured
by the 3D sonic anemometer.

The limitations of this model are, therefore, extremely
strong. Many of them would have been resolved with the help
of the scalar anisotropic cascades recalled above (see the pre-
vious paragraph). But to fully overcome them would require
us to consider their extension to vector fields (Schertzer and
Tchiguirinskaia, 2015, 2020). This remains outside the scope
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of this paper, and this simplistic approach is used for a sort
of exploratory step focused on the interaction of drops and a
given velocity field. The results obtained, therefore, have to
be critically examined, since many of them are sensitive to
the aforementioned oversimplifications.

4.1.3 Practical implementation

The fields € (i.e. the ones for the horizontal shift) are sim-
ulated in space time with a size 729 x 729 x 64 using dis-
crete UM cascades and Eq. (10) to obtain either positive or
negative values. The number 729 refer to space, while 64
refers to time. Before stating the physical resolution of the
field, it should be explained that a simple anisotropy between
space and time is accounted through a scaling anisotropy co-
efficient H,. Within such framework, when the spatial scale
of the data is changed by a ratio of Ay, the temporal scale

should be changed by a factor of A, = k)f[y’; H, is expected to
be equal to 1/3 (Marsan et al., 1996), hence when the spatial
scale is multiplied by 3, the temporal scale should be multi-
plied by 2 (i.e. 3!71/3 ~ 2.08) (Biaou et al., 2005; Gires et al.,
2014). These fields are assumed to cover an area of the size
40km x 40km x 1024 s, which is needed for drift of 0.1 mm
drops during their fall when wind is strong. This means that
a voxel is of size 53 m x 53 m x 165.

The fields 6 (i.e. those for the vertical shift) are of size
512 x 64 covering a physical are of 1600 m x 1024 s, mean-
ing a pixel size 3m x 16s. All UM fields are simulated with
a = 1.7, C;1 =0.2, as in the previous section.

Finally, at any point (x, y, z, ) a bi or tri-linear interpola-
tion is implemented to obtain the value of the field from the
nearest points. The value of the prefactor were set to ¢, =
ce, =0.3, ¢, =0.1 and ¢y, = ¢y, = ¢y, = 0.01 through an
heuristic approach of trial and error to get some realistic fluc-
tuations. In the future, it would obviously be necessary to
tune them to local wind properties. However, such tuning is
outside the scope of this section, which aims more at being a
proof of concept.

4.2 TIllustration

In order to illustrate the suggested process, let us consider a
0.5 mm drop during the low wind event. Its initial position is
(0,0, 1500) in m. It is “dropped” with no horizontal veloc-
ity and a vertical velocity equal to that of its terminal. The
anemometer is assumed to be located at (0,0, 100) m. Then
Eq. (5) is implemented. At each time step, the local wind
is assessed using the methodology described in the previous
paragraphs.

The actual total wind perceived by the drop (i.e. the in-
put in Eq. 5) is recorded and displayed in last row of Fig. 7.
It corresponds to the sum of the wind from the anemometer
(the first row in Fig. 7) plus a wind shift field (the middle row
in Fig. 7). This leads to a given trajectory in space, which is
shown in Fig. 8. The projected trajectory on the planes (x, y)

Atmos. Meas. Tech., 15, 5861-5875, 2022
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and (x, z) is also shown. This trajectory exhibits a nonlin-
ear complex pattern, which results from the turbulent nature
of the wind. It should be mentioned that not accounting for
oblateness affects not only the vertical velocity but the whole
trajectory as well. Depending on the model (spheres or oblate
drops), shifts of more than few hundred metres are found
even for large drops for some events.

4.3 Sensitivity to the wind shift field

The process to generate an estimation of a 3D wind field is
actually stochastic through the UM fields € and 6 used in
Eq. (18). In this section, the sensitivity to the given realiza-
tion of the process is discussed. In order to achieve that, 10
wind samples are generated with the same input parameters
(described in Sect. 4.1) and the corresponding trajectories for
drops of size 0.5, 1, 2 and 3 mm are computed.

The projected trajectories for the low wind event, are dis-
played in Fig. 9a and b. The position of the dropa when they
reach the ground is shown in Fig. 9c. The spread of the drops
strongly depends on their size, with a decrease as the drop
size increases. Indeed, Ax (Xmax —Xmin) 1S equal to 1238, 591,
415 and 404 m for drops of sizes 0.5, 1, 2 and 3 mm, respec-
tively. For Ay, the values are 2123, 897,461 and 322 m. Such
a decrease is due to a combination of the fact that smaller
drops are more subject to wind fluctuations (Sect. 3) and that
they spend more time in the atmosphere (Sect. 2) before they
reach the ground. Similar trends are retrieved for the strong
wind event (Fig. 10) with a stronger absolute shift. In that
case, the values for Ax are 890, 868, 500 and 448 m, respec-
tively. For Ay, they are 2382, 1003, 568 and 448 m.

4.4 Illustration of impact on rainfall retrieval with
weather radars

In this last section, initial investigations toward understand-
ing the consequence of previous work on quantitative rain-
fall measurement with weather radars are carried out. In-
deed, weather radar measure rainfall at a given altitude, while
hydro-meteorologists are interested in rainfall at ground
level. During their fall, significant shifts can occur. In order
to study it, the following process is implemented. For 5 min,
one rainfall drop is dropped every 15 s from a random posi-
tion within a voxel of size 100 m centred on (0, 0, 1450) m.
Hence it covers a total duration of 5 min. The trajectories and
positions on the ground of the drops is then studied. This en-
ables us to basically mimic the measurement of a weather
radar at its typical gate size and temporal resolution.

Figure 11 displays the trajectories and ground impact lo-
cation in the case of the low wind event for a given realisa-
tion of the stochastic wind shift. A shift of more than 1 km
for small drops is found, and more than 300 m for 3 mm
drops. As noted in the previous section, the spread of drops
at ground level tends to decrease with increasing drop size.
Indeed, Ax (Xmax —Xmin) is equal to 206, 119, 165 and 121 m
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Figure 7. (Top) Temporal evolution with 0.01 s time steps of the wind data from 3D sonic anemometer, (middle) the wind shift and (bot-
tom) the total wind perceived by the 0.5 mm drop falling from the position (0, 0, 1500) during the low wind event. Bottom panel is actually

the wind input used to obtain the trajectory of Fig. 8.
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Figure 8. Trajectory (solid line) of a 0.5 mm drop in a turbulent
wind field for the low wind event. The dotted lines correspond to
the trajectory projected on the (x, z) and (y, z) plane.

for drop of sizes 0.5, 1, 2 and 3 mm, respectively. For Ay, the
values are 184, 134, 112 and 88 m. For the strong wind event
(Fig. 12), shifts of more than 6 and 1.5 km are reported for
drops of size 0.5 and 3 mm respectively. Similar results as for
the low wind event are found with regards to the spread. The
corresponding figures are of 665, 450, 284 and 307 m for Ax,
and of 819, 664, 429 and 420 m for Ay.

As was previously pointed out, this spread is due to the
fact that smaller drops spend more time in the atmosphere

https://doi.org/10.5194/amt-15-5861-2022

and are more sensitive to wind fluctuations. Indeed, the du-
ration of a fall from 1500 m to the ground at Om is equal to
716, 378, 238 and 192 s for drops of size 0.5, 1, 2 and 3 mm,
respectively. Given that high-resolution radar pixels are typ-
ically of the size of a few hundred metres, one should note
that drops within a given voxel at measurement height can
reach the ground within an area of size 3km x 6 km. Even
within a drop diameter class, shifts are of few radar pixels.
Given that drop size distribution also varies, such a shift can
significantly affect rainfall retrieval, even in low wind condi-
tions.

5 Conclusions

In this paper, we have aimed for a better understanding of the
behaviour of individual rainfall drops falling from typically
1500 m. In a first step, we developed a new approach to com-
pute the drag coefficient accounting for drop oblateness and
findings in fluid mechanics. This was validated for drops of
equivolumic size of up to 4 mm through the comparison be-
tween the retrieved terminal fall velocity and the commonly
used formula.

Then the temporal evolution of the horizontal drop ve-
locity under turbulent wind constraints was studied. It ap-
pears that multifractal features of the input wind are simply
transferred to drop velocity with an additional fractional in-
tegration and slight time shift. The UM parameters « and C|
are basically conserved, while H is increased. The increase

Atmos. Meas. Tech., 15, 5861-5875, 2022
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ranges from 0.1 for 0.1 mm size drops to 0.8 for 1-1.5 mm
size drops. It remains rather constant for larger drops.

Finally, the trajectories of drops of various sizes falling
form 1500 m was studied as a proof of concept. For this,
100 Hz anemometer data was used, and an approach to sim-
ulate realistic fluctuations of wind in space was developed.
It notably enables to analyse how drop shift during their fall
between their location measurement by weather radars and
ground impact. For a strong wind event, drops located within
a radar gate in altitude for S min are spread on the ground
over an area of a few kilometres. The spread for drops of a
given diameter is found to cover a few radar pixels.

In order to further explore the consequences of these find-
ings on quantitative rainfall estimation with weather radars,
further investigations are needed. More precisely, (i) the
model to simulate wind fluctuations should be improved, no-
tably to use vector simulations and tune the prefactors ac-
cording to local wind conditions; (ii) space-time outputs of
numerical weather prediction models could also be tested
to retrieve wind fields; (iii) the actual drop size distribution
should be used to better assess the impact for the ground es-
timation of precipitation, which implies making some simu-
lations for a much larger number of drops; (v) a longer pe-
riod of time should be tested to investigate where the water
volume (i.e. all the drops) of a given radar gate fall during an
event. For the two last points, data is available within the RW-
Turb project. Such step would then need to be repeated over
various radar gates to derive updated radar maps. Given the
limited computation power that will not allow us to simulate
the trajectories of all the drops, some statistical behaviour ac-
cording to each radar gate and wind conditions would need
to be designed and then computed. It should also be stressed
that only individual drops are currently being handled. This
means that the methodology developed does not account for
either collision, aggregation between drops or for breakup.
Such processes are also known to affect drop velocities by
changing their size and shape. Future investigations should
also aim at accounting for them. Finally, it should also be
stressed that the method developed stochastically simulates
wind fluctuations at small scales. This means that the output
will not be a deterministic radar measurement but an ensem-
ble of possible realistic outputs, out of which a probability
distribution could be derived. Such a probabilistic approach
is discussed in Kirstetter et al. (2015) with a focus on intrin-
sic radar uncertainties and not wind drift.
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