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Abstract: In order to measure the extensional rheological properties of yield stress fluids, 
we developed a rheometrical approach based on the analysis of the deformations of a 
fluid extrudate flowing downwards and breaking in successive elongated drops due to 
gravity. Assuming the gradients of longitudinal velocity in radial planes are negligible, the 
local instantaneous strain rate is deduced from the variations of the filament diameter in 
each cross-section, while the normal stress is computed from the acceleration and weight 
of the material below this point. The observation of the filament profile in time allows to 
identify a solid region, in which the deformations tend to saturate, and a liquid region, in 
which the deformations continuously increase. A further analysis allows to distinguish the 
data for which pure elongational stress and strain rate components are effectively 
dominant, so that the elongational flow curve of the material over several decades of 
strain rate can be deduced. For two typical yield stress fluids (emulsion and clay 
suspension) with different internal structures, all the normal stress vs extensional rate 
data obtained under these different flow conditions fall along a single master curve for 
each material. This flow curve in elongation appears to be well represented by the 
standard 3D Herschel-Bulkley model under the condition that a slightly different power 
of the strain rate than in simple shear is used. For both material types, the elongational 
yield stress value found in this way is very close to the simple shear yield stress times the 
square root of three. 

 

1. Introduction 

The extrusion of YSF (yield stress fluids) is a very common industrial process, e.g. for foodstuffs, 
toothpastes, ceramic slips, plasters, mortars. In such processes, a gravity-induced free-surface flow 
may eventually shape the material. For 3D printing of YSF for medical applications [1], ink printing [2], 
construction materials [3-4], metals for applications in electronics [5], the extrusion then free surface 
flow of the filament followed by spreading and stoppage of the yield stress fluid determine the final 
shape of the object, and elongational flow can play a significant role in the different steps of these 
processes [6-8]. In this context a knowledge of the behavior of YSF in more complex flows than simple 
shear is required. 

Here we focus on simple yield stress fluids, which in contrast with thixotropic yield stress fluids do not 

exhibit an apparent viscosity depending on the flow history [9-12]. In particular, these simple YSF 

exhibit identical static and dynamic yield stress, whatever the flow history. The constitutive equation 

of simple YSF was initially identified in simple shear [13-14], and the Herschel-Bulkley model [14] in 

simple shear is now classically shown to very well represent (steady state) flow curve data of various 

yield stress fluids [13]. The basic 3D expressions [15-18] of the constitutive equation of a YSF were built 

on the assumption of (i) an abrupt transition from the solid to the liquid regime, and (ii) a homogeneous 

behavior under any flow type, i.e. a constitutive equation with a yielding criterion and factors 

depending only on the second invariant of the strain rate tensor. The former assumption was then 

questioned, starting with Saramito [19], and various models were proposed in the last ten years, which 

are also associated with more sophisticated descriptions of the possible physical processes during this 



transition [20-24]. The validity of the latter assumption (ii) has been discussed through various 

experimental approaches intending to measure the yield stress in elongation. 

For a simple uniaxial elongation, the above “standard” Oldroyd 3D model [15-16] predicts that the 

yielding and slow flow should occur for a normal stress equal to c  with 3= . Here c  is the yield 

stress in simple shear, that we will simply call here the yield stress, while we will call the critical normal 

stress (i.e. c ) in a pure elongational flow, the elongation yield stress. As far as we know the 

experimental works in that field started with the study of the critical force of separation from either a 

drop elongation using a Capillary Breakup Elongational Rheometer (CaBER) [25], or a drop formation 

and fall from a die exit [26]. In each case a uniaxial elongational flow is assumed in the fluid around the 

region of breakage, and one measures the critical force at breakage, which is supposed to be balanced 

by capillary effect. In the first case [25], with emulsions, the critical normal stress was found to 

correspond to 8.2=  whereas in the second case [26], with Carbopol gels, the expected expression 

(from above model) was found. Afterwards, a more complete study of the Laplace pressure in 

filaments [27] of various types of yield stress fluids led to the conclusion that the theoretical expression 

is found if the measurement is taken at a ratio of the filament life time to fluid relaxation time equal 

to 1. Moreover, experiments coupling CaBER with the application of an electrical field [28-29] allowed 

the estimation of the critical diameter for breakage of yield stress fluids, which proved to be in 

agreement with the standard prediction (i.e. 3= ). Another study looked at the viscous normal 

force all along the extension of a droplet between two plates and concluded to a larger critical normal 

stress 3=  [30]. Finally an original approach with the same principle of plate separation but using 

smooth plates allowing an almost perfect wall slip (i.e. with wall slip yield stress close to zero), and 

thus a priori a homogenous elongational flow in the whole sample, concluded that the ratio of the 

elongation yield stress to the shear yield stress is larger (i.e. 35.1= ) than expected from the 

standard theory [31]. The discrepancy between theory and experiments concerning this problem was 

suggested to be due to the fact that the effective constitutive equation should also include a term 

depending on the third invariant of the stress tensor [25], or that significant shear flow components 

are not taken into account [30]. Alternatively, it was suggested that the pinch-off behavior of yield 

stress fluids presents nonuniversal trends that should be described with the help of nonlocal 

rheological models [32]. The recent approach of Varchanis et al [33], based on the Optimized Cross-

Slot Flow Geometry, in some way went farther as an elongational flow could be maintained, so that 

the validity of the constitutive equation in the liquid regime could be tested. Further work clearly 

appears necessary in that field. 

Actually, a more straightforward, “rheometrical“, i.e. without preliminary assumption on the 

constitutive assumption, characterization of the YSF behavior under extensional flow conditions would 

be useful, as we have for polymers. For other non-Newtonian fluids such as viscoelastic [34-36] or 

pseudoplastic fluids [6], the usual technique consists to stretch a liquid bridge between two plates 

moving away from each other [37-41]. However, this technique is problematic with YSF with a 

significant yield stress, as, during extension, the bridge readily breaks in two cones [42] which then 

keep their shape under gravity. Under these conditions, the normal stress rapidly increases in the 

pinch-off region and a significant shear component may develop (see the simulations by Moschopoulos 

et al [43]). Thus, for YSF the flow is not homogeneous in some significant central region as it can be 

with simpler fluids, and the flow characteristics more rapidly vary than for simpler fluids, so that it is 

more difficult to make measurements.  

A dripping experiment might be more favorable, as the fluid is now not constrained by its contact with 
some lower boundary, so that it is freer to elongate. In general dripping is more difficult to control: the 



evolution of the shape of the filament, possibly as one or several drops, results from the coupling 
between surface tension effects, flow discharge and the detailed rheological behavior of the material. 
This is a very complex process [44], even with simple liquids [45]. As explained in Sharma et al [46] with 
regards to their so-called ROJER technique, i.e. an analysis of dripping under gravity, in that case “the 
rheometry technique is based on the understanding of the nonlinear fluid dynamics underlying the 
jetting process”.  

As shown by Gaulard and Coussot [47] the dripping of a yield stress fluid from a conduit has interesting 

specificities: it evolves in successive droplets of shape and size which may be related to the rheological 

behavior of the material. The detailed characteristics of these droplets were studied in the context of 

filament flow and breakage under gravity [48] and the flow between between two plates moving away 

[43] for yield stress fluids of constitutive equation following the standard model. These works provided 

much information concerning flow regimes and flow characteristics certainly applicable to yield stress 

fluids in general.  

In the present paper, we evaluate the possibility to directly determine, through experimental 

measurements, the rheological properties of yield stress fluids in extensional flows without preliminary 

assumption on the constitutive equation (except the existence of a solid-liquid transition at an 

indeterminate stress value). In that aim we propose to analyze the fluid flow during dripping after 

extrusion through a die. A great advantage of this geometry is that the normal stress at some point 

directly depends on the weight of material situated below this point. As a consequence, the stress 

increases progressively from zero along the sample axis, and a simple measure of the sample shape 

provides both the value of the local stress and the current local deformation.  

We first present a theoretical analysis of the problem, which aims at extracting the means to determine 

experimentally the stress vs strain rate relationship (see Section 2). Then we test this approach through 

a few  experiments with two material types. In Section 3 we present the materials and procedures, and 

in Section 4 we present and discuss the results. 

 

2. Theoretical aspects: extensional rheometry for YSF 

2.1 General flow conditions 

We consider the downward flow of a YSF through a vertical die. As for standard rheometry which does 
not a priori assume some specific rheological behavior of the fluid under study, for the theoretical 
developments below, the only assumption we make on the YSF material behavior is that, under given 
boundary conditions, it can flow steadily only if some characteristic stress of this flow is larger than a 

critical value (i.e. a yield stress; e.g. 
c
  in simple shear). The ground surface below the die is situated 

at a sufficiently large distance to preclude the contact of the extrudate with the ground before filament 
breakage. Thus, we expect the formation of more or less long drops successively falling to the ground. 
A typical example of such a process is shown in Figure 1. Note that successive longer drops are obtained 
when increasing the extrusion rate [47]. This means that the sufficient distance to preclude the contact 
of the extrudate with the ground before filament breakage may need to be adjusted as a function of 
the extrusion rate.  

Let us focus on the flow characteristics just after a breakage of the filament, leading to the formation 
and fall of a drop. The fluid situated above this drop forms a filament that is still connected to the die. 
As a first approximate, the normal stress at some point in this fluid is equal to the weight of material 
situated below this point divided by the area of the filament cross-section at this point. Thus, the 
normal stress increases upwards from the filament bottom. Since we are dealing with a YSF, we expect 
that, along some distance, the stress is below some yield stress of the material so that the filament 
just undergoes finite deformations, whereas, beyond this distance (from the filament bottom), the 



fluid starts flowing in its liquid regime. This flow ultimately leads to the breakage of the filament at 
some point.  

Actually, the transition cannot simply be deduced from the values of the initial filament diameter and 

some elongational yield stress (i.e. c ). Indeed, according to the above estimation of the normal stress 

(weight to section area), in a given fluid point the normal stress increases when the filament deforms 
since the section diameter decreases. This is in particular true for the filament parts in the solid regime. 
This implies that the exact position of the transition along the filament depends on the deformations 
undergone in the solid regime.  

Furthermore, the flow at larger distances from the filament bottom starts later (when the material 
appears at the die exit) but is faster since the stress is larger. This implies that the point of breakage 
depends on the detailed fluid behavior and the extrusion rate.  

 

 

 

Figure 1. Successive aspects of the filament (diameter 2 cm) during extrusion from the 
initial time (breakage of the previous drop) to the next breakage for: (a) the kaolin 
suspension at 0.36 mm s-1 and (b) the emulsion at 0.9 mm s-1.   

 

It must also be noticed that, since, before breakage, the stress was larger than the yield stress in some 
region above the breakage point, the fluid has been significantly deformed too (see Figure 1). This 
region will correspond to the bottom of the next drop, i.e. the region around point O in Figure 2. This 
implies that the bottom of each drop is widely deformed along some distance. Above this distance we 
then have a slightly deformed region corresponding to the exit of the filament from the die after the 
previous drop breakage (see Figure 2).  

Finally, this type of flow is particularly interesting as: 

1) The stress results from gravity and is therefore controlled; 
2) The observation of the filament size evolution directly provides information on the 

deformation history.  

The above suggests that some proper approximations and analysis could allow for the extracting of 
some important information concerning the constitutive equation of the material.  



Note that we aim here at describing the problem at best in the absence of any a priori knowledge 
about the constitutive equation of the material, except the fact that it exhibits a “solid-liquid 
transition” for a critical stress. Let us nevertheless recall that we further assume that the fluid is a non-
thixotropic one. As a corollary of this assumption, there is no impact of the flow history on the fluid 
behavior and thus its rheological properties are not affected by the flow in the extruder, i.e. as soon 
as it emerges from the extruder it has recovered it original properties corresponding to a material at 
rest.  

 

 

Figure 2. Scheme of the shape of a filament of yield stress fluid after the exit from the 
die. Depending on the normal stress value induced by gravity acting on the volume 
below the induced deformations lead the material to be in its solid or in its liquid regime. 

 

2.2 Flow characteristics 

Let us consider the gravity flow resulting from the fluid extrusion shown in Fig. 2, and describe it in a 
cylindrical reference frame zr ,, . We consider the situation, for which the solid region has been 

deformed to its final state (i.e. associated with finite deformations (see Section 2.1)), and we focus on 
the flow characteristics in the liquid region. In the absence of any flow instability, the velocity 

components in the cylindrical frame (i.e. zr
vvv ,,  ) are independent of the angle   and there is no 

rotation, so that 0=v . Under these conditions, the mass conservation writes:  
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As the filament cannot be considered as slender (see Figure 1) we cannot make this usual assumption 
which readily leads to natural simplifications in the flow field and stress tensor. Nevertheless we will 
make a fundamental assumption concerning the flow field: we assume that beyond some short 
distance from the die exit the longitudinal velocity does not depend on the distance from the central 

axis, i.e. ),( tzfv
z
= . This simplification derives naturally from the slender filament assumption for a 

flow not submitted to external shear stresses, but is less obvious when the filament radius rapidly 
varies, which is our case here. However, we can remark it is consistent with our specific boundary 
conditions: in the solid regions, which lie at the lower boundary of the liquid region, the velocity is 
uniform (plug), so it is effectively independent of r ; in the pinch-off region the flow, in a reference 



frame moving with this point, is approximately anti-symmetrical with regards to a horizontal plane 
passing through this point; this implies that the longitudinal velocity is zero at any point of the pinch-
off cross-section in a frame moving with this region, and thus is uniform in the laboratory frame.  

It follows from this assumption that the material in a thin horizontal layer progressively undergoes an 
elongational flow under a constant total vertical volume force resulting from the gravity acting on the 
material below this layer. However, the corresponding normal stress increases in time if the section 
area decreases. Moreover, the flow is more complex than a pure elongational flow as each horizontal 
layer is elongated at a different rate (the vertical force acting on it being different), which induces some 
shear in the radial direction. We will discuss further the impact of such effects on the flow 
characteristics. In any event, we will now follow the fluid motion in one such layer, which means that 
our referential frame is attached to it. 

From equation (1) it follows that 
2

r
vr −= , in which 
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  is the local, instantaneous, 

extensional rate. Writing this equation for Rr = , the external radius of the layer under consideration, 

for which  tRv
r

dd−= , we deduce: 
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In practice, R  is determined as a function of time and of some distance from some fixed reference 
point. This explains that, in (2), we use a material derivative as it is necessary to follow the size 
variations of the layer during its vertical motion.  

As already mentioned, the above flow is not a pure elongational flow since   depends on z. The strain 
rate tensor finally writes: 
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We now focus on the stress tensor Σ , of components ,..., 
rrr

 In the absence of flow instability, 

there is no effect tending to induce a rotation of the fluid around its axis, so that the stress components 

z  and 
r

 are equal to zero, and the other components of the stress tensor are independent of  . 

In consistency with the above assumption for )(zf , we assume that 
zz

  is constant in a section, i.e. it 

is independent of r  for a given value of z  and at a given time. We assume this is the same for the 

other diagonal components of the stress tensor, i.e.   and rr . At last, in this theoretical approach, 

we will neglect surface tension effects. 

The momentum equation in the z-direction gives: 
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in which tvtzaa
z

dd),( ==  is the acceleration of the fluid element. This equation may be multiplied 

by r and integrated between 0 and R , to get: 
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Besides, we have the boundary condition 0=nΣ  along the external surface of the sample, where we 

can write ii
zr
sincos een += , in which i  is the angle between the normal to the surface and the 

horizontal. We deduce:  
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The angle i  is defined through zRi −=tan , so that zRR
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= )( . Under these conditions, Eq. 

(5) may be rewritten as: 
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In practice, we can measure the shape of the drop in time, from direct observations. This typically gives 
the function ),( tzR  in the laboratory frame. Nevertheless, for the description it is more practical to 

describe the filament geometry in a frame moving with the drop tip, in order to focus on the filament 
deformation in time. Thus, we move from an Eulerian to a Lagrangian approach and describe the height 
along the filament in this moving frame, with the variable Z . The origin of this frame, i.e. the point O 
for which 0=Z , is taken at the drop tip.  

The integration of equation (7) between 0 and Z  then gives: 
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Note that, in contrast with detailed analyses [43, 48], previous works such as [26, 47] aiming at directly 
determining the elongational yield stress, generally neglected inertia effects, so that the normal stress 
is assumed to be given by (8) without the acceleration term q . We will show later (see experimental 

results) that these effects play a critical role in the last times of the flow because the drop strongly 
accelerates just before its separation. This term is therefore needed to get more relevant data from 
image analysis. 

In addition, from (6) we find  

)()(tan)( 2 RiR
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 =           (10) 

from which we deduce that the component rr  of the stress tensor is negligible as compared to zz
  

if itan  is sufficiently small.  

At last, we can deduce the expression for rz
  from equation (4) after integration between 0 and r

using the independence of various terms with regards to r , and using the expression for this stress 
for Rr =  (equation 6). We finally get: 
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2.3 Elongation rheometry from drop shape observation 

As soon as ),( tZR  has been determined, the normal stress ),( tZ
zz

  may be deduced from (8) by 

computing m  and q  by integration over the filament. Then ),( tZ
rz

  follows from (11), in which we 

can introduce ZRi −=tan . 

In parallel, the elongational rate   can be computed as a function of the experimental data. In the 
material derivative of (1), we now have to take into account that the position of a given fluid layer 
situated in Z  at some time varies with time. It follows that  
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All the terms in the right hand-side may be directly computed from the ),( tZR  measurements. In 

order to get tZ  , we can take advantage of the mass conservation, which tells us that, if we follow 

a given fluid layer,  dR
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Also, the acceleration corresponds to tZvtvtzaa
z

=== ))((dd),( , where tZvZv += )()( O . 

Thus a  may be expressed as ),()(
0

tzbtaa +−= , in which 0)(
0

= tva O  is the acceleration 

amplitude of the drop bottom with regards to the laboratory referential and 022 = tZb , an 

opposite acceleration due to the drop deformation. The expression for q  can now be written as the 

sum of a term associated with 0a and a term associated with b  (integral between 0  and Z ). In 

general, inertia effects become significant in the last time of the flow before breakage. In that case, 

0=b  in the solid region and is very low in most of the liquid region except at the approach of the 

pinch-off region where most of the flow is localized. This implies that, in the integral (equation (9)) 

associated with the component of q  resulting from b , the integrated function is equal to zero or very 

small over most of the range of integration. Thus this component is negligible and we simply have 

0maq −= . 

Thus, by measuring the shape of the drop in time, i.e. ),( tZR , we can deduce the strain rate tensor 

and the stress tensor, and thus establish the relationship between the two, i.e. the constitutive 
equation under such flow conditions close to simple elongation.  

 

2.4 Limitations 

Elongational vs shear components 

In view of our objective to have a technique for measuring the elongational properties of the fluid we 
are seeking for flow conditions from which we can directly extract a relationship between the normal 
stress and the elongational strain rate. However, the flow under study is in general not a purely 

elongational one, i.e. in which we could readily neglect the stress components other than zz
  and the 

components of the strain rate tensor other than the diagonal ones. For the stress tensor, the 
discrepancy from these ideal conditions appears to mainly depend on the value of itan , which 

determines the importance of the stress components other than zz
  with regards to zz

  for Rr =  (cf. 

equations (10) and (11)). According to equation (11) a value smaller than 0.1 for itan  ensures that the 

rz  will be smaller than 10% of zz
 , and would thus appear sufficient for an evaluation of the 

constitutive equation at first order, as usually assumed in rheometry. Remark that in that case our 

assumption of negligible rr  value would also be clearly validated (according to (10)), and  , which 

can be expected to play a role similar to rr  with regards to zz , would also be negligible, but the 

latter assumption is not central in our work.  

For the strain rate tensor, the discrepancy from these ideal conditions depends on the value of 

( )zR =  )4(  which determines the relative importance of the shear and the elongation 

components in the velocity field. A sufficiently low value for beta should ensure the negligibility of the 
non-diagonal components of the strain rate tensor. As a consequence, we could a priori consider again 



that a value for   smaller than 0.1 should ensure the negligibility of the shear component for an 

evaluation of the behavior at first order. However, it is worth noting that the exact impact of the shear 
rate component in the normal stress vs strain rate relationship depends on the form of the constitutive 
equation of the material. For example, for the standard Oldroyd 3D expression of the Herschel-Bulkley 

model (see Section 4.2), the shear rate just appears in the relation between zz  and   through the 

second invariant of the strain rate tensor, so that a value of   smaller than 0.4 is sufficient to ensure 

that it affects by less than 10% this constitutive equation in elongational flow (see Appendix 1). 

 

Surface tension effects 

Surface tension effects are obviously expected to start playing a role if viscous effects are sufficiently 
low. It seems difficult to establish general criterion for surface tension effects being negligible for this 
flow type. Indeed, a complete approach should take into account the gradient of the Laplace pressure 
induced by the filament curvature, and its evolution in time and along the drop axis, as a result of the 
complex curvature evolution. A detailed study of the impact of surface tension on the filament shape 
and breakage characteristics was carried out in the case of a fluid following a Herschel-Bulkley model 
[48]. Here we just propose a basic approach which compares the order of magnitude of viscous effects 
under slow flow (i.e. when the stress is in the order of the yield stress) conditions and surface tension 
effects. In this aim we compare the work associated with the main stress (i.e. the normal stress) during 

some elementary strain in a layer of initial thickness h  and radius R , i.e. RdRhR zz 2)( 2− , to the 

surface energy variation resulting from this deformation, i.e. hdRRh  2)2d( −=  (where   is the 

surface tension of the fluid). We deduce that surface tension effects will be negligible if  Rzz . In 

the liquid region, the radius is smaller than 
0

R  the initial radius, but the normal stress approximately 

increases with 21 R  (assuming a constant weight), so that Rzz  increases when R  decreases. It 

follows that it is sufficient to have  
0

R
c  for surface tension effects to be negligible. Note that, 

according to previous studies [30], it can be considered that the surface tension of such materials is 

close to that of their interstitial liquid, which is often water, so in that case we have -1mN  07.0 . 

The above result is similar to that obtained from a direct comparison of the characteristic stress in the 

material for sufficiently slow flows, i.e. c
 , and the characteristic capillary stress, i.e. 0

R , associated 

with the initial curvature of the filament.  

 

3. Materials and methods  

3.1 Materials 

We chose to use two model yield stress fluids of different structure types, which a priori do not exhibit 
thixotropic properties and whose yield stresses are relatively large. We prepared a concentrated direct 
emulsion from dodecane oil (88% of the total volume) and an aqueous solution containing 3% of TTAB, 
an ionic surfactant. The emulsion was prepared by slowly pouring the oil into the water solution while 
mixing with a Silverson mixer at 500 rpm. Once the oil was poured entirely, the rotation speed of the 
mixer was increased by steps, up to 6000 rpm, to finally disperse the oil into droplets of diameter ≈

2𝜇𝑚. Its density is -3m kg 008 . This material type is essentially a simple (non-thixotropic) yield stress 

fluid (see [49-50]). 

The clay paste is a suspension of kaolin (Speswhite, Imerys) (volume fraction 27%, weight fraction 50%) 
in demineralized water. The kaolin particles are plate-like with an equivalent spherical diameter of 
2𝜇𝑚. A homogeneous suspension is rapidly obtained by hand mixing the powder and water for a few 

minutes. Its pH was 5 and its density is -3m kg 1440 . In such a system colloidal interactions are 



negligible. The rheological behavior of this material type is essentially that of a non-thixotropic yield 
stress fluid (see [51]).  

For each material type reproducibility of the fluid behavior was confirmed by comparison of flow curve 
measurements before and after each series of extrusion experiments with a new batch of material. 

 

3.2 Shear rheometry  

We characterized the kaolin paste and the emulsion by shear rheometry, with a stress controlled 
Malvern Kinexus pro+ rheometer equipped with parallel disks geometry of diameter 50 mm with rough 
surfaces and a gap of 1 mm. To assess the behavior in the liquid regime, we imposed increasing then 
decreasing stress ramps over 2 min, after a preshear at 10 s-1 during 20 s. The corresponding stress vs 
shear rate curves rather well superimpose beyond some critical stress; the slight remaining differences 
can be due to some evolution of edge effects. Thus thixotropic effects are negligible, and we retain the 
decreasing curve as representing the behavior in the liquid regime in steady state (see Figure 3). Under 
these conditions, the material yield stress is a unique parameter of the material whose value may be 
estimated from the plateau level in the flow curve. Systematic creep tests at different stress values 
were also carried out starting from rest (see Figure 4). In such tests, the deformation vs time curve 
tends to saturate for a stress below a critical value while it tends to increase at a constant rate for a 
larger stress (see e.g. [52]). Note that in contrast with the other creep curves which rapidly reach a 
deformation plateau, for the last creep flow curve in the saturation regime (i.e. for a stress just below 
the yield stress (see inset of Figure 4)), the deformation slowly increases, but the corresponding 
apparent shear rate continuously decreases in time so that no steady state is reached. This means that 
the liquid regime is not reached yet for this stress value. This critical stress marking the transition 
between the solid and the liquid regime is then associated with a stress just above this value. It is found 
to be very close to the yield stress value identified from the plateau in the flow curve (see Figure 3). 
Finally, in the next steps we directly determined the (simple shear) yield stress value of the material as 

the value of the parameter c  in the Herschel-Bulkley model fitted to the down ramp flow curve data 

(see Figure 3). The uncertainty on rheometrical tests, and thus on the rheological parameter values 
provided, which may be deduced from a repetition of similar tests, can be considered in our case to be 
about 5%. 
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Figure 3: Flow curve of each material type obtained from up and down ramp test (open 
symbols for ramp up – filled symbols for ramp down) and steady state flow in the liquid 
regime during creep tests (stars) for the emulsion. The continuous lines correspond to the 

Herschel-Bulkley model in simple shear fitted to data (equation (14)) with  Pa309=
c
 , 

ns Pa 78=k  and 3/1=n  for the kaolin suspension, and  Pa52=
c
 , ns Pa 75.10=k  and 

3/1=n  for the emulsion.  
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Figure 4: Creep tests in simple shear for the emulsion: application of different stress 
values to the material initially at rest for each new value. The resulting deformation vs 
time is represented in the inset for the different stress values: from bottom to top every 
5 Pa starting from 5 Pa. The red dotted lines correspond to the solid regime, the 
continuous black lines to the liquid regime. The data in the main graph correspond to the 
same tests where the data have been represented in terms of shear stress vs deformation 
obtained at different times during these creep tests: (from top to bottom) 0.5, 0.7, 0.9, 
0.11, 0.2, 0.3, 0.5, 0.8, 1.2, 2, 3, 5, 7, 9 s. The first curves, which do not yet superimpose 
to the final (stopped) state in the solid regime are drawn in blue. The approximate position 
of the yield stress is shown by a black dotted line. 

 

3.3 Set up for extensional flow 

The setup to induce an extensional flow is a traction machine (INSTRON) that has been adapted to be 
used as an extruder (see Figure 5a). The upper part is a piston, which can be moved vertically at a 
velocity controlled within 0.2%. This piston moves in a 12 cm diameter cylinder, with a nozzle at its 
bottom. The contact between the piston and the inner cylinder surface is maintained with the help of 
a seal, which precludes any leakage. The cylinder is initially filled with the material, then the piston is 
moved at a given velocity which extrudes the material through the nozzle (see Figure 5b). For this 
study, three cylindrical nozzles were used, with the following diameters and lengths: 1 and 3 cm; 2 and 
6 cm; 4 and 12 cm. The mean velocity of the extrudate was varied from 0.036 mm. s−1 to 36 mm. s−1.   

 



3.4 Imaging  

Each extrusion test is filmed with high resolution (1080*1920) at 60 fps with a Panasonic Lumix FZ82, 
from the beginning of the exit of the filament from the nozzle to its breakage. A Python computer code 
was written to extract, from the video, data in terms of the extrudate radius as a function of the vertical 

position Z  from its tip and time t , i.e. ),( tZR  (see Figure 5c). Note that for all data except when 

mentioned we measured the droplet diameter and divided by two to deduce R . A second part of the 
same code uses discretized expressions of the theoretical formulas (see below) giving the strain rate 
and the stress along the filament at each time during the extrusion. 

More precisely, the raw data are a series of images in grey level, with a minimum precision of about 

200 pixels per cm. Different treatments are then applied to these images (noise removal, thresholding) 

to get a binary image in which the interface between the white and black areas corresponds to the 

fluid-air interface. The data on the radii (distance of this interface with regards to the central axis) are 

then further smoothed using a simple moving average (over 10 points). This smoothing allows for an 

enhanced precision, yet keeping the set of values of R discrete. Finally the derivative of R with regards 

to the time and the distance along the axis are performed with a centered finite difference. 

 

 

Figure 5. Principle of measurements during elongational test : a) Traction machine extruding (at 
3.6 mm/s) the material (here kaolin suspension) through a cylindrical nozzle; b) Image of the 
filament; c) Radius vs height extracted from this image.  

 

4. Results and discussion 

4.1 Characteristics of the filament 

The basic data of our extrusion tests is the set of the whole shapes of the filament (𝑅(𝑍, 𝑡)) at different 
times between the initial one (breakage of the previous drop) and the time at which the current drop 
breaks. Examples are shown in Figure 6 which present the typical qualitative characteristics of the 
extrudate deformation and flow in our range of tests. Note that, in these figures, the profiles are 
somewhat distorted as the scales used for the radius and the height are different. Also note that in our 
tests we did not notice any swelling of the extrudate at its exit, but data very close to this exit (see top 
part of the profiles in Figure 5) could not be obtained as this region was darkened in our pictures by 
the shadow of the nozzle (this problem essentially appear after thresholding).  

Although the free surface of the kaolin extrudate in the flowing region appears rougher than that of 
the emulsion, the results in terms of the evolution of the profile shapes for the kaolin suspension and 

a) b) c) 



the emulsion are qualitatively analogous (see Figure 6). Obviously, differences can nevertheless be 
observed concerning the exact timing and shape of the deformation or flow regions, which can be 
discussed relevantly only through a quantitative analysis (see below). The roughness effect for kaolin 
is more pronounced at low extrusion velocities, and it will not be visible in the profiles of the drop 
presented below due to the smoothening procedure for data analysis. This roughness might be due to 
some “surface instability” which might be due to the specific structure of the kaolin suspension, made 
of a high concentration of large platelets, which could tend to form some arrangements along the 
interface during its extension. As it seems to concern only a very thin layer along the surface we 
consider this is not a fluid mechanics instability, and the bulk flow is negligible affected. 

The first aspect of the extrudate, i.e. just after breakage of the previous drop, is conical (see Figure 1). 
This results from the deformation and/or flow induced by the weight of material acting on the sample 
part situated between the thinner point and the fluid in the die, whose diameter is imposed. Then, as 
the extrudate advances, we can observe from the successive profiles (see Figure 6) a region of slight 
deformation just above the conical region, where the profiles finally superimpose. In the region above, 
the thickness of the extrudate decreases more rapidly and continuously.  
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Figure 6. Profiles of radius vs height for extrudates of kaolin suspension (a) and emulsion 
(b) at different times during extrusion through a 2 cm nozzle diameter for the tests shown 
in Figure 1. Here the profiles have been drawn in a referential where 0 is the position of 
droplet bottom.  

 

Since in this filament elongation a different normal stress is applied at different positions along the 
filament axis, it is instructive to compare the corresponding evolution of the local deformation in time 
to the evolution of the shear deformation when applying different stress values in a simple shear 
experiment under controlled shear stress. In the latter case, i.e. when applying a series of creep tests 
at different (shear) stress levels to a yield stress fluid (see inset of Figure 4), a short time after the 
application of each stress, the deformation is small in any case; some time later, for a stress below the 
yield stress, the deformation tends to saturate, while, for a larger stress, the deformation continuously 
increases; later on, in the first region (i.e. below the yield stress), the deformation is constant, while it 
linearly increases in time in the other region (i.e. above the yield stress) at a rate increasing with the 



stress value (see inset of Figure 4). If we now represent the evolution in time of the stress vs 
deformation curves, we now see a solid region in which the deformation tends to a finite value, and a 
liquid region where it continuously increases in time. This leads to successive profiles (see Figure 4) 
with a slope breakage at the solid-liquid transition point.  

The qualitative features for apparent deformation along the filament (deformation roughly estimated 
from the ratio of the initial radius to the current radius) resemble the trends observed for such a series 
of shear creep tests: neglecting the region, just below the yield stress, associated with the slow residual 
flow in the solid regime (see Section 3.2), we can identify mainly two branches, one for the solid regime 
and the other for the liquid regime; a slope breakage progressively appears between these two 
branches, which likely corresponds to the transition between the solid and the liquid regime (see 
Figure 6). In fact, it is worth noting that the situation for the elongational test is more complex since 
the normal stress applied on a given layer of material increases with the deformation and the time of 
flow is much more limited. We nevertheless suggest to interpret the apparent slope breakage in the 
same way, by considering that this position corresponds to the point of transition between the solid 
and the liquid regions. Obviously, as usual for any type of experiment for determining the yielding 
point, it is difficult to distinguish precisely its exact value as it corresponds to a region below which the 
deformation is finite, and a region where the material, in theory, flows at an infinitely small rate.  

This approach essentially allows us to determine the liquid region, in which we are going to further 
analyze the flow characteristics. We could expect this would provide also an estimation of the 
elongational yield stress. However, the situation is not so simple as we cannot be sure that the flow in 
the region is a pure elongational one. Actually, in the next section we will see that this is not at all the 
case, which explains that using directly the apparent normal stress observed at the slope breakage 
would yield significantly smaller values than the elongational yield stress found through a more careful 
approach (see below).  

Let us now consider the question of the reproducibility of such data. For a typical succession of droplets 
in the same test the profiles at different times during flow and breakage appear to be very close except 
just before breakage for the emulsion, and somewhat more scattered for the kaolin suspension (see 
Appendix 2). However the overall shape evolution is similar. Also note that from such data we can see 
that the differences between the two sides of the profiles for the emulsion fall in the same range as 
the fluctuations observed from successive droplets (see Appendix 2). Besides, we can note that the 
repeatability of the experiments for a given set of parameters was good, and the variability of the 
droplets profiles from one test to another was similar to that observed for a succession of droplets 
during the same test. Averaging the successive profile points for each radial distance to get a more 
robust shape does not seem relevant as the profile differences have a 2D nature. Moreover, the 
differences observed in the free surface profiles for different droplets or different tests do not directly 
provide some indication on the uncertainty on the determination of the constitutive equation. Indeed, 
for example some local “accident” in the process leading to a deviation from the expected theoretical 
shape of the filament otherwise, will not directly induce a corresponding defect in the deduced 
constitutive equation. Actually, this deviation will induce a deviation on the local stress that will be 
taken in our approach which relies on the full shape measurements. Thus, in order to relevantly 
appreciate the uncertainty or the reproducibility of this rheometrical approach, it is necessary to 
compare directly the resulting constitutive equation data.  

 

4.2 Rheological analysis of flow characteristics 

We now analyze these profiles with the help of theory presented above. Here we focus on the part of 
filament profile situated below the pinch-off, as in this region the material clearly exhibits a solid region 
and the liquid region. The flow characteristics of the top part of the extrudate, located between the 
filament pinch-off and the nozzle, seem somewhat more complex. In particular, due to the attachment 



of the filament to the die exit the solid-liquid transition cannot be easily distinguished. A further careful 
analysis of this region might provide useful information, which is left for future work.   

Since the fluid elements in the solid region are submitted to some given stress it should a priori be 
possible to extract some relationship between normal stress and strain in elongation from the drop 
profiles obtained after stabilization in the solid regime. However, various effects preclude a 
straightforward analysis of the data to get this relationship. In particular, we do not control the exact 
initial size of the filament to be taken into account as a reference to compute the deformation: the 
filament diameter may be slightly affected by the exit from the die, and, just after it exits, it is 
submitted to some significant stress before drop breakage, which leads to the cone formation. As a 
consequence, here we focus on the data obtained in what we distinguished as the liquid regime. 

Analyzing the profiles (see Figure 5) of the filament at each time during flow in the liquid regime makes 
it possible to deduce an “apparent flow curve” of the material (see Figure 7), representing the 
instantaneous relationship between the normal stress and the strain rate along the sample profile 
whatever the flow characteristics, i.e. even under conditions for which the flow is not purely 
elongational. We then can see that these successive apparent flow curves progressively shift towards 
higher shear rates, with some of them (for the kaolin suspension) apparently superimposing at the 
highest shear rates. Since in the very first times the deformation beyond yielding is very limited in the 
region of small strain rate the above results could be interpreted as some progressive behavior 
transition to the steady state liquid behavior. The exact behavior of yield stress fluids during this 
transient regime constitutes an open question. In the following we show that these different apparent 
flow curves can more likely be attributed to the non-normal strain rate or stress components. As a 
corollary this tends to suggests that under these flow conditions the transition from solid behavior to 
steady state liquid behavior for these fluids is almost instantaneous beyond the critical deformation.  

Looking at the values of itan  and ( )zR =  )4(  for these data, we observe that these two 

variables decrease as the normal stress increases (see Figure 8). More precisely, along each curve 

(derived from the analysis of the flow at a given point), itan  and   are respectively larger than 0.1 

and 0.3, and finally become smaller for the very last points (except for 3 points for the emulsion, for 
which   is between 0.4 and 0.5), i.e. for the largest stress. This means that, for several data points 

along these apparent flow curves, the components of the stress tensor other than zz
 , and the shear 

rate, are significant and our analysis relying on the assumption of a pure elongational flow is not valid. 
Thus, it is misleading to interpret an apparent flow curve (deduced from a filament profile at a given 
time) as giving the shape of the “elongational” flow curve, since its shape is affected by the variable 
impact, with the stress increase, of the non-purely elongational components of the stress and strain 
rate tensors. In particular these apparent curves have a steeper slope for larger initial filament radius 
(data not shown here), which results from the fact that the position of breakage does not vary much 
with the initial radius, so that we have a steeper slope of the profile from the solid region to the pinch 
off point. However, as we will see below these different apparent flow curves “converge” to the same 
point in the pinch off region.  

Actually, this impact of the other stress and strain rate tensor components decreases as the stress 

increases, and tends to become negligible when itan  and   reach small values. Finally, it appears 

that almost all the last data points (i.e. for the largest stress) along each of these curves values (larger 
filled symbols in Figure 8) correspond to a situation for which the non-normal components can be 
neglected, and we can consider them as parts of the “effective flow curve” in elongation, i.e. associated 
with pure elongational flow. This means that we finally essentially retain the information from the 
pinch off region of the drop, while the other regions provide only rough approximations of the effective 
elongational behavior of the fluid. By the way, we can remark that by doing so we retain data in a 
region for which our basic theoretical assumption of uniform velocity in each section is certainly valid 
(see Section 2). Note that, since our criterion for the negligibility of the non-normal components is the 
same all along this final curve, i.e. at any strain rate, there is no particular range for which we can 



expect non-elongational effects to be at the origin of some larger uncertainty on the flow curve 
obtained here.  

At last, we can check that taking into account the acceleration term is critical. Without this term the 
last apparent flow curves, i.e. in the last times of flow before filament breakage, significantly depart 
from the rest of the curves (see Appendix 3). They can differ by a stress factor as large as 2 from the 
master flow curve obtained otherwise. Also note that the second term of acceleration (associated to 
b  ) was less than 1% in that case, which confirms its negligibility.  

Such elongation flow curves can be obtained from each drop, so that we can test the reproducibility 
of the results for successive drops of the same test. Typical results for four successive drops are shown 
in Figure 7, in which only a slight scatter may be observed. A similar conclusion is reached from the 
analysis of left and right profiles of the same drop, despite the instability noticed in the pictures (see 
Figure 1). We conclude that the uncertainty on the determination of the elongational flow curve under 
given conditions according to our procedure is about 5%. Finally we choose to fit some average 
elongational flow curve with a best fit procedure on such data obtained from a series of successive 
drops, and consider this as the effective flow curve associated with the test. Thus, we obtain the 
effective flow curve of the material as deduced from a test under given conditions. Note that, since 
this flow curve has a shape typical of a yield stress fluid behavior, i.e. with a plateau at low strain rates, 
the yield stress of the material in elongation is then very close to the lowest normal stress of this flow 
curve. It thus significantly differs from the critical stress value associated with the slope breakage in 
the profiles (see Figure 6), which in fact corresponds to the lowest stress value observed in the 
apparent flow curves. 
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Figure 7. Apparent flow curves in terms of normal stress vs elongation strain rate along the 
sample at different times during filament deformation in the liquid regime for: (a) the kaolin 
suspension for a velocity of 0.36 mm s-1 and a die diameter of 4 cm, (b) the emulsion at a velocity 
of 0.9 mm s-1 and die diameter of 2 cm, at different times from the previous droplet breakage 
(see caption in graph). The large black filled square symbols correspond to the data points the 
closest to a pure elongational flow. The large black open squares correspond to the same 
situation for three other successive drops during the same test.  
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Figure 8. Slope of the sample profile vs ratio of shear to elongational rate components (

itan  vs ( )zR =  )4( ) corresponding to the tests of Figure 7 (same symbols) for the 

kaolin suspension (a) and the emulsion (b). The arrows shows the direction of increase of 
the normal stress for a given time for one set of data (larger symbols) associated with a 
profile at a given time. The last data points, retained for the effective flow curve, are 
represented by larger, filled symbols. 

 

4.3 Discussion 

We can now gather all the flow curve data obtained through this procedure in the same graph, i.e. for 
each experiment we now keep only the data points identified as corresponding to pure elongational 
flow according to the technique described in the previous section, i.e. the effective flow curve data. 
For different diameters and a velocity varied over three decades a master flow curve is obtained for 
the kaolin suspension with an uncertainty of 12%, and a master flow curve is obtained for the emulsion 
with an uncertainty of 8% (see Figure 9). The superimposition of a wide set of data obtained under 
different conditions and at different times during the flow demonstrate that a robust, consistent 
rheological behavior is extracted from these tests.  
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Figure 9: Flow curves in elongational flow for the kaolin suspension (a) and the emulsion 
(b) under different conditions (see legend). The red dotted lines corresponds to the 
expression derived from the standard 3D Herschel-Bulkley model in pure elongational 
flow (i.e. equation (16)) using the rheological parameters determined in simple shear (see 
Figure 3). The thick continuous blue lines correspond to the best fit of a Herschel-Bulkley 

model for the elongation flow (i.e. equation 16), with parameters:  Pa299=c , 



ns Pa 105=k  and 4.0=n  for the kaolin, and   Pa4.56=c , ns Pa 1.5=k  and 67.0=n . 

For the emulsion this fit was done on the data for a 2 cm diameter; the thin black line is 

this best fit minus 15 Pa on the stress (i.e.   Pa48=c , ns Pa 1.5=k  and 67.0=n ). 

 

For the emulsion one may also distinguish two master curves with a smaller uncertainty (3.5%) for 
each of the two diameter tested (see Figure 9b), which suggests that here the diameter has some 
impact on the data. Actually, this difference essentially takes the form of a stress shift, i.e. the master 
curve for a 1 cm diameter is approximately similar to the master curve for a 2 cm diameter by adding 
a constant stress value (15 Pa) to the normal stress (see Figure 9b). This difference could essentially 
come from surface tension effects. Indeed, for all the tests with the kaolin suspension we have 

40
0

 R
c , which is consistent with the fact that a single master curve is obtained, i.e. capillary 

effects are negligible and the constitutive equation is independent of the diameter. For the emulsion 

we have 13
0

 R
c  for the tests with a 2 cm diameter, and we can consider that capillary effects play 

a minor effect, but for a 1 cm diameter 
0

R
c  reaches values as low as 6.4, so that capillary effects 

may affect the results in some extent. We are unable to more precisely quantify these effects, and 
here we will just consider, in consistency with this qualitative analysis, that the data for a 2 cm diameter 
with the emulsion are not affected by capillary effects and thus well reflect the material behavior.  

It is now of interest to compare the results concerning the rheological behavior in elongational flow to 
those observed in simple shear. In the latter case the Herschel-Bulkley model appears to very well 
represent the data (see Figure 3). In simple shear this model expresses as: 

n

cc
k +=             (14) 

where  
c

 is the yield stress, k  and n  materials parameters, and   and   respectively the shear 

stress and shear rate amplitudes. The 3D form of this constitutive equation has been the subject of 
discussions but the simplest form initially proposed by Oldroyd [15] is as follows: 
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in which I  is the identity tensor, 
2tr

2

1
T=IIT  and 

2tr
2

1
D=IID  are the second invariants of T  and D

, where T  is the extra-stress tensor defined as TIΣ +−= ptZ ),(  with 0tr =T . 

 

For a purely elongational flow, we have 
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It appears that this model very well predicts the elongational yield stress observed in our experiments: 

the stress plateau indeed corresponds to the
c

3  prediction of (17) (see Figure 9). In terms of normal 

stress we get for the kaolin suspension 517 Pa from our filament tests, whereas the prediction from 
simple shear tests and the standard 3D formulation is 535 Pa. For the emulsion we get 97.7 Pa from 
our filament tests with the 2 cm die, and 84 Pa with the 1 cm die, while the theoretical prediction is 90 
Pa. Such differences fall in the possible range of uncertainty. Thus our results confirm the validity of 
the standard model. 



This conclusion is in agreement with results from inspection of capillary forces around filament 
breakage to estimate the elongational yield stress [26-27]. On another side, the present results appear 
to be in contradiction with the estimations from recent measurements under different well-controlled 
conditions, i.e. extension between solid plates with wall slip [31], or cross-flow extensional rheometry 
[33]. It seems difficult to explain the origin of this difference, in particular to distinguish whether it 
comes from the flow conditions under consideration (bulk flow or filament stretching free of other 
constraints?), or some specificity of the rheological behavior of the material, but we can at least remark 
that we have here more straightforward and more precise data over several decades of strain rates, 
and for a range of filament radii. 

Interestingly, here we can look in more details at the form of the flow curve in elongational flow over 
several decades of strain rates, and for example compare it with the prediction (i.e. equation (16)) of 
the standard 3D model. We can see that the qualitative aspect is the same as that expected from a 
Herschel-Bulkley model, i.e. a plateau at low strain rates then a progressive increase of the normal 
stress for increasing strain rates. However, the exact theoretical flow curve (equation 16) does not well 

represent the data, i.e. it underestimates the stress at strain rates larger than a few 1−s  (see Figure 9). 
This means that the stress increases slightly faster with strain rate than expected from this model. The 
best fit procedure gives a parameter a value for n  equal to 0.4 for the kaolin suspension and 0.67 for 
the emulsion (see Figure 9), whereas the simple shear tests gives 0.33. As far as we know no simple 
constitutive equation has been proposed which predicts such a trend.  

 

Conclusion 

We here provide a complete rheometrical approach of the elongational flow of yield stress fluids, with 
simple technical means, which aims at determining the constitutive equation of the material in 
elongation. The transition between the solid and the liquid regime can be properly determined, which 
provides the elongational yield stress of the material. Our detailed analysis of the flow then essentially 
concerns the liquid regime, as the deformations in the solid regime in some region of the material are 
affected by the flow of the drop when it was still in contact with the previous drop. The flow in the 
liquid regime is nevertheless not a pure elongational flow, due to the large gradient of filament 
thickness. From the identification of the pure elongational region at different times during flow for a 
series of tests under different flow rates and filament diameters we were able to extract the 
constitutive equation in elongation in the liquid regime of a yield stress fluid, without a priori 
assumptions on the material behavior, i.e. as for a standard rheometrical approach. 

We finally were able to properly determine the elongational yield stress of two typical yield stress 
materials. It appears that, in contrast with certain previous results under other conditions, but in 
agreement with others (see Introduction), this value is that predicted by the basic Oldroyd model. The 
form of the constitutive equation appears to be close to that expected from the Herschel-Bulkley 
model, except that the exponent might be slightly larger than in simple shear. Thus, our direct 
measurement of the constitutive equation in elongation provides, at least for the two materials tested 
here, relatively simple results by comparison with some more sophisticated or indirect measurements. 

 

Appendix 1: Impact of the shear rate component on the constitutive equation in elongational flow 

Taking into account the shear rate component we now have  341
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in which 341 2 +=  

Thus, if 4.0 ,  the shear component affects the stress and the strain rate by less than 10% ( 1.1

).  For 5.0=  the impact of the shear component is equal to 15%. 

 

Appendix 2: Reproducibility of droplet shape. 

Here we present the shape for a succession of three droplets in the same test, for the different 
materials and compare the profiles observed at different times during the flow then breakage (see 
Figure 10 a,b. For the emulsion we also compare the profiles obtained when measuring the radius from 
the left or right side only. 
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Figure 10: Profiles at different times (lines of different colors; times indicated in seconds 
in the graphs) for three successive droplets (different line characteristics) in the same test 
with kaolin suspension (a) and emulsion (b), and for the right and left side of an emulsion 
droplet, and half its diameter (standard measurement in this paper) (c).  

 

Appendix 3. Impact of the acceleration term on the apparent flow curve. 

Figure 11 shows the difference between the apparent flow curves deduced directly from the profile 
analysis by considering only the gravity term in the stress and the apparent flow curve computed by 
taking into account also the acceleration term. 
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Figure 11: Apparent flow curves for the test of Figure 7a at different times before 
breakage, taking (open symbols) or not (filled symbols) the acceleration term. 
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