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SI 1. Fracture energy inversion through LEFM

In LEFM framework, the stress perturbation around the crack tip was com-

puted as a function of the distance from the crack tip itself for given values

through:

∆τ(θ, r, Cf) =
KII(Cf)√

2π
ΣII

xy(θ, Cf) (1)

where (θ, r) are polar coordinates with origin at the crack tip, KII(Cf) the

mode II stress intensity factor and ΣII
xy(θ, Cf) the angular variation. The stress

intensity factor was related to the fracture energy assuming an equilibrium with

the energy release rate following:

GII =
(1− ν2)

E
K2

II(Cf)fII(Cf) (2)

where fII(Cf) is a function of the rupture velocity. From the last relation KII(Cf)

could be written as a function of the fracture energy and rupture velocity only.

Since the system was initially loaded (macroscopic loads), the stress distribu-

tion at the crack tip was given by initial (σx, σy) and residual (τ) stresses and

the respective singular contributions of the stress field (∆σx,∆σy,∆τ). Con-

sidering this, to compare the experimental measurements to LEFM theoreti-

cal predictions, the initial strain was subtracted from εxx, εyy and the residual
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strain from εxy to obtain strain variations resulting from the rupture propa-

gation (∆εxx,∆εyy,∆εxy). By following the procedure described in Svetlizky

and Fineberg (2014), the fracture energy was inverted from the strain increase

assuming our local estimates of rupture velocity.

SI 2. Fracture energy inversion through CZM

The procedure to compute the shear stress change field around the crack

tip through the cohesive zone model followed the solutions already derived in

Poliakov et al. (2002) and Kammer and McLaskey (2019). Complex variables

need to be defined as:

zd = x+ iαdy;

zs = x+ iαsy
(3)

with αd =
√

1− C2
f /C

2
p, αs =

√
1− C2

f /C
2
s . For a cohesive linear cohesive

zone we can define the following analytic functions

Md =
τp − τr
π

[(
1 +

zd
xc

)
arctan

(
zd
xc

)−0.5

−
(
zd
xc

)0.5
]

;

Ms =
τp − τr
π

[(
1 +

zs
xc

)
arctan

(
zs
xc

)−0.5

−
(
zs
xc

)0.5
] (4)

The shear stress change can then be described as

∆σxy(x, y) = Re
[
4αsαdMd − (1 + α2

s )2Ms

]
/D (5)

with D(Cf) = 4αsαd − (1 + α2
s )2 the Rayleigh function.

SI 3. Numerical simulations

The illustrative numerical simulations were carried out through spectral

boundary integral method (Morrissey and Geubelle, 1997). Mode III ruptures

governed by the two-stage law were studied:

τf(D) =


τp − (τp − τmid)D/Dc,tip) if D ≤ Dc,tip,

τmid(1− (D −Dc,tip)/(Dc,tip −Dc,tail)) if Dc,tip < D ≤ Dc,tail,

0 else.

(6)
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where τf(D) is the frictional stress acting along the interface, τ0 the peak stress,

τmid the stress at which the constitutive law transitions from the first stage

weakening into the long-tailed weakening, Dc,tip the critical slip distance related

to the first stage weakening and Dc,tail the critical slip distance related to the

long-tailed weakening. The elastodynamic equilibrium relating shear stress τ to

the ongoing slip rate V is given by

τ(x, t) = τb(x, t) + φ(x, t)− µV (x, t)/2Cs, (7)

where τb is the background stress on the fault, µ is the shear modulus of the

surrounding material, and Cs is the shear wave speed. The term φ corresponds to

the static and dynamic non-local stress redistribution due to slip. To study the

influence of the dual-scale weakening, we compared numerical results given by

two different constitutive relations. The first one is the standard slip weakening

law while the second one presents a second weakening, occurring after Dc,tip

is overcome, which releases stress for a much longer displacement. The second

weakening distance was chosen by extrapolating from the experimental curves

the slope of the second weakening and inferring from this the displacement

corresponding to a total stress drop. For this reason the second weakening

distance (Dc,tail) was chosen to be 50 ·Dc,tip.

SI 4. Transition between scenario S1 and S2: critical background

stress

It was shown in our simulations how different levels of background stress

lead to different rupture dynamics. The critical background stress describing

the transition between the two scenarios can be obtained by looking at dynamic

fracture mechanics. Form Freund’s approximation (Freund, 1998), the rupture

velocity is proportional to G/Gc in the following way:

Cf ∝ G/Gc =
(τb − τr)2πL

2µDc(τp − τr)αs
. (8)

For a fixed background stress τb and any rupture size L, a rupture driven by

the second weakening mechanism is expected to propagate faster than a rupture
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Figure 1: Scheme of the numerical setup with the initial background stress along the fault

(τb), for both scenarios S1 (in solid black), S2 (in solid gray) and for the case with stress

barrier (in dashed gray). An elevated stress patch τb,nucl 5% above τ0, in a small region at

the center of the modeled fault (NP ), allows rupture nucleation.

driven by the first weakening mechanism if:

Cf,2 > Cf,1,
(τb − τr,2)2

Dc,2(τp,2 − τr,2)
>

(τb − τr,1)2

Dc,1(τp,1 − τr,1)
(9)

From this relation, one can then define a critical background stress τ∗b below

which, the second weakening mechanism will control rupture dynamics:

τ∗b =
ητr,1 − τr,2
η − 1

(10)

with η =
√
Gc,2/Gc,1. The critical value of background stress associated to our

simulations is found to be τ∗b = 0.86, value which well reflects the transition

observed between S1 ans S2.

SI 5. Estimate of the fracture energy from natural earthquakes

The breakdown work of natural earthquakes has been estimated from values

of seismic moment (M0), source radius (r), static stress drop (∆σ) and radiated

energy (Er). The average slip (D̄) was calculated for each events from the

definition of the seismic moment which implies that (Aki, 1966)

D̄ =
M0

µA
(11)
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where A = πr2 is the rupture area. The breakdown work was then estimated

from the relation described by Abercrombie and Rice (2005)

Wb = (∆σ − σa)
D̄

2
(12)

where σa is estimated following Beeler and Hickman (2004)

σa = µ
Er

Mo∆σ
(13)

The experimental data plotted in figure 5 of the manuscript are coming from

acoustic emissions and stick-slip events (McLaskey et al., 2014; Goodfellow and

Young, 2014; Yoshimitsu et al., 2014), mining-induced seismicity and excavation

undergroung research laboratory (Spottiswoode and McGarr, 1975; Gibowicz

et al., 1991; Collins and Young, 2000; Sellers et al., 2003; Oye et al., 2005;

Kwiatek et al., 2011), fluid induced seismicity (Urbancic et al., 1993, 1996) and

natural earthquakes (Mori et al., 2003; Abercrombie and Rice, 2005; Imanishi

and Ellsworth, 2006; Beroza and Spudich, 1988; Baltay et al., 2011; Viesca and

Garagash, 2015)

The predictions of the rupture length as a function of the average slip pre-

sented in figure ??b are computed for different values of stress drop following

the definition of the average stress drop (Eshelby, 1957)

∆σ =
7π

16
µ
D̄

r
(14)

for a penny shaped crack of radius r propagating in a homogeneous isotropic

infinite medium.
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