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Abstract

In a previous paper (Leblond et al., 2011), a theoretical instability threshold was derived for the currently observed phenomenon
of crack front fragmentation under mixed-mode I+III loading conditions. Instability modes were shown to emerge when the mode
mixity ratio K0

III/K
0
I exceeds some critical value [K0

III/K
0
I ]cr that only depends on Poisson’s ratio. Unfortunately, the predicted

threshold was found to be much larger than that observed in general. Numerical simulations of crack front fragmentation (Chen
et al., 2015), based on a phase-field model, subsequently evidenced an important role of the specimen size on the non-coplanar
instability. Here, we explore theoretically the influence of existence of some finite characteristic length(s), arising from the loading,
by accounting for the presence of non-singular stresses T 0

i j in the unperturbed configuration of the crack. By re-examining the linear
stability analysis of Leblond et al. (2011) with these more general assumptions, we show that a negative non-singular stress T 0

xx
in the direction of propagation does not affect crack front fragmentation, while a negative non-singular T 0

zz in the direction of the
crack front strongly hampers it. On the contrary, positive non-singular stresses T 0

xx and T 0
zz, or non-zero non-singular (antiplane

shear) stresses T 0
xz, promote the fragmentation process, sometimes through the formation of facets that drift along the front as

propagation proceeds. Large values of all three of these non-singular stresses may result in a significant lowering of the threshold
value [K0

III/K
0
I ]cr of the mode mixity ratio for instability, even possibly down to zero; which stresses out the potential existence

of the fragmentation instability even in pure mode I. Yet, our results cannot explain the often observed formation of non-coplanar
facets at extremely low mode mixity ratios; indeed the wavelength of the instability modes predicted are comparable to the finite
characteristic length(s) introduced, of at least centimetric order of magnitude, while the formation of facets has been observed
experimentally at scales as low as some tens of microns.

Keywords: Brittle failure, three-dimensional fracture, configurational stability, mode I+III, non-singular stresses

1. Introduction1

Crack front fragmentation is an ubiquitous phenomenon in2

tensile fracture of solids. It is generally observed when, in3

addition to the tensile mode I loading, some mode III anti-4

plane shear is applied. Fragmented cracks display facets that5

grow parallel to each other, and leave behind fracture surfaces6

with factory-roof-like morphologies. Since the seminal work7

of Sommer (1969) on glass, fragmentation patterns have been8

observed in nearly all types of materials, including rocks (Pol-9

lard et al., 1982), metallic alloys (Hourlier and Pineau, 1979;10

Eberlein et al., 2017), single crystals (Kermode et al., 2008),11

polymers (Knauss, 1970; Lazarus et al., 2008) and gels (Baum-12

berger et al., 2008). In recent years, crack front fragmentation13

has been observed in some special materials under conditions14

of almost pure mode I, K0
I > 0 and K0

III ' 0 where K0
I and K0

III15

denote the stress intensity factors in the initial planar configu-16

ration (Lin et al., 2010; Ronsin et al., 2014; Vasudevan, 2018;17

Kolvin et al., 2018). This suggests that mode I crack config-18

urations in these materials may be bi-stable, either simple or19

faceted.20

Despite the ubiquity of crack fragmentation during failure of21
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materials, a comprehensive understanding of, and a fully pre-22

dictive criterion for, the transition of a propagating crack from23

a smooth surface to a fragmented one is still missing. LEFM24

(linear elastic fracture mechanics), applied to slightly perturbed25

cracks, has proved to be the most promising theoretical frame-26

work to describe and predict the phenomenon. In their pio-27

neering work, Leblond et al. (2011), inspired by the results28

of Pons and Karma (2010)’s numerical simulations based on a29

phase-field-model, showed that helical perturbations to an ini-30

tially straight crack front may grow without bound, if the mode31

mixity ratio K0
III/K

0
I exceeds some critical value [K0

III/K
0
I ]ref

cr ,32

that only depends on Poisson’s ratio. It was then shown by33

Chen et al. (2015) that such a bifurcation is subcritical, so that34

fragmented crack fronts may exist even at low mixity ratios35

K0
III/K

0
I � 1, and so may co-exist with planar crack surfaces36

under the same loading conditions. However, such a scenario37

does not account for the emergence of facets in propagating38

cracks at extremely low levels of anti-plane shear, K0
III/K

0
I � 139

(very much lower than the theoretical value [K0
III/K

0
I ]ref

cr ), which40

have been reported in brittle polymers and gels (Lin et al., 2010;41

Ronsin et al., 2014; Vasudevan, 2018; Kolvin et al., 2018).42

To reconcile the onset of instability predicted by LEFM and43

the (material dependent) threshold observed experimentally,44

Leblond et al. (2019) and Vasudevan et al. (2020) investigated45
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the effect of a mode-dependent fracture energy, and showed46

that such a dependence may dramatically lower the fragmen-47

tation threshold, provided that the shear-mode-dependence of48

Gc is strong enough. Last but not least, they also showed that49

in the presence of some additional global mode II component,50

K0
II , 0, facets can gradually drift along the crack front as it51

propagates, a behavior which is indeed observed experimen-52

tally (Lin et al., 2010; Ronsin et al., 2014; Vasudevan, 2018;53

Kolvin et al., 2018).54

The role of the presence of some finite characteristic lengths,55

arising from the finite dimensions of the structure and/or the56

spatial variation of the loading, upon the fragmentation insta-57

bility has been largely neglected so far. However numerical58

simulations of crack front fragmentation, based on a phase-field59

model, have shown that reducing the specimen size results in60

a significant decrease of the instability threshold (Chen et al.,61

2015). In addition, theoretical investigations of the effect of62

non-singular stresses T 0
xx (parallel to the direction of propaga-63

tion), T 0
zz (parallel to the crack front) and T 0

xz (simple shear in64

the crack plane), due to Cotterell and Rice (1980), Gao (1992)65

and Xu et al. (1994), have shown that large values of these quan-66

tities may favor out-of-plane crack excursions, even under pure67

more I conditions. The presence of such non-singular stresses68

in the unperturbed configuration of the crack is intimately tied69

to the presence of one or several finite characteristic lengths.70

In this work, we explore theoretically the role of the presence71

of some finite characteristic lengths upon the fragmentation in-72

stability. These lengths, naturally defined as Li j = (K0
I /T

0
i j)

2
73

where T 0
i j denotes any of the three non-singular stresses T 0

xx,74

T 0
zz, T 0

xz, will arise only from the spatial variation of the load-75

ing, in the absence of any characteristic length in the infinite76

model-geometry considered. The structural length scales Li j77

may interact with the length scale characterizing the unstable78

mode of crack propagation, as shown in a broader context by79

Favier et al. (2006); Vasoya et al. (2016). We shall thus seek80

to determine the impact of the presence of some non-singular81

stresses, or equivalently some length scalesLi j, upon the transi-82

tion from a planar to a fragmented crack; and whether or not this83

presence may explain the low fragmentation threshold observed84

in some fracture experiments. We shall also explore the effect85

of non-singular stresses upon the morphology of the facets, and86

in particular (i) their possible drift along the crack front, and (ii)87

the possible selection of the characteristic size of the facets at88

the fragmentation threshold.89

The paper is organized as follows:90

• In Section 2, we first provide the expressions of the lo-91

cal variations δKI, δKII, δKIII of the stress intensity fac-92

tor along a perturbed crack front, under mixed mode I+III93

loading conditions with additional non-singular stresses94

T 0
xx, T 0

zz and T 0
xz.95

• These expressions are then applied in Section 3 to predict96

the fragmentation threshold and the properties of insta-97

bility modes. The derivation is based on the assumption98

that both Goldstein and Salganik (1974)’s principle of lo-99

cal symmetry and Griffith (1921)’s energetic condition are100

satisfied at all instants and all positions along the front, .101

• The impact of non-singular stresses upon the fragmenta-102

tion instability is analyzed in depth in Section 4.103

• Finally Section 5 presents a synthesis of our main findings104

and their application to experimental situations.105

2. First-order order perturbation of a semi-infinite crack in106

an infinite body107

2.1. Unperturbed geometry and loading - Generalities108

We consider a semi-infinite crack embedded in an infinite109

body made of some isotropic linearly elastic material. In the ini-110

tial reference configuration Γ, the crack is planar and its front is111

straight (see Fig. 1a). We adopt the usual convention of LEFM,112

and thus use a Cartesian frame Oxyz with origin O chosen ar-113

bitrarily within the crack plane, axis (Ox) parallel to the direc-114

tion of crack propagation, (Oy) parallel to the direction orthog-115

onal to the crack plane, and (Oz) parallel to the crack front (see116

Fig. 1a). The associated unit vectors are denoted (ex, ey, ez). In117

the following, the notations f,x, f,y, f,z denote the partial deriva-118

tives of the function f with respect to the coordinates x, y, z.119

r
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Figure 1: (a) The reference semi-infinite crack Γ with a straight front is loaded
in mixed-mode I+III with non-zero non-singular stresses. (b) The crack front
and its surface are perturbed both within and out of the original plane, by small
amounts noted φx and φy respectively.
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The unperturbed crack is loaded under mixed-mode I+III
conditions through some system of forces, such that the un-
perturbed SIFs K0

I and K0
III be independent of the position x of

the crack front and the position z of their point of observation
within this front. The SIF K0

III may harmlessly be assumed to be
non-negative. In addition the unperturbed stress field is charac-
terized by non-singular stresses (T 0

xx,T
0
xz,T

0
zz) also independent

of x and z. These non-singular stresses correspond to the con-
stant terms in the asymptotic expansion of the stress field in the
vicinity of the crack front, that reads (Williams, 1952):

σ0
xx(r, θ) =

K0
I

√
2πr

cos
(
θ
2

) [
1 − sin

(
θ
2

)
sin

(
3θ
2

)]
+ T 0

xx + O(r1/2)

σ0
yy(r, θ) =

K0
I

√
2πr

cos
(
θ
2

) [
1 + sin

(
θ
2

)
sin

(
3θ
2

)]
+ O(r1/2)

σ0
xy(r, θ) =

K0
I

√
2πr

cos
(
θ
2

)
sin

(
θ
2

)
cos

(
3θ
2

)
+ O(r1/2)

σ0
xz(r, θ) = −

K0
III
√

2πr
sin

(
θ
2

)
+ T 0

xz + O(r1/2)

σ0
yz(r, θ) =

K0
III
√

2πr
cos

(
θ
2

)
+ O(r1/2)

σ0
zz(r, θ) = 2ν

K0
I

√
2πr

cos
(
θ
2

)
+ T 0

zz + O(r1/2)

(1)
where (r, θ) denote the polar coordinates of the point of obser-
vation M in the local plane orthogonal to the crack front (see
Fig. 1a), and ν Poisson’s ratio. The non-singular stresses T 0

i j
typically emerge from the finite dimensions defined by the load-
ing, in the absence of any characteristic length defined by the
geometry itself. Their magnitudes |T 0

i j| define some character-
istic lengths

Li j =

K0
I

T 0
i j

2

(2)

that describe the spatial extent of a KI-dominated zone where120

the terms in K0
I of Eq. (1) prevail over those in T 0

i j.121

2.2. First-order expressions of the stress intensity factors along122

the crack front in a slightly perturbed configuration123

In a perturbed configuration Γ∗, the crack front is displaced124

within the original crack plane by a small amount φx(x, z) in125

the direction (Ox), and the crack surface is displaced out of the126

original crack plane by a small amount φy(x, z) in the direction127

(Oy) (see Fig. 1.b); the argument x here represents the average128

position of the perturbed crack front in the direction of propa-129

gation, in the first function, and the first coordinate of the point130

of observation of the out-of-plane perturbation, in the second.131

The p-th SIF Kp can be expressed as the sum of the SIF K0
p

associated to the reference configuration Γ, and the perturba-
tion δKp arising from the displacements of the crack front and
surface:

Kp(x, z) = K0
p + δKp(x, z). (3)

Furthermore because of linearity, each SIF perturbation δKp can
be decomposed as the sum of a term δK Kp resulting from the

macroscopic mixed-mode I+III loading, and a term δT Kp re-
sulting from the presence of non-zero non-singular stresses:

δKp(x, z) = δK Kp(x, z) + δT Kp(x, z) (4)

The detailed expressions of the perturbations δK Kp and δT Kp132

are provided in the works of Gao and Rice (1986) for the in-133

plane perturbation φx, and Movchan et al. (1998) for the out-134

of-plane perturbation φy; they are given in Eqs (A.1) and (A.9)135

of Appendix A respectively. Some simplifications have been136

made here according to the following hypotheses:137

1. The characteristic length defined by the spatial variations138

of the loading is supposed to be much larger than the typ-139

ical distances of variation of the perturbations φx(x, z) and140

φy(x, z) of the crack front and surface. (This is the assump-141

tion that permits to consider the K0
p’s and T 0

i j’s as indepen-142

dent of x).143

2. The characteristic length associated to the coefficients Aq144

appearing in the terms proportional to r1/2 in Eq. (1) – of145

the order of Kp/Aq – is much larger than the lengths Li j146

associated to the non-singular stresses.147

It is worth noting here that:148

1. The expressions of the variations δK Kp involve three types149

of terms: local terms that relate to the local crack front ori-150

entation defined by the derivatives φi, j, semi-local terms151

that involve integrals of the displacements φi along the152

whole crack front, and fully non-local terms that contain153

integrals of the displacements φi over the entire crack sur-154

face.155

2. The variations SIFs δT Kp were derived by Movchan et al.156

(1998) only for a sinusoidal perturbation φy(z) = A cos(kz)157

independent of x. Their expressions for an arbitrary per-158

turbation φy(x, z) are derived in Appendix A.159

3. The variations δT Kp involve only non-local terms related160

to the “morphology” of the crack surface, in Movchan161

et al. (1998)’s terminology.162

3. Linear stability analysis of coplanar propagation163

3.1. Generalities164

Like in our previous works (Leblond et al., 2011, 2019; Va-165

sudevan et al., 2020), we are looking for configurations of the166

crack and its front (φx, φy) other than the trivial one (planar167

crack with straight front), satisfying a “double” propagation cri-168

terion enforced at all points of the crack front and all instants of169

propagation. This criterion consists of:170

• Goldstein and Salganik (1974)’s principle of local symme-171

try, stipulating that the local SIF KII (x, z) of mode II must172

be zero;173

• Griffith (1921)’s criterion G(x, z) = Gc, which states that174

the local energy release rate G(x, z) must be equal to the175

local fracture energy Gc, assumed here to be uniform.1176

1It is interesting to note here that the validity of Griffith (1921)’s criterion
at small scales, that is in its local form G(x, z) = Gc, was recently tested exper-
imentally by Wang et al. (2022) by investigating the balance of energy during
the tensile failure of a brittle gel.
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The analysis will be based on the consideration of instabil-
ity modes associated with perturbations of the crack front and
surface of the following form (Vasudevan et al., 2020):φx(x, z) = Re

[
eλxψx(z)

]
φy(x, z) = Re

[
eλxψy(z)

] (5)

where λ is the complex growth rate of the mode, and ψx(z) and177

ψy(z) two unknown complex functions. Instability of coplanar178

propagation is characterized by the condition Re(λ) > 0. Also,179

as noted by (Vasudevan et al., 2020) and briefly re-explained be-180

low, a non-zero imaginary part of λ indicates a drifting motion181

of the instability mode along the crack front as it propagates.182

Use will be made of Fourier transforms in the direction z
of the crack front. The definition adopted here for the Fourier
transform χ̂(k) of an arbitrary function χ(z) is:

χ̂(k) =
1

2π

∫ +∞

−∞

χ(z)e−ikzdz ⇔ χ(z) =

∫ +∞

−∞

χ̂(k)eikzdk. (6)

One can see here that the imaginary part of λ governs the drift-183

ing motion of instability modes: indeed writing λ as λ1 + iλ2184

with real λ1 and λ2, one sees that the expressions of the per-185

turbations φx and φy involve, for each Fourier component, the186

factor eλxeikz = eλ1 xei(λ2 x+kz) depicting an exponential growth187

combined with a “drift velocity” dz/dx = −λ2/k - see (Vasude-188

van et al., 2020) for details.189

For each Fourier component, we define a normalized com-
plex growth rate ξ by the formula

ξ = λ/|k|. (7)

This dimensionless ratio compares the complex growth rate λ
of the perturbations in the direction x of propagation to their
wavenumber |k| in the direction z of the crack front. The value
of ξ is restricted to the half-plane Re(ξ) > −1 for convergence
of the integrals in Eqs. (A.1) and (A.9), which provide the vari-
ations of the SIFs due to the perturbations of the crack front and
surface. Note also that the imaginary part of ξ is directly con-
nected to the angle α characterizing the drifting motion of the
mode (see the inset of Fig.3.b) through the relation

α = arctan
[
−Im(ξ)

]
. (8)

The next two sections aim at deriving the condition on ξ that190

results from the double propagation criterion, when the crack191

is loaded in mixed-mode I+III with additional non-zero non-192

singular stresses. This will permit, upon examination of the193

real and imaginary parts of ξ, to discuss both the conditions194

governing instability of coplanar propagation, and the possible195

drifting motion of instability modes.196

3.2. Application of the principle of local symmetry197

We first make use of Goldstein and Salganik (1974)’s princi-
ple of local symmetry, stipulating that the stress intensity factor
of mode II must be uniformly zero at all points of the crack
front and all instants. In the absence of macroscopic mode II
(K0

II = 0), this condition reduces to:

δKII(x, z) = 0 (9)

The expression of δKII displayed in Eqs. (A.1) and (A.9) in-198

volves complex integrals of the perturbations (φx, φy) over the199

entire crack front and the entire crack surface. Fortunately,200

these integrals take a rather “simple” form when expressed201

in Fourier’s space, for instabilities of the type considered in202

Eq. (5). The expressions of the variations δ̂K Kp related to the203

unperturbed SIFs were derived by Leblond et al. (2019), and204

are recalled in Eq. (B.1) of Appendix B.a. The expressions of205

the variations δ̂T Kp associated to the unperturbed non-singular206

stresses are derived in Appendix B.b, and given in Eq. (B.4).207

Inserting Eqs. (B.1) and (B.4) in (9) yields, for every
wavenumber k:

4iρ0s ψ̂x(k) = ψ̂y(k)
{

2 − 3ν + (2 − ν)ξ

−
2
√

2
(ξ + 1)3/2

[
((2 − ν)ξ + 2) ξq0

xx + νq0
zz + 2is ((1 − ν)ξ + 1) q0

xz

]}
.

(10)
In this equation the quantity

ρ0 =
K0

III

K0
I

(≥ 0) (11)

denotes the unperturbed mixity ratio, s the sign of the
wavenumber k, and the quantities

q0
i j =

T 0
i j

√
|k|K0

I

=
εi j√
|k|Li j

, εi j = sgn(T 0
i j) (12)

are related to the ratios of the wavelength `pert = 2π/|k| of the208

perturbations to the lengthscales Li j set by the non-singular209

stresses Ti j, and defined by Eq. (2).210

3.3. Application of Griffith’s criterion211

We now use Griffith (1921)’s criterion, which states that the
crack propagates when the local energy release rate G(x, z) is
equal to the local fracture energy Gc. We consider here the
case where the field of fracture energy Gc is uniform. Then
necessarily

δG(x, z) = 0 (13)

at all points of the crack front and all instants.212

The energy-release-rate may be calculated from the SIFs us-
ing Irwin (1958)’s well-known formula:

G(x, z) =
1 − ν2

E

[
K2

I (x, z) + K2
II(x, z)

]
+

1 + ν

E
K2

III(x, z) (14)

where E denotes Young’s modulus. The first-order contribution
of the perturbations φx, φy of the crack front and surface to the
energy-release-rate reads:

δG(x, z) = 2
1 − ν2

E
K0

I
2
δKI(x, z)

K0
I

+
ρ0

1 − ν
δKIII(x, z)

K0
I

 . (15)

Griffith (1921)’s criterion (Eq. (13)) then yields:

δKI(x, z) +
ρ0

1 − ν
δKIII(x, z) = 0. (16)
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Inserting Eqs. (B.1) and (B.4) into (16) yields for every
wavenumber k:[

(1 − ν)(2 − ν) + (2 + ν)ρ2
0

]
ψ̂x(k)

= 2iρ0s ψ̂y(k)

−2(1 − ν) +
(1 − 2ν)(2 − ν)√

2(ξ + 1)

+

√
2√

ξ + 1

[
ν

ξ

ξ + 1
q0

xx −

(
2 − ν −

ν

ξ + 1

)
q0

zz

+is
(
(2 − ν)ξ − ν

ξ − 1
ξ + 1

)
q0

xz

]}
.

(17)

3.4. Combination of the two parts of the criterion213

Combination of Eqs.(10) and (17) yields:

F(ρ0, ξ) + fxx(ρ0, ξ)q0
xx + fzz(ρ0, ξ)q0

zz + is fxz(ρ0, ξ)q0
xz = 0 (18)

where

F(ρ0, ξ) = (1 − ν)(2 − 3ν) − 3(2 − ν)ρ2
0

+
[
(1 − ν)(2 − ν) + (2 + ν)ρ2

0

]
ξ

+4

√
2√

ξ + 1
(1 − 2ν)ρ2

0

fxx(ρ0, ξ) = −
2
√

2ξ
(ξ + 1)3/2

[
(1 − ν) ((2 − ν)ξ + 2)

+ ((2 + ν)ξ + 2) ρ2
0

]
fzz(ρ0, ξ) = −

2
√

2
(ξ + 1)3/2

[
ν(1 − ν) + (4ξ + 4 − ν)ρ2

0

]
fxz(ρ0, ξ) = −

4
√

2
(ξ + 1)3/2

[
(1 − ν) ((1 − ν)ξ + 1)

−
(
2ξ2 + (1 − ν)ξ − 1

)
ρ2

0

]
(19)

Equation (18) implicitly defines the value of the normal-214

ized growth rate ξ for a given set of loading parameters215

(ρ0, q0
xx, q

0
xz, q

0
zz); our interest is in values of ξ having a pos-216

itive real part, corresponding to exponentially growing per-217

turbations. The values of ξ satisfying Eq. (18) can be com-218

puted numerically relatively easily, this equation being equiva-219

lent to a polynomial equation of the fifth degree in the variable220

ζ = 1/
√
ξ + 1. The numerical procedure is described in Ap-221

pendix C.222

It is worth noting that in the absence of non-singular stresses223

T 0
i j, Eq. (18) reduces to condition (20) of Leblond et al. (2011)224

assessing configurational stability in mixed-mode I+III.225

4. Influence of non-singular stresses on the configurational226

stability of a plane crack227

4.1. The stability analysis of Leblond et al. (2011) without non-228

singular stresses229

We first consider the reference case of mixed mode I+III in
the absence of non-singular stresses, which corresponds to the
situation examined by Leblond et al. (2011). They showed that
– for values of Poisson’s ratio greater than νc ≈ 0.03 – ad-
missible solutions are found along the real line Im(λ) = 0, so

that no drift of instability modes is predicted. Moreover, the
growth rate Re(λ) = λ is negative (decaying perturbations) for
low values of the mode mixity ratio ρ0 = K0

I /K
0
III, but becomes

positive (increasing perturbations) for ratios larger than some
critical value [K0

III/K
0
I ]ref

cr . Both this critical value, and the evo-
lution of Re(λ) = λ with K0

I /K
0
III, depend on Poisson’s ratio ν.

In particular, the value of [K0
III/K

0
I ]ref

cr is given by

[K0
III/K

0
I ]ref

cr =

√
(1 − ν)(2 − 3ν)

3(2 − ν) − 4
√

2(1 − 2ν)
(20)

The results of the stability analysis are given in Fig. 2 for230

ν = 0.3, in the form of a plot of the “reduced” growth rate231

Re(λ)/|k| = λ/|k| versus the mixity ratio ρ0 = K0
I /K

0
III. For232

the value of ν considered, [K0
III/K

0
I ]ref

cr ' 0.52. (As noted by233

Leblond et al. (2011), another branch of solutions exists near234

Re(λ) ' −1, but it corresponds to exponentially decaying per-235

turbations of little interest).236
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Figure 2: Leblond et al. (2011)’s configurational stability analysis of a planar
crack loaded on mode I+III, for a Poisson ratio ν = 0.3: when the mode mixity
ratio K0

III/K
0
I is larger than some critical value [K0

III/K
0
I ]cr (vertical red line),

the perturbations grow exponentially (Re(λ) > 0), whatever their wavelength
`pert.

Yet, in phase-field simulations of brittle fracture (Pons and237

Karma, 2010; Chen et al., 2015) or experiments of crack ini-238

tiation in mixed mode I+III (Lin et al., 2010; Pham and Ravi-239

Chandar, 2014), non-zero non-singular stresses are bound to240

emerge from the finiteness of the crack dimensions with respect241

to the size of the fracture specimen, and from the boundary con-242

ditions. We shall now extend the study of Leblond et al. (2011)243

by building on equation (18) to explore the influence of such244

non-singular stresses upon the stability of the planar configura-245

tion of the crack.246

4.2. Influence of T 0
xx247

We first explore the influence of T 0
xx. The sign εxx of this248

non-singular stress has been shown to control the stability of249

the crack path in both 2D (Cotterell and Rice, 1980) and 3D250

situations (Gao, 1992; Xu et al., 1994), positive values of T 0
xx251

being associated with instability. However to the best of the252

authors’ knowledge, the influence of T 0
xx on the configurational253

instability in mode I+III has not been studied in the literature.254
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We shall show here that a positive T 0
xx favors both pure mode255

I and mixed-mode I+III instabilities through formation of drift-256

ing perturbations of large wavelength; while a negative T 0
xx pre-257

vents instabilities in pure mode I, and does not have any impact258

on the onset of the faceting instability in mode I+III.259

In contrast to the work of Leblond et al. (2011) where no260

length scale was involved, a non-zero non-singular stress T 0
xx261

yields a characteristic length Lxx = (K0
I /T

0
xx)2 which can be262

compared to the wavelength `pert = 2π/|k| of the perturbation in263

the direction of the crack front. Combined with the sign εxx of264

T 0
xx, the ratio of these two lengths sets the values of the growth265

rate Re(λ) and the drift angle α, for any mode mixity ratio ρ0 =266

K0
III/K

0
I . We show in Fig. 3 the values of Re(λ)/|k| and α versus267

the mode mixity ratio, for several values of the non-singular268

stress T 0
xx and a Poisson ratio ν = 0.3.269
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Figure 3: Configurational stability of a planar crack front for a Poisson ratio
ν = 0.3: influence of the non-singular stress T 0

xx on (a) the growth rate Re (λ)
of the perturbation and (b) its drift angle α. The black curves correspond to the
case T 0

xx = 0 considered by Leblond et al. (2011).

Prior to commenting on these results, a definition and some270

remarks are in order. We define [K0
III/K

0
I ]cr as the smallest value271

of the (non-negative) mixity ratio ρ0 = K0
III/K

0
I for which the272

real part of the reduced growth rate ξ = λ/|k| becomes non-273

negative. It is important to note here that at the “threshold”274

[K0
III/K

0
I ]cr:275

• Re(ξ) may be zero, if [K0
III/K

0
I ]cr is positive; Re(ξ)276

then crosses the value 0 when K0
III/K

0
I crosses the value277

[K0
III/K

0
I ]cr;278

• but Re(ξ) may also be positive, if [K0
III/K

0
I ]cr is zero; Re(ξ)279

is then positive for all values of K0
III/K

0
I ;280

• Im(ξ) need not necessarily be zero, and may take arbitrary281

values.282

We observe in Fig. 3.a that negative non-singular stresses283

do not qualitatively change the stability behavior of the crack284

with respect to the reference case considered by Leblond285

et al. (2011): stability prevails for mode mixity ratios below286

[K0
III/K

0
I ]cr and instability above it, and [K0

III/K
0
I ]cr corresponds287

to the value ξ = 0 and is independent of T 0
xx - and thus remains288

equal to [K0
III/K

0
I ]ref

cr . This means that a negative non-singular289

stress does not have any stabilizing influence on the onset of the290

mode I+III instability.291

The case of a positive Txx is also, and probably more, in-292

teresting: for low values of the mode mixity ratio, typically293

K0
III/K

0
I . 0.5, drifting perturbations (α , 0, dotted lines in294

Fig. 3.a) may develop along the crack surface, a feature that is295

absent for T 0
xx = 0. Note that both perturbations with a positive296

and a negative drift angle can form, owing to the invariance of297

the problem in a rotation of the geometry and loading of 180◦298

around the x-axis (see Fig. 3.b). The critical value [K0
III/K

0
I ]cr299

may also now depend on the non-singular stress T 0
xx. For low300

length scale ratios `pert/Lxx . 0.5, the drifting perturbations301

decay in time (Re(ξ) < 0), and exponentially growing, non-302

drifting perturbations (Re(ξ) > 0, α = 0) emerge when K0
III/K

0
I303

becomes larger than the value [K0
III/K

0
I ]cr = [K0

III/K
0
I ]ref

cr , which304

still corresponds to ξ = 0 and remains independent of T 0
xx or305

`pert/Lxx. For large length scale ratios `pert/Lxx & 0.5 (i.e. large306

values of T 0
xx), drifting perturbations emerge below the refer-307

ence critical value [K0
III/K

0
I ]ref

cr ' 0.5 obtained for T 0
xx = 0 (see308

Section 4.1). In other words, a large non-singular stress T 0
xx > 0309

results in a decrease of the critical mode mixity [K0
III/K

0
I ]cr for310

fragmentation. For even larger values of `pert/Lxx, [K0
III/K

0
I ]cr311

becomes zero so that perturbations grow even in the absence of312

mode III. These behaviors are qualitatively similar to those de-313

picted by Cotterell and Rice (1980), Gao (1992) and Xu et al.314

(1994), who predicted that a positive T 0
xx favors out-of-plane315

crack excursions. Note that the behavior observed in Fig. 3 for316

large mode mixity ratios, K0
III/K

0
I & 0.5, is rather similar to317

that in the reference case T 0
xx = 0: out-of-plane perturbations318

grow in time, and propagate parallel to the mean direction of319

crack propagation (α = 0), irrespective of the length scale ratio320

`pert/Lxx.321

The evolution of the critical mode mixity ratio [K0
III/K

0
I ]cr322

- as defined above - with the length scale ratio εxx.`pert/Lxx323

depends on Poisson’s ratio, and is displayed in Fig. 4.a for324

ν ∈ [0.1, 0.5]. Interestingly, as noted above, for all values of ν,325

above some “critical” length scale ratio [`pert/Lxx]cr, [K0
III/K

0
I ]cr326

becomes zero so that the perturbations grow exponentially no327

matter the mode mixity ratio. This critical length scale ra-328

tio is shown in Fig. 4.b and decreases almost linearly with329

Poisson’s ratio, from about 1.87 to 0.77 for ν ∈ [0.1, 0.5].330

Unfortunately, no simple analytical expression of [`pert/Lxx]cr331

could be derived from Eq.(18). (The difficulty being that when332

εxx.`pert/Lxx = [`pert/Lxx]cr, ξ is still not completely known333

since only its real part is zero).334
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Figure 4: (a) Critical mode mixity ratio [K0

III/K
0
I ]cr versus the perturbation size

ratio εxx.`pert/Lxx, for various values of Poisson’s ratio ν. (b) Evolution of the
critical size ratio [`pert/Lxx]cr with Poisson’s ratio ν. This is the perturbation
size ratio for which the planar crack becomes unstable whatever the value of
the mode mixity ratio K0

III/K
0
I .

It should be noted that even though the existence of such a335

critical length scale ratio, above which instability prevails what-336

ever the mixity ratio, is interesting, it cannot account for the337

small values of the mixity ratio at which facets form experi-338

mentally in some cases ([K0
III/K

0
I ]cr ' 0.001 − 01 for Homa-339

lite and PMMA, see Pham and Ravi-Chandar (2014) and Va-340

sudevan (2018)). Indeed in these experiments, the non-singular341

stress T 0
xx was rather small, the length Lxx consequently rather342

large, so that the length scale ratio `pert/Lxx was smaller than343

the critical value [`pert/Lxx]cr - especially at the scale `pert '344

10 − 100 µm at which the facets were observed.345

Let us finally investigate the limiting 2D case, corresponding
to perturbations independent of z, having thus a zero wavenum-
ber k in the direction of the crack front. The reduced growth
rate ξ = λ/|k| then becomes ill-defined; but to solve this prob-
lem, it suffices to multiply Eq. (18) by |k| and then let |k| go
to zero. One thus gets upon division by the common factor[
(1 − ν)(2 − ν) + (2 + ν)ρ2

0

]
:

λ − 2
√

2λ
T 0

xx

K0
I

= 0.

For a negative T 0
xx, this equation on λ does not have any solu-

tion, that is, there are no increasing perturbations (configura-

tional stability). However, for T 0
xx > 0, it does admits a solution

that reads:

√
λ = 2

√
2

T 0
xx

K0
I

⇒ λ = 8
T 0

xx

K0
I

2

= 8Lxx. (21)

We thus recover the results of Cotterell and Rice (1980), who346

showed that in 2D, the decreasing or increasing character of347

an arbitrary out-of-plane perturbation φy of the crack surface is348

controlled by the sole sign of T 0
xx. We also recover, for T 0

xx > 0,349

the value of the parameter λ governing the exponential growth350

of perturbations.351

4.3. Influence of T 0
zz352

We now investigate the influence of T 0
zz on the configurational353

stability of the planar crack. Like in the case where T 0
xx , 0,354

a non-zero non-singular stress T 0
zz yields a characteristic length355

Lzz = (K0
I /T

0
zz)

2 which may be compared to the perturbation356

wavelength `pert = 2π/|k|. Gao (1992) and Xu et al. (1994)357

showed that for pure mode I loading, the influence of T 0
zz on358

crack path stability is similar to that of T 0
xx: negative values of359

T 0
zz are associated to stable crack paths, while positive values360

favor instabilities. Moreover, Gao (1992) suggested that nega-361

tive non-singular stresses T 0
zz may prevent the formation of en362

echelon cracking patterns associated to mixed mode I+III load-363

ings.364

We shall show here that negative non-singular stresses T 0
zz365

indeed stabilize out-of-plane perturbations in pure mode I,366

and significantly increase the mode mixity ratio at which the367

faceting (out-of-plane) instability may occur in mode I+III. In368

contrast, positive values of T 0
zz somehow favor both instabili-369

ties in pure mode I and mode I+III for perturbations of large370

wavelength, albeit in a less marked way than T 0
xx.371

We show in Fig. 5 the normalized growth rate Re(λ)/|k|372

and the drift angle α as functions of the mode mixity ratio373

ρ0 = K0
III/K

0
I , for several values of the non-singular stress T 0

zz374

and a Poisson ratio ν = 0.3. A general remark is that drift-375

ing perturbations (α , 0) exist, but are of little interest since376

they always decrease in time. Negative non-singular stresses T 0
zz377

strongly stabilize the system, since even mode mixity ratios sig-378

nificantly larger than the reference threshold value [K0
III/K

0
I ]ref

cr ,379

corresponding to T 0
zz = 0, do not suffice to fragment the crack380

front. This is confirmed in Fig. 6.a, which shows [K0
III/K

0
I ]cr -381

as defined in Subsection 4.2 above - as a function of the length382

scale ratio εzz.`pert/Lzz. Note that here Im(ξ) is always zero at383

the threshold (K0
III/K

0
I = [K0

III/K
0
I ]cr). We observe that even384

a moderately negative non-singular stress T 0
zz triggers a sig-385

nificant increase of the critical mode mixity ratio, especially386

for low values of Poisson’s ratio. Also, the positiveness of387

[K0
III/K

0
I ]cr for all negative values of T 0

zz implies that such non-388

singular stresses preclude any out-of-plane instability in pure389

mode I (since K0
III/K

0
I = 0 is then necessarily smaller than390

[K0
III/K

0
I ]cr > 0).391

Positive non-singular stresses T 0
zz have an opposite impact392

upon stability of coplanar propagation, as they drive the sys-393

tem towards the mode I+III instability for lower critical mode394

mixity ratios [K0
III/K

0
I ]cr, see Fig. 5.a and Fig. 6.a. Like for the395
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Figure 5: Configurational stability of a planar crack front for a Poisson ratio
ν = 0.3: influence of the non-singular stress T 0

zz on (a) the growth rate Re (λ)
of the perturbation and (b) its drift angle α. The black curves correspond to the
case T 0

zz = 0 considered by Leblond et al. (2011).

non-singular stress T 0
xx, we observe that there exists a critical396

length scale ratio [`pert/Lzz]cr above which [K0
III/K

0
I ]cr becomes397

zero, so that perturbations grow unstably no matter the value398

of the mode mixity ratio. This means that for a positive non-399

singular stress T 0
zz, large-wavelength perturbations increase in400

time even in pure mode I. (In contrast, small-wavelength pertur-401

bations still decrease in time).402

The critical length scale ratio [`pert/Lzz]cr, above which
coplanar propagation thus becomes unstable even in pure mode
I, is determined by inserting the values ρ0 = K0

III/K
0
I = 0 and

ξ = 0 (see Fig. 5.a) in Eq.(18); the result,

[`pert/Lzz]cr =
π

4

(
2 − 3ν
ν

)2

(22)

agrees with the values computed numerically (see Fig. 6.b).403

Equation (22) means that perturbations with a wavelength404

`pert >
π

4

(
2 − 3ν
ν

)2

Lzz will grow in time. The 1/ν2 depen-405

dence here accounts for the rapid decrease of [`pert/Lzz]cr with406

increasing values of ν: large values of Poisson’s ratio favor407

crack front fragmentation, a behavior that is already clear in408

the absence of non-singular stresses, as the reference critical409

threshold ratio [K0
III/K

0
I ]ref

cr is also a decreasing function of ν410

(see Eq. 20). Note that the critical length scale ratio [`pert/Lzz]cr411
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Figure 6: (a) Critical mode mixity ratio [K0
III/K

0
I ]cr versus the perturbation size

ratio εzz.`pert/Lzz, for various values of Poisson’s ratio ν. (b) Evolution of the
critical size ratio [`pert/Lzz]cr with Poisson’s ratio ν. This is the perturbation
size ratio for which the planar crack becomes unstable whatever the value of
the mode mixity ratio K0

III/K
0
I .

happens to be much larger than that, [`pert/Lxx]cr, associated to412

the non-singular stress T 0
xx. This implies that the destabilizing413

effect of T 0
xx > 0 is much stronger than that of T 0

zz > 0.414

Equation (22) is reminiscent of Eq. (21) that provides the415

growth rate of out-of-plane perturbations of a mode I 2D crack416

(invariant along the direction of the front), in the presence of417

some non-singular stress Txx > 0. The formal similarity be-418

tween both equations emphasizes the similarity between the419

phenomena they depict: positive values of both non-singular420

stresses T 0
xx and T 0

zz imply, in pure mode I, formation of per-421

turbations involving some characteristic length proportional to422

the square of K0
I /T

0
xx or K0

I /T
0
zz. In both cases this reflects the423

natural tendency of the crack to grow perpendicularly to the di-424

rection of far tensile principal stresses.425

4.4. Influence of Txz426

Finally, we investigate the influence of the non-singular427

stress T 0
xz that introduces an additional length scale Lxz =428

(K0
I /T

0
xz)

2 in the problem. Gao (1992) and Xu et al. (1994)429

found that it had no influence on crack path stability in pure430

mode I. Gao (1992) nonetheless suggested that even for such a431

loading, it may promote the formation of non-coplanar facets,432

due to the generation of a local mode III component if the crack433
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is slightly perturbed out of its original plane (see the third of434

Eqs. (A.9)).435

We shall show here that a non-zero T 0
xz actually influences436

crack path stability in pure mode I, through formation of437

large-wavelength perturbations that drift along the front as438

the crack propagates. For mixed mode I+III loadings, the439

same mechanism also promotes the emergence of the faceting440

instability toward lower mode mixity ratios.441

442

In Fig. 7, we display the normalized growth rate Re(λ)/|k|443

and the drift angle α as functions of the mode mixity ratio444

ρ0 = K0
III/K

0
I , for several values of the non-singular stress T 0

xz445

and a Poisson ratio ν = 0.3. We observe that a non-zero T 0
xz446

may promote the formation of facets, as it lowers the value of447

the critical mode mixity ratio [K0
III/K

0
I ]cr above which perturba-448

tions increase in time (see Fig. 7.a). This instability is charac-449

terized by a drifting motion of the crack front with a positive450

drift angle α when T 0
xz < 0, and a negative one when T 0

xz > 0451

(see Fig. 7.b). Such an “oriented” drift of facets could some-452

how be anticipated, as the introduction of a non-zero T 0
xz breaks453

the invariance of the problem in a rotation of the geometry and454

loading of 180◦ about the x-axis.455
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Figure 7: Configurational stability of a planar crack front for a Poisson ratio
ν = 0.3: influence of the non-singular stress T 0

xz on (a) the growth rate Re (λ)
of the perturbation and (b) its drift angle α. The black curves correspond to the
case T 0

xz = 0 considered by Leblond et al. (2011).

Figure 8 shows the critical mode mixity ratio [K0
III/K

0
I ]cr as456

a function of the length scale ratio `pert/Lxz. We observe a sig-457

nificant decrease of [K0
III/K

0
I ]cr with increasing values of |T 0

xz|,458

especially for large Poisson ratios. It turns out that for small459

non-singular stresses Txz, the critical ratio [K0
III/K

0
I ]cr may be460

developed at first order in q0
xz ∝

√
`pert/Lxz, so that the thresh-461

old decreases linearly with
√
`pert/Lxz; this explains the cusps462

on the vertical axis observed in Fig. 8. We again note, for463

each value of ν, the existence of a critical length scale ratio464

[`pert/Lxz]cr above which perturbations grow in time, even in465

pure mode I, no matter the sign of T 0
xz.466
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Figure 8: (a) Critical mode mixity ratio [K0

III/K
0
I ]cr versus the perturbation size

ratio εxz.`pert/Lxz, for various values of Poisson’s ratio ν. (b) Evolution of the
critical size ratio [`pert/Lxz]cr with Poisson’s ratio ν. This is the perturbation
size ratio for which the planar crack becomes unstable whatever the value of
the mode mixity ratio K0

III/K
0
I .

5. Conclusion467

The configurational stability of a crack propagating under468

mixed-mode I+III loading conditions, with additional non-469

singular stresses T 0
xx, T 0

zz, T 0
xz, was investigated within the per-470

turbative framework of linear elastic fracture mechanics, on the471

basis of a linear stability analysis. The work stood as a natural472

extension of that of Leblond et al. (2011), that did not account473

for the influence of non-singular stresses upon the onset of the474

faceting instability. We showed that the critical mode mixity475

ratio [K0
III/K

0
I ]cr, at which the instability emerges, is strongly476

influenced by the presence of non-singular stresses, due to the477

emergence of perturbations of large wavelength which may or478

may not drift along the front as the crack propagates. The479
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possibility evidenced here of a drifting motion of instability480

modes has been observed experimentally, see for example Lin481

et al. (2010) and Vasudevan (2018), and is similar to that pre-482

dicted for a crack loaded under completely general mixed mode483

I+II+III conditions (Vasudevan et al., 2020).484

More specifically, the main findings of this study are as fol-485

lows:486

• A negative non-singular stress T 0
xx does not promote for-487

mation of facets, and leaves unchanged the instability488

threshold [K0
III/K

0
I ]cr which thus retains the value calcu-489

lated by Leblond et al. (2011) in the absence of non-490

singular stresses. On the contrary, a positive non-singular491

stress T 0
xx lowers the critical mode mixity ratio [K0

III/K
0
I ]cr,492

through formation of drifting facets. The impact of a pos-493

itive T 0
xx gets stronger as the ratio between the wavelength494

`pert of the perturbation approaches the structural length495

scaleLxx = (K0
I /T

0
xx)2 associated to T 0

xx. For perturbations496

of large wavelength, or large values of T 0
xx, facets growing497

in time may even form no matter the value of the mixity498

ratio ([K0
III/K

0
I ]cr = 0).499

• A negative non-singular stress T 0
zz strongly stabilizes500

straight crack fronts, as growing facets can only form for501

mode mixity ratios K0
III/K

0
I considerably larger than the502

instability threshold calculated by Leblond et al. (2011) in503

the absence of non-singular stresses. In contrast, a pos-504

itive T 0
zz promotes the faceting instability, as the critical505

mode mixity ratio [K0
III/K

0
I ]cr is a decreasing function of506

the length scale ratio `pert/Lzz. Like for the non-singular507

stress T 0
xx, growing facets may even form no matter the508

mode mixity ratio, if `pert/Lzz is large enough. However509

the critical length scale ratio [`pert/Lzz]cr, above which this510

phenomenon occurs, happens to be much larger than that,511

[`pert/Lxx]cr, associated to the non-singular stress T 0
xx.512

• Non-zero non-singular stresses T 0
xz promote the mode513

I+III instability, through formation of “oriented” facets514

that drift along the front in a specific direction determined515

by the sign of T 0
xz. Again, we also predict that facets may516

even form no matter the mode mixity ratio, if the length517

scale ratio `pert/Lxz is large enough.518

The existence, for the ratios of the wavelength `pert of the519

perturbation and the structural length scales Lxx, Lzz, Lxz,520

of critical values [`pert/Lxx]cr, [`pert/Lzz]cr, [`pert/Lxz]cr above521

which perturbations grow in time whatever the mode mixity ra-522

tio K0
III/K

0
I , has important implications for the stability of crack523

path under pure mode I loading conditions. In two dimensions,524

Cotterell and Rice (1980) showed that crack path stability is525

controlled by the sole sign of T 0
xx. In three dimensions, the pic-526

ture is more complex; the conclusions drawn from the present527

work can be summarized as follows:528

• For negative non-singular stresses T 0
xx or T 0

zz, the system is529

stable versus perturbations of arbitrary wavelength in the530

direction of the crack front.531

• For positive non-singular stresses T 0
xx or T 0

zz, and non-zero532

non-singular stresses T 0
xz, perturbations with wavelength533

smaller than some critical value set by the structural length534

scaleLi j = (K0
I /T

0
i j)

2 decrease in time, while perturbations535

with larger wavelength grow unstably.536

The study presented in this paper also provides interesting537

clues on the influence of non-singular stresses on the onset of538

the mode I+III out-of-plane instability. The contributions of539

non-singular stresses cannot be neglected in numerical simula-540

tions or experiments, as they typically emerge from the finite-541

ness of the crack dimensions with respect to the size of the em-542

bedding structure, and from boundary conditions. Yet, our re-543

sults cannot claim to provide an explanation to the formation544

of non-coplanar facets at the very low mode mixity ratios of-545

ten observed in experiments (Lin et al., 2010; Pham and Ravi-546

Chandar, 2014; Vasudevan, 2018; Kolvin et al., 2018); indeed,547

the wavelength of the instability modes evidenced in this work548

is comparable to the structural length scales Li j – of the order549

of some centimeters –, while the formation of facets has been550

observed experimentally at scales as low as some tens of mi-551

crons.552
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Appendix A. Expressions of the perturbed SIF δKp in presence of mixed-mode I+III and non-singular stresses573

In this Appendix, we provide the expressions of the perturbations of the SIFs arising from those parts of the initial (unperturbed)574

stress field tied to (i) the unperturbed SIFs K0
I , K0

III; (ii) the unperturbed non-singular stresses T 0
xx, T 0

zz, T 0
xz. These expressions are575

given at first order in the pair of perturbations (φx, φy) of the crack front and surface. The expressions of the terms pertaining to the576

SIFs K0
I , K0

III were given for arbitrary perturbations φx, φy by Leblond et al. (2011), building on the work of Gao and Rice (1986)577

and Movchan et al. (1998); and we derive here the expressions of the terms pertaining to the non-singular stresses T 0
xx, T 0

zz, T 0
xz,578

with a comparison of the partial results of Movchan et al. (1998).579

Appendix A.1. First-order perturbations of the stress intensity factors due to the initial stress intensity factors580

At first order in the pair (φx, φy), the perturbations δK Kp of the SIFs tied to the unperturbed SIFs K0
I , K0

III, consist of one contri-
bution arising from the in-plane perturbation φx of the crack front, plus another one arising from the out-of-plane perturbation φy of
the crack surface. According to the work of Gao and Rice (1986) for the in-plane perturbation, and those of Movchan et al. (1998)
and Leblond et al. (2011) for the out-of-plane perturbation, the expressions of these perturbations read:

δK KI(x, z) =
K0

I

2π
PV

∫ +∞

−∞

φx(x, z′) − φx(x, z)
(z − z′)2 dz′ − 2K0

IIIφy,z(x, z) + δKskew
I (x, z)

δK KII(x, z) = −
2

2 − ν
K0

IIIφx,z(x, z) +
K0

I

2
φy,x(x, z) −

2 − 3ν
2 − ν

K0
I

2π
PV

∫ +∞

−∞

φy(x, z′) − φy(x, z)
(z − z′)2 dz′

δK KIII(x, z) =
2 + ν

2 − ν
K0

III

2π
PV

∫ +∞

−∞

φx(x, z′) − φx(x, z)
(z − z′)2 dz′ +

2(1 − ν)2

2 − ν
K0

I φy,z(x, z)

(A.1)

where the symbol PV denotes a Cauchy principal value. The term δKskew
I in δK KI was calculated for an out-of-plane perturbation

φy independent of x by Movchan et al. (1998), and in the general case by Leblond et al. (2011), with the following result:

δKskew
I (x, z) =

√
2

4π
1 − 2ν
1 − ν

K0
IIIRe

{∫ x

−∞

dx′
∫ +∞

−∞

φy,x(x′, z′)

(x − x′)1/2 [(x − x′) + i(z − z′)]3/2 dz′
}

(A.2)

where the cut of the complex power function is along the half-line of non-positive real numbers. As explained in Section 2,581

expressions (A.1) and (A.2) disregard the influence of the spatial variations of the loading on the variations of the SIFs (because the582

lengths involved, of the order of |(∂K0
p/∂x)/K0

p |, are assumed to be much larger than the typical length over which the perturbations583

φx, φy vary significantly).584

Appendix A.2. First-order perturbations of the stress intensity factors due to initial non-singular stresses585

The calculation of the variations δT Kp of the SIFs tied to the non-singular stresses T 0
xx, T 0

zz, T 0
xz was presented in the work of586

Movchan et al. (1998). These variations were shown to depend only on the out-of-plane perturbation φy of the crack. They were587

calculated only for a perturbation φy independent of x and sinusoidal in z. Their expressions are derived here for an arbitrary φy.588

Some details on the derivation are given because of some discrepancies with the results of Movchan et al. (1998), see Appendix B589

below.590

We first recall that according to Movchan et al. (1998)’s results, the variations of SIFs arising from the out-of-plane perturbation591

φy of the crack surface involve three kinds of terms: (i) local terms that relate to the local displacement of the front and orientation of592

the crack surface, characterized by the quantities φy, φy,x, φy,z; (ii) semi-local terms that involve integrals over the whole crack front593

of its displacement φy; and (iii) non-local terms in the form of integrals of φy extended over the entire crack surface. Furthermore594

we observe from the results derived in Section 3.5 of Movchan et al. (1998), that the variations δT Kp involve only “morphology595

terms” (in the authors’ terminology) which are of type (iii). It is thus possible to retrieve the expressions of these variations by596

considering a perturbation φy that leaves unchanged both the local position of the crack front and the local orientation of the crack597

surface at all points of the front (φy = 0, φy,x = φy,z = 0 along the front): under such conditions other (local or semi-local) terms in598

the expressions of the variations of SIFs arising from the out-of-plane perturbation φy will vanish.599

To determine the variations δT Kp under such conditions, let us expand the solution (u,σ) of the elasticity problem at first order
in the perturbation: u(x) = u0(x) + u1(x)

σ(x) = σ0(x) + σ1(x)
(A.3)

where the displacement and stress fields u0 and σ0 are of order 0, and the fields u1 and σ1 of order 1. All four fields are defined on
the unperturbed cracked body: this is obvious for the fields u0 and σ0, and for the fields u1 and σ1 it stems from the fact that they
correspond to the derivatives, on the unperturbed configuration, of the displacement and stress fields with respect to the amplitude
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of the perturbation. We shall also need to expand the exterior normal vector n(x, y = φy(x, z), z) to the perturbed crack surface in a
similar way:

n(x, φy(x, z), z) = n0 + n1(x, z). (A.4)

Let us now expand the condition of zero traction on the perturbed crack surface:

0 = σ(x, φy(x, z), z).n(x, φy(x, z), z) = [σ0(x, φy(x, z), z) + σ1(x, φy(x, z), z)].[n0 + n1(x, z)]

= σ0(x, 0, z).n0 + σ0
,y(x, 0, z).n0φy(x, z) + σ0(x, 0, z).n1(x, z) + σ1(x, 0, z).n0.

Identifying terms of order 1 in the perturbation in this equation, we get the boundary condition satisfied by the first-order fields on
the unperturbed crack:

σ1(x, 0, z).n0 = −σ0
,y(x, 0, z).n0φy(x, z) − σ0(x, 0, z).n1(x, z) ≡ teff(x, z). (A.5)

We now develop this boundary condition in a more explicit form for those terms, in the unperturbed stress field σ0, which are
connected to the non-singular stresses T 0

xx, T 0
zz, T 0

xz. First we note that for these terms, the gradient of σ0 is zero so that the term
−σ0

,y(x, 0, z).n0φy(x, z) in Eq. (A.5) vanishes. Second, we remark that the vectors n0 and n1 read, on the upper (+) and lower (-)
unperturbed crack surfaces: {

n0± = ∓ey

n1±(x, z) = ±
(
φy,x(x, z)ex + φy,z(x, z)ez

)
.

(A.6)

Finally we remark that the terms pertaining to the non-singular stresses in the unperturbed stress field σ0 simply read

T 0
xxex ⊗ ex + T 0

zzez ⊗ ez + T 0
xz (ex ⊗ ez + ez ⊗ ex) .

Using these elements, we get the “effective tractions” teff(x, z) appearing in the boundary condition (A.5) for the first-order solution
on the upper and lower unperturbed crack surfaces:

teff ±(x, z) = σ1(x, 0, z).n0±

= −σ0(x, 0, z).n1±(x, z)
= ∓

[
T 0

xxex ⊗ ex + T 0
zzez ⊗ ez + T 0

xz (ex ⊗ ez + ez ⊗ ex)
]
·
(
φy,x(x, z)ex + φy,z(x, z)ez

)
= ∓

(
T 0

xxφy,x(x, z) + T 0
xzφy,z(x, z)

)
ex ∓

(
T 0

xzφy,x(x, z) + T 0
zzφy,z(x, z)

)
ez.

(A.7)

Now since the perturbation of the crack envisaged leaves unchanged the position of the crack front, the solution (u1,σ1) pos-
sesses the usual r−1/2 stress singularity near the front, which implies that it is a “classical” solution of bounded total energy, to
which standard theorems of elasticity theory apply.2 It follows that the p-th SIF at the point (x, z) of the unperturbed crack front,
corresponding to this solution, is given in terms of Bueckner (1987) weight functions and the effective tractions by the integral∫ x

−∞

dx′
∫ +∞

−∞

hpi(x, z; x′, z′)teff +
i (x′, z′)dz′ (A.8)

where hpi(x, z; x′, z′), a crack-face weight function, is the p-th SIF generated at the point (x, z) of the front by a pair of opposite
(equilibrated) unit forces applied in the directions ±ei at the points (x′, z′) of the unperturbed upper (+) and lower (-) crack surfaces.
But since the perturbation envisaged also leaves unchanged the orientation of the crack surface, these SIFs on the unperturbed
crack front simply coincide with those, δT Kp(x, z), arising from the unperturbed non-singular stresses in the perturbed solution.3 It
follows, using Eqs. (A.7) and (A.8) and the expressions of the crack-face weight functions for a semi-infinite crack in an infinite
body, provided for instance in (Gao and Rice, 1986), that:

δT KI(x, z) = 0

δT KII(x, z) = −

√
2

π3/2

∫ x
−∞

dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

[
1 +

2ν
2 − ν

(x − x′)2 − (z − z′)2

(x − x′)2 + (z − z′)2

] [
T 0

xxφy,x(x′, z′) + T 0
xzφy,z(x′, z′)

]
dz′

−

√
2

π3/2

∫ x
−∞

dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

4ν
2 − ν

(x − x′) (z − z′)
(x − x′)2 + (z − z′)2

[
T 0

xzφy,x(x′, z′) + T 0
zzφy,z(x′, z′)

]
dz′

δT KIII(x, z) = −

√
2

π3/2

∫ x
−∞

dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

4ν
2 − ν

(x − x′) (z − z′)
(x − x′)2 + (z − z′)2

[
T 0

xxφy,x(x′, z′) + T 0
xzφy,z(x′, z′)

]
dz′

−

√
2

π3/2

∫ x
−∞

dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

[
1 −

2ν
2 − ν

(x − x′)2 − (z − z′)2

(x − x′)2 + (z − z′)2

] [
T 0

xzφy,x(x′, z′) + T 0
zzφy,z(x′, z′)

]
dz′.

(A.9)

2If the perturbation implied a displacement of the front, the stress σ1 would behave near it like r−3/2 so that the corresponding total energy would be infinite,
implying a non-classical solution to which usual theorems would not apply.

3If the orientation of the surface was modified in the perturbation, the relation between these two sets of SIFs would involve additional terms tied to the small
rotations φy,x and φy,z of this surface.
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Appendix B. Expressions of the variations of the stress intensity factors using Fourier transforms600

In this Appendix, we provide the expressions of the variations δKp of the SIFs for the perturbations defined in Eq. (5), using the601

Fourier transforms ψ̂x, ψ̂y of the functions ψx, ψy.602

It is assumed below that Re(ξ) > −1 or equivalently Re(λ) > −|k| (which is true for all values of the wavenumber k if Re(λ) > 0);603

this condition is indeed required for convergence of the integrals obtained from the general expressions (A.1) of δK Kp and (A.9) of604

δT Kp.605

Appendix B.1. Variations of the stress intensity factors tied to K0
I , K0

III606

For perturbations of the form (5), the expression of the variations δK Kp of Eq. (A.1) are given by Leblond et al. (2019) as:

δK KI(x, z) = Re
{

eλx
∫ +∞

−∞

[
−K0

I
|k|
2
ψ̂x(k) − iK0

III

(
2 −

1 − 2ν
√

2(1 − ν)

λ

(λ + |k|)1/2

)
ψ̂y(k)

]
eikzdk

}
δK KII(x, z) = Re

{
eλx

∫ +∞

−∞

[
−iK0

III
2

2 − ν
kψ̂x(k) + K0

I

(
λ

2
+

2 − 3ν
2(2 − ν)

|k|
)
ψ̂y(k)

]
eikzdk

}
δK KIII(x, z) = Re

{
eλx

∫ +∞

−∞

[
−K0

III
2 + ν

2(2 − ν)
|k|ψ̂x(k) + iK0

I
2(1 − ν)2

2 − ν
kψ̂y(k)

]
eikzdk

} (B.1)

Appendix B.2. Variations of the stress intensity factors tied to T 0
xx, T 0

zz, T 0
xz607

We provide here the expressions of the variations δT Kp of Eq. (A.9) for perturbations of the form (5). As an example of the kind
of calculations required, here are those necessary to evaluate the first integral, δ1

T KII, appearing in the expression (A.9)2 of δT KII:

δ1
T KII(x, z) = −

√
2

π3/2

∫ x

−∞

dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

[
1 +

2ν
2 − ν

(x − x′)2 − (z − z′)2

(x − x′)2 + (z − z′)2

] [
T 0

xxφy,x(x′, z′) + T 0
xzφy,z(x′, z′)

]
dz′

= −

√
2

π3/2 Re
∫ x

−∞

eλx′dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

[
1 +

2ν
2 − ν

(x − x′)2 − (z − z′)2

(x − x′)2 + (z − z′)2

] [
λT 0

xxψy(z′) + T 0
xzψy,z(z′)

]
dz′


= −

√
2

π3/2 Re
∫ x

−∞

eλx′dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

[
1 +

2ν
2 − ν

(x − x′)2 − (z − z′)2

(x − x′)2 + (z − z′)2

]
dz′

∫ +∞

−∞

(
λT 0

xx + ikT 0
xz

)
ψ̂y(k)eikz′dk


= −

√
2

π3/2 Re
∫ x

−∞

eλx′dx′
∫ +∞

−∞

√
x − x′

(x − x′)2 + (z − z′)2

[
2 − 3ν
2 − ν

+
4ν

2 − ν
(x − x′)2

(x − x′)2 + (z − z′)2

]
dz′

∫ +∞

−∞

(
λT 0

xx + ikT 0
xz

)
ψ̂y(k)eikz′dk


−→

u = x − x′
v = z − z′

= −

√
2

π3/2(2 − ν)
Re

{
eλx

∫ +∞

−∞

(
λT 0

xx + ikT 0
xz

)
ψ̂y(k)eikzdk

∫ +∞

0

√
u e−λudu

∫ +∞

−∞

[
2 − 3ν
u2 + v2 + 4ν

u2

(u2 + v2)2

]
e−ikvdv

}

= −

√
2

π3/2(2 − ν)
Re

{
eλx

∫ +∞

−∞

(
λT 0

xx + ikT 0
xz

)
ψ̂y(k)eikzdk

∫ +∞

0
π

e−(λ+|k|)u

√
u

[2 − 3ν + 2ν(1 + |k|u)] du
}

= −
√

2 Re
{

eλx
∫ +∞

−∞

(
λT 0

xx + ikT 0
xz

) [ 1
(λ + |k|)1/2 +

ν

2 − ν
|k|

(λ + |k|)3/2

]
ψ̂y(k)eikzdk

}
.

(B.2)
The last steps of the calculation here used the following results (see formulae (3.723.2), (3.729.1) and (3.944.6) of Gradshteyn and
Ryzhik (2014)): 

∫ +∞

−∞

e−ikv

u2 + v2 dv =
π

u
e−|k|u ;

∫ +∞

−∞

e−ikv

(u2 + v2)2 dv =
π

2u3 (1 + |k|u)e−|k|u∫ +∞

−∞

e−(λ+|k|)u

√
u

du =
√
π(λ + |k|)−1/2 ;

∫ +∞

−∞

√
u e−(λ+|k|)udu =

√
π

2
(λ + |k|)−3/2.

(B.3)

The three remaining integrals of Eq. (A.9) may be calculated in a similar way, using in addition formula (3.729.2) of Gradshteyn
and Ryzhik (2014). The final results read as follows:

δT KI(x, z) = 0

δT KII(x, z) =
√

2 Re
{

eλx
∫ +∞

−∞

[
−

(
1 +

ν

2 − ν
|k|

λ + |k|

)
λ

(λ + |k|)1/2 T 0
xx −

ν

2 − ν
k2

(λ + |k|)3/2 T 0
zz − i

(
1 −

ν

2 − ν
λ − |k|
λ + |k|

)
k

(λ + |k|)1/2 T 0
xz

]
ψ̂y(k)eikzdk

}
δT KIII(x, z) =

√
2 Re

{
eλx

∫ +∞

−∞

[
i
ν

2 − ν
λk

(λ + |k|)3/2 T 0
xx − i

(
1 −

ν

2 − ν
|k|

λ + |k|

)
k

(λ + |k|)1/2 T 0
zz −

(
λ −

ν

2 − ν
λ − |k|
λ + |k|

|k|
)

1
(λ + |k|)1/2 T 0

xz

]
ψ̂y(k)eikzdk

}
.

(B.4)
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For the sinusoidal perturbation independent of x considered by Gao (1992) and Movchan et al. (1998), φy(z) = A cos(kz), k > 0
(that is, λ = 0 and ψ̂y(k′) = A

2 [δ(k′ − k) + δ(k′ + k)]), one thus gets:
δT KII(z) = A

√
2k

2 − ν

[
2T 0

xz sin(kz) − νT 0
zz cos(kz)

]
δT KIII(z) = A

√
2k

2 − ν

[
−νT 0

xz cos(kz) + 2(1 − ν)T 0
zz sin(kz)

]
.

(B.5)

These expressions agree with Eqs (40) and (41) of Gao (1992).4 When comparing our results to Eqs. (3.44) and (3.45) of Movchan608

et al. (1998), however, we note sign discrepancies in the term proportional to T 0
zz in the expression of δT KII, and in the term609

proportional to T 0
xz in the expression of δT KIII. It is unfortunately not possible to check Movchan et al. (1998)’s calculations610

because they are not detailed in their paper.611

Appendix C. Procedure of solution of Eq. (18)612

The study of general (complex) solutions in ξ of Eq. (18) is made easier by adopting the change of variable suggested by Leblond
et al. (2011):

ζ =
1√
ξ + 1

⇔ ξ =
1
ζ2 − 1 (with Re(ξ) > −1 ⇔ |Arg(ζ)| <

π

4
). (C.1)

Equation (18) reduces, after some manipulations, to the following algebraic equation of the 5th degree in ζ:

2
√

2ν
(
ρ2

0 − (1 + ν)
) [

q0
xx − 2isq0

xz − q0
zz

]
ζ5 + 4

√
2
[
−(1 − 2ν)ρ2

0 −
(
(1 + ν)ρ2

0 + (1 − ν)2
)

q0
xx +

(
(3 + ν)ρ2

0 + (1 − ν)2
)

isq0
xz + 2ρ2

0q0
zz

]
ζ3

+
[
2(4 − ν)ρ2

0 + 2ν(1 − ν)
]
ζ2 + 2

√
2
[(

(2 + ν)ρ2
0 + (1 − ν)(2 − ν)

)
q0

xx − 4ρ2
0isq0

xz

]
ζ − (2 + ν)ρ2

0 − (1 − ν)(2 − ν) = 0.
(C.2)

The roots of Eq. (C.2) are calculated numerically using the function roots of the Python library Numpy (Harris et al., 2020). The613

method relies on evaluation of the eigenvalues of the companion matrix. Only the roots satisfying the condition |Arg(ζ)| < π/4 are614

of interest, so that the number of retained roots may be less than 5.615
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