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Abstract7

When a crack interacts with material heterogeneities, its front distorts and adopts complex tor-
tuous configurations that are reminiscent of the energy barriers encountered during crack propa-
gation. As such, the study of crack front deformations is key to rationalize the effective failure
properties of micro-structured solids and interfaces. Yet, the impact of a localized dissipation in
a finite region behind the crack front, called the process zone, has often been overlooked. In this
work, we derive the equation ruling 3D coplanar crack propagation in heterogeneous cohesive
materials where the opening of the crack is resisted by some traction in its wake. We show that
the presence of a process zone results in two competing effects on the deformation of crack fronts:
(i) it makes the front more compliant to small-wavelength perturbations, and (ii) it smooths out
local fluctuations of strength and process zone size, from which emerge heterogeneities of frac-
ture energy. Their respective influence on front deformations is shown to strongly impact the
stability of perturbed crack fronts, as well as their stationary shapes when interacting with arrays
of tough obstacles. Overall, our theory provides a unified framework to predict the variety of
front profiles observed in experiments, even when the small-scale yielding hypothesis of linear
elastic fracture mechanics breaks down.

Keywords: Brittle fracture, cohesive zone models, crack front deformation, front stability,8

heterogeneous materials9

1. Introduction10

Significant efforts have been made in the past decades to unravel the influence of material11

heterogeneities on the failure behavior of composites. Understanding how crack fronts deform12

may seem a rather anecdotal subject matter in this regard. Yet, the front deformations are remi-13

niscent of the interaction between a crack and material disorder, and therefore conceal a wealth14

of information on the disorder intensity and its structure. Their study has provided invaluable15

insights on the spatio-temporal dynamics of propagating cracks, and on the effective toughness16

of composite brittle materials (see Lazarus (2011), Bonamy and Bouchaud (2011) and references17

therein).18

During its interaction with heterogeneities of material properties, the crack front distorts and19

adopts complex tortuous configurations. Predicting its propagation path requires considering20
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all possible geometric configurations, as well as a suitable criterion that selects the “most fa-21

vorable” one. This lead to a predominance of perturbative approaches in fracture mechanics,22

where quantities of interest such as the stress intensity factors can be linked to perturbations of23

the crack front geometry (Gao and Rice, 1986) and that of its surface (Movchan et al., 1998).24

In particular, the first-order theory of Rice (1985) based on Bueckner (1987)’s weight functions25

has been quite successful in capturing experimental observations of coplanar crack propagation26

along weak interfaces. It provides a convincing framework to describe quantitatively the defor-27

mations of a crack front interacting with a single tough defect (Chopin et al., 2011; Patinet et al.,28

2013a; Vasoya et al., 2016b) of sometimes complex shape (Xia et al., 2012), periodic arrays29

of obstacles (Dalmas et al., 2009), or disorderly-placed heterogeneities (Delaplace et al., 1999).30

It also helped in rationalizing the micro-dynamics of depinning of a crack exiting an obstacle31

(Chopin et al., 2018), or the intermittent macro-dynamics of crack propagation in disordered me-32

dia (Måløy et al., 2006; Ponson and Bonamy, 2010; Barés et al., 2018). The same theory has33

been extensively applied to predict the effective toughness arising from periodic (Gao and Rice,34

1989), asymmetric (Xia et al., 2015), or even disordered (Patinet et al., 2013b; Démery et al.,35

2014; Lebihain, 2021) distributions of fracture properties. Higher-order theories also provided36

valuable insights on bridging mechanisms (Bower and Ortiz, 1991), on fingering instabilities37

(Vasoya et al., 2016a), or on the microbranching transition at higher crack velocities (Kolvin38

et al., 2017).39

A major pitfall of these models is that they arguably overlook the influence of the spatially40

localized weakening dynamics near the crack front. Indeed, the LEFM theory is based on the41

so-called small-scale yielding assumption, which states that all the dissipation occurs in an in-42

finitesimally small region in the vicinity of the crack front. As such, LEFM does not provide43

any meaningful dissipation length scale, and treats all asperity scales indifferently. Yet, as we44

zoom in on the front of a propagating crack, one ultimately finds a region of finite size where the45

material behaves inelastically and the validity of the LEFM framework breaks down. It is crucial46

to understand how heterogeneities smaller or bigger than this dissipative region may influence47

the overall failure behavior of a composite. Cohesive-zone models (Dugdale, 1960; Barenblatt,48

1962) provide a way to do that, as they assume that the material does not weaken instantly but49

in a region of finite size – called “process zone” – located at the crack front where the crack50

opening is resisted by a distribution of cohesive stresses. In these models, the fracture properties51

are not solely characterized by the fracture energy Gc, but rather by (i) the strength σc of the52

material, and (ii) its process zone size ω, two quantities from which emerge the fracture energy53

(Palmer et al., 1973). The development of a unified framework that describes the failure behavior54

of cohesive and heterogeneous materials may only take place through a preliminary study of the55

front deformations in presence of a finite process zone.56

57

In this work, we extend the LEFM perturbative theory of Rice (1985) to mode I coplanar58

crack propagation in cohesive materials. This is performed by deriving first Bueckner (1987)’s59

crack face weight function for a semi-infinite coplanar crack perturbed within its plane. As a60

result, we can explore for the first time the influence of a finite process zone size on the front61

deformations of a crack propagating in tensile mode I. We show that a cohesive crack accommo-62

dates perturbations differently depending on the size of the perturbation wavelength with respect63

to that of the process zone. We also emphasize that the presence of cohesive stress behind the64

crack front may strongly modify the fluctuations of fracture energy the crack actually perceives65

during its propagation. This theory successfully predicts the front profiles observed in the peel-66

ing experiments of Chopin et al. (2011), for which the small-scale yielding hypothesis of LEFM67
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is suspected to break down.68

The paper is organized as follows: in Section 2, we derive the expression of the crack face69

weight function perturbations at first-order in the front deformation, following a method pro-70

posed by Rice (1989). It allows us to calculate the stress intensity factor arising from cohesive71

stresses acting behind the front for materials translationally invariant in the propagation direc-72

tion. Building on this model, we revisit in Section 3 the stability problem of a perturbed crack73

front treated by Rice (1985) for perfectly brittle materials. We highlight here the influence of the74

finite process zone size on the relative “stiffness” of the crack front to some modal perturbations.75

Next, we investigate in Section 4 the stationary shape of a crack front interacting with periodic76

arrays of tough obstacles. We show here that the presence of cohesive stresses behind the crack77

front does not only affect the stiffness of the crack front, but also influences the energy landscape78

the crack actually experiences during its propagation. The front profiles predicted by our theory79

are successfully compared to those obtained by Chopin et al. (2011) during adhesive peeling80

experiments of an elastomer block from a patterned glass substrate.81

2. First-order variations of the mode I stress intensity factor for a semi-infinite coplanar82

cohesive crack83

2.1. Cohesive approach to three-dimensional coplanar crack propagation84

We consider a semi-infinite crack embedded in an infinite body made of an isotropic linear85

elastic material. In the initial reference configuration Γ, the crack is planar and its front is straight86

(see Fig. 1a). We adopt the usual convention of LEFM, and thus use a Cartesian frame Oxyz with87

origin O chosen arbitrarily within the crack plane, axis (Ox) parallel to the direction of crack88

propagation, (Oy) parallel to the direction orthogonal to the crack plane, and (Oz) parallel to the89

crack front. The associated unit vectors are denoted
(
ex, ey, ez

)
. The crack Γ is loaded in pure90

mode I through some system of forces independent of the coordinate z, so that the unperturbed91

stress intensity factor (SIF) K0
I is independent of the point of observation along the crack front.92

The influence of the loading conditions and the specimen geometry may be accounted for in the93

evolution of K0
I with crack advance.94

95

Now, let the front F undergo some infinitesimal coplanar perturbation, and note δa the lo-96

cal orthogonal distance between the perturbed front F ∗ with respect to the reference one (see97

Fig. 1b). The LEFM perturbed stress intensity factor Klefm along the front reads (Rice, 1985):98

Klefm (z) = K0
I + δKlefm (z) = K0

I

1 +
1

K0
I

∂K0
I

∂a
δa(z) −

1
2π

PV
∫ +∞

−∞

δa (z) − δa(z′)
(z − z′)2 dz′

 (1)

where δKlefm corresponds to the first-order variations of Klefm due to the front deformations δa,99

and the symbol PV denotes a Cauchy principal value. Equation (1) is non-local, since the rupture100

behavior at a given point is affected by the position of the other points due to long-range elastic101

interactions.102

103

In the following, use will be made of Fourier transforms in the direction (Oz) of the crack104

front. The definition adopted here for the Fourier transform χ̂(k) of an arbitrary function χ(z) is:105

χ̂(k) =
1

2π

∫ +∞

−∞

χ(z)e−ikzdz ⇔ χ(z) =

∫ +∞

−∞

χ̂(k)eikzdk (2)
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Then Eq. (1) reads in the Fourier space:106

δ̂Klefm (k)
K0

I

=

 1
K0

I

∂K0
I

∂a
−
|k|
2

 δ̂a (k) (3)
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Figure 1: (a) A semi-infinite planar crack Γ with a straight crack front F is loaded under pure mode I through some
system of forces, giving rise to a stress intensity factor K0

I . (b) Due to the presence of microscopic heterogeneities, the
crack front F ∗ of the perturbed crack Γ∗ distorts by a quantity δa(z) along the direction of propagation (Ox). (c) The
material does not weaken instantly in the crack wake, but progressively in a closed region behind the rupture front (in
red) called process zone. Inset: In this region, the cohesive stress σ decay from its peak value σc, referred to as the
strength of the material, down to zero along a typical distance ω.

The LEFM approach leads to a “non-physical” situation where the stress is found singular at107

the crack front. Cohesive zone models (CZMs) address this issue by assuming that the opening108

of the crack is resisted in its wake by a tensile stress σ (z, x), called cohesive stress, acting behind109

the crack front (see Fig. 1c). It typically evolves from a peak value σc, called strength of the110

material, down to negligible values along a characteristic distance ω, called process zone size111

(see inset of Fig. 1c). The evolution of σ behind the crack front usually results from a traction-112

separation law σ = f (δ) describing material degradation with the local opening displacement δ113

(Dugdale, 1960; Barenblatt, 1962). This cohesive stress σ gives rise to a negative stress intensity114

factor −Kczm (z) that balances Klefm (z), ensuring then that the stress is non-singular at each point115

along the crack front:116

Ktotal (z) = Klefm (z) − Kczm (z) = 0 (4)

Building on Bueckner-Rice’s weight function theory (Bueckner, 1987; Rice, 1989), one may117

express the cohesive stress intensity factor Kczm as:118

Kczm (z) =

∫
Γ∗

k∗
(
Γ∗; z, z′, x

)
σ (x) dz′dx (5)

where k∗ (Γ∗; z, z′, x) is the mode I crack face weight function (CFWF). It corresponds to the119

stress intensity factor generated at point z by a pair of unitary tensile forces applied at a point120

(z′, x) located on the faces of Γ∗.121

2.2. First-order variations of the mode I crack face weight function122

In order to compute the cohesive stress intensity factor of Eq. (5), we need a closed form for123

the crack face weight function k∗ of the perturbed front F ∗. We follow here the ideas developed124

by Rice (1989) and Favier et al. (2006), upon which Leblond et al. (2012) built to derive the125

first-order variations of the fundamental kernel Z (Γ∗; z; z′) =
√
π/8 lim

x→0
k (Γ∗; z; z′, x) /

√
x. We126

build upon them here to derive the variations of the mode I crack face weight function for a semi-127

infinite coplanar crack at first order in the perturbation δa. Our results generalize the calculations128
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of Leblond et al. (2012) that only looked at the asymptotic behavior of k∗ near the crack front129

(x→ 0).130

131

The evolution of the opening displacement and the stress in the vicinity of the perturbed crack132

front are naturally expressed in the local basis of vectors
(
e∗z (z), e∗x(z), ey

)
, where e∗z (z) is tangent133

to the crack front F ∗ at position z, and e∗x(z) is perpendicular to it within the plane (zOx) and134

oriented in the direction of propagation (see Fig. 2). Following Favier et al. (2006), we need to135

define two distinct crack face weight functions:136

• k∗ (F ∗; z0; z1, x∗), which corresponds to the stress intensity factor generated at z = z0 by a137

pair of unitary forces applied along ey at a distance x∗ behind the point z1 of the perturbed138

crack front F ∗ in the direction of the vector e∗x(z1);139

• k (F ∗; z0; z1, x), which corresponds to the stress intensity factor generated at z = z0 by a140

pair of unitary forces applied along ey at a distance x behind the point z1 of the perturbed141

crack front F ∗ in the direction ex.142

At first order in the perturbation, one has:143

k∗ (F ∗; z0; z1, x∗) = k (F ∗; z0; z1, x) (6)

as the error introduced on the position of the point of application of the forces is of second order144

in δa (Favier et al., 2006). Moreover, Rice (1989) showed that provided the crack advance δa(z)145

satisfies the condition:146

δa(z0) = 0 and δa(z1) = 0 (7)

k (F ∗; z0; z1, x) can be expressed from the CFWF k (F ; z0; z1, x) of the reference straight front147

following:148

k (F ∗; z0; z1, x) = k (F ; z0; z1, x) +
1

2π

∫ +∞

−∞

k (F ; z; z1, x)
δa(z)

(z − z0)2 dz (8)

where k (F ; z0; z1, x) is known analytically for the semi-infinite coplanar crack with a straight149

crack front Γ:150

k (F ; z0; z1, x) =

√
2

π3/2

√
x

(z0 − z1)2 + x2 (9)

Yet, the condition (7) is not satisfied for an arbitrary perturbation δa. To circumvent this diffi-151

culty, we follow the ideas of Leblond et al. (2012), and compute the perturbed CFWF associated152

to Γ∗ from those of a reference crack Γ∗∗ that results from the combination of translatory motion153

and a rotation δa∗∗ making δa∗(z) = δa(z) − δa∗∗(z) vanish in z0 and z1:154

δa∗∗(z) = δa(z0) +
δa(z1) − δa(z0)

z1 − z0
(z − z0) = δa(z1) +

δa(z1) − δa(z0)
z1 − z0

(z − z1) (10)

In the following,
(
e∗∗z (z0, z1), e∗∗x (z0, z1), ey

)
denotes the natural basis of vectors associated to the155

straight crack front F ∗∗ of Γ∗∗, and (z∗∗, x∗∗, y) the point coordinates in this basis (see Fig. 2).156

One may then define:157
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ℱ** (z, δa**(z)) ℱ* (z, δa(z))

ℱ (z,0)

δa*(z)
δa(z0)

ez

ex

e*x (z1)

e*z (z1)

e**x (z0, z1)

e**z (z0, z1)x** x*

z0 z1

Figure 2: The mode I stress intensity factor k (F ∗; z0; z1, x∗) generated at z = z0 by a pair of unitary forces applied along
ey at a distance x∗ behind the point z1 of the perturbed crack front F ∗ (in black) in the direction of the vector e∗x(z1) can
be inferred from that generated by a pair of unitary forces applied along ey at a distance x∗∗ behind the point z1 of the
auxiliary front F ∗∗ (in red) in the direction of the vector e∗∗x (z1).

• k∗∗
(
Γ∗; z∗∗0 , z

∗∗
1 , x

∗∗
)
, which corresponds to the stress intensity factor generated at z∗∗ = z∗∗0158

by a pair of unitary forces applied along ey at a distance x∗∗ behind the point z∗∗1 of the159

perturbed crack front F ∗∗ in the direction e∗∗x (z0, z1). Since Γ∗∗ is a semi-infinite coplanar160

crack with a straight crack front, k∗∗
(
Γ∗; z∗∗0 , z

∗∗
1 , x

∗∗
)

reads:161

k∗∗
(
F ; z∗∗0 ; z∗∗1 , x

∗∗
)

=

√
2

π3/2

√
x∗∗(

z∗∗0 − z∗∗1
)2

+ x∗∗2
(11)

• k∗
(
Γ∗; z∗∗0 , z

∗∗
1 , x

∗∗
)
, which corresponds to the stress intensity factor generated at z∗∗ = z∗∗0162

by a pair of unitary forces applied along ey at a distance x∗∗ behind the point z∗∗1 of the163

perturbed crack front F ∗ in the direction e∗∗x (z0, z1). Applying Eq. (8) to Γ∗∗ and Γ∗ yields:164

k∗∗
(
Γ∗; z∗∗0 , z

∗∗
1 , x

∗∗
)

= k∗∗
(
Γ∗∗; z∗∗0 , z

∗∗
1 , x

)
+

1
2π

PV
∫ +∞

−∞

k∗∗
(
F ∗∗; z∗∗; z∗∗1 , x

∗∗) δa(z∗∗) − δa∗∗(z∗∗)(
z∗∗ − z∗∗0

)2 dz∗∗ (12)

Again, the error on the position (z∗∗, x∗∗) with respect to (z, x) is of second order in δa. In the165 (
ez, ex, ey

)
basis, Eq. (12) writes as:166

k (Γ∗; z0; z1, x) =

√
2

π3/2

√
x

(z0 − z1)2 + x2 +
1

2π
PV

∫ +∞

∞

√
2

π3/2

√
x

(z − z1)2 + x2

δa(z) − δa∗∗(z)
(z − z0)2 dz (13)

Combined with Eq. (10), Eq. (13) provides a direct way to evaluate Eq. (5) numerically. Yet,167

as noted by Leblond et al. (2012), the presence of the rational function 1/((z − z1)2 + x2)(z − z0)2
168

in the integrand makes it unfit for any analytical calculations. One may then decompose it as:169

1(
(z − z1)2 + x2) (z − z0)2 =

1(
(z0 − z1)2 + x2)2

[
(z0 − z1)2 + x2

(z − z0)2 −
2(z0 − z1)
(z − z0)

+
2(z0 − z1)(z − z1)

(z − z1)2 + x2 +
(z0 − z1)2 − x2

(z − z1)2 + x2

]
(14)
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From Eqs. (10), (13), and (14), one finally gets for the expression of k (Γ∗; z0; z1, x):170

k (Γ∗; z0; z1, x) = k (Γ; z0; z1, x) + δk (Γ∗; z0; z1, x)

=

√
2

π3/2

√
x

(z0 − z1)2 + x2

[
1 +

1
2π

PV
∫ +∞

−∞

δa(z) − δa(z0)
(z − z0)2 dz

+
2(z0 − z1)

(z0 − z1)2 + x2

1
2π

PV
∫ +∞

−∞

(
−

1
z − z0

+
(z − z1)

(z − z1)2 + x2

)
δa(z) dz

+
(z0 − z1)2 − x2

(z0 − z1)2 + x2

1
2π

PV
∫ +∞

−∞

δa(z) − δa(z1)
(z − z1)2 + x2 dz +

x
(z0 − z1)2 + x2 (δa(z0) − δa(z1))

]
(15)

We derived here for the first time the analytical expression for the crack face weight function171

k (Γ∗; z0; z1, x) of a perturbed crack at first-order in the perturbation δa. We observe that one re-172

trieves, taking the limit x→ 0 in our Eq. (15), the Eq. (10) of Leblond et al. (2012) that describes173

the first-order variations of the fundamental kernel Z (Γ∗; z; z′) =
√
π/8 lim

x→0
k (Γ∗; z; z′, x) /

√
x.174

Our equation provides the fundamental ingredients to extend the model of Rice (1985) to cohe-175

sive materials. Technical details on the derivation of Eq. (15) are given in Appendix A.176

2.3. First-order variations of the mode I stress intensity factor177

Using Eq. (15), it is now possible to compute at first order in δa the stress intensity factor178

Kczm of Eq. (5) generated by the cohesive stress acting in the wake of the perturbed crack front179

F ∗. We perform this in the reduced case where the material is translationally invariant in the180

propagation direction (Ox). In this case, the cohesive stress might be expressed as:181

σ (z, x) = σc(z) fw (x/ω(z)) (16)

where σc(z) and ω(z) are the local strength and process zone size at position z, x is the distance182

to the crack tip located at (z, δa(z)), and fw is a shape function that relates to the nature of weak-183

ening. An example of fw is given in the inset of Fig. 1c for the generic linear traction-separation184

cohesive law (see Appendix C.4 for more details).185

186

The particular choice of cohesive stress evolution in Eq. (16), often referred to as distance-187

weakening, is rather limiting as it does not provide a comprehensive framework to investigate the188

influence of spatially distributed material heterogeneities on crack propagation. Yet, it provides189

ways to account for the influence of a finite-size dissipation in the crack wake onto the rupture190

behavior in a fully analytical manner; see for example (Palmer et al., 1973) for an estimate of the191

process zone size in cohesive materials, and (Poliakov et al., 2002) for the displacement/strain192

field ahead of a dynamic cohesive rupture tip.193

194

A more standard formulation of cohesive zone models is to describe material degradation195

with the local crack opening displacement δ:196

σ (z) = σc(z) fδ (δ(z)/Dc(z)) (17)

where Dc(z) is the local critical crack opening, above which cohesive stress are negligible, and197

fδ is a shape function describing material weakening. While we chose here to express directly198

σ in terms of the variables (σc, ω, fw), they usually emerge from the knowledge (σc,Dc, fδ) and199

the resolution of the structural problem. In particular, the process zone size ω can be expressed200

as:201

ω = α
µ

σc
Dc (18)
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where µ is the shear modulus, and α is a proportionality constant that relates to fδ. It can be202

either estimated analytically (Barenblatt, 1962) or computed numerically (Viesca and Garagash,203

2018). The formulation in terms of (σc, ω, fw) is strictly equivalent to that in (σc,Dc, fδ) for ma-204

terials that are translationally invariant in the propagation direction (Ox). The latter formulation205

would provide a more comprehensive framework to deal with cases where the heterogeneities206

are random.207

208

In the following, perturbations δa of the crack front may arise from the spatial variations of209

strength σc and process zone size ω along the front, the latter being associated with variations of210

both strength σc and critical crack opening Dc. We decompose σc andω in uniform contributions211

σ0
c and ω0 associated to a reference homogeneous material, and spatial fluctuations δσc and δω:212 σc(z) = σ0

c + δσc(z)
ω(z) = ω0 + δω(z)

(19)

where σ0
c and ω0 correspond to the spatial averages of σc and ω respectively. We can now insert213

Eqs. (6), (15), (16), and (19) into Eq. (5) that gives the cohesive stress intensity factor Kczm(z)214

acting along the perturbed crack front F ∗. It yields:215

Kczm(z) =

∫ +∞

0

∫ +∞

−∞

σ
(
z′, x

)
k∗

(
Γ∗; z; z′, x

)
dz′dx

=

∫ +∞

0

∫ +∞

−∞

σc(z′) fw
(
x/ω(z′)

) [
k
(
Γ; z; z′, x

)
+ δk

(
Γ∗; z; z′, x

)]
dz′dx

(20)

The cohesive SIF Kczm(z) can be expressed as the sum of a zero-order term K0
czm, and first-order216

variations δKczm(z) that relates to the perturbations δa, δσc and δω. Following Irwin (1958)’s217

criterion, K0
czm corresponds to the mode I toughness K0

Ic of the reference material when the crack218

propagates. We show in Appendix B that it writes as:219

K0
czm = K0

Ic = Cw

√
2
π
σ0

cω
1/2
0 (21)

where Cw =
∫ +∞

0 fw (u) u−1/2du is a pre-factor that relates to the nature of the weakening. We re-220

trieve here the results of Palmer et al. (1973) that derived the expression of the mode I toughness221

K0
Ic of a cohesive crack in 2D. This was expected, as three-dimensional crack propagation in a222

spatially homogeneous reference material can be reduced to a two-dimensional problem.223

224

The first-order variations of cohesive stress intensity factor δKczm(z) can be expressed as:

δKczm

K0
Ic

(z) =
1

2π

∫ +∞

−∞

[
−
|k|ω0

2
+

1
Cw

∫ +∞

0
−

f ′w (u)
u1/2

(
1 − e−|k|ω0u

)
du

]
δ̂a (k)
ω0

eikzdk

+
1

2π

∫ +∞

−∞

[
1

Cw

∫ +∞

0

fw (u)
u1/2 e−|k|ω0udu

]
δ̂σc (k)
σ0

c
eikzdk (22)

+
1

2π

∫ +∞

−∞

[
1

Cw

∫ +∞

0
− f ′w (u) u1/2e−|k|ω0udu

]
δ̂ω (k)
ω0

eikzdk
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Details on the derivation of Eq. (22) are given in Appendix B. We further observe that Eq. (22)225

takes a much simpler expression in the Fourier space that one can easily build upon to understand226

the physical implications of a finite-size dissipation on the fracture process. Eq. (22) reads in the227

Fourier space:228

δ̂Kczm (k)
K0

Ic

=

(
Â (|k|ω0)

ω0
−
|k|
2

)
δ̂a (k) + Σ̂ (|k|ω0)

δ̂σc (k)
σ0

c
+ Ω̂ (|k|ω0)

δ̂ω (k)
2ω0

(23)

where:229 
Â (|k|ω0) = −

1
Cw

∫ +∞

0

f ′w (u)
u1/2

(
1 − e−|k|ω0u

)
du

Σ̂ (|k|ω0) =
1

Cw

∫ +∞

0

fw (u)
u1/2 e−|k|ω0udu

Ω̂ (|k|ω0) = −
2

Cw

∫ +∞

0 f ′w (u) u1/2e−|k|ω0udu

(24)

Combining Eqs. (3) and (23), one finds the equation ruling crack propagation in heterogeneous230

cohesive materials:231

K0
I

1 +

 1
K0

I

∂K0
I

∂a
−
|k|
2

 δ̂a (k)
 = K0

Ic

1 +

(
Â (|k|ω0)

ω0
−
|k|
2

)
δ̂a (k) + Σ̂ (|k|ω0)

δ̂σc (k)
σ0

c
+ Ω̂ (|k|ω0)

δ̂ω (k)
2ω0

 (25)

Equation (25) unveils rich physics about the influence of a finite process zone size on the232

front deformations. It can be reformulated in terms of variations of strength and critical crack233

opening, building on Eq. (18) (see Eq. (B.18) in Appendix B for more details). One can also234

make use of efficient Fast Fourier Transform (FFT) algorithms to solve it efficiently, at a much235

lower computational expense than more standard simulation methods (Geubelle and Rice, 1995).236

As such, our model shows potential to investigate front deformations induced by heterogeneities237

at multiple scales. We focus here on two problems: the configurational stability of a crack238

propagating in a homogeneous yet cohesive material in Section 3, and the influence of material239

heterogeneities on the front deformation in Section 4. Before doing so, several comments are in240

order:241

• First, one expects to find back the results of Rice (1985) and Gao and Rice (1989) in the242

limit ω0 → 0. The study of the asymptotic behavior of the cohesive pre-factorsA, Σ, and243

Ω yields in this limit:244

Â (|k|ω0) ∼
|k|ω0→0

|k|ω0

2
; Σ̂ (|k|ω0) −→

|k|ω0→0
1 and Ω̂ (|k|ω0) −→

|k|ω0→0
1 (26)

So that, in the limit of a perfectly brittle material, the contribution of the front deformations245

δa in Kczm goes to zero. Eq. (4) yields at first-order in δa, δσc, and δω:246

Klefm(z) = K0
Ic

[
1 +

δσc(z)
σ0

c
+
δω(z)
2ω0

]
= KIc(z) (27)

where we used Eq. (21) to link the fluctuations of cohesive properties δσc and δω to the247

material toughness KIc. We find back Irwin (1958)’s criterion that describes crack propa-248

gation in perfectly brittle materials.249
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• Second, the amplitude of the front deformations δ are multiplied by a cohesive pre-factor250

Â that depends on the product of the wavenumber k and the process zone size ω0. It means251

that the crack front accommodates a given perturbation length scale differently depending252

on its size and that of the process zone.253

• Third, we observe from Eq. (23) that the process zone acts as a high-frequency filter for254

the variations of strength δσc and that of process zone size δω. One may thus expect that255

the influence of heterogeneities on rupture propagation can be averaged at scales below256

the average process zone size ω0, while the influence of asperities at a scale considerably257

larger than ω0 can be assessed quantitatively within the perturbative framework of LEFM.258

• Fourth, the cohesive pre-factors Â, Σ̂, and Ω̂ relate to the spatial distribution of weakening259

characterized by fw. As such, distinct behaviors can be expected depending on how the260

material weakens. The values of Â, Σ̂, and Ω̂ and their asymptotic behavior are either given261

analytically or computed numerically in Appendix C for several types of weakening.262

3. Stability analysis263

As a first application of the newly derived cohesive “line-tension” model of Section 2, we264

revisit the stability analysis of Rice (1985). It allows us to focus on the impact of a finite-size265

dissipation on the front deformations only, considering homogeneous yet cohesive materials.266

3.1. Crack front stability to sinusoidal perturbations for perfectly brittle materials267

The stability of a semi-infinite crack to some front perturbations has been investigated first268

by Rice (1985) for perfectly brittle materials. They considered sinusoidal perturbations δa that269

are characterized by their wavenumber k, or equivalently by their wavelength λ = 2π/k, and their270

amplitude A (see Fig. 3a):271

δa(z) = A cos(kz) (28)
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Figure 3: (a) Stability analysis of a sinusoidal crack front (in black solid line) of wavelength λ for perfectly brittle
materials: (b) the stability of the crack front is controlled by the sign ε and the characteristic distance L along which
the macroscopic K0

I varies. For stabilizing geometries ε ≤ 0 (hatched surface), the perturbation is stable (in gray) no
matter its wavelength. For destabilizing geometries ε > 0 (non-hatched surface), the perturbation is unstable (in red) if
its wavelength is larger than a critical value λc, and stable (in gray) otherwise. The critical wavelength λc is predicted by
Eq. (31).

Following Rice (1985), the stability of the perturbed crack is assessed by looking at the272

value of mode I SIF at the most advanced points of the crack front z = nπ/λ. If this value273
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is found larger than the applied SIF K0
I , crack propagation is considered unstable, and stable274

otherwise. Rice (1985) showed that the configurational stability is partially controlled by (i) the275

sign ε of the variations ∂K0
I /∂a of loading with crack advance, and (ii) a structural length scale276

L characterizing their intensity. These two quantities are defined by the following equations:277

L =
∣∣∣K0

I /(∂K0
I /∂a)

∣∣∣ and ε = sgn(∂K0
I /∂a) (29)

The expression of the mode I SIF of Eq. (1) rewrites as:278

KI(z) = K0
I

1 +

 1
K0

I

∂K0
I

∂a
−
π

λ

 A cos(kz)
 = K0

I

[
1 +

(
ε

L
−
π

λ

)
A cos(kz)

]
(30)

From Eq. (30), one observes that the crack is unconditionally stable for stabilizing geometries279

ε ≤ 0 for which K0
I decreases with crack advance. When K0

I increases with crack growth ε > 0280

(destabilizing geometry), the system is conditionally stable: small-wavelength perturbations are281

stable, while large wavelengths are unstable. This shift in stability occurs for a critical wave-282

length λc that reads:283

λc = [επL]+ (31)

where [x]+ denotes the positive part of the real x.284

3.2. Influence of a finite-size dissipation285

One may then wonder how the presence of a finite-size dissipation influences the stability286

of a crack to sinusoidal perturbations. For homogeneous materials (∆σc = ∆ω = 0), Eq. (25)287

rewrites as an Irwin-like criterion Keff
I = K0

Ic, with an effective SIF Keff
I that encompasses the288

influence of finite cohesive stresses behind the crack front. Keff
I writes as:289

Keff
I (z) = K0

I

[
1 +

(
ε

L
−
Â (|k|ω0)

ω0

)
A cos(kz)

]
(32)

In the remaining of the manuscript, we assume that the material continuously weakens behind290

the crack front f ′w ≤ 0. From the definition of Â in Eq. (24), one may easily show that Â is291

a (i) positive and (ii) increasing function of |k|ω0. Moreover, in the limit |k|ω0 → +∞, (iii) Â292

saturates to a valueA∞w (see Fig. C.10.a) that reads:293

A∞w =
1

Cw

∫ +∞

0
−

f ′w(u)
u1/2 du (33)

One then finds:294

Keff
I (z) ≥ K0

I

[
1 +

(
ε

L
−
A∞w

ω0

)
A cos(kz)

]
(34)

From Eqs. (32) and (34), one can distinguish three different instability regimes:295

• Regime I: When ε = −1 or 0, the system remains unconditionally stable to sinusoidal296

perturbations due to the positiveness of Â.297

• Regime II: When ε = 1, the system is unconditionally unstable to sinusoidal perturbations298

of any wavelength if the structural length scale L is smaller than a critical value Lc, which299

reads:300

Lc =
ω0

A∞w
(35)
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Figure 4: (a) Stability analysis of a sinusoidal crack front (in black solid line) of wavelength λ in presence of a finite pro-
cess zone size ω0 (in red): (b) the stability of the crack front is controlled by the structural length scale L = K0

I /|∂K0
I /∂a|

characteristic of the loading variations and their sign ε. For stabilizing geometries ε ≤ 0, the perturbation is stable no
matter its wavelength (in gray; see Regime I in the main text). For destabilizing geometries ε > 0, the perturbation is
stable if its wavelength λ is smaller than a critical value λc and unstable otherwise (in yellow; see Regime III in the main
text). For a large enough process zone size, the critical wavelength λc goes to 0 (in red; see Regime II in the main text),
and perturbations of any wavelength are unstable. (c) λc depends on both the structural length L and the process zone
size ω0. (d) When normalized by ω0 the values of λc all collapse to a master curve (in black solid line) predicted by
Eq. (36). Note that, below a critical value Lc/ω0 of the structural length scale (marked by a vertical dashed black line),
perturbations of any wavelength λ are unstable (Regime II).

• Regime III: When ε = 1 and L ≥ Lc, the system is conditionally stable: perturbations of301

wavelength smaller than a critical value λc are stable, while larger ones are unstable. For302

cohesive materials, λc reads:303

Â

(
2πω0

λc

)
=
ω0

L
(36)

In contrast with the perfectly brittle case of Eq. (31) where λc only depends on the struc-304

tural length scale L, it is also influenced here by the process zone size ω0. We further305

observe in Fig. 4d that λc is smaller than its LEFM value, as Â(|k|ω0)/ω0 < |k|/2. As306

such, the introduction of a finite-size region of dissipation can be associated with a loss of307

stiffness of the crack front. This stiffness loss gets stronger as the wavelength λ approaches308

the process zone size ω0 (see Fig. 4d and Fig. C.10 in Appendix C).309

The different regimes and the associated stability diagram are summarized in Fig. 4b-c. As can310

be seen from the conditions of Eqs. (35) and (36), the stability of a perturbed crack strongly311

depends on the evolution of Â and its asymptotic behavior as |k|ω0 → +∞. It naturally relates to312

the spatial distributions of cohesive stress behind the crack front, and so to the function fw. The313

influence of the precise shape of the cohesive law is discussed in Appendix E.1.314

315

12



We conclude this section with some potential implications of our results on the stability of316

perturbed cracks in a dynamic setting. We showed that the stability of a perturbed crack front317

of fixed wavelength λ embedded in a destabilizing structure (ε > 0) is controlled by the size318

ω0 of the process zone. A crack in such a configuration could be stable when embedded in a319

rather brittle material (small ω0/λ) and unstable for a more ductile one (large ω0/λ). Rice (1980)320

showed that the process zone size ω0 contracts as the crack accelerates. One may then imagine321

situations where a crack oscillates between a stable configuration and an unstable one: in a322

first stage, the arrested crack becomes unstable because of some large wavelength perturbations323

(Regime III). The subsequent decrease in process zone size during the instability could stabilize324

the system (Regime III to Regime II). As the crack decelerates, the process zone gets larger,325

and the crack becomes unstable again (Regime II to Regime III). The Lorentz contraction of the326

process zone with crack velocity may also interact with the dynamic stiffening of the crack front327

and crack front waves observed by Morrissey and Rice (2000). Further investigations are needed328

to support these ideas. One could build on the spectral method of Geubelle and Rice (1995) to329

perform efficient numerical simulations of front stability during quasi-static - to - dynamic and330

dynamic - to - quasi-static transients.331

4. Deformations of a crack front encountering an obstacle332

We saw that the presence of finite cohesive stress in the crack wake makes the front more333

compliant, especially when the perturbation wavelength is smaller than the process zone size. It334

is tempting to think that this stiffness loss consequently increases the deformations of a crack335

front induced by some heterogeneities of fracture energy. Yet, one has to bear in mind that the336

presence of a finite cohesive zone size also influences the variations of strength and process zone337

size, from which emerge the fluctuations of fracture energy. To investigate the ultimate impact338

of these two potentially competing mechanisms, we study the interaction of a crack front with339

periodic arrays of tough inclusions of increased fracture energy. We recall in Section 4.1 the340

results obtained by Gao and Rice (1989) for perfectly brittle materials. We then investigate the341

influence of a finite process zone size, first in Section 4.2 where heterogeneities of fracture energy342

Gc are associated with fluctuations of strength σc, and second in Section 4.3 where they emerge343

from variations of process zone size ω. We discuss in Section 4.4 the experimental implications344

of our findings, and show in Section 4.5 that our theory may explain the deformation profiles345

observed in the peeling experiments of Chopin et al. (2011), for which the small-scale yielding346

hypothesis is suspected to break down.347

4.1. Front deformation by a periodic array of obstacles in perfectly brittle materials348

In the general case, the spatial distribution of fracture energy Gc can be decomposed in the349

sum of a zero order term G0
c corresponding to its spatial average, and a first-order term of fluctu-350

ations δGc:351

Gc(z) = G0
c + δGc(z) (37)

As the crack interacts with the inclusions, front deformations δa arise from the spatial variations352

δGc of fracture energy. Building on Griffith (1921)’s criterion and Irwin (1958)’s formula, Eq. (3)353

yields at zero order in the perturbation δa:354

G0 =
1 − ν2

E
K0

I
2

= G0
c (38)
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We find back here the results of Roux et al. (2003), who showed that the effective fracture energy355

G0 of a heterogeneous brittle material corresponds to its spatial average G0
c in the weak pinning356

limit of infinitely long defects. At first order, one finds:357

δ̂a(k) = −
1
|k|
δ̂Gc(k)

G0
c

(39)

Eq. (39) links the stationary shape δa of the front deformations to the local fluctuations of358

fracture energy δGc. Gao and Rice (1989) investigated the deformation of the crack front re-359

sulting from its interaction with a periodic array of tough obstacles of width d separated by a360

distance ∆L (see Fig. 5). The spatial distribution of fracture energy writes as:361

Gc(z) =

Gobs
c if x ∈

[
nLz −

d
2 , (n + 1)Lz + d

2

)
Gmat

c otherwise
(40)

where the fracture energy Gobs
c of the obstacles is larger than that Gmat

c of the embedding matrix,362

and Lz = ∆L + d corresponds to the spatial period of the distribution. One may additionally363

characterize the fracture energy field through the two quantities:364 G0
c = (∆L/Lz) Gmat

c + (d/Lz) Gobs
c

∆Gc = Gobs
c −Gmat

c
(41)

where ∆Gc, the fracture energy contrast, is a parameter that is assumed small in the following.365
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Figure 5: (a) The crack front (in solid black line) is deformed by a periodic array of tough obstacles (in gray) of width
d, separated by a distance ∆L. The obstacles have a fracture energy Gobs

c slightly larger than that of the matrix Gmat
c .

The front deformations are characterized by their amplitude A, defined as the distance between the most advanced point
of the front and the less advanced one. (b) For a perfectly brittle material, A increases linearly with the fracture energy
contrast ∆Gc/G0

c . (c) A depends non-linearly on the ratio of the obstacle spacing ∆L to their size d.

A quantity of interest is the amplitude A of the front deformations, defined as the distance366

between the most advanced point of the front and the less advanced one (see Fig. 5a). From367

Eq. (39), one may notice that A increases linearly with ∆Gc/G0
c (see Fig. 5b). The dependence of368

A with the inclusion spacing ∆L is non-linear, and can be computed numerically from Eq. (39)369

for spatial distributions of Gc described by Eq. (40) (see Fig. 5c).370

One may then wonder how these observations fare in the framework of cohesive materials,371

where the fracture properties are not solely described by the fracture energy Gc, but rather by the372
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strength σc and the process zone size ω. Using Irwin (1958)’s formula combined with Eq. (21),373

one finds:374

G0
c =

1 − ν2

E
K0

Ic
2

=
1 − ν2

E
2
π

C2
wσ

0
c

2
ω0 (42)

As such, the variations of fracture energy δGc in cohesive materials can either emerge from the375

variations of strength δσc, or from that of process zone size δω. At first order in those two376

quantities, one has:377

δGc(z)
G0

c
= 2

δσc(z)
σ0

c
+
δω(z)
ω0

(43)

Next, we explore two limit cases: that of Section 4.2 where heterogeneities of fracture energy378

solely emerge from local variations of strength, and that of Section 4.3 where they are associated379

with fluctuations of process zone size only.380

4.2. Heterogeneities of strength381

We first consider the case where the heterogeneities of fracture energy emerge from variations382

of strength only. The strength of the obstacles σobs
c is larger than that of the matrix σmat

c , while383

they are equally brittle ωobs = ωmat = ω0. Note that in the standard formulation of cohesive-zone384

models that deal with the pair (σc,Dc) instead of (σc, ω), this corresponds to a simultaneous385

proportional increase of strength σc and critical opening Dc.386

We define the average strength σ0
c and the strength contrast ∆σc as:387 σ0

c = (∆L/Lz)σmat
c + (d/Lz)σobs

c

∆σc = σobs
c − σ

mat
c

(44)

The resulting fluctuations of fracture energy are linked to the variations of strength following:388

∆Gc/G0
c = 2∆σc/σ

0
c (45)

The propagation criterion of (25) yields at first order in the perturbations δa and δσc:389

−Â(|k|ω0)
δ̂a(k)
ω0

= Σ̂(|k|ω0)
δ̂σc(k)
σ0

c
=
δGeff

c (k)
2G0

c
(46)

meaning that the front deformation increases linearly with the normalized strength contrast390

∆σc/σ
0
c , and so with the normalized fracture energy contrast ∆Gc/G0

c .391

392

The presence of a cohesive stress in the crack wake influences the amplitude of the front393

deformations through two competing mechanisms. We saw in Section 3 that (i) it decreases the394

front stiffness through the cohesive pre-factor Â. We now observe from Eq. 46 that (ii) it also395

smooths out the fluctuations of strength δσc (Σ̂(|k|ω0) ≤ 1), leaving its average value σ0
c un-396

changed. The overall decrease in magnitude of the strength fluctuations is mostly prevalent at397

scales lower than the average process zone size ω0 (see the evolution of Σ̂ in Fig. C.10b). While398

the first effect leads to an increase of the front deformations with respect to the perfectly brittle399

case, the second effect should decrease it as the crack experiences an effectively smoother dis-400

tribution δGeff
c of fracture energy. Examples of the effective fluctuations of fracture energy δGeff

c401

are shown in Fig. 6c for several values of process zone size to obstacle width ratio ω0/d.402

403
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Figure 6: (a) Influence of the average process zone size ω0 on the amplitude A of the front deformations for a periodic
array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are stronger than the matrix σobs

c = 1.1σmat
c (in

solid light gray line), but they are equally brittle ωobs = ωmat, so that Gobs
c ' 1.2Gmat

c . For moderate values of ω0/d, the
amplitude A increases almost linearly with the process zone size ω0 from its reference LEFM value. (b) For larger values
of ω0/d, it scales as ∝ (ω0/d)1/2. (c) The presence of a finite process zone size smooths out the small-scale variations
of strength, so that the amplitude of the apparent fracture energy field (in gray scale) is decreased from its material value
(LEFM case). Yet, the decrease in apparent fracture energy amplitude for increasing process zone size (in red) is weaker
than the associated decrease in front stiffness, so that the deformation amplitude (extremal points of the crack front in
solid black line) is ultimately larger than in the LEFM case (in yellow dashed line).

We show in Fig. 6a the evolution of the front deformation amplitude A with the process zone404

size ω0. The competition between the two opposite effects mentioned above results in an overall405

increase of the amplitude of the front deformations with the process zone size. This increase in406

front amplitude is observed no matter the inclusion spacing (see Fig. D.14 and Appendix D.1407

for more details).408

In accordance with the asymptotic behaviors derived in Eq. (26), A converges to its LEFM409

value ALEFM as the ratio between the process zone size ω0 and the obstacle width d goes to zero410

(see Fig. 6a). We further notice that the amplitude of the deformations grows as (ω0/d)1/2 for411

process zone sizes much larger than the obstacle width (see Fig. 6b). This was expected from the412

asymptotic behavior of Σ̂ when |k|ω0 → +∞:413

Σ̂ (|k|ω0) ∼
|k|ω0→+∞

Σ∞w

(|k|ω0)1/2 , with Σ∞w =

√
π fw(0)
Cw

(47)

The front deformations are thus amplified by the existence of cohesive stresses, as the gain in414

front compliance overcomes the smoothing of heterogeneities by the process zone. This behavior415

and the associated scaling are retrieved independently of how the material weakens behind the416

crack front (see Fig. E.18 and Appendix E.2 for more details).417

A large process zone size lead to a localization of the deformation at the edges of the defect418

(see Fig. 6c, and Eq. (D.2) for an analytical expression of the front deformations in the limit419

case of a single defect embedded in an infinite matrix). Similar deformation patterns have been420

previously observed in peeling experiments of a silicon elastomer block from a heterogeneous421

glass substrate (Chopin et al., 2011). They are not ubiquitous, as other peeling experiments lead422

to deformations closer to the LEFM predictions (Patinet et al., 2013a; Vasoya et al., 2016b). Our423

theory may then provide a comprehensive framework to bridge various experimental observa-424

tions where the small-scale yielding condition of LEFM may not always be met. We explore425

further this avenue in the final Section 4.5.426
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4.3. Heterogeneities of process zone size427

We explore next the situation where the heterogeneities of fracture energy solely emerge428

from variations of process zone size. The process zone size of the obstacles ωobs is now larger429

than that of the matrix ωmat, but both materials are equally strong σobs
c = σmat

c = σ0
c . In the430

standard formulation of cohesive-zone models that deal with the pair (σc,Dc) instead of (σc, ω),431

this corresponds to an increase of critical opening Dc only.432

We define the average process zone size ω0 and the size contrast ∆ω as:433 ω0 = (∆L/Lz)ωmat + (d/Lz)ωobs

∆ω = ωobs − ωmat (48)

The resulting fluctuations of fracture energy are linked to the variations of process zone size434

following:435

∆Gc/G0
c = ∆ω/ω0 (49)

The propagation criterion of (25) yields at first order in the perturbations δa and δω:436

−Â(|k|ω0)
δ̂a(k)
ω0

= Ω̂(|k|ω0)
δ̂ω(k)
2ω0

=
δGeff

c (k)
2G0

c
(50)

meaning that the front deformations increase linearly with the normalized process zone size con-437

trast ∆ω/ω0, and so with the normalized fracture energy contrast ∆Gc/G0
c .438
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Figure 7: (a) Influence of the average process zone size ω0 on the amplitude A of the front deformations for a periodic
array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are more ductile than the matrix ωobs = 1.2ωmat

(in solid light gray line), but they are equally strong σobs
c = σmat

c , so that Gobs
c ' 1.2Gmat

c . For moderate values of ω0/d,
the deformation amplitude A decreases almost linearly with the process zone size ω0 from its reference LEFM value.
(b) For larger values of ω0/d, it scales as ∝ (ω0/d)−1/2. (c) The presence of a finite process zone size smooths out the
small-scale variations of process zone size, so that the apparent amplitude of the fracture energy field (in gray scale) is
decreased from its material value (LEFM case). Furthermore, the decrease in apparent fracture energy amplitude for
increasing process zone size (in red) is stronger than the associated decrease in front stiffness, so that the deformation
amplitude (extremal points of the crack front in solid black line) is ultimately smaller than in the LEFM case (in yellow
dashed line).

Again, the amplitude A of the front deformations and its evolution with the average process440

zone size ω0 result from the competition between an increased compliance of the crack front,441

which promotes front deformations, and the decrease in magnitude of the effective fracture en-442

ergy fluctuations δGeff
c , which smooths out the front. Surprisingly, we observe in Fig. 7a that443
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the amplitude A decreases with the average process zone size ω0 for heterogeneities of pro-444

cess zone size. This is explained by the asymptotic behavior of the cohesive pre-factor Ω̂ when445

|k|ω0 → +∞:446

Ω̂ (|k|ω0) ∼
|k|ω0→+∞

Ω∞w

(|k|ω0)3/2 , with Ω∞w = −

√
π f ′w(0)
Cw

(51)

In that case, the increase in front compliance with the average process zone size cannot com-447

pensate for the sharp decrease in magnitude of the process zone size fluctuations. It results in448

front deformations vanishing as (ω0/d)−1/2 for average process zone sizes larger than the obstacle449

width (see Fig. 7b). This decrease in front amplitude is observed no matter the inclusion spacing450

(see Fig. D.15 and Appendix D.1 for more details). However, the associated scaling strongly451

depends on how the material weakens behind the crack front (see Fig. E.19). This is explored in452

more details in Appendix E.2.453

454

The deformation patterns showed in Fig. 7 do not correspond to front configurations observed455

experimentally. This is expected as real materials usually display variations of both strength and456

process zone size, and the influence of amplified spatial variations of strength should often prevail457

over that vanishing of process zone size in the limit ω0/d � 1 of large process zone size.458

Overall, our model shed light on the strong influence of the nature of heterogeneities on459

the front deformations. When extended to a dynamic setting, it helps to rationalize the front460

deformations measured in numerical simulations of dynamic rupture where a crack interacts with461

heterogeneities of cohesive properties (Roch et al., 2022). It may also explain changes in front462

roughness observed in quasi-static simulations of coplanar crack propagation based on cohesive463

zone models (Sevillano et al., 2007). In accordance with our findings, the authors show that464

crack fronts interacting with heterogeneities of strength get much rougher than those interacting465

with obstacles of larger process zone size.466

4.4. Implications for the measurement of fracture energy variations from front deformations467

We saw that the front deformations are amplified by the presence of a finite process zone for468

heterogeneities of strength (see Section 4.2), while it is found vanishing for heterogeneities of469

process zone size (see Section 4.3). The nature of the heterogeneities thus strongly influences470

the way cracks distort when interacting with material heterogeneities. Yet, both types of hetero-471

geneities impact similarly the overall value of fracture energy (see Eq. (43)). As such, one may472

wonder if the amplitude of the front deformations constitutes a robust measure of the fracture473

energy contrast.474

475

To tackle this issue, we study the general case where heterogeneities of fracture energy476

emerge from fluctuations of both strength and process zone size. Together with Eqs. (1) and477

(21), the condition (4) of finiteness of the stress at the crack front yields at zero order in the478

perturbations δa, δσc and δω:479

G0 = G0
c (52)

In other words, the presence of a cohesive zone does not influence the effective toughness of a480

heterogeneous material in the weak pinning regime.481

At first order, one finds:482

δ̂a(k) = −ω0
Σ̂(|k|ω0)
Â(|k|ω0)

δ̂σc(k)
σ0

c
− ω0

Ω̂(|k|ω0)
Â(|k|ω0)

δ̂ω(k)
2ω0

(53)
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One may then define multiple paths of increasing fracture energy contrast ∆G0
c/G

0
c from a path of483

increasing strength (Path 1 of Fig. 8a) to one of increasing process zone size (Path 3 of Fig. 8a).484

We observe in Fig. 8b-d that the former constitutes an upper bound of the front deformation am-485

plitude A, while the latter represents a lower bound. Mixed paths (Path 2 of Fig. 8a) are found486

in between. When the average process zone size ω0 is way smaller than the obstacle width d487

(see Fig. 8b), the two bounds converge to the LEFM value and the amplitude of the front defor-488

mation constitutes a good proxy for the contrast ∆Gc/G0
c of the fracture energy (Patinet et al.,489

2013a). For larger process zone sizes, the two bounds depart from one another (see yellow area490

on Fig. 8b-d). Yet, a lower dispersion on ∆Gc/G0
c can be observed when the obstacle spacing ∆L491

is larger than the process zone size ω0 (see Fig. 8e-g). This is explained by the fact that the spec-492

trum of the fracture energy fluctuations is then mostly carried by large-wavelengths. As such,493

one should rather measure a contrast in fracture energy from experiments of a crack interacting494

with a single defect (Patinet et al., 2013a) rather than arrays of close obstacles (Dalmas et al.,495

2009).496

497

0.0 0.2 0.4
Process zone size
contrast ¢!/!0

0.00

0.05

0.10

0.15

0.20

S
tr

en
gt

h
co

nt
ra

st
¢
æ

c/
æ

0 c

0 1 2

x/!0

0

1

æ
/æ

0 c

0.0

0.2

0.4

0.6

0.8
¢Gc/G

0
c

0.0 0.2 0.4

0.0

0.1

0.2

0.3

F
ro

nt
am

pl
it
ud

e
A

/d

z/d

x
/d

0.0 0.2 0.4

0.0

0.1

0.2

0.3

z/d

x
/d

0.0 0.2 0.4

0.0

0.1

0.2

0.3

z/d

x
/d

0.0 0.2 0.4
Fracture energy

contrast ¢Gc/G
0
c

0.0

0.5

1.0

F
ro

nt
am

pl
it
ud

e
A

/d

z/d

x
/d

0.0 0.2 0.4
Fracture energy

contrast ¢Gc/G
0
c

0.0

0.5

1.0

z/d

x
/d

0.0 0.2 0.4
Fracture energy

contrast ¢Gc/G
0
c

0.0

0.5

1.0

z/d

x
/d

LEFM PATH 1:  ONLYσc PATH 2: MIXED PATH 3:  ONLYω

(a)

(b) (c) (d)1

2

3

(e) (f) (g)

L z
/d

=1
00

0.1

L z
/d

=2

ω0 /d = 0.1 ω0 /d = 1 ω0 /d = 10

ω0 /d = 0.1 ω0 /d = 1 ω0 /d = 100.2
0.3 0.4 0.5

Figure 8: (a) An increase of material fracture energy can be achieved either by increasing its strength at constant brit-
tleness (see dashed vertical line of path 1), by increasing its ductility at constant strength (see dashed horizontal line of
path 3), or by any mixed path combining an increase of strength with that of ductility (see curved black line of path 2).
(b-g) While the front amplitude increases linearly with the ratio of the fracture energy of the obstacles Gobs

c to that of the
matrix Gmat

c in the limit cases of LEFM (dashed black line), and path 1 (solid brown line) & 3 (solid light orange line),
it usually evolves non-linearly with the fracture energy contrast ∆Gc/G0

c in presence of a finite-size dissipation (see path
2 in solid dark orange line). The amplitude of the front deformations may vary between the two curves associated with
paths 1 & 3 (light yellow area). These variations increase with the process zone size ω (see b & e, c & f, d & g), but
decrease with the obstacle spacing Lz (see b-d & e-g). Insets: front deformation profiles for ∆Gc/G0

c = 1.2.

It is also worth noticing that a non-linear dependence of the deformation amplitude A with498

the contrast of fracture energy can be observed for cohesive materials (see Path 2 of Fig. 8b-g),499

even within the linear theory. This is solely due to the differential impact of heterogeneities of500
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strength or process zone size on the front deformations.501

4.5. Comparison with peeling experiments along heterogeneous interfaces502

We conclude this section by comparing the output of our model to deformation profiles ob-503

tained in experiments. The first-order theory of Rice (1985) has been shown to reproduce a wide504

variety of experimental observations of crack front deformations in experiments of peeling or505

fracture of heterogeneous interfaces (Dalmas et al., 2009), even if more refined models taking506

into account the finite thickness of the fracture specimen (Legrand et al., 2011) or higher-order507

terms (Vasoya et al., 2013) yield more accurate results (see (Patinet et al., 2013a) and (Vasoya508

et al., 2016b) respectively). Chopin et al. (2011) noted nonetheless some discrepancies between509

the LEFM predictions and the deformation profile of the crack front in their peeling experiments510

of a silicon elastomer block from a patterned glass substrate, in particular close to the obstacle.511

We show here that they may emerge from a non-negligible process zone size, and that our model512

of Eq. (15) provides a better fit for the experimental profile of crack front deformations in cases513

where the small-scale yielding assumption breaks down.514
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Figure 9: Prediction of the crack front deformations in peeling experiments of a silicon elastomer block from a patterned
glass substrate (adapted from (Chopin et al., 2011)). A 20µm-large tough obstacle is placed at the center of the 22mm-
large block, and deforms the crack front. Chopin et al. (2011)’s LEFM fit of the front deformations is plotted in white
dashed line for ∆KIc/K0

Ic ' 3. Our cohesive fit of Eq. 25 for ∆KIc/K0
Ic = 2.9 (∆σc/σ

0
c = 1.65 and ∆ω/ω0 = 2.5)

and ω0/d = 2.7 is plotted in yellow dashed line; Inset: Zoom on the front deformations near the obstacle. The large
deformations observed at the edges of the defect are a signature of the cohesive nature of the interface.

Chopin et al. (2011) performed peeling experiments of a silicon elastomer block from a pat-515

terned glass substrate. The 22 or 72mm-wide and 10mm-thick elastomer block is made of black516

cross-linked PDMS (Sylgard170, Dow Corning) of Young’s modulus E ' 2MPa. It is peeled517

from a rigid substrate along a heterogeneous interface consisting of a 20µm-wide PDMS-glass518

obstacle embedded in a weak PDMS-chromium layer. The toughness contrast between the two519

types of interfaces has been estimated to ∆KIc/K0
Ic = 5 − 9 from independent peeling tests along520

homogeneous interfaces. During the experiments, the crack front is pinned by the tough obsta-521

cle, and front deformations emerge from the interaction between the crack and the heterogeneous522

toughness field. Chopin et al. (2011) showed that the deformation profile predicted by LEFM523

for a single tough defect (see Eq. (D.1)) corresponds to that observed in the experiments, when524
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looked at far away from the defect (see dashed white line in Fig. 9). Yet, two major discrepan-525

cies were observed: (i) the LEFM best-fit of the deformation profile corresponds to a toughness526

contrast ∆KIc/K0
Ic ' 3, which is lower than the one estimated from the interfacial properties527

∆KIc/K0
Ic = 5 − 9; (ii) the experimental crack front displays much sharper variations at the edges528

of the obstacle that those predicted by LEFM. The first discrepancy can be attributed to finite-529

thickness and second-order effects, as they have been shown to reduce crack front deformations530

(Vasoya et al., 2016b). We argue here that the second discrepancy relates to a non-negligible531

process zone size in their experiments.532

533

Indeed, we saw in Section 4.2 that a finite process zone size leads to an overall increase of534

the amplitude of the front deformations. In that case, the front deformations are concentrated at535

the obstacles edges (see Fig 6), as observed in the experiments of Chopin et al. (2011). While the536

localization of the front deformation is quantitatively grasped by our cohesive framework (see537

Eq. (D.2) describing the front deformations for the single defect and large process zone size),538

this feature cannot be predicted either by the finite-size effects emerging from the finite thickness539

of the PDMS block with respect to the defect size (Legrand et al., 2011) or from higher-order540

effects (Vasoya et al., 2016b).541

The experimental front profile is best fitted by our model (see dashed yellow line of Fig 6)542

for a process zone size ω0 ' 2.7d = 54µm, a strength contrast ∆σc/σ
0
c = 1.65 and a process543

zone size contrast ∆ω/ω0 = 2.5, which are equivalent to a toughness contrast ∆KIc/K0
Ic = 2.9.544

The size of the process zone ω0 ' 54µm is compatible with values of the adhesive length of soft545

materials (Creton and Ciccotti, 2016). Moreover, our measurements yield a value of toughness546

contrast similar to that of Chopin et al. (2011) based on LEFM. This was somehow expected as,547

in the case of the single obstacle, the amplitude of the front deformations is mostly controlled by548

the toughness contrast ∆KIc/K0
Ic when ω0 ' 54µm � ∆L ' 22mm (see Section 4.4). Promising549

directions for a better match of the experimental data would consist in accounting for the influ-550

ence of the finite thickness of the PDMS block, and second-order terms. Following the theory551

of Legrand et al. (2011), the former effect is expected to be rather small in the experiments of552

(Chopin et al., 2011), as the thickness of the PDMS block (h ' 10mm) is much larger than the de-553

fect width (d ' 20µm). On the contrary, the influence of second-order terms could be meaningful554

as the toughness contrast between the matrix and the obstacle is rather large (∆KIc/K0
Ic = 5 − 9),555

and they have been shown to reduce significantly crack front deformations even for contrasts as556

small as 1 (Vasoya et al., 2016b). Note that mixed mode effects due to a friction-induced shear557

loading can be observed in the experimental setup of Chopin et al. (2011), and may also explain558

some discrepancies between the experimental observations and the theoretical predictions.559

5. Conclusion560

This study provides a theoretical framework based on a perturbative approach of LEFM that561

describes the influence of a finite process zone on the deformations of a crack front by hetero-562

geneities of fracture properties. Namely, we extended in equation (25) the first-order theory of563

Rice (1985) designed for perfectly brittle materials to the broader case of cohesive materials,564

where crack advance is resisted by cohesive stress in its wake. Our model allowed us to re-565

visit Rice (1985)’s problem of crack front stability to sinusoidal perturbations and Gao and Rice566

(1989)’s of crack pinning by an array of tough obstacles, and to stress out the influence of a finite567

process zone on these matters.568

569

21



We first showed that cohesive cracks accommodate a perturbation differently depending on570

the size of its wavelength with respect to that of the process zone. In particular, perturbations571

of wavelength smaller than the process zone size are amplified with respect to the LEFM case,572

while perturbations of wavelength larger than the process zone size are left unchanged. This was573

interpreted as a stiffness loss of the crack front due to the presence of cohesive stresses in the574

crack wake. As a result, cracks may be unstable to perturbations of any wavelength if embedded575

in a destabilizing structure, where the mode I SIF strongly increases with crack advance.576

The loss in front stiffness may then lead to amplified front deformations of a crack interacting577

with periodic arrays of tough obstacles. We showed that it was not always the case, as the578

process zone also smooths out the local fluctuations of strength and process zone size that occur579

at a scale lower than the process zone size. Interestingly, we showed that the gain in front580

compliance overcomes the smoothing of perturbations in the case of heterogeneities of strength,581

while the decrease in amplitude of the fluctuations is found sharper than the stiffness loss in the582

case of heterogeneities of process zone size. As a result, the front deformations are amplified583

by the presence of a process zone when the increased fracture energy is associated with a higher584

strength of the obstacle, and reduced when it emerges from a larger process zone size.585

Overall, our theory reconciles the wide variety of front profiles observed in experiments,586

when the small-scale yielding hypothesis of linear elastic fracture mechanics breaks down, as in587

(Chopin et al., 2011).588

589

Future works may focus on the extension of our model to disordered microstructures that590

are no more invariant in the front direction. A particular attention should then be devoted to the591

interaction between the finite process zone size, characteristics of the dissipation, and the Larkin592

length that emerges from the disorder (Larkin and Ovchinnikov, 1979). This may ultimately593

provide insights on the influence of a finite process zone size on the effective fracture properties594

of quasi-brittle materials. Another promising direction is to investigate crack front deformations595

in a dynamic setting, where the contraction of the process zone with crack velocity (Rice, 1980)596

interacts with the dynamic stiffening of the crack front observed by Morrissey and Rice (2000).597

This is done in a follow-up study, in which our framework is extended to dynamic fracture, and598

theoretical predictions are compared to the results of numerical simulations (Roch et al., 2022).599
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Appendix A. Calculation of k (F ∗; z0; z1, x)610

This appendix aims at establishing Eq. (15) from Eqs. (10), (13), and (14). In particular, we611

want to find a more suitable expression for:612

I (z0, z1) =
1

2π
PV

∫ +∞

−∞

δa(z) − δa∗∗(z)(
(z − z1)2 + x2) (z − z0)2 dz (A.1)

As noted by Leblond et al. (2012), each of the integrals that comprise I (z0, z1) individually613

diverges at infinity, so that it is necessary to integrate first between finite bounds −L− and L+614

before taking the limit L−, L+ → +∞ in the final combination of integrals.615

Terms in 1/(z − z0)2 – They read with a pre-factor 1/((z0 − z1)2 + x2):616

PV
∫ L+

−L−

δa(z) − δa∗∗(z)
(z − z0)2 dz = PV

∫ L+

−L−

δa(z) − δa(z0)
(z − z0)2 dz − ln

[
L+ − z0

L− + z0

]
δa(z0) − δa(z1)

z0 − z1
(A.2)

Terms in 1/(z − z0) – They read with a pre-factor −2(z0 − z1)/((z0 − z1)2 + x2)2:617 ∫ L+

−L−

δa(z) − δa∗∗(z)
(z − z0)

dz = PV
∫ L+

−L−

δa(z)
(z − z0)

dz − ln
[

L+ − z0

L− + z0

]
δa(z0) − (L+ + L−)

δa(z0) − δa(z1)
z0 − z1

(A.3)

Terms in 1/((z − z1)2 + x2)2 – They read with a pre-factor ((z0 − z1)2 − x2)/((z0 − z1)2 + x2)2:618

PV
∫ L+

−L−

δa(z) − δa∗∗(z)(
(z − z1)2 + x2) = PV

∫ L+

−L−

δa(z) − δa(z1)(
(z − z1)2 + x2)dz − ln


√

(L+ − z1)2 + x2

(L− + z1)2 + x2

 δa(z0) − δa(z1)
z0 − z1

(A.4)

Terms in (z − z1)/((z − z1)2 + x2)2 – They read with a pre-factor 2(z0 − z1)/((z0 − z1)2 + x2)2:619 ∫ L+

−L−

(z − z1)(
(z − z1)2 + x2) [

δa(z) − δa∗∗(z)
]
dz = PV

∫ L+

−L−

(z − z1)(
(z − z1)2 + x2)δa(z)dz − ln


√

(L+ − z1)2 + x2

(L− + z1)2 + x2

 δa(z1)

− (L+ + L−)
δa(z0) − δa(z1)

z0 − z1
+ x

[
arctan

(L+ − z1

x

)
+ arctan

(L− + z1

x

)]
δa(z0) − δa(z1)

z0 − z1

(A.5)

We observe that the terms proportional to (L+ + L−) of Eqs (A.3) and (A.5) cancel out, we get:620

PV
∫ L+

−L−

δa(z) − δa∗∗(z)(
(z − z1)2 + x2) (z − z0)2 dz =

 1
(z0 − z1)2 + x2 PV

∫ L+

−L−

δa(z) − δa(z0)
(z − z0)2 dz −

2(z0 − z1)(
(z0 − z1)2 + x2)2 PV

∫ L+

−L−

δa(z)
z − z0

dz

+
(z0 − z1)2 − x2(
(z0 − z1)2 + x2)2 PV

∫ L+

−L−

δa(z) − δa(z1)
(z − z1)2 + x2 dz +

2(z0 − z1)(
(z0 − z1)2 + x2)2 PV

∫ L+

−L−

(z − z1)
(z − z1)2 + x2 δa(z)dz

+
(z0 − z1)2 − x2(
(z0 − z1)2 + x2)2

ln
(

L+ − z0

L− + z0

)
− ln


√

(L+ − z1)2 + x2

(L− + z1)2 + x2


 δa (z0)

(z0 − z1)

+
1

(z0 − z1)2 + x2

ln

√

(L+ − z1)2 + x2

(L− + z1)2 + x2

 − ln
(

L+ − z0

L− + z0

) δa (z1)
(z0 − z1)

+
2x(

(z0 − z1)2 + x2)2

[
arctan

(L+ − z1

x

)
+ arctan

(L− + z1

x

)]
(δa(z0) − δa(z1))



(A.6)

We then notice that the logarithmic terms go to zero when L−, L+ → +∞. In this limit, one finds:621

PV
∫ +∞

−∞

δa(z) − δa∗∗(z)(
(z − z1)2 + x2) (z − z0)2 dz =

[
1

(z0 − z1)2 + x2 PV
∫ +∞

−∞

δa(z) − δa(z0)
(z − z0)2 dz

−
2(z0 − z1)(

(z0 − z1)2 + x2)2 PV
∫ +∞

−∞

δa(z)
z − z0

dz +
(z0 − z1)2 − x2(
(z0 − z1)2 + x2)2 PV

∫ +∞

−∞

δa(z) − δa(z1)
(z − z1)2 + x2 dz

+
2(z0 − z1)(

(z0 − z1)2 + x2)2 PV
∫ +∞

−∞

(z − z1)
(z − z1)2 + x2 δa(z)dz +

2πx(
(z0 − z1)2 + x2)2 (δa(z0) − δa(z1))


(A.7)
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One finally gets Eq. (15) from Eqs. (13) and (A.7).622

Appendix B. Calculation of δKczm(z) and its Fourier transform623

In this appendix, we derive Eqs. (21) and (22) from Eqs. (15) and (20). To do so, we first624

express k (Γ∗; z0; z1, x) as:625

k (Γ∗; z0; z1, x) = k0 (z0, z1, x) [1 + δK (z0; z1, x)] (B.1)

where k0 corresponds to the CFWF associated to the reference straight front Γ:626

k0 (z0, z1, x) =

√
2

π3/2

√
x

(z0 − z1)2 + x2 (B.2)

and δK can be decomposed into five different first-order terms following Eq. (15):627

δK (z0, z1, x) = δK1 (z0, z1, x) + δK2 (z0, z1, x) + δK3 (z0, z1, x) + δK4 (z0, z1, x) + δK5 (z0, z1, x)

=
1

2π
PV

∫
z

δa(z) − δa(z0)
(z − z0)2 dz −

2(z0 − z1)
(z0 − z1)2 + x2

1
2π

PV
∫

z

δa(z)
z − z0

dz

+
2(z0 − z1)

(z0 − z1)2 + x2

1
2π

PV
∫

z

(z − z1)
(z − z1)2 + x2 δa(z)dz +

(z0 − z1)2 − x2

(z0 − z1)2 + x2

1
2π

PV
∫

z

δa(z) − δa(z1)
(z − z1)2 + x2 dz

+
x

(z0 − z1)2 + x2 (δa(z0) − δa(z1))

(B.3)

Decomposition of the cohesive SIF – Eq. (20) rewrites as:628

Kczm(z0) =

∫
v

∫
z1

σc(z1) fw (u) ω(z1)k0 (z0, z1, ω(z1)u) [1 + δK (z0, z1, ω(z1)u)] dz1du (B.4)

where ω(z1)k0 (z0, z1, ω(z1)u) can be rewritten as the sum of a zero-order term and a first-order629

term in δω:630

ω(z1)k0 (z0, z1, ω(z1)u) =

√
2

π3/2

ω(z1)3/2u1/2

(z0 − z1)2 + (ω(z1)u)2

=ω0 k0 (z0, z1, ω0u)
1 +

3
2
−

2ω2
0u2

(z0 − z1)2 + (ω0u)2

 δω(z1)
ω0

 (B.5)

and δK (z0; z1, ω(z1)u) = δK (z0; z1, ω0u) since it is already composed of first-order terms in δa.631

632

Zero-order terms – In the end, one finds back from Eq. (B.4) at order 0:633

K0
czm =

∫
u

∫
z1

σ0
c fw (u) ω0k0 (z0, z1, ω0u) dz1du

=

[∫
u

fw (u)
u1/2 du

] √
2
π
σ0

cω
1/2
0 = Cw

√
2
π
σ0

cω
1/2
0 = K0

Ic

(B.6)

which corresponds to Eq. (21). We find back the results of Palmer et al. (1973) derived in the 2D634

case. This was expected since the zero-order terms relate to the reference semi-infinite crack Γ635

with a straight front F embedded in a homogeneous medium, which is translationally invariant636
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in the (Oz) direction.637

638

First-order terms – At order 1 in δσc, δω and δa, one gets:639

δKczm(z0) =

∫
u

∫
z1

√
2

π3/2

σ0
cω

3/2
0 u1/2

(z0 − z1)2 + (ω0u)2 fw(u)
δσc(z1)
σ0

c
dz1du

+

∫
u

∫
z1

√
2

π3/2

σ0
cω

3/2
0 u1/2

(z0 − z1)2 + (ω0u)2 fw(u)
3
2
−

2ω2
0u2

(z0 − z1)2 + (ω0u)2

 δω(z1)
ω0

dz1du

+

∫
u

∫
z1

√
2

π3/2

σ0
cω

3/2
0 u1/2

(z0 − z1)2 + (ω0u)2 fw(u)

∑
i

δKi (z0, z1, ω0u)

 dz1du

(B.7)

The next step is to calculate each of the 7 integrals of Eq. (B.7). The calculations build upon the640

Fourier representation δ̂σc, δ̂ω, and δ̂a of δσc, δω, and δa, and the expression of the following641

integrals (see Eqs. (3.723.2), (3.723.3), (3.729.1), (3.729.2) and (3.729.3) of Gradshteyn and642

Ryzhik (2014)):643 ∫ +∞

−∞

eikv

v
dv = iπsgn(k) and

∫ +∞

−∞

eikv

v2 + (ω0u)2 dv =
π

ω0u
e−|k|ω0u∫ +∞

−∞

veikv

v2 + (ω0u)2 dv = iπe−|k|ω0u and
∫ +∞

−∞

eikv[
v2 + (ω0u)2]2 dv =

π

2
1 + |k|ω0u

(ω0u)3 e−|k|ω0u

∫ +∞

−∞

veikv[
v2 + (ω0u)2]2 dv = i

π

2
|k|
ω0u

e−|k|ω0u and
∫ +∞

−∞

v2 − (ω0u)2[
v2 + (ω0u)2]2 eikvdv = −π|k|e−|k|ω0u

(B.8)

where sgn(k) denotes the sign of the real number k.644

645

Terms in δσc – We denote δKσ
czm the contributions of δσc to the variations δKczm of the cohesive646

SIF. From Eq. (B.7), it reads:647

δKσ
czm(z0) =

∫
u

∫
z1

√
2

π3/2

σ0
cω

3/2
0 u1/2

(z0 − z1)2 + (ω0u)2 fw(u)
δσc(z1)
σ0

c
dz1du

=

∫
u

du

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

1
2π

∫
k

dk
δ̂σc(k)
σ0

c
eikz0

(∫
z1

eik(z1−z0)

(z1 − z0)2 + (ω0u)2 dz1

)
=

√
2
π
σ0

cω
1/2
0

1
2π

∫
k

[∫
u

fw (u)
u1/2 e−|k|ω0udu

]
δ̂σc(k)
σ0

c
eikz0 dk

= K0
Ic ·

1
2π

∫
k

[
1

Cw

∫
u

fw (u)
u1/2 e−|k|ω0udu

]
δ̂σc(k)
σ0

c
eikz0 dk

(B.9)

Terms in δω – We denote δKω
czm the contributions of δω to the variations δKczm of the cohesive648

25



SIF. From Eq. (B.7), it reads:649

δKω
czm(z0) =

∫
u

∫
z1

√
2

π3/2

σ0
cω

3/2
0 u1/2

(z0 − z1)2 + (ω0u)2 fw(u)
3
2
−

2ω2
0u2

(z0 − z1)2 + (ω0u)2

 δω(z1)
ω0

dz1du

=

∫
u

du

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

1
2π

∫
k

dk
3
2
δ̂ω(k)
ω0

eikz0

(∫
z1

eik(z1−z0)

(z1 − z0)2 + (ω0u)2 dz1

)
−

∫
u

du

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

1
2π

∫
k

dk
δ̂ω(k)
ω0

eikz0

∫
z1

2(ω0u)2eik(z1−z0)[
(z1 − z0)2 + (ω0u)2]2 dz1


= K0

Ic ·
1

2π

∫
k

[
1

Cw

∫
u

fw (u)
u1/2

(
1
2
− |k|ω0u

)
e−|k|ω0udu

]
δ̂ω(k)
ω0

eikz0 dk

=
I.B.P/u

K0
Ic ·

1
2π

∫
k

[
1

Cw

∫
u
− f ′w (u) u1/2e−|k|ω0udu

]
δ̂ω(k)
ω0

eikz0 dk

(B.10)
where “I.B.P/u” denotes the integration by parts with respect to the variable u.650

651

Terms in δa – We denote δKa,i
czm the contributions of δKi to the variations δKczm of the cohesive652

SIF. From Eqs. (B.3) and (B.7), δKa,1
czm reads:653

δKa,1
czm(z0) =

∫
u

∫
z1

√
2

π3/2

σ0
cω

3/2
0 u1/2

(z0 − z1)2 + (ω0u)2 fw(u)
[

1
2π

PV
∫

z

δa(z) − δa(z0)
(z − z0)2 dz

]
dz1du

=

∫
u

∫
z1

√
2

π3/2

σ0
cω

3/2
0 u1/2

(z0 − z1)2 + (ω0u)2 fw(u)
[

1
2π

PV
∫

z

δa′(z)
z − z0

dz
]

dz1du

=

∫
u

du

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

1
(2π)2

∫
k

dk ik δ̂a(k)eikz0

(∫
z1

dz1

(z0 − z1)2 + (ω0u)2

) (∫
z

eik(z−z0)

z − z0
dz

)
= K0

Ic ·
1

2π

∫
k
−
|k|
2
δ̂a(k)eikz0 dk

(B.11)

One may then show that:654

δKa,2
czm(z) = 0 (B.12)

because the pre-factor in front of the integral over z of δK2 is an even function of (z0 − z1), so655

that the integral over z1 in δKa,2
czm equates to zero. It is not the case for δKa,3

czm, which reads:656

δKa,3
czm(z0) =

∫
u

∫
z1

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

2(z0 − z1)[
(z0 − z1)2 + (ω0u)2]2

[
1

2π
PV

∫
z

(z − z1)
(z − z1)2 + (ω0u)2 δa(z)dz

]
dz1du

=

∫
u

∫
z1

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

2(z0 − z1)[
(z0 − z1)2 + (ω0u)2]2

1
(2π)2

∫
k

dk δ̂a(k)eikz1

[∫
z

(z − z1)
(z − z1)2 + (ω0u)2 eik(z−z1)dz

]
dz1du

=

∫
u

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

1
2π

∫
k

dk e−|k|ω0uδ̂a(k)eikz0 i
∫

z1

(z0 − z1)[
(z0 − z1)2 + (ω0u)2]2 eik(z1−z0)dz1

 du

= K0
Ic ·

1
2π

∫
k

[
1

Cw

∫
u

fw (u)
u1/2 e−2|k|ω0udu

]
|k|
2
δ̂a(k)eikz0 dk

(B.13)
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The process for δKa,4
czm is similar. One finds:657

δKa,4
czm(z0) =

∫
u

∫
z1

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

(z0 − z1)2 − (ω0u)2[
(z0 − z1)2 + (ω0u)2]2

[
1

2π
PV

∫
z

δa(z) − δa(z1)
(z − z1)2 + (ω0u)2 dz

]
dz1du

=

∫
u

∫
z1

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

(z0 − z1)2 − (ω0u)2[
(z0 − z1)2 + (ω0u)2]2

1
(2π)2

∫
k

dk δ̂a(k)eikz1

[∫
z

eik(z−z1) − 1
(z − z1)2 + (ω0u)2 dz

]
dz1du

=

∫
u

√
2

π3/2σ
0
cω

1/2
0

fw(u)
u1/2

1
2π

∫
k

dk (e−|k|ω0u − 1)
1
2
δ̂a(k)eikz0

∫
z1

(z0 − z1)2 − (ω0u)2[
(z0 − z1)2 + (ω0u)2]2 eik(z1−z0)dz1

 du

= K0
Ic ·

1
2π

∫
k

[
1

Cw

∫
u

fw (u)
u1/2

(
1 − e−|k|ω0u

)
e−|k|ω0udu

]
|k|
2
δ̂a(k)eikz0 dk

(B.14)

The remaining integral δKa,5
czm yields:658

δKa,5
czm(z0) =

∫
u

∫
z1

√
2

π3/2σ
0
cω

3/2
0 u1/2 fw(u)

ω0u[
(z0 − z1)2 + (ω0u)2]2 [δa(z0) − δa(z1)] dz1du

=

∫
u

√
2

π3/2σ
0
cω

1/2
0

fw(u)
u1/2

1
2π

∫
k

dk δ̂a(k)eikz0

∫
z1

ω0u
(
1 − eik(z1−z0)

)
[
(z0 − z1)2 + (ω0u)2]2 dz1

 du

= K0
Ic ·

1
2π

∫
k

[
1

Cw

∫
u

fw (u)
2u3/2

[
(1 + |k|ω0u) e−|k|ω0u − 1

]
du

]
δ̂a(k)
ω0

eikz0 dk

=
I.B.P/u

− K0
Ic ·

1
2π

∫
k

[
1

Cw

∫
u

fw (u)
u1/2 e−|k|ω0udu

]
|k|
2
δ̂a(k)eikz0 dk

+ K0
Ic ·

1
2π

∫
k

[
1

Cw

∫
u
−

f ′w (u)
u1/2

(
1 − e−|k|ω0u

)
du

]
δ̂a(k)
ω0

eikz0 dk

(B.15)

Regrouping Eqs. (B.11)-(B.15), one finds :659

δKa
czm(z0)
K0

Ic

=
1

2π

∫
k
−
|k|
2
δ̂a(k)eikz0 dk +

1
2π

∫
k

[
1

Cw

∫
u
−

f ′w (u)
u1/2

(
1 − e−|k|ω0u

)
du

]
δ̂a(k)
ω0

eikz0 dk (B.16)

One finally gets Eq. (22) collecting the terms in δσc, δω, and δa from Eqs.(B.9), (B.10) and660

(B.16).661

Note that Eq. (22) can be expressed in terms of variations of strength δσc and critical crack662

opening δDc with respect to their average value σ0
c and D0

c . From Eq. (18), one has:663

ω0 = α
µ

σ0
c

D0
c and

δω

ω0
=
δDc

D0
c
−
δσc

σ0
c

(B.17)

So that Eq. (22) boils down to:664

K0
I

1 +

 1
K0

I

∂K0
I

∂a
−
|k|
2

 δ̂a (k)
 = K0

Ic

1 +

(
Â (|k|ω0)

ω0
−
|k|
2

)
δ̂a (k) +

[
Σ̂ (|k|ω0) −

Ω̂ (|k|ω0)
2

]
δ̂σc (k)
σ0

c
+

Ω̂ (|k|ω0)
2

δ̂Dc (k)
D0

c

 (B.18)

Note that, as Ω̂ (|k|ω0) decreases more strongly than Σ̂ (|k|ω0) when |k|ω0 → +∞ (see Appendix665

C), heterogeneities of strength σ with constant critical opening Dc have a similar effect to that666

with constant process zone size described in Section 4.2. Conversely, heterogeneities of critical667

opening Dc with constant strength σ have a similar effect to that of process zone size described668

in Section 4.3.669
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Appendix C. Expression and asymptotic behavior of Â (|k|ω0), Σ̂ (|k|ω0), Ω̂ (|k|ω0) for dif-670

ferent types of weakening671

In this work, we consider four different cohesive laws. The first one is the linear distance-672

weakening law of Fig. 4 for which the cohesive stress decays linearly from σ0
c to 0 along a673

distance ω0. The second one is the cohesive law of Dugdale (1960) and Barenblatt (1962) for674

which the cohesive stress is constant to σ0
c along a distance ω0, and 0 elsewhere. The third one675

is an exponentially distance-weakening law for which the cohesive stress decays as σ0
ce−x/ω0676

behind the crack tip, and never reaches 0. The last one is a linear traction-separation law for677

which the stress decay linearly from σ0
c to 0 with the local opening δ up to a critical value Dc.678

In this Appendix, we derive the expressions and the asymptotic behaviors for the three cohesive679

pre-factors Â, Σ̂ and Ω̂ of Eq. (24) that control the front deformations. The first three cohesive680

laws yield analytical expressions for Â, Σ̂ and Ω̂, while they are computed numerically for the681

traction-separation law.682

Appendix C.1. Linear-distance weakening683

The first one is the linear distance-weakening law of Fig. 4 for which the cohesive stress684

decay linearly from σ0
c to 0 along a distance ω0:685

fw(x) = max (1 − x, 0) (C.1)

In that case, Eq. (24) yields:686 

Â (|k|ω0) =
3
2
−

3
√
π

4
erf(
√
|k|ω0)

√
|k|ω0

Σ̂ (|k|ω0) =
3
√
π

4

(
|k|ω0 −

1
2

) erf(
√
|k|ω0)

(|k|ω0)3/2 +
3
4

e−|k|ω0

|k|ω0

Ω̂ (|k|ω0) =
3
√
π

4
erf(
√
|k|ω0)

(|k|ω0)3/2 −
3
2

e−|k|ω0

|k|ω0

⇒

Â (|k|ω0) −→
|k|ω0→+∞

3
2

Σ̂ (|k|ω0) ∼
|k|ω0→+∞

3
√
π

4
(|k|ω0)−1/2

Ω̂ (|k|ω0) ∼
|k|ω0→+∞

3
√
π

4
(|k|ω0)−3/2

(C.2)

The evolution of Â, Σ̂ and Ω̂ with |k|ω0 is given in Fig. C.10 for the linear distance-weakening687

law.688

Appendix C.2. Dugdale-Barenblatt distance weakening689

The second one is the cohesive law of Dugdale (1960) and Barenblatt (1962) for which the690

cohesive stress is constant to σ0
c along a distance ω0, and 0 elsewhere:691

fw(x) = χ[0,1](x) (C.3)

where χE is the indicator function of the ensemble E. Eq. (24) yields:692 
Â (|k|ω0) =

1 − e−|k|ω0

2

Σ̂ (|k|ω0) =

√
π

2
erf(
√
|k|ω0)

√
|k|ω0

Ω̂ (|k|ω0) = e−|k|ω0

⇒

Â (|k|ω0) −→
|k|ω0→+∞

1
2

Σ̂ (|k|ω0) ∼
|k|ω0→+∞

√
π

2
(|k|ω0)−1/2

Ω̂ (|k|ω0) ∼
|k|ω0→+∞

e−|k|ω0

(C.4)

The evolution of Â, Σ̂ and Ω̂ with |k|ω0 is given in Fig. C.11 for the Dugdale-Barenblatt weak-693

ening law.694
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Figure C.10: Evolution of the cohesive pre-factors for a linear distance-weakening cohesive law: (a) the front deforma-
tions pre-factor Â(|k|ω0) scales as ∝ |k|ω0/2 when |k|ω0 → 0 (dashed gray line on the left) and saturates to A∞w when
|k|ω0 → +∞ (horizontal dashed gray line on the right). (b) The strength variation pre-factor Σ̂(|k|ω0) goes to 1 in the
brittle limit |k|ω0 → 0 and decays as (|k|ω0)−1/2 when |k|ω0 → +∞. (c) The process zone size variations pre-factor
Ω̂(|k|ω0) goes to 1 when |k|ω0 → 0 and decays as (|k|ω0)−3/2 when |k|ω0 → +∞.
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Figure C.11: Evolution of the cohesive pre-factors for a Dugdale-Barenblatt cohesive law: (a) the front deformations pre-
factor Â(|k|ω0) scales as ∝ |k|ω0/2 when |k|ω0 → 0 (dashed gray line on the left) and saturates toA∞w when |k|ω0 → +∞

(horizontal dashed gray line on the right). (b) The strength variation pre-factor Σ̂(|k|ω0) goes to 1 in the brittle limit
|k|ω0 → 0 and decays as (|k|ω0)−1/2 when |k|ω0 → +∞. (c) The process zone size variations pre-factor Ω̂(|k|ω0) goes to
1 when |k|ω0 → 0 and decays as e−|k|ω0 when |k|ω0 → +∞.

Appendix C.3. Exponential-distance weakening695

The third one is an exponentially distance-weakening law for which the cohesive stress de-696

cays as σ0
ce−x/ω0 behind the crack tip, and never reaches 0:697

fw(x) = e−x (C.5)

In that case, Eq. (24) yields:698 

Â (|k|ω0) = 1 −
1

(1 + |k|ω0)1/2

Σ̂ (|k|ω0) =
1

(1 + |k|ω0)1/2

Ω̂ (|k|ω0) =
1

(1 + |k|ω0)3/2

⇒

Â (|k|ω0) −→
|k|ω0→+∞

1

Σ̂ (|k|ω0) ∼
|k|ω0→+∞

(|k|ω0)−1/2

Ω̂ (|k|ω0) ∼
|k|ω0→+∞

(|k|ω0)−3/2

(C.6)
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The evolution of Â, Σ̂ and Ω̂ with |k|ω0 is given in Fig. C.12 for the exponential distance-699

weakening law.700
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Figure C.12: Evolution of the cohesive pre-factors for an exponential distance-weakening cohesive law: (a) the front
deformations pre-factor Â(|k|ω0) scales as ∝ |k|ω0/2 when |k|ω0 → 0 (dashed gray line on the left) and saturates toA∞w
when |k|ω0 → +∞ (horizontal dashed gray line on the right). (b) The strength variation pre-factor Σ̂(|k|ω0) goes to 1 in
the brittle limit |k|ω0 → 0 and decays as (|k|ω0)−1/2 when |k|ω0 → +∞. (c) The process zone size variations pre-factor
Ω̂(|k|ω0) goes to 1 when |k|ω0 → 0 and decays as (|k|ω0)−3/2 when |k|ω0 → +∞.

Appendix C.4. Linear-slip weakening701

The fourth and last one is a linear traction-separation law for which the stress decay linearly702

from σ0
c to 0 with the local opening δ up to a critical value Dc:703

fw(x) = max (1 − δ(x)/Dc, 0) (C.7)

This type of weakening is widely used in numerical simulations of cohesive fracture. One cannot704

find an analytical formula in that case, but fw can be computed numerically using the method of705

Viesca and Garagash (2018) that builds on a Gauss–Chebyshev quadrature. The resulting fw is706

plotted in Fig. E.17a.707

708

The finiteness of the stress at the crack tip implies that fw(x) ∼
x→0

1 − awx3/2 where aw is a709

cohesive constant related to the weakening shape (Rice, 1980). This very peculiar behavior leads710

a change in the asymptotic behavior of Ω̂ when |k|ω0 → +∞:711

Ω̂ (|k|ω0) ∼
|k|ω0→+∞

Ω∞w

(|k|ω0)2 if fw(x) ∼
x→0

1 − awx3/2, with Ω∞w =
2aw

Cw
(C.8)

The behavior of Â and Σ̂ is left unchanged. For the linear traction-separation law, one finds:712 
Â (|k|ω0) '

|k|ω0→+∞
1.045

Σ̂ (|k|ω0) '
|k|ω0→+∞

1.209 (|k|ω0)−1/2

Ω̂ (|k|ω0) '
|k|ω0→+∞

1.946 (|k|ω0)−2

(C.9)

The evolution of Â, Σ̂ and Ω̂ with |k|ω0 is given for the linear traction-separation cohesive law in713

Fig. C.13.714
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Figure C.13: Evolution of the cohesive pre-factors for a linear traction-separation law: (a) the front deformations pre-
factor Â(|k|ω0) scales as ∝ |k|ω0/2 when |k|ω0 → 0 (dashed gray line on the left) and saturates toA∞w when |k|ω0 → +∞

(horizontal dashed gray line on the right). (b) The strength variation pre-factor Σ̂(|k|ω0) goes to 1 in the brittle limit
|k|ω0 → 0 and decays as (|k|ω0)−1/2 when |k|ω0 → +∞. (c) The process zone size variations pre-factor Ω̂(|k|ω0) goes to
1 when |k|ω0 → 0 and decays as (|k|ω0)−2 when |k|ω0 → +∞.

Appendix D. Influence of the inclusion spacing715

In this Appendix, we explore the influence of the inclusion spacing on the deformations of a716

crack front, interacting with heterogeneities of strength and process zone size.717

Appendix D.1. Heterogeneities of strength and process zone size718

We consider the situations of Sections 4.2 and 4.3. The crack front interacts with hetero-719

geneities of (i) varying strength but uniform process zone size, or (ii) uniform strength but vary-720

ing process zone size. In the former case, an increase of the average process zone size ω0 was721

associated with an increase in the front amplitude. In the latter, it was linked to a decrease in722

amplitude. We observe in Figs. D.14 and D.15 that the two different behaviors are left unchanged723

by the inclusion spacing.724

Appendix D.2. Limit case of the single defect in an infinite matrix725

A general expression of the front deformations δa with the position z cannot be found ex-726

plicitly. Yet, it is possible to derive it in some specific cases. In the limit of a single obstacle727

(∆L � d) embedded in a rather brittle medium (ω0 � d), one retrieves the solution of (Chopin728

et al., 2011):729

(δa (z) − δa (0)) /d =
1

2π
∆Gc

G0
c

[(
1 +

2z
d

)
ln

∣∣∣∣∣1 +
2z
d

∣∣∣∣∣ +

(
1 −

2z
d

)
ln

∣∣∣∣∣1 − 2z
d

∣∣∣∣∣] (D.1)

where d is the obstacle width, ∆Gc is the contrast in fracture energy and G0
c its average value.730

The evolution of the front deformations δa with the position is plotted in Fig. D.16a.731

732

On the contrary, it is also possible to derive an analytical expression of the front deformation733

when the same obstacle lies in a very ductile medium (ω0 � d). For heterogeneities of strength,734

one finds:735

(δa (z) − δa (0)) /d =
2
√
π

Σ∞w

A∞w

∆σc

σ0
c

(
ω0

d

)1/2
2 −

√
1 +

2|z|
d

+ sgn
(
|z| −

d
2

) √∣∣∣∣∣1 − 2|z|
d

∣∣∣∣∣
 (D.2)
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Figure D.14: (a) Influence of the inclusion spacing ∆L and the process zone size ω0 on the amplitude A of the front
deformations for a periodic array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are stronger than
the matrix σobs

c = 1.1σmat
c (in solid light gray line), but they are equally brittle ωobs = ωmat, so that Gobs

c ' 1.2Gmat
c .

(b) The deformation amplitude is always larger than in the LEFM case (in yellow dashed line) and increases with the
average process zone size ω0 (in red).

10°2 100 102

Inclusion spacing ¢L/d

10°1

100

F
ro

nt
am

pl
it
ud

e
(A

/d
)/

(¢
G

c/
G

0 c)

0 1 2

x/!0

0

1

æ
/æ

0 c

10°2

10°1

1

101

102

Process zone size !0/d

0

1

2

3

±a
/A

L
E

F
M

°0.6 0.0 0.6

z/d

0

1

2

3

±a
/A

L
E

F
M

°1 0 1

z/d
°10.5 0.0 10.5

z/d

1

1.2

(a) (b)
LEFM

ΔL /d = 0.2 ΔL /d = 1 ΔL /d = 20

ΔL /d = 0.2 ΔL /d = 1 ΔL /d = 20 Gc /Gmatc

Cohesive material : ω0 /d = 5

LEFM : ω0 /d = 0

Figure D.15: (a) Influence of the inclusion spacing ∆L and the process zone size ω0 on the amplitude A of the front
deformations for a periodic array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are more ductile
than the matrix ωobs = 1.2ωmat (in solid light gray line), but they are equally strong σobs

c = σmat
c , so that Gobs

c ' 1.2Gmat
c .

(b) The deformation amplitude is always smaller than in the LEFM case (in yellow dashed line) and decreases with the
average process zone size ω0 (in red).

where d is the obstacle width, ω0 is the average process zone size, ∆σc is the contrast in strength736

and σ0
c its average value. A∞w and Σ∞w relate to the cohesive law and are given in Eqs. (33) and737

(47). The evolution of the front deformations δa with the position is plotted in Fig. D.16b, and738

successfully compared to the numerical solution of Eq. (46) for Lz/d = 105 and ω0/d = 105.739

Eq. (D.2) validates the linear dependence in (∆σc/σ
0
c) and that in (ω0/d)1/2 that was mentioned740

in Section 4.2. Moreover, we observe that the deformation localizes at the edges of the obsta-741
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Figure D.16: Deformation profiles of a crack front pinned by a single tough heterogeneity (∆L/d → +∞): (a) In the
perfectly brittle limit ω0/d → +∞, the deformations of the front follow Eq. (D.1) of Chopin et al. (2011). In the
fully cohesive limit ω0/d → +∞, (b) the deformations of the front by heterogeneities of strength follow Eq. (D.2) and
increase as ∝ (ω0/d)1/2, while (c) that induced by heterogeneities of process zone size follow Eq. (D.3) and vanish as
∝ (ω0/d)−1/2. The analytical solution (in solid black line) are compared to numerical solutions (in dashed orange line)
computed from Eq. (25).

cle, where δa is non-differentiable. It may challenge the assumptions lying under our first-order742

theory as we assumed ∂δa/∂z � 1, justifying future derivation of a second-order theory for the743

quasi-static cohesive front deformations to rationalize the experimental results of Chopin et al.744

(2011).745

746

For heterogeneities of process zone size, one finds:747

(δa (z) − δa (0)) /d =
1

6
√
π

Ω∞w

A∞w

∆ω

ω0

(
ω0

d

)−1/2
−2 +

(
1 +

2|z|
d

)3/2

− sgn
(
|z| −

d
2

) ∣∣∣∣∣1 − 2|z|
d

∣∣∣∣∣3/2
 (D.3)

where d is the obstacle width, ∆ω is the contrast in process zone size and ω0 its average value.748

A∞w and Ω∞w relate to the cohesive law and are given in Eqs. (33) and (51). The evolution of the749

front deformations δa with the position is plotted in Fig. D.16c. Eq. (D.3) confirms the linear750

dependence in both (∆ω/ω0) and (ω0/d)−1/2.751

Note that Eq. (D.3) strongly depends on the weakening shape fw, as it controls the asymptotic752

behavior of Ω̂. For example, one finds for the linear traction-separation law:753

(δa (z) − δa (0)) /d =


Ω∞w

4A∞w

∆ω

ω0

(
ω0

d

)−1 ( z
d

)2
if |z| ≤ d/2

Ω∞w

4A∞w

∆ω

ω0

(
ω0

d

)−1
(
|z|
d
−

1
4

)
if |z| > d/2

(D.4)

Appendix E. Influence of the nature of weakening754

In this Appendix, we explore the influence of the shape fw of the cohesive law on the sta-755

bility of crack fronts and their interaction with periodic arrays of tough obstacles. We consider756

the four weakening shapes studied in Appendix C: the reference linear distance-weakening,757

a Dugdale-Barenblatt weakening, an exponential distance-weakening, and a more conventional758

linear traction-separation cohesive law.759
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Appendix E.1. Influence of the nature of weakening on the crack front stability760

We saw in Eqs. (35) and (36) that the stability of a perturbed crack strongly depends on the761

evolution of Â and its asymptotic behavior as |k|ω0 → +∞. We thus expect that the stability of762

crack fronts somehow depends on the spatial distribution fw of cohesive stress in the crack wake.763
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Figure E.17: Influence of the nature of weakening fw on the stability of a sinusoidal crack front: (a) linear distance-
weakening (in black line), Dugdale-Barenblatt (in orange line), linear traction-separation (in red line), and exponential
distance-weakening (in green line) cohesive laws are considered. (b) The frontier delimiting the region of conditional
(Regime III) to unconditional instability (Regime II) is controlled by the evolution of Â which is set by fw. (c) It also
controls the value of the critical wavelength λc above which modal perturbations are unstable, and the value of the critical
structural length scale Lc below which perturbations of any wavelengths are unstable.

We observe in Fig. E.17 that all four cohesive laws lead to a similar stability behavior. The764

main difference is a shift of the frontier separating Regimes II and III, as it is controlled by765

the asymptotic value A∞w of the operator Â. Namely, the shift from the two regimes occurs for766

smaller process zone sizeω0 for the Dugdale-Barenblatt cohesive law than for the linear distance-767

weakening law. The cases of exponentially distance-weakening and linear traction-separation768

laws are found in between.769

Appendix E.2. Influence of the nature of weakening on the crack front deformations770

We address next the question of the influence of the nature of weakening, characterized by771

the weakening shape fw, on the front deformations.772

773

We first observe in Fig. E.18 that the influence of the weakening shape on the front defor-774

mation is rather weak for heterogeneities of strength. The deformations are overall larger for a775

Dugdale-Barenblatt law, and lower for a linear distance-weakening law. The other two laws are776

found in-between. They all display a similar scaling A/d ∝ (ω0/d)1/2 for large process zone sizes777

ω0/d → +∞, as the asymptotic behavior of Σ̂ of Eq. (47) depends very weakly on fw.778

779

The case of heterogeneities of process zone size is more interesting, as the asymptotic behav-780

ior of Ω̂ changes significantly with the definition of fw. Indeed, the decrease in magnitude of the781

effective fluctuations of fracture energy is sharper for traction-separation laws A/d ∝ (ω0/d)−1
782

than for distance-weakening ones A/d ∝ (ω0/d)−1/2 (as long as f ′w(0) , 0). Consequently, the783

amplitude of front deformations vanishes at a much higher rate as the average process zone size784

ω0 gets larger than the obstacle width d (see Fig. E.19). This effect is even stronger for the785

Dugdale-Barenblatt law, for which A/d ∝ (ω0/d) × e−ω0/d.786
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Figure E.18: Influence of the nature of weakening fw on the front deformations associated with spatial variations of
strength: (a) linear distance-weakening (in black line), Dugdale-Barenblatt (in orange line), linear traction-separation
(in red line), and exponential distance-weakening (in green line) cohesive laws are considered. (b) The perturbation
amplitude always increases with the average process zone size, but at a rate controlled by the weakening fw. (c) It scales
as ∝ (ω0/d)1/2 when ω0/d → +∞ no matter how the material weakens.
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Figure E.19: Influence of the nature of weakening fw on the front deformation emerging from spatial variations of process
zone size: (a) linear distance-weakening (in black line), Dugdale-Barenblatt (in orange line), linear traction-separation
(in red line), and exponential distance-weakening (in green line) cohesive laws are considered. (b) The perturbation
amplitude always decreases with the average process zone size ω0 but at a rate controlled by the weakening fw. (c)
Its scaling as when ω0/d → +∞ depends on how the material weakens. For distance-weakening laws, it scales as
∝ (ω0/d)−1/2, while it decreases as ∝ (ω0/d)−1 for traction-separation laws. The decrease is even stronger for the
Dugdale-Barenblatt cohesive law ∝ (ω0/d)e−ω0/d .
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