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When a crack interacts with material heterogeneities, its front distorts and adopts complex tortuous configurations that are reminiscent of the energy barriers encountered during crack propagation. As such, the study of crack front deformations is key to rationalize the effective failure properties of micro-structured solids and interfaces. Yet, the impact of a localized dissipation in a finite region behind the crack front, called the process zone, has often been overlooked. In this work, we derive the equation ruling 3D coplanar crack propagation in heterogeneous cohesive materials where the opening of the crack is resisted by some traction in its wake. We show that the presence of a process zone results in two competing effects on the deformation of crack fronts: (i) it makes the front more compliant to small-wavelength perturbations, and (ii) it smooths out local fluctuations of strength and process zone size, from which emerge heterogeneities of fracture energy. Their respective influence on front deformations is shown to strongly impact the stability of perturbed crack fronts, as well as their stationary shapes when interacting with arrays of tough obstacles. Overall, our theory provides a unified framework to predict the variety of front profiles observed in experiments, even when the small-scale yielding hypothesis of linear elastic fracture mechanics breaks down.

Introduction

Significant efforts have been made in the past decades to unravel the influence of material heterogeneities on the failure behavior of composites. Understanding how crack fronts deform may seem a rather anecdotal subject matter in this regard. Yet, the front deformations are reminiscent of the interaction between a crack and material disorder, and therefore conceal a wealth of information on the disorder intensity and its structure. Their study has provided invaluable insights on the spatio-temporal dynamics of propagating cracks, and on the effective toughness of composite brittle materials (see [START_REF] Lazarus | Perturbation approaches of a planar crack in linear elastic fracture mechanics: A review[END_REF], [START_REF] Bonamy | Failure of heterogeneous materials: A dynamic phase transition?[END_REF] and references therein).

During its interaction with heterogeneities of material properties, the crack front distorts and adopts complex tortuous configurations. Predicting its propagation path requires considering all possible geometric configurations, as well as a suitable criterion that selects the "most favorable" one. This lead to a predominance of perturbative approaches in fracture mechanics, where quantities of interest such as the stress intensity factors can be linked to perturbations of the crack front geometry [START_REF] Gao | Shear stress intensity factors for a planar crack with slightly curved front[END_REF] and that of its surface [START_REF] Movchan | On perturbations of plane cracks[END_REF].

In particular, the first-order theory of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] based on [START_REF] Bueckner | Weight functions and fundamental fields for the penny-shaped and the halfplane crack in three-space[END_REF]'s weight functions has been quite successful in capturing experimental observations of coplanar crack propagation along weak interfaces. It provides a convincing framework to describe quantitatively the deformations of a crack front interacting with a single tough defect [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF]Patinet et al., 2013a;Vasoya et al., 2016b) of sometimes complex shape [START_REF] Xia | Toughening and asymmetry in peeling of heterogeneous adhesives[END_REF], periodic arrays of obstacles [START_REF] Dalmas | Crack front pinning by design in planar heterogeneous interfaces[END_REF], or disorderly-placed heterogeneities [START_REF] Delaplace | High resolution description of a crack front in a heterogeneous plexiglas block[END_REF].

It also helped in rationalizing the micro-dynamics of depinning of a crack exiting an obstacle [START_REF] Chopin | Depinning dynamics of crack fronts[END_REF], or the intermittent macro-dynamics of crack propagation in disordered media [START_REF] Måløy | Local waiting time fluctuations along a randomly pinned crack front[END_REF][START_REF] Ponson | Crack propagation in brittle heterogeneous solids: Material disorder and crack dynamics[END_REF][START_REF] Barés | Aftershock sequences and seismic-like organization of acoustic events produced by a single propagating crack[END_REF]. The same theory has been extensively applied to predict the effective toughness arising from periodic [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF], asymmetric [START_REF] Xia | Adhesion of heterogeneous thin films -ii: Adhesive heterogeneity[END_REF], or even disordered (Patinet et al., 2013b;[START_REF] Démery | From microstructural features to effective toughness in disordered brittle solids[END_REF][START_REF] Lebihain | Towards brittle materials with tailored fracture properties: the decisive influence of the material disorder and its microstructure[END_REF] distributions of fracture properties. Higher-order theories also provided valuable insights on bridging mechanisms [START_REF] Bower | A three-dimensional analysis of crack trapping and bridging by tough particles[END_REF], on fingering instabilities (Vasoya et al., 2016a), or on the microbranching transition at higher crack velocities [START_REF] Kolvin | Nonlinear focusing in dynamic crack fronts and the microbranching transition[END_REF].

A major pitfall of these models is that they arguably overlook the influence of the spatially localized weakening dynamics near the crack front. Indeed, the LEFM theory is based on the so-called small-scale yielding assumption, which states that all the dissipation occurs in an infinitesimally small region in the vicinity of the crack front. As such, LEFM does not provide any meaningful dissipation length scale, and treats all asperity scales indifferently. Yet, as we zoom in on the front of a propagating crack, one ultimately finds a region of finite size where the material behaves inelastically and the validity of the LEFM framework breaks down. It is crucial to understand how heterogeneities smaller or bigger than this dissipative region may influence the overall failure behavior of a composite. Cohesive-zone models [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF] provide a way to do that, as they assume that the material does not weaken instantly but in a region of finite size -called "process zone" -located at the crack front where the crack opening is resisted by a distribution of cohesive stresses. In these models, the fracture properties are not solely characterized by the fracture energy G c , but rather by (i) the strength σ c of the material, and (ii) its process zone size ω, two quantities from which emerge the fracture energy [START_REF] Palmer | The growth of slip surfaces in the progressive failure of over-consolidated clay[END_REF]. The development of a unified framework that describes the failure behavior of cohesive and heterogeneous materials may only take place through a preliminary study of the front deformations in presence of a finite process zone.

In this work, we extend the LEFM perturbative theory of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] to mode I coplanar crack propagation in cohesive materials. This is performed by deriving first [START_REF] Bueckner | Weight functions and fundamental fields for the penny-shaped and the halfplane crack in three-space[END_REF]'s crack face weight function for a semi-infinite coplanar crack perturbed within its plane. As a result, we can explore for the first time the influence of a finite process zone size on the front deformations of a crack propagating in tensile mode I. We show that a cohesive crack accommodates perturbations differently depending on the size of the perturbation wavelength with respect to that of the process zone. We also emphasize that the presence of cohesive stress behind the crack front may strongly modify the fluctuations of fracture energy the crack actually perceives during its propagation. This theory successfully predicts the front profiles observed in the peeling experiments of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF], for which the small-scale yielding hypothesis of LEFM is suspected to break down.

The paper is organized as follows: in Section 2, we derive the expression of the crack face weight function perturbations at first-order in the front deformation, following a method proposed by [START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF]. It allows us to calculate the stress intensity factor arising from cohesive stresses acting behind the front for materials translationally invariant in the propagation direction. Building on this model, we revisit in Section 3 the stability problem of a perturbed crack front treated by [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] for perfectly brittle materials. We highlight here the influence of the finite process zone size on the relative "stiffness" of the crack front to some modal perturbations.

Next, we investigate in Section 4 the stationary shape of a crack front interacting with periodic arrays of tough obstacles. We show here that the presence of cohesive stresses behind the crack front does not only affect the stiffness of the crack front, but also influences the energy landscape the crack actually experiences during its propagation. The front profiles predicted by our theory are successfully compared to those obtained by [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF] during adhesive peeling experiments of an elastomer block from a patterned glass substrate.

2. First-order variations of the mode I stress intensity factor for a semi-infinite coplanar cohesive crack

Cohesive approach to three-dimensional coplanar crack propagation

We consider a semi-infinite crack embedded in an infinite body made of an isotropic linear elastic material. In the initial reference configuration Γ, the crack is planar and its front is straight (see Fig. 1a). We adopt the usual convention of LEFM, and thus use a Cartesian frame Oxyz with origin O chosen arbitrarily within the crack plane, axis (Ox) parallel to the direction of crack propagation, (Oy) parallel to the direction orthogonal to the crack plane, and (Oz) parallel to the crack front. The associated unit vectors are denoted e x , e y , e z . The crack Γ is loaded in pure mode I through some system of forces independent of the coordinate z, so that the unperturbed stress intensity factor (SIF) K 0 I is independent of the point of observation along the crack front.

The influence of the loading conditions and the specimen geometry may be accounted for in the evolution of K 0 I with crack advance. Now, let the front F undergo some infinitesimal coplanar perturbation, and note δa the local orthogonal distance between the perturbed front F * with respect to the reference one (see Fig. 1b). The LEFM perturbed stress intensity factor K lefm along the front reads [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF]:

K lefm (z) = K 0 I + δK lefm (z) = K 0 I       1 + 1 K 0 I ∂K 0 I ∂a δa(z) - 1 2π PV +∞ -∞ δa (z) -δa(z ) (z -z ) 2 dz       (1) 
where δK lefm corresponds to the first-order variations of K lefm due to the front deformations δa, and the symbol PV denotes a Cauchy principal value. Equation ( 1) is non-local, since the rupture behavior at a given point is affected by the position of the other points due to long-range elastic interactions.

In the following, use will be made of Fourier transforms in the direction (Oz) of the crack front. The definition adopted here for the Fourier transform χ(k) of an arbitrary function χ(z) is:

χ(k) = 1 2π +∞ -∞ χ(z)e -ikz dz ⇔ χ(z) = +∞ -∞ χ(k)e ikz dk (2) 
Then Eq. ( 1) reads in the Fourier space: 
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K 0 I K 0 I Figure 1: (a)
A semi-infinite planar crack Γ with a straight crack front F is loaded under pure mode I through some system of forces, giving rise to a stress intensity factor K 0 I . (b) Due to the presence of microscopic heterogeneities, the crack front F * of the perturbed crack Γ * distorts by a quantity δa(z) along the direction of propagation (Ox). (c) The material does not weaken instantly in the crack wake, but progressively in a closed region behind the rupture front (in red) called process zone. Inset: In this region, the cohesive stress σ decay from its peak value σ c , referred to as the strength of the material, down to zero along a typical distance ω.

The LEFM approach leads to a "non-physical" situation where the stress is found singular at the crack front. Cohesive zone models (CZMs) address this issue by assuming that the opening of the crack is resisted in its wake by a tensile stress σ (z, x), called cohesive stress, acting behind the crack front (see Fig. 1c). It typically evolves from a peak value σ c , called strength of the material, down to negligible values along a characteristic distance ω, called process zone size (see inset of Fig. 1c). The evolution of σ behind the crack front usually results from a tractionseparation law σ = f (δ) describing material degradation with the local opening displacement δ [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF]. This cohesive stress σ gives rise to a negative stress intensity factor -K czm (z) that balances K lefm (z), ensuring then that the stress is non-singular at each point along the crack front:

K total (z) = K lefm (z) -K czm (z) = 0 (4)
Building on Bueckner-Rice's weight function theory [START_REF] Bueckner | Weight functions and fundamental fields for the penny-shaped and the halfplane crack in three-space[END_REF][START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF], one may express the cohesive stress intensity factor K czm as:

K czm (z) = Γ * k * Γ * ; z, z , x σ (x) dz dx (5) 
where k * (Γ * ; z, z , x) is the mode I crack face weight function (CFWF). It corresponds to the stress intensity factor generated at point z by a pair of unitary tensile forces applied at a point (z , x) located on the faces of Γ * .

First-order variations of the mode I crack face weight function

In order to compute the cohesive stress intensity factor of Eq. ( 5), we need a closed form for the crack face weight function k * of the perturbed front F * . We follow here the ideas developed by [START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF] and [START_REF] Favier | Coplanar propagation paths of 3d cracks in infinite bodies loaded in shear[END_REF], upon which [START_REF] Leblond | Second-order coplanar perturbation 36 of a semi-infinite crack in an infinite body[END_REF] built to derive the first-order variations of the fundamental kernel

Z (Γ * ; z; z ) = √ π/8 lim x→0 k (Γ * ; z; z , x) / √ x.
We build upon them here to derive the variations of the mode I crack face weight function for a semiinfinite coplanar crack at first order in the perturbation δa. Our results generalize the calculations of [START_REF] Leblond | Second-order coplanar perturbation 36 of a semi-infinite crack in an infinite body[END_REF] that only looked at the asymptotic behavior of k * near the crack front

(x → 0).
The evolution of the opening displacement and the stress in the vicinity of the perturbed crack front are naturally expressed in the local basis of vectors e * z (z), e * x (z), e y , where e * z (z) is tangent to the crack front F * at position z, and e * x (z) is perpendicular to it within the plane (zOx) and oriented in the direction of propagation (see Fig. 2). Following [START_REF] Favier | Coplanar propagation paths of 3d cracks in infinite bodies loaded in shear[END_REF], we need to define two distinct crack face weight functions:

• k * (F * ; z 0 ; z 1 , x * ), which corresponds to the stress intensity factor generated at z = z 0 by a pair of unitary forces applied along e y at a distance x * behind the point z 1 of the perturbed crack front F * in the direction of the vector e * x (z 1 );

• k (F * ; z 0 ; z 1 , x), which corresponds to the stress intensity factor generated at z = z 0 by a pair of unitary forces applied along e y at a distance x behind the point z 1 of the perturbed crack front F * in the direction e x .

At first order in the perturbation, one has:

k * (F * ; z 0 ; z 1 , x * ) = k (F * ; z 0 ; z 1 , x) (6) 
as the error introduced on the position of the point of application of the forces is of second order in δa [START_REF] Favier | Coplanar propagation paths of 3d cracks in infinite bodies loaded in shear[END_REF]. Moreover, [START_REF] Rice | Weight function theory for three-dimensional elastic crack analysis[END_REF] showed that provided the crack advance δa(z)

satisfies the condition:

δa(z 0 ) = 0 and δa(z 1 ) = 0 (7) k (F * ; z 0 ; z 1 , x) can be expressed from the CFWF k (F ; z 0 ; z 1 , x) of the reference straight front following:

k (F * ; z 0 ; z 1 , x) = k (F ; z 0 ; z 1 , x) + 1 2π +∞ -∞ k (F ; z; z 1 , x) δa(z) (z -z 0 ) 2 dz (8)
where k (F ; z 0 ; z 1 , x) is known analytically for the semi-infinite coplanar crack with a straight crack front Γ:

k (F ; z 0 ; z 1 , x) = √ 2 π 3/2 √ x (z 0 -z 1 ) 2 + x 2 (9)
Yet, the condition (7) is not satisfied for an arbitrary perturbation δa. To circumvent this difficulty, we follow the ideas of [START_REF] Leblond | Second-order coplanar perturbation 36 of a semi-infinite crack in an infinite body[END_REF], and compute the perturbed CFWF associated to Γ * from those of a reference crack Γ * * that results from the combination of translatory motion and a rotation δa * * making δa * (z) = δa(z) -δa * * (z) vanish in z 0 and z 1 :

δa * * (z) = δa(z 0 ) + δa(z 1 ) -δa(z 0 ) z 1 -z 0 (z -z 0 ) = δa(z 1 ) + δa(z 1 ) -δa(z 0 ) z 1 -z 0 (z -z 1 ) (10) 
In the following, e * * z (z 0 , z 1 ), e * * x (z 0 , z 1 ), e y denotes the natural basis of vectors associated to the straight crack front F * * of Γ * * , and (z * * , x * * , y) the point coordinates in this basis (see Fig. 2).

One may then define: The mode I stress intensity factor k (F * ; z 0 ; z 1 , x * ) generated at z = z 0 by a pair of unitary forces applied along e y at a distance x * behind the point z 1 of the perturbed crack front F * (in black) in the direction of the vector e * x (z 1 ) can be inferred from that generated by a pair of unitary forces applied along e y at a distance x * * behind the point z 1 of the auxiliary front F * * (in red) in the direction of the vector e * *

ℱ** ( z, δa**(z) ) ℱ* ( z, δa(z) ) ℱ (z,0) δa*(z) δa(z 0 )
x (z 1 ).

• k * * Γ * ; z * * 0 , z * * 1 , x * * , which corresponds to the stress intensity factor generated at z * * = z * * 0 by a pair of unitary forces applied along e y at a distance x * * behind the point z * * 1 of the perturbed crack front F * * in the direction e * * x (z 0 , z 1 ). Since Γ * * is a semi-infinite coplanar crack with a straight crack front, k * * Γ * ; z * * 0 , z * * 1 , x * * reads:

k * * F ; z * * 0 ; z * * 1 , x * * = √ 2 π 3/2 √ x * * z * * 0 -z * * 1 2 + x * * 2 (11) 
• k * Γ * ; z * * 0 , z * * 1 , x * * , which corresponds to the stress intensity factor generated at z * * = z * * 0 by a pair of unitary forces applied along e y at a distance x * * behind the point z * * 1 of the perturbed crack front F * in the direction e * * x (z 0 , z 1 ). Applying Eq. ( 8) to Γ * * and Γ * yields:

k * * Γ * ; z * * 0 , z * * 1 , x * * = k * * Γ * * ; z * * 0 , z * * 1 , x + 1 2π PV +∞ -∞ k * * F * * ; z * * ; z * * 1 , x * * δa(z * * ) -δa * * (z * * ) z * * -z * * 0 2 dz * * (12)
Again, the error on the position (z * * , x * * ) with respect to (z, x) is of second order in δa. In the e z , e x , e y basis, Eq. ( 12) writes as:

k (Γ * ; z 0 ; z 1 , x) = √ 2 π 3/2 √ x (z 0 -z 1 ) 2 + x 2 + 1 2π PV +∞ ∞ √ 2 π 3/2 √ x (z -z 1 ) 2 + x 2 δa(z) -δa * * (z) (z -z 0 ) 2 dz (13)
Combined with Eq. ( 10), Eq. ( 13) provides a direct way to evaluate Eq. ( 5) numerically. Yet, as noted by [START_REF] Leblond | Second-order coplanar perturbation 36 of a semi-infinite crack in an infinite body[END_REF], the presence of the rational function 1/((z

-z 1 ) 2 + x 2 )(z -z 0 ) 2
in the integrand makes it unfit for any analytical calculations. One may then decompose it as:

1 (z -z 1 ) 2 + x 2 (z -z 0 ) 2 = 1 (z 0 -z 1 ) 2 + x 2 2 (z 0 -z 1 ) 2 + x 2 (z -z 0 ) 2 - 2(z 0 -z 1 ) (z -z 0 ) + 2(z 0 -z 1 )(z -z 1 ) (z -z 1 ) 2 + x 2 + (z 0 -z 1 ) 2 -x 2 (z -z 1 ) 2 + x 2 (14)
From Eqs. ( 10), (13), and ( 14), one finally gets for the expression of k (Γ * ; z 0 ; z 1 , x):

k (Γ * ; z 0 ; z 1 , x) = k (Γ; z 0 ; z 1 , x) + δk (Γ * ; z 0 ; z 1 , x) = √ 2 π 3/2 √ x (z 0 -z 1 ) 2 + x 2 1 + 1 2π PV +∞ -∞ δa(z) -δa(z 0 ) (z -z 0 ) 2 dz + 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + x 2 1 2π PV +∞ -∞ - 1 z -z 0 + (z -z 1 ) (z -z 1 ) 2 + x 2 δa(z) dz + (z 0 -z 1 ) 2 -x 2 (z 0 -z 1 ) 2 + x 2 1 2π PV +∞ -∞ δa(z) -δa(z 1 ) (z -z 1 ) 2 + x 2 dz + x (z 0 -z 1 ) 2 + x 2 (δa(z 0 ) -δa(z 1 )) (15)
We derived here for the first time the analytical expression for the crack face weight function k (Γ * ; z 0 ; z 1 , x) of a perturbed crack at first-order in the perturbation δa. We observe that one retrieves, taking the limit x → 0 in our Eq. ( 15), the Eq. ( 10) of [START_REF] Leblond | Second-order coplanar perturbation 36 of a semi-infinite crack in an infinite body[END_REF] that describes the first-order variations of the fundamental kernel

Z (Γ * ; z; z ) = √ π/8 lim x→0 k (Γ * ; z; z , x) / √ x.
Our equation provides the fundamental ingredients to extend the model of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] to cohesive materials. Technical details on the derivation of Eq. ( 15) are given in Appendix A.

First-order variations of the mode I stress intensity factor

Using Eq. ( 15), it is now possible to compute at first order in δa the stress intensity factor K czm of Eq. ( 5) generated by the cohesive stress acting in the wake of the perturbed crack front F * . We perform this in the reduced case where the material is translationally invariant in the propagation direction (Ox). In this case, the cohesive stress might be expressed as:

σ (z, x) = σ c (z) f w (x/ω(z)) (16) 
where σ c (z) and ω(z) are the local strength and process zone size at position z, x is the distance to the crack tip located at (z, δa(z)), and f w is a shape function that relates to the nature of weak-

ening. An example of f w is given in the inset of Fig. 1c for the generic linear traction-separation cohesive law (see Appendix C.4 for more details).

The particular choice of cohesive stress evolution in Eq. ( 16), often referred to as distanceweakening, is rather limiting as it does not provide a comprehensive framework to investigate the influence of spatially distributed material heterogeneities on crack propagation. Yet, it provides ways to account for the influence of a finite-size dissipation in the crack wake onto the rupture behavior in a fully analytical manner; see for example [START_REF] Palmer | The growth of slip surfaces in the progressive failure of over-consolidated clay[END_REF] for an estimate of the process zone size in cohesive materials, and [START_REF] Poliakov | Dynamic shear rupture interactions with fault bends and off-axis secondary faulting[END_REF] for the displacement/strain field ahead of a dynamic cohesive rupture tip.

A more standard formulation of cohesive zone models is to describe material degradation with the local crack opening displacement δ:

σ (z) = σ c (z) f δ (δ(z)/D c (z)) ( 17 
)
where D c (z) is the local critical crack opening, above which cohesive stress are negligible, and f δ is a shape function describing material weakening. While we chose here to express directly σ in terms of the variables (σ c , ω, f w ), they usually emerge from the knowledge (σ c , D c , f δ ) and the resolution of the structural problem. In particular, the process zone size ω can be expressed as:

ω = α µ σ c D c ( 18 
)
where µ is the shear modulus, and α is a proportionality constant that relates to f δ . It can be either estimated analytically [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF] or computed numerically [START_REF] Viesca | Numerical methods for coupled fracture problems[END_REF]. The formulation in terms of (σ c , ω, f w ) is strictly equivalent to that in (σ c , D c , f δ ) for materials that are translationally invariant in the propagation direction (Ox). The latter formulation would provide a more comprehensive framework to deal with cases where the heterogeneities are random.

In the following, perturbations δa of the crack front may arise from the spatial variations of strength σ c and process zone size ω along the front, the latter being associated with variations of both strength σ c and critical crack opening D c . We decompose σ c and ω in uniform contributions σ 0 c and ω 0 associated to a reference homogeneous material, and spatial fluctuations δσ c and δω:

       σ c (z) = σ 0 c + δσ c (z) ω(z) = ω 0 + δω(z) (19) 
where σ 0 c and ω 0 correspond to the spatial averages of σ c and ω respectively. We can now insert Eqs. ( 6), ( 15), ( 16), and ( 19) into Eq. ( 5) that gives the cohesive stress intensity factor K czm (z)

acting along the perturbed crack front F * . It yields:

K czm (z) = +∞ 0 +∞ -∞ σ z , x k * Γ * ; z; z , x dz dx = +∞ 0 +∞ -∞ σ c (z ) f w x/ω(z ) k Γ; z; z , x + δk Γ * ; z; z , x dz dx (20) 
The cohesive SIF K czm (z) can be expressed as the sum of a zero-order term K 0 czm , and first-order variations δK czm (z) that relates to the perturbations δa, δσ c and δω. Following Irwin (1958)'s criterion, K 0 czm corresponds to the mode I toughness K 0 Ic of the reference material when the crack propagates. We show in Appendix B that it writes as:

K 0 czm = K 0 Ic = C w 2 π σ 0 c ω 1/2 0 ( 21 
)
where

C w = +∞ 0 f w (u) u -1/2
du is a pre-factor that relates to the nature of the weakening. We retrieve here the results of [START_REF] Palmer | The growth of slip surfaces in the progressive failure of over-consolidated clay[END_REF] that derived the expression of the mode I toughness K 0 Ic of a cohesive crack in 2D. This was expected, as three-dimensional crack propagation in a spatially homogeneous reference material can be reduced to a two-dimensional problem.

The first-order variations of cohesive stress intensity factor δK czm (z) can be expressed as:

δK czm K 0 Ic (z) = 1 2π +∞ -∞ - |k|ω 0 2 + 1 C w +∞ 0 - f w (u) u 1/2 1 -e -|k|ω 0 u du δa (k) ω 0 e ikz dk + 1 2π +∞ -∞ 1 C w +∞ 0 f w (u) u 1/2 e -|k|ω 0 u du δσ c (k) σ 0 c e ikz dk (22) + 1 2π +∞ -∞ 1 C w +∞ 0 -f w (u) u 1/2 e -|k|ω 0 u du δω (k) ω 0 e ikz dk
Details on the derivation of Eq. ( 22) are given in Appendix B. We further observe that Eq. ( 22) takes a much simpler expression in the Fourier space that one can easily build upon to understand the physical implications of a finite-size dissipation on the fracture process. Eq. ( 22) reads in the Fourier space:

δK czm (k) K 0 Ic = Â (|k|ω 0 ) ω 0 - |k| 2 δa (k) + Σ (|k|ω 0 ) δσ c (k) σ 0 c + Ω (|k|ω 0 ) δω (k) 2ω 0 ( 23 
)
where:

                       Â (|k|ω 0 ) = - 1 C w +∞ 0 f w (u) u 1/2 1 -e -|k|ω 0 u du Σ (|k|ω 0 ) = 1 C w +∞ 0 f w (u) u 1/2 e -|k|ω 0 u du Ω (|k|ω 0 ) = - 2 C w +∞ 0 f w (u) u 1/2 e -|k|ω 0 u du (24) 
Combining Eqs. ( 3) and ( 23), one finds the equation ruling crack propagation in heterogeneous cohesive materials:

K 0 I       1 +       1 K 0 I ∂K 0 I ∂a - |k| 2       δa (k)       = K 0 Ic       1 + Â (|k|ω 0 ) ω 0 - |k| 2 δa (k) + Σ (|k|ω 0 ) δσ c (k) σ 0 c + Ω (|k|ω 0 ) δω (k) 2ω 0       (25) 
Equation ( 25) unveils rich physics about the influence of a finite process zone size on the front deformations. It can be reformulated in terms of variations of strength and critical crack opening, building on Eq. ( 18) (see Eq. (B.18) in Appendix B for more details). One can also make use of efficient Fast Fourier Transform (FFT) algorithms to solve it efficiently, at a much lower computational expense than more standard simulation methods [START_REF] Geubelle | A spectral method for three-dimensional elastodynamic fracture problems[END_REF].

As such, our model shows potential to investigate front deformations induced by heterogeneities at multiple scales. We focus here on two problems: the configurational stability of a crack propagating in a homogeneous yet cohesive material in Section 3, and the influence of material heterogeneities on the front deformation in Section 4. Before doing so, several comments are in order:

• First, one expects to find back the results of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] and [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF] in the limit ω 0 → 0. The study of the asymptotic behavior of the cohesive pre-factors A, Σ, and Ω yields in this limit:

 (|k|ω 0 ) ∼ |k|ω 0 →0 |k|ω 0 2 ; Σ (|k|ω 0 ) -→ |k|ω 0 →0 1 and Ω (|k|ω 0 ) -→ |k|ω 0 →0 1 (26)
So that, in the limit of a perfectly brittle material, the contribution of the front deformations δa in K czm goes to zero. Eq. ( 4) yields at first-order in δa, δσ c , and δω:

K lefm (z) = K 0 Ic 1 + δσ c (z) σ 0 c + δω(z) 2ω 0 = K Ic (z) ( 27 
)
where we used Eq. ( 21) to link the fluctuations of cohesive properties δσ c and δω to the material toughness K Ic . We find back Irwin (1958)'s criterion that describes crack propagation in perfectly brittle materials.

• Second, the amplitude of the front deformations δ are multiplied by a cohesive pre-factor  that depends on the product of the wavenumber k and the process zone size ω 0 . It means that the crack front accommodates a given perturbation length scale differently depending on its size and that of the process zone.

• Third, we observe from Eq. ( 23) that the process zone acts as a high-frequency filter for the variations of strength δσ c and that of process zone size δω. One may thus expect that the influence of heterogeneities on rupture propagation can be averaged at scales below the average process zone size ω 0 , while the influence of asperities at a scale considerably larger than ω 0 can be assessed quantitatively within the perturbative framework of LEFM.

• Fourth, the cohesive pre-factors Â, Σ, and Ω relate to the spatial distribution of weakening characterized by f w . As such, distinct behaviors can be expected depending on how the material weakens. The values of Â, Σ, and Ω and their asymptotic behavior are either given analytically or computed numerically in Appendix C for several types of weakening.

Stability analysis

As a first application of the newly derived cohesive "line-tension" model of Section 2, we revisit the stability analysis of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF]. It allows us to focus on the impact of a finite-size dissipation on the front deformations only, considering homogeneous yet cohesive materials.

Crack front stability to sinusoidal perturbations for perfectly brittle materials

The stability of a semi-infinite crack to some front perturbations has been investigated first by [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] for perfectly brittle materials. They considered sinusoidal perturbations δa that are characterized by their wavenumber k, or equivalently by their wavelength λ = 2π/k, and their amplitude A (see Fig. 3a):

δa(z) = A cos(kz) (28) °3 °2 °1 0 1 2 3
Front direction z/∏ For stabilizing geometries ≤ 0 (hatched surface), the perturbation is stable (in gray) no matter its wavelength. For destabilizing geometries > 0 (non-hatched surface), the perturbation is unstable (in red) if its wavelength is larger than a critical value λ c , and stable (in gray) otherwise. The critical wavelength λ c is predicted by Eq. (31).

Following [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF], the stability of the perturbed crack is assessed by looking at the value of mode I SIF at the most advanced points of the crack front z = nπ/λ. If this value is found larger than the applied SIF K 0 I , crack propagation is considered unstable, and stable otherwise. [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] showed that the configurational stability is partially controlled by (i) the sign of the variations ∂K 0 I /∂a of loading with crack advance, and (ii) a structural length scale L characterizing their intensity. These two quantities are defined by the following equations:

L = K 0 I /(∂K 0 I /∂a) and = sgn(∂K 0 I /∂a) (29) 
The expression of the mode I SIF of Eq. ( 1) rewrites as:

K I (z) = K 0 I       1 +       1 K 0 I ∂K 0 I ∂a - π λ       A cos(kz)       = K 0 I 1 + L - π λ A cos(kz) (30) 
From Eq. ( 30), one observes that the crack is unconditionally stable for stabilizing geometries ≤ 0 for which K 0 I decreases with crack advance. When K 0 I increases with crack growth > 0 (destabilizing geometry), the system is conditionally stable: small-wavelength perturbations are stable, while large wavelengths are unstable. This shift in stability occurs for a critical wavelength λ c that reads:

λ c = [ πL] + (31) 
where [x] + denotes the positive part of the real x.

Influence of a finite-size dissipation

One may then wonder how the presence of a finite-size dissipation influences the stability of a crack to sinusoidal perturbations. For homogeneous materials (∆σ c = ∆ω = 0), Eq. ( 25)

rewrites as an Irwin-like criterion K eff I = K 0 Ic , with an effective SIF K eff I that encompasses the influence of finite cohesive stresses behind the crack front. K eff I writes as:

K eff I (z) = K 0 I 1 + L - Â (|k|ω 0 ) ω 0 A cos(kz) (32)
In the remaining of the manuscript, we assume that the material continuously weakens behind the crack front f w ≤ 0. From the definition of  in Eq. ( 24), one may easily show that  is a (i) positive and (ii) increasing function of |k|ω 0 . Moreover, in the limit |k|ω 0 → +∞, (iii)  saturates to a value A ∞ w (see Fig. C.10.a) that reads:

A ∞ w = 1 C w +∞ 0 - f w (u) u 1/2 du (33)
One then finds:

K eff I (z) ≥ K 0 I 1 + L - A ∞ w ω 0 A cos(kz) (34) 
From Eqs. ( 32) and ( 34), one can distinguish three different instability regimes:

• Regime I: When = -1 or 0, the system remains unconditionally stable to sinusoidal perturbations due to the positiveness of Â.

• Regime II: When = 1, the system is unconditionally unstable to sinusoidal perturbations of any wavelength if the structural length scale L is smaller than a critical value L c , which reads:

L c = ω 0 A ∞ w (35) -2 0 2
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Stability analysis of a sinusoidal crack front (in black solid line) of wavelength λ in presence of a finite process zone size ω 0 (in red): (b) the stability of the crack front is controlled by the structural length scale L = K 0 I /|∂K 0 I /∂a| characteristic of the loading variations and their sign . For stabilizing geometries ≤ 0, the perturbation is stable no matter its wavelength (in gray; see Regime I in the main text). For destabilizing geometries > 0, the perturbation is stable if its wavelength λ is smaller than a critical value λ c and unstable otherwise (in yellow; see Regime III in the main text). For a large enough process zone size, the critical wavelength λ c goes to 0 (in red; see Regime II in the main text), and perturbations of any wavelength are unstable. (c) λ c depends on both the structural length L and the process zone size ω 0 . (d) When normalized by ω 0 the values of λ c all collapse to a master curve (in black solid line) predicted by Eq. ( 36). Note that, below a critical value L c /ω 0 of the structural length scale (marked by a vertical dashed black line), perturbations of any wavelength λ are unstable (Regime II).

• Regime III: When = 1 and L ≥ L c , the system is conditionally stable: perturbations of wavelength smaller than a critical value λ c are stable, while larger ones are unstable. For cohesive materials, λ c reads:

 2πω 0 λ c = ω 0 L (36) 
In contrast with the perfectly brittle case of Eq. ( 31) where λ c only depends on the structural length scale L, it is also influenced here by the process zone size ω 0 . We further observe in Fig. 4d that λ c is smaller than its LEFM value, as Â(|k|ω 0 )/ω 0 < |k|/2. As such, the introduction of a finite-size region of dissipation can be associated with a loss of stiffness of the crack front. This stiffness loss gets stronger as the wavelength λ approaches the process zone size ω 0 (see Fig. The different regimes and the associated stability diagram are summarized in Fig. 4b-c. As can be seen from the conditions of Eqs. ( 35) and ( 36), the stability of a perturbed crack strongly depends on the evolution of  and its asymptotic behavior as |k|ω 0 → +∞. It naturally relates to the spatial distributions of cohesive stress behind the crack front, and so to the function f w . The influence of the precise shape of the cohesive law is discussed in Appendix E.1.

We conclude this section with some potential implications of our results on the stability of perturbed cracks in a dynamic setting. We showed that the stability of a perturbed crack front of fixed wavelength λ embedded in a destabilizing structure ( > 0) is controlled by the size ω 0 of the process zone. A crack in such a configuration could be stable when embedded in a rather brittle material (small ω 0 /λ) and unstable for a more ductile one (large ω 0 /λ). [START_REF] Rice | The mechanics of earthquake rupture[END_REF] showed that the process zone size ω 0 contracts as the crack accelerates. One may then imagine situations where a crack oscillates between a stable configuration and an unstable one: in a first stage, the arrested crack becomes unstable because of some large wavelength perturbations (Regime III). The subsequent decrease in process zone size during the instability could stabilize the system (Regime III to Regime II). As the crack decelerates, the process zone gets larger, and the crack becomes unstable again (Regime II to Regime III). The Lorentz contraction of the process zone with crack velocity may also interact with the dynamic stiffening of the crack front and crack front waves observed by [START_REF] Morrissey | Perturbative simulations of crack front waves[END_REF]. Further investigations are needed to support these ideas. One could build on the spectral method of [START_REF] Geubelle | A spectral method for three-dimensional elastodynamic fracture problems[END_REF] to perform efficient numerical simulations of front stability during quasi-static -to -dynamic and dynamic -to -quasi-static transients.

Deformations of a crack front encountering an obstacle

We saw that the presence of finite cohesive stress in the crack wake makes the front more compliant, especially when the perturbation wavelength is smaller than the process zone size. It is tempting to think that this stiffness loss consequently increases the deformations of a crack front induced by some heterogeneities of fracture energy. Yet, one has to bear in mind that the presence of a finite cohesive zone size also influences the variations of strength and process zone size, from which emerge the fluctuations of fracture energy. To investigate the ultimate impact of these two potentially competing mechanisms, we study the interaction of a crack front with periodic arrays of tough inclusions of increased fracture energy. We recall in Section 4.1 the results obtained by [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF] for perfectly brittle materials. We then investigate the influence of a finite process zone size, first in Section 4.2 where heterogeneities of fracture energy G c are associated with fluctuations of strength σ c , and second in Section 4.3 where they emerge from variations of process zone size ω. We discuss in Section 4.4 the experimental implications of our findings, and show in Section 4.5 that our theory may explain the deformation profiles observed in the peeling experiments of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF], for which the small-scale yielding hypothesis is suspected to break down.

Front deformation by a periodic array of obstacles in perfectly brittle materials

In the general case, the spatial distribution of fracture energy G c can be decomposed in the sum of a zero order term G 0 c corresponding to its spatial average, and a first-order term of fluctuations δG c :

G c (z) = G 0 c + δG c (z) (37) 
As the crack interacts with the inclusions, front deformations δa arise from the spatial variations δG c of fracture energy. Building on Griffith (1921)'s criterion and Irwin (1958)'s formula, Eq. (3) yields at zero order in the perturbation δa:

G 0 = 1 -ν 2 E K 0 I 2 = G 0 c ( 38 
)
We find back here the results of [START_REF] Roux | Effective toughness of heterogeneous brittle materials[END_REF], who showed that the effective fracture energy G 0 of a heterogeneous brittle material corresponds to its spatial average G 0 c in the weak pinning limit of infinitely long defects. At first order, one finds:

δa(k) = - 1 |k| δG c (k) G 0 c ( 39 
)
Eq. ( 39) links the stationary shape δa of the front deformations to the local fluctuations of fracture energy δG c . [START_REF] Gao | A first-order perturbation analysis of crack trapping by arrays of obstacles[END_REF] investigated the deformation of the crack front resulting from its interaction with a periodic array of tough obstacles of width d separated by a distance ∆L (see Fig. 5). The spatial distribution of fracture energy writes as:

G c (z) =        G obs c if x ∈ nL z -d 2 , (n + 1)L z + d 2 G mat c otherwise ( 40 
)
where the fracture energy G obs c of the obstacles is larger than that G mat c of the embedding matrix, and L z = ∆L + d corresponds to the spatial period of the distribution. One may additionally characterize the fracture energy field through the two quantities:

       G 0 c = (∆L/L z ) G mat c + (d/L z ) G obs c ∆G c = G obs c -G mat c ( 41 
)
where ∆G c , the fracture energy contrast, is a parameter that is assumed small in the following. A quantity of interest is the amplitude A of the front deformations, defined as the distance between the most advanced point of the front and the less advanced one (see Fig. 5a). From

Eq. ( 39), one may notice that A increases linearly with ∆G c /G 0 c (see Fig. 5b). The dependence of A with the inclusion spacing ∆L is non-linear, and can be computed numerically from Eq. ( 39)

for spatial distributions of G c described by Eq. ( 40) (see Fig. 5c).

One may then wonder how these observations fare in the framework of cohesive materials, where the fracture properties are not solely described by the fracture energy G c , but rather by the strength σ c and the process zone size ω. Using Irwin (1958)'s formula combined with Eq. ( 21), one finds:

G 0 c = 1 -ν 2 E K 0 Ic 2 = 1 -ν 2 E 2 π C 2 w σ 0 c 2 ω 0 (42)
As such, the variations of fracture energy δG c in cohesive materials can either emerge from the variations of strength δσ c , or from that of process zone size δω. At first order in those two quantities, one has:

δG c (z) G 0 c = 2 δσ c (z) σ 0 c + δω(z) ω 0 (43)
Next, we explore two limit cases: that of Section 4.2 where heterogeneities of fracture energy solely emerge from local variations of strength, and that of Section 4.3 where they are associated with fluctuations of process zone size only.

Heterogeneities of strength

We first consider the case where the heterogeneities of fracture energy emerge from variations of strength only. The strength of the obstacles σ obs c is larger than that of the matrix σ mat c , while they are equally brittle ω obs = ω mat = ω 0 . Note that in the standard formulation of cohesive-zone models that deal with the pair (σ c , D c ) instead of (σ c , ω), this corresponds to a simultaneous proportional increase of strength σ c and critical opening D c .

We define the average strength σ 0 c and the strength contrast ∆σ c as:

       σ 0 c = (∆L/L z ) σ mat c + (d/L z ) σ obs c ∆σ c = σ obs c -σ mat c ( 44 
)
The resulting fluctuations of fracture energy are linked to the variations of strength following:

∆G c /G 0 c = 2∆σ c /σ 0 c ( 45 
)
The propagation criterion of (25) yields at first order in the perturbations δa and δσ c :

-Â(|k|ω 0 ) δa(k) ω 0 = Σ(|k|ω 0 ) δσ c (k) σ 0 c = δG eff c (k) 2G 0 c ( 46 
)
meaning that the front deformation increases linearly with the normalized strength contrast ∆σ c /σ 0 c , and so with the normalized fracture energy contrast ∆G c /G 0 c .

The presence of a cohesive stress in the crack wake influences the amplitude of the front deformations through two competing mechanisms. We saw in Section 3 that (i) it decreases the front stiffness through the cohesive pre-factor Â. We now observe from Eq. 46 that (ii) it also 

(c)

The presence of a finite process zone size smooths out the small-scale variations of strength, so that the amplitude of the apparent fracture energy field (in gray scale) is decreased from its material value (LEFM case). Yet, the decrease in apparent fracture energy amplitude for increasing process zone size (in red) is weaker than the associated decrease in front stiffness, so that the deformation amplitude (extremal points of the crack front in solid black line) is ultimately larger than in the LEFM case (in yellow dashed line).

We show in Fig. 6a the evolution of the front deformation amplitude A with the process zone size ω 0 . The competition between the two opposite effects mentioned above results in an overall increase of the amplitude of the front deformations with the process zone size. This increase in front amplitude is observed no matter the inclusion spacing (see Fig. In accordance with the asymptotic behaviors derived in Eq. ( 26), A converges to its LEFM value A LEFM as the ratio between the process zone size ω 0 and the obstacle width d goes to zero (see Fig. 6a). We further notice that the amplitude of the deformations grows as (ω 0 /d) 1/2 for process zone sizes much larger than the obstacle width (see Fig. 6b). This was expected from the asymptotic behavior of Σ when |k|ω 0 → +∞:

Σ (|k|ω 0 ) ∼ |k|ω 0 →+∞ Σ ∞ w (|k|ω 0 ) 1/2 , with Σ ∞ w = √ π f w (0) C w (47)
The front deformations are thus amplified by the existence of cohesive stresses, as the gain in front compliance overcomes the smoothing of heterogeneities by the process zone. This behavior and the associated scaling are retrieved independently of how the material weakens behind the crack front (see Fig . E.18 and Appendix E.2 for more details).

A large process zone size lead to a localization of the deformation at the edges of the defect (see Fig. 6c, and Eq. (D.2) for an analytical expression of the front deformations in the limit case of a single defect embedded in an infinite matrix). Similar deformation patterns have been previously observed in peeling experiments of a silicon elastomer block from a heterogeneous glass substrate [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF]. They are not ubiquitous, as other peeling experiments lead to deformations closer to the LEFM predictions (Patinet et al., 2013a;Vasoya et al., 2016b). Our theory may then provide a comprehensive framework to bridge various experimental observations where the small-scale yielding condition of LEFM may not always be met. We explore further this avenue in the final Section 4.5.

Heterogeneities of process zone size

We explore next the situation where the heterogeneities of fracture energy solely emerge from variations of process zone size. The process zone size of the obstacles ω obs is now larger than that of the matrix ω mat , but both materials are equally strong σ obs c = σ mat c = σ 0 c . In the standard formulation of cohesive-zone models that deal with the pair (σ c , D c ) instead of (σ c , ω), this corresponds to an increase of critical opening D c only.

We define the average process zone size ω 0 and the size contrast ∆ω as:

       ω 0 = (∆L/L z ) ω mat + (d/L z ) ω obs ∆ω = ω obs -ω mat (48)
The resulting fluctuations of fracture energy are linked to the variations of process zone size following:

∆G c /G 0 c = ∆ω/ω 0 (49)
The propagation criterion of (25) yields at first order in the perturbations δa and δω:

-

Â(|k|ω 0 ) δa(k) ω 0 = Ω(|k|ω 0 ) δω(k) 2ω 0 = δG eff c (k) 2G 0 c ( 50 
)
meaning that the front deformations increase linearly with the normalized process zone size contrast ∆ω/ω 0 , and so with the normalized fracture energy contrast ∆G c /G 0 c . 

(c)

The presence of a finite process zone size smooths out the small-scale variations of process zone size, so that the apparent amplitude of the fracture energy field (in gray scale) is decreased from its material value (LEFM case). Furthermore, the decrease in apparent fracture energy amplitude for increasing process zone size (in red) is stronger than the associated decrease in front stiffness, so that the deformation amplitude (extremal points of the crack front in solid black line) is ultimately smaller than in the LEFM case (in yellow dashed line).

Again, the amplitude A of the front deformations and its evolution with the average process zone size ω 0 result from the competition between an increased compliance of the crack front, which promotes front deformations, and the decrease in magnitude of the effective fracture energy fluctuations δG eff c , which smooths out the front. Surprisingly, we observe in Fig. 7a that the amplitude A decreases with the average process zone size ω 0 for heterogeneities of process zone size. This is explained by the asymptotic behavior of the cohesive pre-factor Ω when |k|ω 0 → +∞:

Ω (|k|ω 0 ) ∼ |k|ω 0 →+∞ Ω ∞ w (|k|ω 0 ) 3/2 , with Ω ∞ w = - √ π f w (0) C w (51)
In that case, the increase in front compliance with the average process zone size cannot compensate for the sharp decrease in magnitude of the process zone size fluctuations. It results in front deformations vanishing as (ω 0 /d) -1/2 for average process zone sizes larger than the obstacle width (see Fig. 7b). This decrease in front amplitude is observed no matter the inclusion spacing (see Fig. D.15 and Appendix D.1 for more details). However, the associated scaling strongly depends on how the material weakens behind the crack front (see Fig. E.19). This is explored in more details in Appendix E.2.

The deformation patterns showed in Fig. 7 do not correspond to front configurations observed experimentally. This is expected as real materials usually display variations of both strength and process zone size, and the influence of amplified spatial variations of strength should often prevail over that vanishing of process zone size in the limit ω 0 /d 1 of large process zone size.

Overall, our model shed light on the strong influence of the nature of heterogeneities on the front deformations. When extended to a dynamic setting, it helps to rationalize the front deformations measured in numerical simulations of dynamic rupture where a crack interacts with heterogeneities of cohesive properties [START_REF] Roch | Dynamic crack front deformations in cohesive materials[END_REF]. It may also explain changes in front roughness observed in quasi-static simulations of coplanar crack propagation based on cohesive zone models [START_REF] Sevillano | Roughness of a mode i in-plane crack front propagating along a heterogeneous cohesive interface[END_REF]. In accordance with our findings, the authors show that crack fronts interacting with heterogeneities of strength get much rougher than those interacting with obstacles of larger process zone size.

Implications for the measurement of fracture energy variations from front deformations

We saw that the front deformations are amplified by the presence of a finite process zone for heterogeneities of strength (see Section 4.2), while it is found vanishing for heterogeneities of process zone size (see Section 4.3). The nature of the heterogeneities thus strongly influences the way cracks distort when interacting with material heterogeneities. Yet, both types of heterogeneities impact similarly the overall value of fracture energy (see Eq. ( 43)). As such, one may wonder if the amplitude of the front deformations constitutes a robust measure of the fracture energy contrast.

To tackle this issue, we study the general case where heterogeneities of fracture energy emerge from fluctuations of both strength and process zone size. Together with Eqs. ( 1) and ( 21), the condition (4) of finiteness of the stress at the crack front yields at zero order in the perturbations δa, δσ c and δω:

G 0 = G 0 c ( 52 
)
In other words, the presence of a cohesive zone does not influence the effective toughness of a heterogeneous material in the weak pinning regime.

At first order, one finds:

δa(k) = -ω 0 Σ(|k|ω 0 ) Â(|k|ω 0 ) δσ c (k) σ 0 c -ω 0 Ω(|k|ω 0 ) Â(|k|ω 0 ) δω(k) 2ω 0 ( 53 
)
One may then define multiple paths of increasing fracture energy contrast ∆G 0 c /G 0 c from a path of increasing strength (Path 1 of Fig. 8a) to one of increasing process zone size (Path 3 of Fig. 8a).

We observe in Fig. 8b-d that the former constitutes an upper bound of the front deformation amplitude A, while the latter represents a lower bound. Mixed paths (Path 2 of Fig. 8a) are found in between. When the average process zone size ω 0 is way smaller than the obstacle width d (see Fig. 8b), the two bounds converge to the LEFM value and the amplitude of the front deformation constitutes a good proxy for the contrast ∆G c /G 0 c of the fracture energy (Patinet et al., 2013a). For larger process zone sizes, the two bounds depart from one another (see yellow area on Fig. 8b-d). Yet, a lower dispersion on ∆G c /G 0 c can be observed when the obstacle spacing ∆L is larger than the process zone size ω 0 (see Fig. 8e-g). This is explained by the fact that the spectrum of the fracture energy fluctuations is then mostly carried by large-wavelengths. As such, one should rather measure a contrast in fracture energy from experiments of a crack interacting with a single defect (Patinet et al., 2013a) rather than arrays of close obstacles [START_REF] Dalmas | Crack front pinning by design in planar heterogeneous interfaces[END_REF]. It is also worth noticing that a non-linear dependence of the deformation amplitude A with the contrast of fracture energy can be observed for cohesive materials (see Path 2 of Fig. 8b-g), even within the linear theory. This is solely due to the differential impact of heterogeneities of strength or process zone size on the front deformations.

Comparison with peeling experiments along heterogeneous interfaces

We conclude this section by comparing the output of our model to deformation profiles obtained in experiments. The first-order theory of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] has been shown to reproduce a wide variety of experimental observations of crack front deformations in experiments of peeling or fracture of heterogeneous interfaces [START_REF] Dalmas | Crack front pinning by design in planar heterogeneous interfaces[END_REF], even if more refined models taking into account the finite thickness of the fracture specimen [START_REF] Legrand | Coplanar perturbation of a crack lying on the mid-plane of a plate[END_REF] or higher-order terms [START_REF] Vasoya | A geometrically nonlinear analysis of coplanar crack propagation in some heterogeneous medium[END_REF] yield more accurate results (see (Patinet et al., 2013a) and (Vasoya et al., 2016b) respectively). [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF] noted nonetheless some discrepancies between the LEFM predictions and the deformation profile of the crack front in their peeling experiments of a silicon elastomer block from a patterned glass substrate, in particular close to the obstacle.

We show here that they may emerge from a non-negligible process zone size, and that our model of Eq. ( 15) provides a better fit for the experimental profile of crack front deformations in cases where the small-scale yielding assumption breaks down. 3. Our cohesive fit of Eq. 25 for ∆K Ic /K 0 Ic = 2.9 (∆σ c /σ 0 c = 1.65 and ∆ω/ω 0 = 2.5) and ω 0 /d = 2.7 is plotted in yellow dashed line; Inset: Zoom on the front deformations near the obstacle. The large deformations observed at the edges of the defect are a signature of the cohesive nature of the interface. [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF] performed peeling experiments of a silicon elastomer block from a patterned glass substrate. The 22 or 72mm-wide and 10mm-thick elastomer block is made of black cross-linked PDMS (Sylgard170, Dow Corning) of Young's modulus E 2MPa. It is peeled from a rigid substrate along a heterogeneous interface consisting of a 20µm-wide PDMS-glass obstacle embedded in a weak PDMS-chromium layer. The toughness contrast between the two types of interfaces has been estimated to ∆K Ic /K 0 Ic = 5 -9 from independent peeling tests along homogeneous interfaces. During the experiments, the crack front is pinned by the tough obstacle, and front deformations emerge from the interaction between the crack and the heterogeneous toughness field. [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF] showed that the deformation profile predicted by LEFM for a single tough defect (see Eq. (D.1)) corresponds to that observed in the experiments, when looked at far away from the defect (see dashed white line in Fig. 9). Yet, two major discrepancies were observed: (i) the LEFM best-fit of the deformation profile corresponds to a toughness contrast ∆K Ic /K 0 Ic 3, which is lower than the one estimated from the interfacial properties ∆K Ic /K 0 Ic = 5 -9; (ii) the experimental crack front displays much sharper variations at the edges of the obstacle that those predicted by LEFM. The first discrepancy can be attributed to finitethickness and second-order effects, as they have been shown to reduce crack front deformations (Vasoya et al., 2016b). We argue here that the second discrepancy relates to a non-negligible process zone size in their experiments.

Indeed, we saw in Section 4.2 that a finite process zone size leads to an overall increase of the amplitude of the front deformations. In that case, the front deformations are concentrated at the obstacles edges (see Fig 6), as observed in the experiments of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF]. While the localization of the front deformation is quantitatively grasped by our cohesive framework (see Eq. (D.2) describing the front deformations for the single defect and large process zone size), this feature cannot be predicted either by the finite-size effects emerging from the finite thickness of the PDMS block with respect to the defect size [START_REF] Legrand | Coplanar perturbation of a crack lying on the mid-plane of a plate[END_REF] or from higher-order effects (Vasoya et al., 2016b).

The experimental front profile is best fitted by our model (see dashed yellow line of Fig 6)

for a process zone size ω 0 2.7d = 54µm, a strength contrast ∆σ c /σ 0 c = 1.65 and a process zone size contrast ∆ω/ω 0 = 2.5, which are equivalent to a toughness contrast ∆K Ic /K 0 Ic = 2.9.

The size of the process zone ω 0 54µm is compatible with values of the adhesive length of soft materials [START_REF] Creton | Fracture and adhesion of soft materials: a review[END_REF]. Moreover, our measurements yield a value of toughness contrast similar to that of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF] based on LEFM. This was somehow expected as, in the case of the single obstacle, the amplitude of the front deformations is mostly controlled by the toughness contrast ∆K Ic /K 0 Ic when ω 0 54µm ∆L 22mm (see Section 4.4). Promising directions for a better match of the experimental data would consist in accounting for the influence of the finite thickness of the PDMS block, and second-order terms. Following the theory of [START_REF] Legrand | Coplanar perturbation of a crack lying on the mid-plane of a plate[END_REF], the former effect is expected to be rather small in the experiments of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF], as the thickness of the PDMS block (h 10mm) is much larger than the defect width (d 20µm). On the contrary, the influence of second-order terms could be meaningful as the toughness contrast between the matrix and the obstacle is rather large (∆K Ic /K 0 Ic = 5 -9), and they have been shown to reduce significantly crack front deformations even for contrasts as small as 1 (Vasoya et al., 2016b). Note that mixed mode effects due to a friction-induced shear loading can be observed in the experimental setup of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF], and may also explain some discrepancies between the experimental observations and the theoretical predictions.

Conclusion

This study provides a theoretical framework based on a perturbative approach of LEFM that describes the influence of a finite process zone on the deformations of a crack front by heterogeneities of fracture properties. Namely, we extended in equation ( 25) the first-order theory of [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF] designed for perfectly brittle materials to the broader case of cohesive materials, where crack advance is resisted by cohesive stress in its wake. Our model allowed us to revisit [START_REF] Rice | First-order variation in elastic fields due to variation in location of a planar crack front[END_REF]'s problem of crack front stability to sinusoidal perturbations and Gao and Rice (1989)'s of crack pinning by an array of tough obstacles, and to stress out the influence of a finite process zone on these matters.

We first showed that cohesive cracks accommodate a perturbation differently depending on the size of its wavelength with respect to that of the process zone. In particular, perturbations of wavelength smaller than the process zone size are amplified with respect to the LEFM case, while perturbations of wavelength larger than the process zone size are left unchanged. This was interpreted as a stiffness loss of the crack front due to the presence of cohesive stresses in the crack wake. As a result, cracks may be unstable to perturbations of any wavelength if embedded in a destabilizing structure, where the mode I SIF strongly increases with crack advance.

The loss in front stiffness may then lead to amplified front deformations of a crack interacting with periodic arrays of tough obstacles. We showed that it was not always the case, as the process zone also smooths out the local fluctuations of strength and process zone size that occur at a scale lower than the process zone size. Interestingly, we showed that the gain in front compliance overcomes the smoothing of perturbations in the case of heterogeneities of strength, while the decrease in amplitude of the fluctuations is found sharper than the stiffness loss in the case of heterogeneities of process zone size. As a result, the front deformations are amplified by the presence of a process zone when the increased fracture energy is associated with a higher strength of the obstacle, and reduced when it emerges from a larger process zone size.

Overall, our theory reconciles the wide variety of front profiles observed in experiments, when the small-scale yielding hypothesis of linear elastic fracture mechanics breaks down, as in [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF].

Future works may focus on the extension of our model to disordered microstructures that are no more invariant in the front direction. A particular attention should then be devoted to the interaction between the finite process zone size, characteristics of the dissipation, and the Larkin length that emerges from the disorder [START_REF] Larkin | Pinning in type II superconductors[END_REF]. This may ultimately provide insights on the influence of a finite process zone size on the effective fracture properties of quasi-brittle materials. Another promising direction is to investigate crack front deformations in a dynamic setting, where the contraction of the process zone with crack velocity [START_REF] Rice | The mechanics of earthquake rupture[END_REF] interacts with the dynamic stiffening of the crack front observed by [START_REF] Morrissey | Perturbative simulations of crack front waves[END_REF].

This is done in a follow-up study, in which our framework is extended to dynamic fracture, and theoretical predictions are compared to the results of numerical simulations [START_REF] Roch | Dynamic crack front deformations in cohesive materials[END_REF].

Appendix A. Calculation of k (F * ; z 0 ; z 1 , x)
This appendix aims at establishing Eq. ( 15) from Eqs. ( 10), (13), and ( 14). In particular, we want to find a more suitable expression for:

I (z 0 , z 1 ) = 1 2π PV +∞ -∞ δa(z) -δa * * (z) (z -z 1 ) 2 + x 2 (z -z 0 ) 2 dz (A.1)
As noted by [START_REF] Leblond | Second-order coplanar perturbation 36 of a semi-infinite crack in an infinite body[END_REF], each of the integrals that comprise I (z 0 , z 1 ) individually diverges at infinity, so that it is necessary to integrate first between finite bounds -L -and L + before taking the limit L -, L + → +∞ in the final combination of integrals.

Terms in 1/(zz 0 ) 2 -They read with a pre-factor 1/((z 0z 1 ) 2 + x 2 ):

PV L + -L - δa(z) -δa * * (z) (z -z 0 ) 2 dz = PV L + -L - δa(z) -δa(z 0 ) (z -z 0 ) 2 dz -ln L + -z 0 L -+ z 0 δa(z 0 ) -δa(z 1 ) z 0 -z 1 (A.2)
Terms in 1/(zz 0 ) -They read with a pre-factor -2(z 0z 1 )/((z 0z 1 ) 2 + x 2 ) 2 :

L+ -L- δa(z) -δa * * (z) (z -z 0 ) dz = PV L+ -L- δa(z) (z -z 0 ) dz -ln L + -z 0 L -+ z 0 δa(z 0 ) -(L + + L -) δa(z 0 ) -δa(z 1 ) z 0 -z 1 (A.3)
Terms in 1/((zz 1 ) 2 + x 2 ) 2 -They read with a pre-factor ((z 0z 1 ) 2x 2 )/((z 0z 1 ) 2 + x 2 ) 2 :

PV L+ -L- δa(z) -δa * * (z) (z -z 1 ) 2 + x 2 = PV L+ -L- δa(z) -δa(z 1 ) (z -z 1 ) 2 + x 2 dz -ln          (L + -z 1 ) 2 + x 2 (L -+ z 1 ) 2 + x 2          δa(z 0 ) -δa(z 1 ) z 0 -z 1 (A.4)
Terms in (zz 1 )/((zz 1 ) 2 + x 2 ) 2 -They read with a pre-factor 2(z 0z 1 )/((z 0z 1 ) 2 + x 2 ) 2 :

L+ -L- (z -z 1 ) (z -z 1 ) 2 + x 2 δa(z) -δa * * (z) dz = PV L+ -L- (z -z 1 ) (z -z 1 ) 2 + x 2 δa(z)dz -ln          (L + -z 1 ) 2 + x 2 (L -+ z 1 ) 2 + x 2          δa(z 1 ) -(L + + L -) δa(z 0 ) -δa(z 1 ) z 0 -z 1 + x arctan L + -z 1 x + arctan L -+ z 1 x δa(z 0 ) -δa(z 1 ) z 0 -z 1 (A.5)
We observe that the terms proportional to (L + + L -) of Eqs (A.3) and (A.5) cancel out, we get:

PV L+ -L- δa(z) -δa * * (z) (z -z 1 ) 2 + x 2 (z -z 0 ) 2 dz =       1 (z 0 -z 1 ) 2 + x 2 PV L+ -L- δa(z) -δa(z 0 ) (z -z 0 ) 2 dz - 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + x 2 2 PV L+ -L- δa(z) z -z 0 dz + (z 0 -z 1 ) 2 -x 2 (z 0 -z 1 ) 2 + x 2 2 PV L+ -L- δa(z) -δa(z 1 ) (z -z 1 ) 2 + x 2 dz + 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + x 2 2 PV L+ -L- (z -z 1 ) (z -z 1 ) 2 + x 2 δa(z)dz + (z 0 -z 1 ) 2 -x 2 (z 0 -z 1 ) 2 + x 2 2          ln L + -z 0 L -+ z 0 -ln          (L + -z 1 ) 2 + x 2 (L -+ z 1 ) 2 + x 2                   δa (z 0 ) (z 0 -z 1 ) + 1 (z 0 -z 1 ) 2 + x 2          ln          (L + -z 1 ) 2 + x 2 (L -+ z 1 ) 2 + x 2          -ln L + -z 0 L -+ z 0          δa (z 1 ) (z 0 -z 1 ) + 2x (z 0 -z 1 ) 2 + x 2 2 arctan L + -z 1 x + arctan L -+ z 1 x (δa(z 0 ) -δa(z 1 ))       (A.6)
We then notice that the logarithmic terms go to zero when L -, L + → +∞. In this limit, one finds:

PV +∞ -∞ δa(z) -δa * * (z) (z -z 1 ) 2 + x 2 (z -z 0 ) 2 dz = 1 (z 0 -z 1 ) 2 + x 2 PV +∞ -∞ δa(z) -δa(z 0 ) (z -z 0 ) 2 dz - 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + x 2 2 PV +∞ -∞ δa(z) z -z 0 dz + (z 0 -z 1 ) 2 -x 2 (z 0 -z 1 ) 2 + x 2 2 PV +∞ -∞ δa(z) -δa(z 1 ) (z -z 1 ) 2 + x 2 dz + 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + x 2 2 PV +∞ -∞ (z -z 1 ) (z -z 1 ) 2 + x 2 δa(z)dz + 2πx (z 0 -z 1 ) 2 + x 2 2 (δa(z 0 ) -δa(z 1 ))       (A.7)
One finally gets Eq. ( 15) from Eqs. ( 13) and (A.7).

Appendix B. Calculation of δK czm (z) and its Fourier transform

In this appendix, we derive Eqs. ( 21) and ( 22) from Eqs. ( 15) and (20). To do so, we first express k (Γ * ; z 0 ; z 1 , x) as:

k (Γ * ; z 0 ; z 1 , x) = k 0 (z 0 , z 1 , x) [1 + δK (z 0 ; z 1 , x)] (B.1)
where k 0 corresponds to the CFWF associated to the reference straight front Γ:

k 0 (z 0 , z 1 , x) = √ 2 π 3/2 √ x (z 0 -z 1 ) 2 + x 2 (B.2)
and δK can be decomposed into five different first-order terms following Eq. ( 15):

δK (z 0 , z 1 , x) = δK 1 (z 0 , z 1 , x) + δK 2 (z 0 , z 1 , x) + δK 3 (z 0 , z 1 , x) + δK 4 (z 0 , z 1 , x) + δK 5 (z 0 , z 1 , x) = 1 2π PV z δa(z) -δa(z 0 ) (z -z 0 ) 2 dz - 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + x 2 1 2π PV z δa(z) z -z 0 dz + 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + x 2 1 2π PV z (z -z 1 ) (z -z 1 ) 2 + x 2 δa(z)dz + (z 0 -z 1 ) 2 -x 2 (z 0 -z 1 ) 2 + x 2 1 2π PV z δa(z) -δa(z 1 ) (z -z 1 ) 2 + x 2 dz + x (z 0 -z 1 ) 2 + x 2 (δa(z 0 ) -δa(z 1 )) (B.3)
Decomposition of the cohesive SIF -Eq. ( 20) rewrites as:

K czm (z 0 ) = v z 1 σ c (z 1 ) f w (u) ω(z 1 )k 0 (z 0 , z 1 , ω(z 1 )u) [1 + δK (z 0 , z 1 , ω(z 1 )u)] dz 1 du (B.4)
where ω(z 1 )k 0 (z 0 , z 1 , ω(z 1 )u) can be rewritten as the sum of a zero-order term and a first-order term in δω:

ω(z 1 )k 0 (z 0 , z 1 , ω(z 1 )u) = √ 2 π 3/2 ω(z 1 ) 3/2 u 1/2 (z 0 -z 1 ) 2 + (ω(z 1 )u) 2 = ω 0 k 0 (z 0 , z 1 , ω 0 u)       1 +       3 2 - 2ω 2 0 u 2 (z 0 -z 1 ) 2 + (ω 0 u) 2       δω(z 1 ) ω 0       (B.5)
and δK (z 0 ; z 1 , ω(z 1 )u) = δK (z 0 ; z 1 , ω 0 u) since it is already composed of first-order terms in δa.

Zero-order terms -In the end, one finds back from Eq. (B.4) at order 0:

K 0 czm = u z 1 σ 0 c f w (u) ω 0 k 0 (z 0 , z 1 , ω 0 u) dz 1 du = u f w (u) u 1/2 du 2 π σ 0 c ω 1/2 0 = C w 2 π σ 0 c ω 1/2 0 = K 0 Ic (B.6)
which corresponds to Eq. ( 21). We find back the results of [START_REF] Palmer | The growth of slip surfaces in the progressive failure of over-consolidated clay[END_REF] derived in the 2D case. This was expected since the zero-order terms relate to the reference semi-infinite crack Γ with a straight front F embedded in a homogeneous medium, which is translationally invariant in the (Oz) direction.

First-order terms -At order 1 in δσ c , δω and δa, one gets: 

δK czm (z 0 ) = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 (z 0 -z 1 ) 2 + (ω 0 u) 2 f w (u) δσ c (z 1 ) σ 0 c dz 1 du + u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 (z 0 -z 1 ) 2 + (ω 0 u) 2 f w (u)       3 2 - 2ω 2 0 u 2 (z 0 -z 1 ) 2 + (ω 0 u) 2       δω(z 1 ) ω 0 dz 1 du + u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 (z 0 -z 1 ) 2 + (ω 0 u) 2 f w (u)        i δK i (z 0 , z 1 , ω 0 u)        dz 1 du (B.
e ikv v 2 + (ω 0 u) 2 dv = π ω 0 u e -|k|ω0u +∞ -∞ ve ikv v 2 + (ω 0 u) 2 dv = iπe -|k|ω0u and +∞ -∞ e ikv v 2 + (ω 0 u) 2 2 dv = π 2 1 + |k|ω 0 u (ω 0 u) 3 e -|k|ω0u +∞ -∞ ve ikv v 2 + (ω 0 u) 2 2 dv = i π 2 |k| ω 0 u e -|k|ω0u and +∞ -∞ v 2 -(ω 0 u) 2 v 2 + (ω 0 u) 2 2 e ikv dv = -π|k|e -|k|ω0u (B.8)
where sgn(k) denotes the sign of the real number k.

Terms in δσ c -We denote δK σ czm the contributions of δσ c to the variations δK czm of the cohesive SIF. From Eq. (B.7), it reads:

δK σ czm (z 0 ) = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 (z 0 -z 1 ) 2 + (ω 0 u) 2 f w (u) δσ c (z 1 ) σ 0 c dz 1 du = u       du √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) 1 2π k dk δσ c (k) σ 0 c e ikz0 z1 e ik(z1-z0) (z 1 -z 0 ) 2 + (ω 0 u) 2 dz 1       = 2 π σ 0 c ω 1/2 0 1 2π k u f w (u) u 1/2 e -|k|ω0u du δσ c (k) σ 0 c e ikz0 dk = K 0 Ic • 1 2π k 1 C w u f w (u) u 1/2 e -|k|ω0u du δσ c (k) σ 0 c e ikz0 dk (B.9)
Terms in δω -We denote δK ω czm the contributions of δω to the variations δK czm of the cohesive SIF. From Eq. (B.7), it reads:

δK ω czm (z 0 ) = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 (z 0 -z 1 ) 2 + (ω 0 u) 2 f w (u)       3 2 - 2ω 2 0 u 2 (z 0 -z 1 ) 2 + (ω 0 u) 2       δω(z 1 ) ω 0 dz 1 du = u       du √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) 1 2π k dk 3 2 δω(k) ω 0 e ikz0 z1 e ik(z1-z0) (z 1 -z 0 ) 2 + (ω 0 u) 2 dz 1       - u       du √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) 1 2π k dk δω(k) ω 0 e ikz0       z1 2(ω 0 u) 2 e ik(z1-z0) (z 1 -z 0 ) 2 + (ω 0 u) 2 2 dz 1             = K 0 Ic • 1 2π k 1 C w u f w (u) u 1/2 1 2 -|k|ω 0 u e -|k|ω0u du δω(k) ω 0 e ikz0 dk = I.B.P/u K 0 Ic • 1 2π k 1 C w u -f w (u) u 1/2 e -|k|ω0u du δω(k)
ω 0 e ikz0 dk (B.10) where "I.B.P/u" denotes the integration by parts with respect to the variable u.

Terms in δa -We denote δK a,i czm the contributions of δK i to the variations δK czm of the cohesive SIF. From Eqs. (B.3) and (B.7), δK a,1 czm reads:

δK a,1 czm (z 0 ) = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 (z 0 -z 1 ) 2 + (ω 0 u) 2 f w (u) 1 2π PV z δa(z) -δa(z 0 ) (z -z 0 ) 2 dz dz 1 du = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 (z 0 -z 1 ) 2 + (ω 0 u) 2 f w (u) 1 2π PV z δa (z) z -z 0 dz dz 1 du = u       du √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) 1 (2π) 2 k dk ik δa(k)e ikz0 z1 dz 1 (z 0 -z 1 ) 2 + (ω 0 u) 2 z e ik(z-z0) z -z 0 dz       = K 0 Ic • 1 2π k - |k| 2 δa(k)e ikz0 dk (B.11)
One may then show that: δK a,2 czm (z) = 0 (B.12) because the pre-factor in front of the integral over z of δK 2 is an even function of (z 0z 1 ), so that the integral over z 1 in δK a,2 czm equates to zero. It is not the case for δK a,3 czm , which reads:

δK a,3 czm (z 0 ) = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + (ω 0 u) 2 2 1 2π PV z (z -z 1 ) (z -z 1 ) 2 + (ω 0 u) 2 δa(z)dz dz 1 du = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) 2(z 0 -z 1 ) (z 0 -z 1 ) 2 + (ω 0 u) 2 2 1 (2π) 2 k dk δa(k)e ikz1 z (z -z 1 ) (z -z 1 ) 2 + (ω 0 u) 2 e ik(z-z1) dz dz 1 du = u √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) 1 2π k dk e -|k|ω0u δa(k)e ikz0 i       z1 (z 0 -z 1 ) (z 0 -z 1 ) 2 + (ω 0 u) 2 2 e ik(z1-z0) dz 1       du = K 0 Ic • 1 2π k 1 C w u f w (u) u 1/2 e -2|k|ω0u du |k| 2 δa(k)e ikz0 dk (B.13)
The process for δK a,4 czm is similar. One finds:

δK a,4 czm (z 0 ) = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) (z 0 -z 1 ) 2 -(ω 0 u) 2 (z 0 -z 1 ) 2 + (ω 0 u) 2 2 1 2π PV z δa(z) -δa(z 1 ) (z -z 1 ) 2 + (ω 0 u) 2 dz dz 1 du = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) (z 0 -z 1 ) 2 -(ω 0 u) 2 (z 0 -z 1 ) 2 + (ω 0 u) 2 2 1 (2π) 2 k dk δa(k)e ikz1 z e ik(z-z1) -1 (z -z 1 ) 2 + (ω 0 u) 2 dz dz 1 du = u √ 2 π 3/2 σ 0 c ω 1/2 0 f w (u) u 1/2 1 2π k dk (e -|k|ω0u -1) 1 2 δa(k)e ikz0       z1 (z 0 -z 1 ) 2 -(ω 0 u) 2 (z 0 -z 1 ) 2 + (ω 0 u) 2 2 e ik(z1-z0) dz 1       du = K 0 Ic • 1 2π k 1 C w u f w (u) u 1/2 1 -e -|k|ω0u e -|k|ω0u du |k| 2 δa(k)e ikz0 dk (B.14)
The remaining integral δK a,5 czm yields: Note that Eq. ( 22) can be expressed in terms of variations of strength δσ c and critical crack opening δD c with respect to their average value σ 0 c and D 0 c . From Eq. ( 18), one has:

δK a,5 czm (z 0 ) = u z1 √ 2 π 3/2 σ 0 c ω 3/2 0 u 1/2 f w (u) ω 0 u (z 0 -z 1 ) 2 + (ω 0 u) 2 2 [δa(z 0 ) -δa(z 1 )] dz 1 du = u √ 2 π 3/2 σ 0 c ω 1/2 0 f w (u) u 1/2 1 2π k dk δa(k)e ikz0         z1 ω 0 u 1 -e ik(z1-z0) (z 0 -z 1 ) 2 + (ω 0 u) 2 2 dz 1         du = K 0 Ic • 1 2π k 1 C w u f w (u) 2u 3/2 (1 + |k|ω 0 u) e -|k|ω0u -1 du δa(k) ω 0 e ikz0 dk = I.B.P/u -K 0 Ic • 1 2π k 1 C w u f w (u) u 1/2 e -|k|ω0u du |k| 2 δa(k)e ikz0 dk + K 0 Ic • 1 2π k 1 C w u - f w (u) u 1/2 1 -e -|k|ω0u
δK a czm (z 0 ) K 0 Ic = 1 2π k - |k| 2 δa(k)e ikz0 dk + 1 2π k 1 C w u - f w (u) u 1/2 1 -e -
ω 0 = α µ σ 0 c D 0 c and δω ω 0 = δD c D 0 c - δσ c σ 0 c (B.17)
So that Eq. ( 22) boils down to:

K 0 I       1 +       1 K 0 I ∂K 0 I ∂a - |k| 2       δa (k)       = K 0 Ic       1 + Â (|k|ω 0 ) ω 0 - |k| 2 δa (k) + Σ (|k|ω 0 ) - Ω (|k|ω 0 ) 2 δσ c (k) σ 0 c + Ω (|k|ω 0 ) 2 δD c (k) D 0 c       (B.18)
Note that, as Ω (|k|ω 0 ) decreases more strongly than Σ (|k|ω 0 ) when |k|ω 0 → +∞ (see Appendix C), heterogeneities of strength σ with constant critical opening D c have a similar effect to that with constant process zone size described in Section 4.2. Conversely, heterogeneities of critical opening D c with constant strength σ have a similar effect to that of process zone size described in Section 4.3.

erf( √ |k|ω 0 ) √ |k|ω 0 Σ (|k|ω 0 ) = 3 √ π 4 |k|ω 0 -1 2 erf( √ |k|ω 0 ) (|k|ω 0 ) 3/2 + 3 4 e -|k|ω0 |k|ω 0 Ω (|k|ω 0 ) = 3 √ π 4 erf( √ |k|ω 0 ) (|k|ω 0 ) 3/2 - 3 2 e -|k|ω0 |k|ω 0 ⇒ Â (|k|ω 0 ) -→ |k|ω0→+∞ 3 2 Σ (|k|ω 0 ) ∼ |k|ω0→+∞ 3 √ π 4 (|k|ω 0 ) -1/2 Ω (|k|ω 0 ) ∼ |k|ω0→+∞ 3 √ π 4 (|k|ω 0 ) -3/2 (C.2)
The evolution of Â, Σ and Ω with |k|ω 0 is given in Fig. C.10 for the linear distance-weakening law.

Appendix C.2. Dugdale-Barenblatt distance weakening

The second one is the cohesive law of [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] and [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF] for which the cohesive stress is constant to σ 0 c along a distance ω 0 , and 0 elsewhere:

f w (x) = χ [0,1] (x) (C.3)
where χ E is the indicator function of the ensemble E. Eq. ( 24) yields:

                     Â (|k|ω 0 ) = 1 -e -|k|ω 0 2 Σ (|k|ω 0 ) = √ π 2 erf( √ |k|ω 0 ) √ |k|ω 0 Ω (|k|ω 0 ) = e -|k|ω 0 ⇒ Â (|k|ω 0 ) -→ |k|ω 0 →+∞ 1 2 Σ (|k|ω 0 ) ∼ |k|ω 0 →+∞ √ π 2 (|k|ω 0 ) -1/2 Ω (|k|ω 0 ) ∼ |k|ω 0 →+∞ e -|k|ω 0 (C.4)
The evolution of Â, Σ and Ω with |k|ω 0 is given in The finiteness of the stress at the crack tip implies that f w (x) ∼ x→0 1a w x 3/2 where a w is a cohesive constant related to the weakening shape [START_REF] Rice | The mechanics of earthquake rupture[END_REF]. This very peculiar behavior leads a change in the asymptotic behavior of Ω when |k|ω 0 → +∞:

Ω (|k|ω 0 ) ∼ |k|ω 0 →+∞ Ω ∞ w (|k|ω 0 ) 2 if f w (x) ∼ x→0 1 -a w x 3/2 , with Ω ∞ w = 2a w C w (C.8)
The behavior of  and Σ is left unchanged. For the linear traction-separation law, one finds: (C.9)

                 Â (|k|ω 0 )
The evolution of Â, Σ and Ω with |k|ω 0 is given for the linear traction-separation cohesive law in Eq. (D.2) validates the linear dependence in (∆σ c /σ 0 c ) and that in (ω 0 /d) 1/2 that was mentioned in Section 4.2. Moreover, we observe that the deformation localizes at the edges of the obsta- cle, where δa is non-differentiable. It may challenge the assumptions lying under our first-order theory as we assumed ∂δa/∂z 1, justifying future derivation of a second-order theory for the quasi-static cohesive front deformations to rationalize the experimental results of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF].

For heterogeneities of process zone size, one finds:

(δa (z) -δa (0))

/d = 1 6 √ π Ω ∞ w A ∞ w ∆ω ω 0 ω 0 d -1/2        -2 + 1 + 2|z| d 3/2 -sgn |z| - d 2 1 - 2|z| d 3/2        (D.3)
where d is the obstacle width, ∆ω is the contrast in process zone size and ω 0 its average value. Note that Eq. (D.3) strongly depends on the weakening shape f w , as it controls the asymptotic behavior of Ω. For example, one finds for the linear traction-separation law:

(δa (z) -δa (0))

/d =                Ω ∞ w 4A ∞ w ∆ω ω 0 ω 0 d -1 z d 2 if |z| ≤ d/2 Ω ∞ w 4A ∞ w ∆ω ω 0 ω 0 d -1 |z| d - 1 4 if |z| > d/2
(D.4) The perturbation amplitude always decreases with the average process zone size ω 0 but at a rate controlled by the weakening f w . (c) Its scaling as when ω 0 /d → +∞ depends on how the material weakens. For distance-weakening laws, it scales as ∝ (ω 0 /d) -1/2 , while it decreases as ∝ (ω 0 /d) -1 for traction-separation laws. The decrease is even stronger for the Dugdale-Barenblatt cohesive law ∝ (ω 0 /d)e -ω 0 /d .

  Figure2: The mode I stress intensity factor k (F * ; z 0 ; z 1 , x * ) generated at z = z 0 by a pair of unitary forces applied along e y at a distance x * behind the point z 1 of the perturbed crack front F * (in black) in the direction of the vector e *x (z 1 ) can be inferred from that generated by a pair of unitary forces applied along e y at a distance x * * behind the point z 1 of the auxiliary front F * * (in red) in the direction of the vector e * *x (z 1 ).

Figure 3 :

 3 Figure3: (a) Stability analysis of a sinusoidal crack front (in black solid line) of wavelength λ for perfectly brittle materials: (b) the stability of the crack front is controlled by the sign and the characteristic distance L along which the macroscopic K 0 I varies. For stabilizing geometries ≤ 0 (hatched surface), the perturbation is stable (in gray) no matter its wavelength. For destabilizing geometries > 0 (non-hatched surface), the perturbation is unstable (in red) if its wavelength is larger than a critical value λ c , and stable (in gray) otherwise. The critical wavelength λ c is predicted by Eq. (31).

  4d and Fig. C.10 in Appendix C).

Figure 5 :

 5 Figure 5: (a) The crack front (in solid black line) is deformed by a periodic array of tough obstacles (in gray) of width d, separated by a distance ∆L. The obstacles have a fracture energy G obs c slightly larger than that of the matrix G mat c . The front deformations are characterized by their amplitude A, defined as the distance between the most advanced point of the front and the less advanced one. (b) For a perfectly brittle material, A increases linearly with the fracture energy contrast ∆G c /G 0 c . (c) A depends non-linearly on the ratio of the obstacle spacing ∆L to their size d.

Figure 6 :

 6 Figure 6: (a) Influence of the average process zone size ω 0 on the amplitude A of the front deformations for a periodic array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are stronger than the matrix σ obs c = 1.1σ mat c (in solid light gray line), but they are equally brittle ω obs = ω mat , so that G obs c 1.2G mat c . For moderate values of ω 0 /d, the amplitude A increases almost linearly with the process zone size ω 0 from its reference LEFM value. (b) For larger values of ω 0 /d, it scales as ∝ (ω 0 /d) 1/2 .(c)The presence of a finite process zone size smooths out the small-scale variations of strength, so that the amplitude of the apparent fracture energy field (in gray scale) is decreased from its material value (LEFM case). Yet, the decrease in apparent fracture energy amplitude for increasing process zone size (in red) is weaker than the associated decrease in front stiffness, so that the deformation amplitude (extremal points of the crack front in solid black line) is ultimately larger than in the LEFM case (in yellow dashed line).

  D.14 and Appendix D.1 for more details).

Figure 7 :

 7 Figure 7: (a) Influence of the average process zone size ω 0 on the amplitude A of the front deformations for a periodic array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are more ductile than the matrix ω obs = 1.2ω mat (in solid light gray line), but they are equally strong σ obs c = σ mat c , so that G obs c 1.2G mat c . For moderate values of ω 0 /d, the deformation amplitude A decreases almost linearly with the process zone size ω 0 from its reference LEFM value. (b) For larger values of ω 0 /d, it scales as ∝ (ω 0 /d) -1/2 .(c)The presence of a finite process zone size smooths out the small-scale variations of process zone size, so that the apparent amplitude of the fracture energy field (in gray scale) is decreased from its material value (LEFM case). Furthermore, the decrease in apparent fracture energy amplitude for increasing process zone size (in red) is stronger than the associated decrease in front stiffness, so that the deformation amplitude (extremal points of the crack front in solid black line) is ultimately smaller than in the LEFM case (in yellow dashed line).

Figure 8 :

 8 Figure 8: (a) An increase of material fracture energy can be achieved either by increasing its strength at constant brittleness (see dashed vertical line of path 1), by increasing its ductility at constant strength (see dashed horizontal line of path 3), or by any mixed path combining an increase of strength with that of ductility (see curved black line of path 2). (b-g) While the front amplitude increases linearly with the ratio of the fracture energy of the obstacles G obs c to that of the matrix G mat c in the limit cases of LEFM (dashed black line), and path 1 (solid brown line) & 3 (solid light orange line), it usually evolves non-linearly with the fracture energy contrast ∆G c /G 0 c in presence of a finite-size dissipation (see path 2 in solid dark orange line). The amplitude of the front deformations may vary between the two curves associated with paths 1 & 3 (light yellow area). These variations increase with the process zone size ω (see b & e, c & f, d & g), but decrease with the obstacle spacing L z (see b-d & e-g). Insets: front deformation profiles for ∆G c /G 0 c = 1.2.

Figure 9 :

 9 Figure 9: Prediction of the crack front deformations in peeling experiments of a silicon elastomer block from a patterned glass substrate (adapted from (Chopin et al., 2011)). A 20µm-large tough obstacle is placed at the center of the 22mmlarge block, and deforms the crack front. Chopin et al. (2011)'s LEFM fit of the front deformations is plotted in white dashed line for ∆K Ic /K 0 Ic

  7) The next step is to calculate each of the 7 integrals of Eq. (B.7). The calculations build upon the Fourier representation δσ c , δω, and δa of δσ c , δω, and δa, and the expression of the following integrals (see Eqs. (3.723.2), (3.723.3), (3.729.1), (3.729.2) and (3.729.3) of Gradshteyn and Ryzhik (2014)):

  Eq. (22) collecting the terms in δσ c , δω, and δa from Eqs.(B.9), (B.10) and (B.16).

FigFigure

  Figure C.10: Evolution of the cohesive pre-factors for a linear distance-weakening cohesive law: (a) the front deformations pre-factor Â(|k|ω 0 ) scales as ∝ |k|ω 0 /2 when |k|ω 0 → 0 (dashed gray line on the left) and saturates to A ∞ w when |k|ω 0 → +∞ (horizontal dashed gray line on the right). (b) The strength variation pre-factor Σ(|k|ω 0 ) goes to 1 in the brittle limit |k|ω 0 → 0 and decays as (|k|ω 0 ) -1/2 when |k|ω 0 → +∞. (c) The process zone size variations pre-factor Ω(|k|ω 0 ) goes to 1 when |k|ω 0 → 0 and decays as (|k|ω 0 ) -3/2 when |k|ω 0 → +∞.

Figure

  Figure C.12: Evolution of the cohesive pre-factors for an exponential distance-weakening cohesive law: (a) the front deformations pre-factor Â(|k|ω 0 ) scales as ∝ |k|ω 0 /2 when |k|ω 0 → 0 (dashed gray line on the left) and saturates to A ∞ w when |k|ω 0 → +∞ (horizontal dashed gray line on the right). (b) The strength variation pre-factor Σ(|k|ω 0 ) goes to 1 in the brittle limit |k|ω 0 → 0 and decays as (|k|ω 0 ) -1/2 when |k|ω 0 → +∞. (c) The process zone size variations pre-factor Ω(|k|ω 0 ) goes to 1 when |k|ω 0 → 0 and decays as (|k|ω 0 ) -3/2 when |k|ω 0 → +∞.
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  Fig. C.13.

  Figure D.14: (a) Influence of the inclusion spacing ∆L and the process zone size ω 0 on the amplitude A of the front deformations for a periodic array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are stronger than the matrix σ obs c = 1.1σ mat c (in solid light gray line), but they are equally brittle ω obs = ω mat , so that G obs c 1.2G mat c . (b) The deformation amplitude is always larger than in the LEFM case (in yellow dashed line) and increases with the average process zone size ω 0 (in red).

  Figure D.15: (a) Influence of the inclusion spacing ∆L and the process zone size ω 0 on the amplitude A of the front deformations for a periodic array of obstacles of width d; Inset: the obstacles (in solid dark gray line) are more ductile than the matrix ω obs = 1.2ω mat (in solid light gray line), but they are equally strong σ obs c = σ mat c , so that G obs c 1.2G mat c . (b) The deformation amplitude is always smaller than in the LEFM case (in yellow dashed line) and decreases with the average process zone size ω 0 (in red).
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  Figure D.16: Deformation profiles of a crack front pinned by a single tough heterogeneity (∆L/d → +∞): (a) In the perfectly brittle limit ω 0 /d → +∞, the deformations of the front follow Eq. (D.1) of Chopin et al. (2011). In the fully cohesive limit ω 0 /d → +∞, (b) the deformations of the front by heterogeneities of strength follow Eq. (D.2) and increase as ∝ (ω 0 /d) 1/2 , while (c) that induced by heterogeneities of process zone size follow Eq. (D.3) and vanish as ∝ (ω 0 /d) -1/2 . The analytical solution (in solid black line) are compared to numerical solutions (in dashed orange line) computed from Eq. (25).

  A ∞w and Ω ∞ w relate to the cohesive law and are given in Eqs. (33) and (51). The evolution of the front deformations δa with the position is plotted in Fig. D.16c. Eq. (D.3) confirms the linear dependence in both (∆ω/ω 0 ) and (ω 0 /d) -1/2 .

Figure

  Figure E.18: Influence of the nature of weakening f w on the front deformations associated with spatial variations of strength: (a) linear distance-weakening (in black line), Dugdale-Barenblatt (in orange line), linear traction-separation (in red line), and exponential distance-weakening (in green line) cohesive laws are considered. (b) The perturbation amplitude always increases with the average process zone size, but at a rate controlled by the weakening f w . (c) It scales as ∝ (ω 0 /d) 1/2 when ω 0 /d → +∞ no matter how the material weakens.
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Appendix C. Expression and asymptotic behavior of  (|k|ω 0 ), Σ (|k|ω 0 ), Ω (|k|ω 0 ) for different types of weakening

In this work, we consider four different cohesive laws. The first one is the linear distanceweakening law of Fig. 4 for which the cohesive stress decays linearly from σ 0 c to 0 along a distance ω 0 . The second one is the cohesive law of [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] and [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF] for which the cohesive stress is constant to σ 0 c along a distance ω 0 , and 0 elsewhere. The third one is an exponentially distance-weakening law for which the cohesive stress decays as σ 0 c e -x/ω 0 behind the crack tip, and never reaches 0. The last one is a linear traction-separation law for which the stress decay linearly from σ 0 c to 0 with the local opening δ up to a critical value D c .

In this Appendix, we derive the expressions and the asymptotic behaviors for the three cohesive pre-factors Â, Σ and Ω of Eq. ( 24) that control the front deformations. The first three cohesive laws yield analytical expressions for Â, Σ and Ω, while they are computed numerically for the traction-separation law.

Appendix C.1. Linear-distance weakening

The first one is the linear distance-weakening law of Fig. 4 for which the cohesive stress decay linearly from σ 0 c to 0 along a distance ω 0 :

In that case, Eq. ( 24) yields:

The third one is an exponentially distance-weakening law for which the cohesive stress decays as σ 0 c e -x/ω 0 behind the crack tip, and never reaches 0:

In that case, Eq. ( 24) yields: The strength variation pre-factor Σ(|k|ω 0 ) goes to 1 in the brittle limit |k|ω 0 → 0 and decays as (|k|ω 0 ) -1/2 when |k|ω 0 → +∞. (c) The process zone size variations pre-factor Ω(|k|ω 0 ) goes to 1 when |k|ω 0 → 0 and decays as (|k|ω 0 ) -2 when |k|ω 0 → +∞.

Appendix D. Influence of the inclusion spacing

In this Appendix, we explore the influence of the inclusion spacing on the deformations of a crack front, interacting with heterogeneities of strength and process zone size.

Appendix D.1. Heterogeneities of strength and process zone size

We consider the situations of Sections 4.2 and 4.3. The crack front interacts with heterogeneities of (i) varying strength but uniform process zone size, or (ii) uniform strength but varying process zone size. In the former case, an increase of the average process zone size ω 0 was associated with an increase in the front amplitude. In the latter, it was linked to a decrease in amplitude. We observe in Figs. D.14 and D.15 that the two different behaviors are left unchanged by the inclusion spacing.

Appendix D.2. Limit case of the single defect in an infinite matrix A general expression of the front deformations δa with the position z cannot be found explicitly. Yet, it is possible to derive it in some specific cases. In the limit of a single obstacle (∆L d) embedded in a rather brittle medium (ω 0 d), one retrieves the solution of [START_REF] Chopin | Crack front dynamics across a single heterogeneity[END_REF]:

where d is the obstacle width, ∆G c is the contrast in fracture energy and G 0 c its average value.

The evolution of the front deformations δa with the position is plotted in Fig. D.16a.

On the contrary, it is also possible to derive an analytical expression of the front deformation when the same obstacle lies in a very ductile medium (ω 0 d). For heterogeneities of strength, one finds:

Influence of the nature of weakening

In this Appendix, we explore the influence of the shape f w of the cohesive law on the stability of crack fronts and their interaction with periodic arrays of tough obstacles. We consider the four weakening shapes studied in Appendix C: the reference linear distance-weakening, a Dugdale-Barenblatt weakening, an exponential distance-weakening, and a more conventional linear traction-separation cohesive law.

Appendix E.1. Influence of the nature of weakening on the crack front stability

We saw in Eqs. ( 35) and ( 36) that the stability of a perturbed crack strongly depends on the evolution of  and its asymptotic behavior as |k|ω 0 → +∞. We thus expect that the stability of crack fronts somehow depends on the spatial distribution f w of cohesive stress in the crack wake. We observe in Fig. E.17 that all four cohesive laws lead to a similar stability behavior. The main difference is a shift of the frontier separating Regimes II and III, as it is controlled by the asymptotic value A ∞ w of the operator Â. Namely, the shift from the two regimes occurs for smaller process zone size ω 0 for the Dugdale-Barenblatt cohesive law than for the linear distanceweakening law. The cases of exponentially distance-weakening and linear traction-separation laws are found in between.

Appendix E.2. Influence of the nature of weakening on the crack front deformations

We address next the question of the influence of the nature of weakening, characterized by the weakening shape f w , on the front deformations.

We first observe in Fig. E.18 that the influence of the weakening shape on the front deformation is rather weak for heterogeneities of strength. The deformations are overall larger for a Dugdale-Barenblatt law, and lower for a linear distance-weakening law. The other two laws are found in-between. They all display a similar scaling A/d ∝ (ω 0 /d) 1/2 for large process zone sizes ω 0 /d → +∞, as the asymptotic behavior of Σ of Eq. ( 47) depends very weakly on f w .

The case of heterogeneities of process zone size is more interesting, as the asymptotic behavior of Ω changes significantly with the definition of f w . Indeed, the decrease in magnitude of the effective fluctuations of fracture energy is sharper for traction-separation laws A/d ∝ (ω 0 /d) -1 than for distance-weakening ones A/d ∝ (ω 0 /d) -1/2 (as long as f w (0) 0). Consequently, the amplitude of front deformations vanishes at a much higher rate as the average process zone size ω 0 gets larger than the obstacle width d (see Fig. E.19). This effect is even stronger for the Dugdale-Barenblatt law, for which A/d ∝ (ω 0 /d) × e -ω 0 /d .