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Abstract Considering a semi-infinite crack propagat-

ing within a plane where the local fracture energy fluc-

tuates due to the presence of microstructural hetero-

geneities, we emphasize the decisive influence of the

material disorder on the effective fracture energy of the

composite at a macroscopic scale. Through the use of

large-scale numerical simulations of a crack interact-

ing with tough inclusions of varying shape, we show

how the disorder intensity and the inclusion geome-

try modify both quantitatively and qualitatively the

toughening behavior with respect to the periodic case,

where the inclusions are arranged in an ordered man-

ner. This disorder-induced toughening is then rational-

ized using a theoretical homogenization framework bor-

rowed from statistical physics. It ultimately allows to

propose strategies for the design of disordered compos-
ites with improved crack growth resistance and tailored

asymmetric fracture properties.

Keywords Brittle fracture · homogeneization ·
effective fracture energy · disordered materials ·
microstructural design

1 Introduction

For a long time, engineers focused on preventing the

appearance of cracks in anthropogenic structures. Yet

progresses in monitoring techniques showed that cracks

were somewhat bound to nucleate in highly loaded com-

ponents, concentrating thus a lot of attention on the

question of their propagation. Based on the pioneering
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works of Griffith (1921) and Irwin (1957), the Linear

Elastic Fracture Mechanics (LEFM) framework allows

nowadays for the quantitative description of the condi-

tions under which preexisting cracks propagate in a ho-

mogeneous material. However, our understanding of the

impact of microstructural heterogeneities on the over-

all resistance to crack growth is still largely incomplete.

The recent progress in additive manufacturing coupled

to the emergence of natural and recycled composite ma-

terials further increase the need for rationalizing the

failure properties of heterogeneous solids (Merta and

Tschegg, 2013; Dimas et al., 2013; Malik and Barthe-

lat, 2016; Chandler et al., 2016; Lei et al., 2018).

Recently, renewed attention has been paid to the

quantitative study of the fracture behavior of hetero-

geneous materials (Barthelat and Rabiei, 2011; Patinet
et al., 2013b; Hossain et al., 2014; Xia et al., 2015; Va-

soya et al., 2016; Wang and Xia, 2017; Brach et al.,

2019; Malik and Barthelat, 2018; Lebihain et al., 2020),

in the direct continuation of the pioneering works of

(Faber and Evans, 1983), (Gao and Rice, 1989) and

(Bower and Ortiz, 1991). These studies provide a de-

tailed description of the impact of small scale microstruc-

tural features of materials on their failure at a macro-

scopic level, in the spirit of the homogenization methods

dedicated to elastic and non-linear mechanical proper-

ties (Ponte-Castañeda and Suquet, 1997; Milton, 2002).

Yet, they are generally restricted to a two-dimensional

or periodic setting so they miss major features of the

failure behavior, e.g. the intermittent dynamics of cracks

(Bonamy and Bouchaud, 2011; Barés et al., 2014) or the

scale-invariant roughness of fracture surfaces (Bouchaud

et al., 1990; Ponson et al., 2006). In addition, they

do not capture the collective pinning involved in brit-

tle solids with randomly distributed tough inclusions,

which gives rise to a disorder-induced toughening. Roux
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et al. (2003), Roux and Hild (2008) and Patinet et al.

(2013b) rationalized, through a semi-analytical self-consistent

approach, the crucial influence of disorder on material

toughening. Démery et al. (2014b) addressed the same

problem with tools borrowed from statistical physics

(Larkin and Ovchinnikov, 1979) to develop a theoreti-

cal framework, which allows for analytical predictions of

the homogenized fracture properties from the disorder

intensity as well as its geometrical structure (Démery

et al., 2014a). If these works provide decisive tools to

predict the failure behavior of disordered solids, they

only consider stochastic distributions of fracture energy

that may not be representative of realistic microstruc-

tures, and thus make harder the practical design of op-

timized composites.

The present study aims at filling this gap by investi-

gating the effective fracture energy of micro-structured

composites constituted of a homogeneous matrix and

tough inclusions with controlled shape and fracture prop-

erties. Recently, Lebihain et al. (2021) proposed a ho-

mogenization framework that encompasses the influ-

ence of both the material disorder and the crack-inclusion

mechanisms of interaction localized at the crack tip.

They showed that the impact on the effective fracture

energy of complex three-dimensional mechanisms could

be assessed through the use of equivalent coplanar het-

erogeneities of fracture energy that are reminiscent from

the way the crack interact with the inclusions. We thus

consider here the most simple case of a coplanar crack

interacting with tough defects, and investigate how the

fracture energy and the shape of the inclusions influ-

ence the effective fracture properties of the compos-

ite in presence of disorder. It allows us (i) to empha-

size the major impact of randomness by comparing the

disorder-induced toughening with the one resulting from

ordered arrangements of heterogeneities, and (ii) to pro-

pose strategies to design composites with unique frac-

ture properties, building on the theoretical framework

of Démery et al. (2014b).

The paper is organized as follows : in Section 2,

we recall the main ingredients behind the perturbative

LEFM approach that allows for large-scale simulations

of coplanar crack propagation in brittle materials with

spatial heterogeneities of fracture energy. Its numerical

implementation permits us to investigate in Section 3

the effective fracture energy of composites with circu-

lar inclusions in both an ordered and disordered setting.

The numerical results are then compared to the theoret-

ical predictions of Gao and Rice (1989) for the ordered

case, and Démery et al. (2014b) for the disordered one.

Section 4 focuses on the decisive influence of material

disorder on the effective fracture energy. Considering

several inclusion shapes, we highlight specific situations

where periodic estimates produce neither quantitative

nor qualitative predictions on the overall toughening.

We finally build on the physics of fracture in disordered

media to design composites with asymmetric properties

in Section 5, overcoming the smoothing influence of dis-

order.

2 Coplanar crack propagation in heterogeneous

brittle material under pure Mode I loading

Material disorder has been shown to be determinant,

alongside the crack-inclusion mechanisms of interaction,

to estimate the effective fracture properties of compos-

ites. This study aims to shed light on the disorder-

induced toughening of composites. We consider then

the “simple” case where a coplanar crack interacts with

weak heterogeneities of fracture energy Gc through the

sole crossing mechanism. This system is analogous to

fracture experiments of an interfacial crack propagat-

ing between two elastic plates (see e.g. Delaplace et al.

(1999); Måløy et al. (2006); Dalmas et al. (2009); Patinet

et al. (2013a); Chopin et al. (2018)).

Following a standard LEFM approach (Gao and Rice,

1989; Ponson and Bonamy, 2010; Patinet et al., 2013b;

Ponson and Pindra, 2017), we model crack propagation

from three main ingredients :

1. the definition of a microstructure, which provides, in

our specific case, the spatial field Gc (x) of fracture

energy experienced by the crack when propagating;

2. some way to compute the elastic energy release rate

(ERR) G along the crack front F , for any crack

configuration differing slightly from a planar crack

with a straight front;

3. some propagation criteria, reduced here in single ki-

netic law that links Gc and G to predict the crack

front advance.

The following sections describe how each of these ingre-

dients is accounted for, and how they are connected to

each other.

2.1 Material microstructure and heterogeneous

fracture energy field

We consider a semi-infinite planar crack embedded in

an infinite periodic body. We adopt the usual conven-

tion of LEFM and thus denote x the direction of crack

propagation, y the direction orthogonal to the crack

plane, and z the direction parallel to the crack front F .

Also, the period in the z-direction is denoted Lz and

the overall propagation distance Lx. At a given time t,

the position of the crack front within the crack plane is
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Fig. 1 (a) The coplanar crack front interacts with circular
heterogeneities of fracture energy Gc, and distorts in-plane
from a straight reference position at x (t) (shifted from the av-
erage front position for visualization purpose). (b) The over-
all distribution of fracture energy is bi-modal, composed of a
density ρinc of inclusions at Ginc

c , and one (1− ρinc) of ma-
trix material at Gmat

c . (c) The spatial texture is described
by a correlation function Gc, characterized by the inclusion
diameter d and their average spacing `ρ ∝ d/

√
ρinc. (d) The

front distortions f (z, t) give birth to a heterogeneous local
ERR G (z, t) that is compared to the local fracture energy
Gc (z, x = f (z, t)) to compute (e) the local velocity profile
from Eq. (5). (f) The macroscopic loading G∞ from Eq. (1)
has to be increased in order to make the crack propagate by
successive avalanches separated by pinning phases.

noted x (t), the origin O being chosen arbitrarily within

this plane (see Fig. 1.a).

The material is made of two phases: a homogeneous

matrix and inclusions of varying geometry. The inclu-

sion distribution is described by its density ρinc, and

the size dz (resp. dx) of the inclusion in the crack front

(resp. propagation) direction.Two main assumptions are

made regarding the mechanical behavior of each phase.

First, the matrix and the inclusions are assumed to be

isotropically and linearly elastic, and share the same

Young’s modulus E and Poisson’s ratio ν. Second, the

phases are assumed to be brittle, i.e. all the dissipa-

tive processes located near the crack tip (e.g. plasticity,

micro-cracking) are confined in a zone much smaller

than the typical heterogeneity size dz or dx. However,

they differ in their fracture energy: the inclusion frac-

ture energy Ginc
c may be larger/smaller than the matrix

one Gmat
c .

It results in a bi-modal distribution of fracture en-

ergy (Fig. 1.b) of average 〈Gc〉, and standard deviation

σ. The texture gc = (Gc − 〈Gc〉) /σ of the material is

described by its spatial correlations Gc = 〈gc (r +∆r) gc (r)〉r,
whose decay is characterized by the inclusion radius

d/2, and their average spacing `ρ ∝ d/√ρinc, defined as

the average distance from one inclusion center to that of

its nearest neighbor (Fig. 1.c). Note that both the dis-

tribution and its texture impact significantly the effec-

tive fracture energy of heterogeneous materials (Patinet

et al., 2013b; Démery et al., 2014a,b).

The fact that we consider only heterogeneities of

fracture energy might appear as a severe limitation of

our work. Yet, Lebihain et al. (2021) recently proposed

a way to translate richer intrinsic mechanisms of in-

teraction (e.g. trapping (Gao and Rice, 1989; Bower

and Ortiz, 1991), deflection (He and Hutchinson, 1989;

Brach et al., 2019), shielding by micro-cracking (Evans

and Faber, 1981; Ortiz, 1987), denucleation/renucleation

(Leguillon et al., 2006; Hossain et al., 2014)) into equiv-

alent fracture energy heterogeneities. The equivalent

defects of fracture energy can indeed be inferred from

the instantaneous front deformations of a semi-infinite

crack interacting with a single inclusion, as these distor-

tions are reminiscent of the fracture energy the crack ex-

periences during its propagation (Chopin et al., 2011).

The conclusion of our work focused on the disorder-

induced toughening may then be applicable to a broader

class of heterogeneities.

2.2 Perturbative approach for ERR computation

When considering crack propagation in a heterogeneous

material such as the one described in Section 2.1, one

must envisage all possible geometric extensions before

selecting the path followed during the subsequent prop-

agation event. This specificity provides a natural advan-

tage to perturbative approaches of Linear Elastic Frac-

ture Mechanics. Based on Bueckner-Rice weight func-

tion theory (Bueckner, 1970; Rice, 1985), they provide

local stress intensity factor variations arising from any

small geometrical perturbations of the crack front from

a reference crack, without having to solve the whole

elasticity problem. Following Gao and Rice (1989), we

specialize this approach to the situation investigated in

Fig. 1.a.

Macroscopic loading – The semi-infinite crack is em-

bedded in a fracture specimen loaded under tension

(Mode I) at a constant opening rate δ̇. The effect of

both the loading conditions δ and the sample geometry

are included in the proposed model via the evolution of

the macroscopic ERR G∞ with the time t and the aver-

age crack position x (t). Following Ponson and Bonamy
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(2010), G∞ reads at first-order :

G∞ (t) = G∞0

(
1 +

vmt− x (t)

L

)
(1)

where G∞0 = G∞ (δ0, x = 0) is the loading for an initial

opening δ0 at x = 0 and t = 0. The structural length L
and the driving velocity vm are defined by:

L = −G∞0 /
∂G∞

∂x

∣∣∣∣
δ0,0

; vm = −δ̇ ∂G
∞

∂δ

∣∣∣∣
δ0,0

/
∂G∞

∂x

∣∣∣∣
δ0,0

.

(2)

Both L and vm are prescribed parameters in the per-

formed simulations. The structural length scale L is re-

lated to the specimen geometry and the loading condi-

tions (usually on the order of one tenth of the speci-

men length), and controls the evolution of the macro-

scopic ERR G∞ as the crack advances. vm corresponds

to the average (in time) crack velocity. An example of

the spontaneous evolution of the macroscopic loading

G∞ (t) is shown in Fig. 1.f.

Local energy release rate – In a homogeneous mate-

rial and under the loading G∞, the semi-infinite crack

would undergo stable propagation at the speed vm, and

the crack front F would remain straight at the instan-

taneous position x(t) = vmt. But the inclusions distort

the crack front within the mean fracture plane, giving

rise to an in-plane perturbation f (z, t) (see Fig. 1.a),

defined from the reference crack position x (t) chosen

so as to satisfy the condition 〈f (z, t)〉z = 0.

Assuming quasi-static crack propagation 1, one can

use the formulæ of Rice (1985) to compute the per-

turbed ERR G at any position along the crack front.

At first order in f , it reads :

G (z, t) = G∞ (t)

[
1− f(z,t)

L − 1

π
PV

∫ +∞
−∞

f(z,t)−f(z′,t)
(z−z′)2 dz′

]
(3)

We note the presence of long-range elastic interactions

along the crack front through the integral terms. This

will lead to collective response of the crack during its

propagation in a three-dimensional medium as the be-

havior of a given point along the front is affected by the

evolution of all the other ones. An example of the local

ERR G (z, t) along a distorted crack front is shown in

Fig. 1.d.

1 The crack speed is assumed to be small with respect to
the Rayleigh wave speed at any time and any position along
the front. This assumption is generally satisfied even in the
presence of the micro-instabilities resulting from the depin-
ning of the crack from tough obstacles, as shown in Chopin
et al. (2018).

Equation (3) takes a very simple form when trans-

posed in the Fourier domain :

Ĝ (k, t)

G∞ (t)
= δ (k)−

(
1

L + |k|
)
f̂ (k, t) (4)

where φ̂ (k, t) =
∫ +∞
−∞ φ (z, t) e−ikzdz is the z-Fourier

transform of a function φ and δ is the Dirac function.

Gao and Rice (1989) showed that the perturbative

approach of Eq. (3) gives accurate results when com-

pared to boundary elements simulations as long asGinc
c ≤

4Gmat
c . It sets an upper bound for the inclusion fracture

energies considered in this work. This condition also en-

sures that the crossing mechanism is the only possible

mechanism selected by the crack during its interaction

with tough inclusions and that no bridging can occur

in the crack wake (Bower and Ortiz, 1991).

2.3 Propagation criterion

Given that the motion of the crack is restricted within

the plane, the last missing ingredient of our model is

the kinetic law that relates the local crack velocity v

to G and Gc. For brittle materials, this kinetic law can

be derived from Griffith (1921)’s criterion by account-

ing for the variations of the fracture energy with crack

speed (Ponson, 2009; Kolvin et al., 2015). It reads :

v =

[
vm + v0

G−Gc (vm)

Gc (vm)

]+

(5)

where [·]+ the positive part function, and v0 = Gc (vm) /
∂Gc

∂v

∣∣∣∣
vm

is a characteristic velocity of the material that sets the

depinning speed at which a crack leaves a tough inclu-

sion. This equation of motion has been shown to cap-

ture quantitatively the relaxation dynamics of a crack

depinning from a single obstacle (Chopin et al., 2018).

An example of the local distribution of velocity v (z, t)

is shown in Fig. 1.e.

To satisfy the quasi-static assumption, the driving

velocity vm is set to vm = 10−9v0 in the remaining of

the manuscript.

2.4 Numerical implementation

Random non-overlapping microstructures are built us-

ing the so-called random sequential addition algorithm

proposed by Widom (1966) that consists in placing ran-

domly and sequentially non-overlapping inclusions on a

fixed surface.

The computation of the crack evolution within the

heterogeneous fracture energy field Gc (z, x) employs an
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explicit scheme that predicts the configuration of the

front at time t + ∆t from its configuration at time t.

The crack front is discretized into N points (Pi)i∈[1,N ]

separated by a uniform distance ∆z = Lz/N = dz/16,

which ensures convergence of the results. First, the ERR

Gi is computed by a Fast Fourier Transform (FFT)

from the front perturbations f i using Eq. (4) and from

the instantaneous macroscopic loadingG∞ (t) after Eq. (1).

It is then compared to the local fracture energy Gic
to infer the local velocity vi from the kinetic law of

Eq. (5). A stable time step ∆t is finally estimated from

a Courant-Friedrichs-Lewy condition ∆t = 0.1 v0∆z,

combined with an acceleration procedure based on the

physics of depinning (Lebihain, 2019), which is very

similar to the one used in the numerical modeling of

rate-dependent friction (Lapusta and Rice, 2003). This

procedure allows to model the propagation dynamics

of a crack interacting with millions of inclusions in only

few hours on a single core computer with great accuracy

(16 points per inclusion width).

3 Effective fracture energy of heterogeneous

materials

The numerical model presented in Section 2 is now used

to study the homogenized fracture properties of com-

posite materials. We first clarify what we mean by effec-

tive fracture energy in Section 3.1. We then investigate

the toughening induced by ordered and disordered ar-

rangements of tough circular inclusions in Section 3.2

and Section 3.3 respectively, highlighting the decisive

impact of the material disorder on the ultimate tough-

ening of the composite.

3.1 Homogenized fracture properties and

scale-separation conditions

Three possible candidates emerge as potential defini-

tions for the effective fracture energy Geff
c (Hossain et al.,

2014):

1. The maximum energy release rate imposed by the

loading during crack propagationG∞max (Hossain et al.,

2014; Brach et al., 2019; Vasoya et al., 2016), which

quantifies the critical loading required to break the

whole specimen.

2. The average energy release rate imposed by the load-

ing during crack propagation G∞mean (Roux et al.,

2003; Roux and Hild, 2008; Patinet et al., 2013b),

which measure the loading level G∞mean at which

crack propagation occurs, without necessarily lead-

ing to total failure of the structure.

3. the average dissipation
〈
Gfrac

c

〉
defined as the aver-

age energy dissipated per unit surface during crack

propagation :〈
Gfrac

c

〉
=

1

LzLx

∫ tmax

t=0

∫ Lz

z=0

G (z, t) v (z, t) dz dt (6)

where x (tmax) = Lx. Note that the average dissipation〈
Gfrac

c

〉
usually differs from the spatial average of the

fracture energy field 〈Gc〉 due to the micro-instabilities

resulting from the depinning of the crack from tough

obstacles (G (z, t) = Gc (v (z, t)) > Gc (vm) in Eq. (5)).

Lebihain et al. (2021) showed that under the scale-

separation condition :

L � dz (7)

and in the limit of very large systems (Roux et al., 2003;

Démery et al., 2014b), all definitions converge towards

a unique value that can be unambiguously defined as

the effective fracture energy Geff
c of the composite.

In the following, we set L = 106dz to satisfy Eq. (7),

and measure Geff
c from the peak loading G∞max during

propagation (see Fig. 2.b).

3.2 Effective fracture energy of periodic media

The notion of effective fracture energy being defined,

we now focus on the influence of microstructural pa-

rameters, namely the inclusion fracture energy, on the

effective fracture energy. We first revisit the case of pe-

riodic arrangements of circular inclusions discussed by

Gao and Rice (1989) and Bower and Ortiz (1991).

We consider ordered arrangements of circular in-
clusions of diameter d = dz at a density ρinc = 20%

(see Fig. 3.b), leading to Lz ' 2 dz (see Fig. 2.c). The

inclusion fracture energy varies from Ginc
c = Gmat

c to

Ginc
c = 4Gmat

c , which remains within the range of va-

lidity of the perturbative approach.

The influence of the inclusion fracture energy Ginc
c

on the effective fracture energyGeff
c is showed in Fig. 2.a.

We observe that the effective fracture energy increases

linearly with the inclusion fracture energy. Gao and

Rice (1989) showed that, for a “regular” penetration

process, the effective fracture energy Geff
c reads :

Geff
c = Gmat

c +
dz
Lz

(
Ginc

c −Gmat
c

)
(8)

which fits the numerical results perfectly (see Fig. 3.a).

The penetration process is said “regular” if it is pos-

sible to find a stable configuration during crack prop-

agation that satisfy the conditions G (z) = Ginc
c inside

the whole inclusion of lateral size dz, and G (z) = Gmat
c

outside of it (Gao and Rice, 1989) (see Fig. 2.c for such a
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Fig. 2 Effective fracture energy of periodic media with cir-
cular inclusions : (a) the effective fracture energy Geff

c (in
solid black lines) increases linearly with the inclusion frac-
ture energy Ginc

c following Eq. (8) (in dashed red lines). For
a given inclusion fracture energy (red square), the effective
fracture energy is defined as (b) the maximum macroscopic
ERR G∞max imposed during crack propagation. (c) This max-
imum is reached for a stable crack profile where a portion
dz/Lz of the crack front is crossing the inclusion.

configuration). In such a case, given that Geff
c = G∞max

and G∞ = 〈G (z, t)〉z = 〈Gc〉z (see Eq. (4)), we find

back Eq. (8). Furthermore, we observe that Eq. (8)

only involves a linear density of fracture energy in the

direction of the crack front and not in the direction of

propagation: the inclusion spacing in the (Ox) direction

is then not expected to influence the effective fracture

energy in an ordered setting.

In a more general case, Eq. (8) constitutes an upper

bound of the effective fracture energy. The regularity

of the penetration process is controlled by the inclusion

fracture energy, its shape and its density. As we will see

in Section 3, it might become “irregular” if the inclu-

sions become tougher, sparser or shorter in the propaga-

tion direction (Ox). The regularity of those penetration

processes has been exploited to design orderly arranged

composites with asymmetric fracture energy properties

(Xia et al., 2013, 2015; Hsueh and Bhattacharya, 2018).

3.3 Effective fracture energy of disordered media

Yet materials are disordered by nature, and despite sig-

nificant progress in the additive manufacturing tech-

niques, perfectly ordered composites constitute an ex-

ception rather than the rule. As it is the case for elas-

tic properties, periodic single-inclusion problems usu-

ally allow for a reasonable estimate of the properties of

disordered solids as long as a clear separation of scale

is valid (Milton, 2002). We can then legitimately won-

der if this observation remains valid when homogenizing

brittle fracture properties.
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Fig. 3 Effective fracture energy of disordered media with cir-
cular inclusions : (a) the effective fracture energy Geff

c differs
for (b) periodic and (c) disordered arrangements of circular
inclusions, stressing out the major influence of material disor-
der. Numerical simulations (in solid black lines) are compared
to theoretical predictions of equations (8) and (10) (in dashed
red lines.

We consider the same situation as before (ρinc =

20% and 1 ≤ Ginc
c /Ginc

c ≤ 4), but the circular inclu-

sions are now randomly positioned (see Fig. 3.c2). The

system size Lz = Lx = 256 dz is taken large enough

to avoid any influence on the results (Démery et al.,

2014b). Variables of interest (front position, macroscopic

loading, etc.) are recorded after a propagation length

L∗z = 16 dz so that a stationary regime independent of

the initial planar configuration can be reached (Patinet

et al., 2013b). The results plotted in Fig. 3 are averaged

over 5 realizations of disorder, i.e. 5 different inclusion

distributions, as it will be the case in the remaining of

the manuscript.

We observe that the toughening induced by ran-

domly positioned inclusions strongly differs from the

one caused by an ordered arrangement. The crossing

mechanisms involved during crack growth are indeed

radically different: in presence of disorder, the crack

dynamics becomes highly intermittent (see Fig. 1.f),

and articulate in clusters that span over a broad range

of length scales (Bonamy, 2009; Barés et al., 2014). A

disorder-induced toughening ultimately arises from the

competition between the elasticity of the crack that

tends to maintain the front as smooth as possible, and

the material disorder that on the contrary tends to

roughen it (Démery et al., 2014b).

Démery et al. (2014a) solved the equation of motion

of a crack propagating in a stochastic field of fracture

2 We show here for visualization purpose Lz × Lx = 32 ×
32 instead of Lz × Lx = 256 as actually performed in our
simulations.
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energy, which reads at first order :

1

v0

∂f

∂t
(z, t) =

vm
v0

+
G∞

〈Gc〉
− f (z, t)

L (9)

− 1

π
PV

∫ +∞

−∞

f (z, t)− f (z′, t)

(z − z′)2 dz′ − σ

〈Gc〉
gc (z, x = f (z, t))

where 〈Gc〉 = Gmat
c + ρinc

(
Ginc

c −Gmat
c

)
and

σ =
√
ρinc (1− ρinc)

(
Ginc

c −Gmat
c

)
are the average and

the standard deviation of the fracture energy fieldGc (z, x),

and ξz (resp. ξx) its correlation length in the front (resp.

propagation) direction, which can be approximated in

our case as dz (resp. dx).

They showed that, when the disorder is weak enough,

the crack propagates in a collective pinning regime and

the effective fracture energy is given by (Démery et al.,

2014a):

Geff
c = 〈Gc〉+

σ2

〈Gc〉
· ξz
ξx

(10)

The effective fracture energy is governed by the distri-

bution of fracture energy experienced, during pinning

phases where the crack front is stuck, by portions of the

crack front of size :

Lc =

( 〈Gc〉
σ

)2
ξ2
x

ξz
(11)

called “Larkin domains” (Larkin and Ovchinnikov, 1979).

An additional toughening σ2

〈Gc〉
ξz
ξx

then emerges from the

material disorder σ, a feature that had been already ob-

served with the self-consistent approach of Roux et al.

(2003) in Patinet et al. (2013b). Roughly speaking, the

crack front ends up to get stuck by the toughest inclu-

sions so it effectively visits regions of the local fracture

energy field that are tougher than the average value

〈Gc〉. Note that the material texture gc = (Gc − 〈Gc〉) /σ
influences the toughening arising from the positional

disorder. In particular, oscillations due to exclusion ef-

fects (impenetrable inclusions) are likely to increase the

disorder-induced toughening (Démery et al., 2014a).

The theoretical predictions of Démery et al. (2014a)

happens to be in good agreement with our numerical

results as it can be seen in Fig. 3. Several remarks are

in order :

– periodic simulations do not provide quantitative es-

timate on the effective fracture energy of disordered

materials, as it can be seen from the theoretical for-

mulæ of Eq. 8 for ordered arrangements of inclusions

and Eq. 10 for disordered ones;

– the physics underlying both types of toughening is

very different by nature. One relies on the regular-

ity of the penetration process at the inclusion scale,

while the others involves collective effects at a scale

given by the Larkin length Lc of Eq. (11) that can

contain dozens/hundreds of inclusions. One thus ex-

pects that periodic simulations may even predict

toughening behaviors that are qualitatively wrong;

– in particular, increasing the elongation ratio dx/dz
of the inclusions has been shown to improve the reg-

ularity of the penetration process (Gao and Rice,

1989), while it appears from Eq. (10) to influence

negatively the disorder-induced toughening.

These three points are illustrated in the Section 4 to

highlight the tremendous impact of material disorder

on the effective fracture energy.

3.4 Finite size effects on the effective fracture energy

Before exploring in greater details the influence of mate-

rial disorder on the effective fracture energy, we first dis-

cuss how finite size effects may qualitatively influence

the results presented thereafter. Indeed, we measure in

this work the effective fracture energy in the special

case of a semi-infinite crack embedded into an infinite

periodic solid. In real experiments, fracture specimens

have a finite (i) length, (ii) height, and (iii) width, that

may or may not change our results:

1. finite length effects can be grasped within the struc-

tural length scale L that accounts for the macro-

scopic ERR G∞ decrease with crack advance. In an

ordered setting, a more stable geometry (low L or

small specimens) dampens the front deformations,

and thus enforces the regularity of the penetration

processes. The maximal loading G∞max is not ex-

pected to deviate much from Geff
c of Eq. (8), but the

average dissipation
〈
Gfrac

c

〉
may fluctuate between

〈Gc〉 (for L . dz, dx, `ρ) and Geff
c of Eq. (8) (for

L � dz, dx, `ρ). In a disordered setting, the finite

length of the system might bring the effective tough-

ness down to the weak pinning limit Geff
c = 〈Gc〉 for

L . dz (Démery et al., 2014a; Lebihain et al., 2021).

2. finite height effects can be accounted for within the

perturbative approach of LEFM building on the re-

sults of Legrand et al. (2011) that extended Rice

(1985)’s formulae to the case of a semi-infinite pla-

nar crack located in the mid-plane of a thin plate.

In the limit case of an infinite thin plate, the non-

local contributions of Eq. (3) are enhanced by a fac-

tor 4 due to the finite height of the system. Thus,

for ordered systems, finite height effects smooth out

crack front deformations, which enforces again the

regularity of the penetration process. The effective

fracture energy Geff
c follows then Eq. (8). For dis-

ordered systems, the amplification of the non-local

interactions are expected to decrease the size Lc of
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the Larkin domains (Démery et al., 2014b), which

leads to an overall toughening of the material. Note

that such an effect is not expected to modify quali-

tatively the observations of Sections 4 & 5.

3. finally, to the best of the author’s knowledge, the

perturbative approach used in this paper cannot ac-

count for finite width effects, as the anticlastic defor-

mations of the specimen that lead to a curved crack

front (Jumel and Shanahan, 2008-09-22; Patinet et al.,

2013a). Yet, when the curvature of the front is larger

than the defect spacing (in an ordered case) or the

Larkin domains (in a disordered one), one may as-

sume that the effective fracture energy is not influ-

enced much by the finite width of the system.

4 From periodic to disordered microstructures:

the major impact of the material disorder

This section aims at stressing out that material disor-

der must not be ignored when designing tougher mate-

rials. Playing with the shape of the inclusions, namely

their size ratio dx/dz, we show that designing compos-

ites from periodic simulations can result in quantitative

errors on the ultimate toughening (Section 4.1), and

may even lead to misjudge the toughening behavior of

a given geometry (Section 4.2). Based on this results,

we finally highlight counterintuitive impacts of the ma-

terial disorder in Section 4.3.

4.1 Estimating the effective fracture energy of

disordered composites from periodic simulations can

lead to quantitatively wrong predictions

We consider a situation similar as the one presented in

Section 3 where tough circular inclusions, whose frac-

ture energy varies from Ginc
c = Gmat

c to Ginc
c = 4Gmat

c ,

are randomly distributed with a slightly lower density

ρinc = 10%. But here, we increase the aspect ratio

r = dx/dz from r = 1 (circle) to r = 4 (ellipsis elon-

gated along the propagation direction) (see Fig. 4),

while keeping the ratio dz/Lz constant for all consid-

ered geometries in order to remove the influence of the

system size (Démery et al., 2014b). The distribution of

elliptical inclusions are generated from a circular one

by dilating the inclusion position x and its size dx by

a factor r, so that all the characteristic length scales of

the disorder texture (inclusion size dx and spacing `xρ)

evolve accordingly.

In the periodic case, we observe in Fig. 4.a that

the inclusion elongation does not impact the effective

fracture energy when the elongated inclusion is oriented

in the propagation direction, and still follows Eq. 8. It is
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Fig. 4 (a) Effective fracture energy of periodic media with
tough inclusions elongated along the propagation direction :
all the composites display the same toughening behavior de-
scribed by Eq. (8) as the inclusion fracture energy is increased
since (b-d) the crossing processes are regular for all considered
geometries.
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Fig. 5 (a) Effective fracture energy of disordered media with
tough inclusions elongated along the propagation direction :
the toughening increase driven by material disorder is reduced
as (b-d) the inclusion gets more and more elongated along
the direction (Ox) of propagation. The periodic ordered case
(dashed red lines) and the weak pinning limit Geff

c = 〈Gc〉
(dotted red lines) are plotted for reference.

explained by the fact that the inclusion elongation does

not influence the regularity of the penetration process,

since we can always find a stable configuration where

G (z) = Ginc
c on a portion of size dz of the inclusion and

G (z) = Gmat
c outside of it (see Fig. 4.(b-d)).

When disorder is introduced, the toughening be-

havior differs for the three considered geometries (see

Fig. 5). The Larkin domains spread wider (see Eq. (11))

and the disorder-induced toughening is smoothed down

toward the weak pinning limit Geff
c = 〈Gc〉 correspond-

ing to the limit dx/dz → ∞ (Roux et al., 2003). This

toughening decrease as the inclusions become longer

(increase of dx/dz) is well predicted by Eq. (10).
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Inclusion geometries, which produce the same tough-

ening in the periodic case, can lead to different tough-

ening behaviors as soon as disorder is introduced. Thus,

periodic estimates do not provide quantitative predic-

tions on the effective fracture energy of disordered com-

posites.

4.2 Neglecting the impact of material disorder may

lead to qualitatively wrong predictions of the effective

fracture energy

We now show that periodic estimates can be even qual-

itatively wrong in predicting the influence of the inclu-

sion shape on the toughening behavior of brittle com-

posites, and consider inclusions elongated along the front

direction (Oz) with a size ratio dx/dz ranging from

dx/dz = 0.25 to dx/dz = 1.

In the periodic case of Fig. 6, we observe that when

the inclusion gets too elongated and tough, the over-

all toughening decrease from the circular case. For low

(Oz)-elongation ratio (dx/dz = 0.5 or dx/dz = 1), the

penetration process remains regular (see Fig. 6.(b-c)),

and the effective fracture energy follows the theoreti-

cal predictions of Eq. (8). For larger elongation ratios

(dx/dz = 0.25) and significant fracture energy contrast

(Ginc
c ≥ 2.2Gmat

c ), the penetration process becomes un-

stable: in Fig. 6.d, we observe that parts of the crack

front located on the sides of the inclusion unpin first,

reducing the inclusion width at the critical load and

the effective fracture energy (see Eq. 8). As the inclu-

sions get tougher, this lateral crossing starts earlier and

induces an overall decrease of the composite fracture

energy.

When disorder is introduced, the toughening behav-

ior shifts drastically (see Fig. 7): in contrast with the

periodic case where high (Oz)-elongation ratios tend

to decrease the effective fracture energy, it toughens

the material in presence of disorder. It emerges from

the contraction of the Larkin domains with decreasing

dx/dz (see Eq. (11)). The critical loading to make the

crack propagate further increases with respect to the

weak pinning limit Geff
c = 〈Gc〉, that corresponds to

the absence of disorder. This feature is well grasped by

Eq. 10.

An inclusion geometry, which appears to be detri-

mental to material toughening in a periodic setting,

proves to be beneficial in presence of disorder. Thus, pe-

riodic estimates may not provide qualitative predictions

on the toughening behavior of disordered composites.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Inclusion fracture energy Ginc
c /Gmat

c

1.0

1.2

1.4

1.6

1.8

2.0

Ef
fe

ct
iv

e
fr

ac
tu

re
en

er
gy

G
ef

f
c

/
G

m
at

c

dx/dz = 1.00 ...
dx/dz = 0.50 ...
dx/dz = 0.25 ...

c

b

a

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Inclusion toughness Ginc

c /Gmat
c

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Ef
fe

ct
iv

e
to

ug
hn

es
s

G
ef

f
c

/
G

m
at

c

dx/dz = 1.00 ...
dx/dz = 0.50 ...
dx/dz = 0.25 ...

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Inclusion toughness Ginc

c /Gmat
c

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Ef
fe

ct
iv

e
to

ug
hn

es
s

G
ef

f
c

/
G

m
at

c

dx/dz = 1.00 ...
dx/dz = 0.50 ...
dx/dz = 0.25 ...

dz

d

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Inclusion toughness Ginc

c /Gmat
c

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Ef
fe

ct
iv

e
to

ug
hn

es
s

G
ef

f
c

/
G

m
at

c

dx/dz = 1.00 ...
dx/dz = 0.50 ...
dx/dz = 0.25 ...

dz

dz

Fig. 6 (a) Effective fracture energy of periodic media with
tough inclusions elongated along the front direction : ma-
terial toughening for low elongation ratio (dx/dz = 1 and
dx/dz = 0.5) follows Eq. (8) since (b-c) the crossing processes
are regular. At higher inclusion elongation (dx/dz = 0.25),
these processes become unstable due to (d) early crossing at
the sides of the inclusion, leading to a decreased toughening.
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Fig. 7 (a) Effective fracture energy of disordered media with
tough inclusions elongated along the front direction : in con-
trast with the periodic setting of Fig. 6, the disorder-driven
toughening increases as (b-d) the inclusion gets more and
more elongated along the front direction (Oz). The periodic
ordered case for the circle inclusion (dashed red lines) and the
weak pinning limit Geff

c = 〈Gc〉 (dotted red lines) are plotted
for reference.

4.3 Counterintuitive impacts of the material disorder

for the design of tougher composites

Now that we understand how the elongation of the in-

clusions impacts the effective fracture energy in pres-

ence of disorder, we highlight some counterintuitive ef-

fects that only emerge from the disorder-induced tough-

ening.
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Fig. 8 (a) Influence of the inclusion geometry in tuning ma-
terial toughening : (b) microstructure with increased density
(ρinc = 20% in solid line) can have a lower toughening impact
if the inclusions are elongated along the propagation direction
(dx/dz = 4) rather than in the front direction (ρinc = 10%
and dx/dz = 0.25 in dashed line).

Denser yet weaker – First, we show that, at constant

inclusion fracture energy, denser distributions of inclu-

sions might not lead to toughening. We consider first

a distribution of inclusions elongated along the (Oz)-

direction of the crack front (dx/dz = 0.25) at a den-

sity ρinc = 10% and a second distribution of inclu-

sions elongated along the (Ox)-direction of propaga-

tion (dx/dz = 4) at a density ρinc = 20%. We observe

in Fig. 8 that the second distribution is slightly weaker

than the first one despite being twice denser. Such an

observation is very specific to the disordered setting and

does not remain valid in the periodic one.

Weaker yet not weaker – Now we prove that, in pres-
ence of disorder, the introduction of weak inclusions

does not necessarily weaken the composite. We consider

the joined cases of Sections 4.1 and 4.2, but we now al-

low the inclusions to be slightly weaker than the matrix,

with a constant fracture energy ranging from 0.5Gmat
c

to 1.5Gmat
c . We observe in Fig. 9 that introducing weak

patches usually lead to an overall weakening of the com-

posite (for dx/dz = 1 and dx/dz = 4), but also that

the effective fracture energy remains unchanged when

the weak inclusions are elongated along the direction

of the crack front (dx/dz = 0.25). Again, as the in-

clusions get more and more elongated along the (Oz)-

direction of the crack front, the Larkin domains shrink

(see Eq. (11)) until they only contain matrix material.

The critical loading required to unpin this portion of

the crack front is then equal to the fracture energy of

the matrix Geff
c = Gmat

c . It is interesting to note that

the theoretical formula of Démery et al. (2014a) from

Eq. (10) predicts a toughening Geff
c > Gmat

c in presence

of weak inclusions elongated along the front direction.
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Fig. 9 Influence of the inclusion geometry in suppressing the
impact of material defects : the introduction of weaker inclu-
sions usually weakens the composite (b-c) except when the
inclusions are elongated along the front direction (d) where
the disorder tunes down the influence of weak patches.

It misses the fact that the effective fracture energy can

never be higher than the maximum value of the local

fracture energy field, since it is set by the fracture en-

ergy experienced by a Larkin domain.

5 Designing composites with asymmetric

fracture energy properties in presence of

disorder

Several works took advantage of the regularity of the

penetration process that governs material toughening

in periodic setting, to design ordered composites with

asymmetric fracture properties (see e.g. Xia et al. (2013)

Xia et al. (2015), and Hsueh and Bhattacharya (2018)).

Since the introduction of disorder can strongly affect

the toughening behavior for a given inclusion geometry,

we can wonder whether this fracture energy asymmetry

survives when the inclusion are positioned at random.

We show in Section 5.1 that the peculiar mechanisms of

crack propagation in disordered media may smoothen

out the geometry-induced asymmetry, but that one can

still design proper inclusion shape to achieve asymmet-

ric failure properties as illustrated in Section 5.2.

5.1 Disorder may smoothen out toughening

asymmetry

We saw in Section 4.2 than low elongation ratio dx/dz
can trigger irregular penetration process due to the

early crossing of the inclusion sides. We then consider

an inclusion, which is made of two semi-ellipsis with

dx/dz = 0.125 on top and dx/dz = 0.5 on the bottom
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Fig. 10 (a) Fracture energy asymmetry for periodic arrange-
ments of asymetric inclusions : the inclusion shape render the
penetration process (b) regular when the thicker portion is
facing the incoming crack and (c) irregular in the other di-
rection, leading to asymmetric toughening.

(see Fig. 10), and study the effective fracture energy of

such composites at ρinc = 12%.

In a periodic setting, an expected asymmetry of ef-

fective fracture energy emerges from the (ir)regularity

of the penetration process depending on which part of

the inclusion the crack faces first (see Fig. 10): when the

crack lands on the thin ellipse, the penetration phase is

unstable with early lateral crossing (Fig. 10.b), while it

is mostly stable when facing the thicker one (Fig. 10.c).

The effective fracture energy asymmetry increases as

the inclusion fracture energy gets bigger and the pene-

tration process gets more irregular.

The introduction of disorder tends to smoothen out

this fracture energy asymmetry (see Fig. 11). This is

explained by the fact that the effective fracture energy

of Eq. 10 (and the size of the Larkin domains Lc of

Eq. 11) involves the correlation lengths ξz and ξx of

the fracture energy field Gc (z, x), which are invariant

with the transformation x → −x. Thus, the macro-

scopic fracture energy of the composite is not expected

to depend on the orientation of the microscopic inclu-

sions in presence of disorder. The slight anistropy ob-

served in Fig. 11.a will be discussed in the next section.

5.2 Tuning the inclusion geometry to force fracture

energy asymmetry

Even though it is well captured by the framework of

Démery et al. (2014b), this smoothening of the geometry-

driven fracture energy asymmetry in presence of disor-

der is detrimental to the design of optimized composites

with tailored fracture properties. However, we show in

this last section that it is possible to overcome this ef-

fect, and design disordered materials with asymmetric
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Fig. 11 (a) Fracture energy asymmetry smoothened by dis-
order for asymetric inclusions : the asymmetric toughening
observed for periodic arrangements in Fig. 10 almost com-
pletely disappears in presence of disorder. (b-c) Toughest
pinning configurations of the crack front for each inclusion
orientation.
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Fig. 12 (a) Fracture energy asymmetry for periodic arrange-
ments of moon-shaped inclusions : the inclusion shape make
penetration processes (b) regular when the inclusion tip are
away from the incoming crack and (c) irregular in the other
direction, leading to an asymmetric toughening.

fracture energy, building on the specific collective cross-

ing mechanisms involved.

We consider now moon-shaped inclusions, inspired

by the seminal study of Xia et al. (2013). The presence

of peaked parts on both sides of the inclusions trigger

strongly irregular penetration processes when the crack

front faces those peaks (Fig. 12.b), while the larger cur-

vature in the other direction allows for stable crossing

of the inclusion (Fig. 12.c). Consequently, the effective

fracture energy displays a strong asymmetry in a peri-

odic setting (see Fig. 12.a), reported in Xia et al. (2013),

Xia et al. (2015), and Hsueh and Bhattacharya (2018).

Surprisingly, we observe in Fig. 13.a that this frac-

ture energy asymmetry survives to the presence of dis-

order, contrary to the case presented in Section 5.1. It is

explained by the fact that the effective fracture energy
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Fig. 13 (a) Fracture energy asymmetry persists in presence
of disorder for moon-shaped inclusions : the effective fracture
energy is linked to the critical force required to make propa-
gate a Larkin domain from (b-c) a pinning configuration, and
thus depends on (insets b-c) the pinning configuration at the
inclusion level.

is set by the critical force required to unpin a Larkin

domain. The size Lc of a Larkin domain relates to the

amplitude of the crack front roughness in a pinning

configuration3, which might be sensitive to the details

of the microstructure. Such a pinning configuration is

plotted for both inclusion orientations in Fig. 13.(b-c).

We observe (in inset) that the pinning configuration on

each inclusion strongly depends on the inclusion ori-

entation, and gives rise to a smaller effective inclusion

width deff
z when the peaks of the moon-shaped inclusion

are facing the crack (Fig. 13.b), while its effective length

deff
x remains fairly unchanged. Based on Eq. (10), this

tends to reduce the disorder contribution σ2

〈Gc〉
ξz
ξx

and

thus explains why we can still observe fracture energy

asymmetry in presence of disorder. In particular, we

see in Fig. 11.(b-c) that, in the case of joined-ellipsis

inclusions, the effective size ratio deff
x /d

eff
z is almost in-

dependent of the inclusion orientation, giving rise to a

quasi-symmetric effective fracture energy.

This last example highlights the importance of ac-

counting for the influence of material disorder when de-

signing tougher materials. Assuming periodicity might

be both quantitatively and qualitatively wrong in esti-

mating the effective fracture energy of realistic compos-

ites, in which perfect order is often out of reach. Yet,

periodic simulations may constitute an efficient means

of estimating the relevant parameters (ξz, ξx) feeding

the theoretical model of Démery et al. (2014b) that

accounts for the decisive influence of disorder, as illus-

trated in the previous example.

3 The Larkin length is defined through the relation
∆f(∆z=Lc)=ξx, where ∆f(∆z)=〈[f(z+∆z,x)−f(z,x)]2〉1/2 is
the correlation function of the in-plane front perturbation.

6 Conclusion

This work highlights the dramatic influence of material

disorder on the effective fracture energy of brittle com-

posites. Considering the most “simple” case of a copla-

nar crack propagating in 3D within a heterogeneous

fracture energy field Gc (z, x) arising from realistic mi-

crostructures, we study the ultimate toughening result-

ing from randomly positioned inclusions, and compare

it to the one induced by ordered arrangements (cor-

responding to a single inclusion problem in a periodic

setting). We conclude that the effective fracture energy

of disordered brittle composites cannot be inferred from

periodic simulations. More precisely, various key results

can be retained from this work:

– the toughening induced by disordered arrangements

of tough inclusions strongly differs from the ordered

case. Designing composites from periodic simula-

tions might lead to quantitative errors on the ulti-

mate inclusion-induced toughening. It is explained

by the fundamentally different mechanisms involved

during the pinning/depinning of the crack front by

the inclusions: in the ordered case, the regularity of

the penetration process is crucial (Gao and Rice,

1989), while in presence of disorder, the effective

fracture energy is dictated by the fracture energy ex-

perienced during a pinning configuration by a Larkin

domain, emerging from the disorder intensity and its

geometrical structure;

– the toughening behavior displayed by a given inclu-

sion geometry as its fracture energy increases can-

not be inferred from the periodic case, which can

be (i) quantitatively and (ii) qualitatively different.

We considered (i) elliptic inclusions elongated along

the propagation direction, which toughens the com-

posite equally no matter the elongation ratio when

orderly disposed, and differently when positioned at

random. The toughening behavior predicted by pe-

riodic simulations may then be quantitatively wrong.

We then investigated (ii) elliptic inclusions elon-

gated along the front direction, and showed that the

inclusion-induced toughening was reduced in the pe-

riodic case as their elongation was increased, while

it increases in presence of disorder. Periodic compu-

tations can thus predict a toughening behavior that

is qualitatively wrong.

– the toughening induced by the material disorder

being linked to both the disorder intensity σ and

its geometrical structure ξz/ξx, one can design brit-

tle materials with surprising properties such as one

tougher than the other despite having half the den-

sity of inclusions of same fracture energy. One can
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also design composites that doesn’t get weaker as

its inclusion phase gets weaker and weaker.

– material design should include the influence of dis-

order otherwise astonishing properties, such as frac-

ture energy asymmetry, might disappear when the

inclusions are positioned at random. A careful de-

sign of inclusion geometry that complies with the

physics of brittle fracture in heterogeneous media

may lead to the development of tough composite

with surprising fracture properties.

Regarding the last point, the persistence of a fracture

energy asymmetry in a disordered setting is unexpected,

since it cannot be grasped by the direct application of

the theoretical formulæ of Démery et al. (2014a). The

effective fracture energy appears to be strongly dictated

by the fracture energy experienced by the front during

pinning configurations, and depends then on the de-

tails of the microstructure at the inclusion level. Sur-

prisingly, the stable configurations observed in the pe-

riodic case could provide some insight on the pinning

configuration at the inclusion level in presence of disor-

der. These preliminary results open a promising route

to the careful design of anisotropically tough interfaces.

Despite its limiting assumptions (e.g. coplanar prop-

agation, constant elasticity, weak disorder), our results

give useful insights on the sole influence of material dis-

order and its microstructure on the effective fracture en-

ergy. Bearing in mind that more complex mechanisms

could be translated into an equivalent fracture energy

heterogeneities, this work provides clues to optimize the

disorder-induced toughening in a broader context.
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Måløy KJ, Santucci S, Schmittbuhl J, Toussaint R (2006) Local wait-
ing time fluctuations along a randomly pinned crack front. Physical
Review Letters 96(4):045501, DOI 10.1103/PhysRevLett.96.045501, URL
https://link.aps.org/doi/10.1103/PhysRevLett.96.045501

Merta I, Tschegg EK (2013) Fracture energy of natural fi-
bre reinforced concrete. Construction and Building Materi-
als 40:991–997, DOI 10.1016/j.conbuildmat.2012.11.060, URL
http://www.sciencedirect.com/science/article/pii/S0950061812008963

Milton GW (2002) The theory of composites. Cambridge University Press ,, URL
http://dl.merc.ac.ir/handle/Hannan/3193

Ortiz M (1987) A continuum theory of crack shielding in ceramics. Jour-
nal of Applied Mechanics 54(1):54–58, DOI 10.1115/1.3172994, URL
http://dx.doi.org/10.1115/1.3172994

Patinet S, Alzate L, Barthel E, Dalmas D, Vandembroucq D, Lazarus
V (2013a) Finite size effects on crack front pinning at hetero-
geneous planar interfaces: Experimental, finite elements and per-
turbation approaches. Journal of the Mechanics and Physics
of Solids 61(2):311–324, DOI 10.1016/j.jmps.2012.10.012, URL
http://www.sciencedirect.com/science/article/pii/S0022509612002335

Patinet S, Vandembroucq D, Roux S (2013b) Quantitative prediction of
effective toughness at random heterogeneous interfaces. Physical Re-
view Letters 110(16):165507, DOI 10.1103/PhysRevLett.110.165507, URL
https://link.aps.org/doi/10.1103/PhysRevLett.110.165507

Ponson L (2009) Depinning transition in the failure of in-
homogeneous brittle materials. Physical Review Letters
103(5):055501, DOI 10.1103/PhysRevLett.103.055501, URL
https://link.aps.org/doi/10.1103/PhysRevLett.103.055501

Ponson L, Bonamy D (2010) Crack propagation in brittle heteroge-
neous solids: Material disorder and crack dynamics. International Jour-
nal of Fracture 162(1):21–31, DOI 10.1007/s10704-010-9481-x, URL
https://doi.org/10.1007/s10704-010-9481-x

Ponson L, Pindra N (2017) Crack propagation through disordered mate-
rials as a depining transition: A critical test of the theory. Phys-
ical Review E 95(5):053004, DOI 10.1103/PhysRevE.95.053004, URL
https://link.aps.org/doi/10.1103/PhysRevE.95.053004
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