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Abstract

A powerful semi-analytical method is developed to investigate the impact of tough inclusions
on crack paths and the resulting effective fracture properties. Using a perturbative approach of
fracture mechanics, this method allows to account for out-of-plane excursions of cracks resulting
from the discontinuity of toughness at the inclusion/matrix interface, by applying a generalized
maximum-energy-release-rate criterion. For a sufficiently large toughness mismatch between the
matrix and the inclusions, the crack by-passes the obstacles, thus reducing the inclusion-induced
reinforcement of the material. For spherical inclusions, obstacles of fracture energy larger than
3.85 times that of the matrix become ineffective to further reinforce the material, because of
their systematic by-pass. The role played by the shape of the inclusions is also investigated;
inclusions of non-spherical shape may reduce the reinforcement through three-dimensional col-
lective effects emerging from the coupling between the in-plane and out-of-plane components
of the crack front perturbation. Finally we show that inclusion by-pass not only limits crack
bowing but can also prevent crack bridging, for inclusions short enough in the direction orthog-
onal to the mean fracture plane. Thus this study provides a quantitative picture of the interaction
mechanisms between a crack front and tough inclusions, which paves the way to the future mi-
crostructural design of brittle solids with improved resistance to failure.

Keywords: Brittle fracture, heterogeneous materials, effective toughness, homogenization
methods, toughening mechanisms

1. Introduction

The development of a microstructure-sensitive theory of fracture has been a challenge for
decades in solids mechanics. Today, the boom of additive manufacturing techniques and the
emergence of bio-source and recycled composite materials driven by environmental concerns
have increased further the need to rationalize the failure behavior of micro-structured solids
(Reis, 2006; Jo et al., 2008; Dimas et al., 2013; Wang and Xia, 2017). Yet, a comprehensive
theoretical framework that allows for the ab initio prediction of the toughness of materials from
their microstructural features is still lacking.
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Recently renewed attention has been paid to the fracture behavior of heterogeneous materi-
als, see e.g. Barthelat and Rabiei (2011), Patinet et al. (2013), Démery et al. (2014) , Hossain
et al. (2014), Xia et al. (2015), Vasoya et al. (2016a) and Wang and Xia (2017). These studies
aim at describing quantitatively the impact of small scale microstructural features of materials on
their macroscopic failure properties, thus paving the way for a comprehensive fracture mechan-
ics theory of heterogeneous media. They can be viewed as the continuation of pioneer works
dedicated to the interaction mechanisms between a macroscopic crack and a tough inclusion,
notably crack trapping (Gao and Rice, 1989; Bower and Ortiz, 1990), crack deflection (Faber
and Evans, 1983; Suresh, 1985; Rödel, 1992) and crack bridging (Erdogan and Joseph, 1989;
Bower and Ortiz, 1991), that occur during the failure of particle-reinforced ceramics. But they
also embrace a broader ambition related to the development of a general micromechanical the-
ory of fracture able to predict the effective toughness of brittle solids from the spatial distribution
and mechanical properties of microstructural heterogeneities, in the spirit of the homogenization
methods dedicated to elastic and non-linear mechanical properties of materials (Nemat-Nasser
et al., 1996; Ponte-Castañeda and Suquet, 1997). This work fully encompasses both perspectives,
as

• it aims at providing a quantitative analysis of the reinforcement of brittle solids by tough
inclusions, in line with the seminal works on particle-reinforced ceramics quoted above,
but also beyond, as it also takes into account the out-of-plane by-pass of particles that
largely controls the efficiency of the reinforcement;

• it also provides basic theoretical concepts that will serve as building blocks for the pre-
diction of the effective fracture properties of materials with heterogeneous distributions of
toughness, as will be shown notably in a subsequent paper dedicated to the effective tough-
ness of composites with disordered distributions of inclusions (Lebihain et al., 2020).

The in-plane trapping of cracks by tough inclusions was first studied using a perturbative
approach based on the Bueckner-Rice weight function theory (Bueckner, 1987; Rice, 1985).
Gao and Rice (1989) thus analyzed how periodic arrangements of tough inclusions may rein-
force brittle solids by hindering crack propagation. Using the second-order theory of Leblond
et al. (2012), Vasoya et al. (2016b) explored the pinning of cracks by tough obstacles beyond
the linear approximation. Beyond the first- and second-order approximations, Bower and Ortiz
(1991) showed that a sufficiently strong trapping may lead to crack bridging, enhancing further
the material resistance to crack growth. Focusing on a penny-shaped crack trapped by an array
of radially invariant, very tough obstacles, Vasoya et al. (2016a) evidenced the existence of a
fingering instability wherein the front propagates in between the obstacles, letting behind unbro-
ken regions of the interface. Considering randomly distributed fracture properties, Roux et al.
(2003), Patinet et al. (2013) and Démery et al. (2014) developed homogenization methods to
rationalize the disorder-induced toughening reminiscent of the collective pinning of crack fronts
by a large number of impurities. Finally, Xia et al. (2015) and Hsueh and Bhattacharya (2018)
used these concepts to functionalize heterogeneous interfaces, through the rational design of ob-
stacles with complex shapes, achieving for example toughness asymmetry. All these works built
on efficient analytical or semi-analytical perturbative methods. Yet they were restricted to copla-
nar crack propagation and thus overlooked the effect of excursions of cracks out of the mean
fracture plane, such as inclusion by-pass. Such an effect has been investigated in the works of
Ramanathan et al. (1997), Bonamy et al. (2006) and Barès et al. (2014), who introduced an ad
hoc stochastic shear loading component in the set of perturbative equations governing the crack
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evolution, so as to model crack deflections induced by material impurities. Even though these
works provided some insight on the roughness properties of the resulting fracture surface, they
failed to provide any hint on the effect of the geometry and mechanical properties of the inclu-
sions upon the overall fracture toughness.

Beyond analytical or semi-analytical models, the out-of-plane deflection of cracks by tougher
or stiffer inclusions has been studied through the Finite Element (FE) method (Bush, 1997), the
Extended Finite Element (XFEM) method (Gao et al., 2017), cohesive zone models (Li and Zhou,
2013; Wang and Xia, 2017; Zeng and Wei, 2017), and phase field models (Hossain et al., 2014;
Ylmaz et al., 2018; Bleyer and Alessi, 2018; Li and Maurini, 2019). These various methods
allow for a realistic description of microstructural features such as inclusions, and a quantitative
description of the resulting reinforcement. Yet, their computational cost is high so they are of-
ten limited to a two-dimensional setting (i.e. geometries invariant in the direction of the crack
front). As a result, they do not capture in-plane toughening mechanisms like crack bowing or
its interaction with out-of-plane growth processes (e.g. inclusion by-pass). Notable exceptions
are the works of Clayton and Knap (2014) and Nguyen et al. (2016, 2017b,a) who explored the
interaction between a crack and microstructural heterogeneities in a fully three-dimensional set-
ting. However, their calculations were limited to a few inclusions, and furthermore their focus
was on crack trajectory, without addressing the impact of this trajectory upon the overall material
toughness.

Here, we first develop an efficient theoretical/numerical model, allowing to simulate crack
propagation in heterogeneous brittle materials containing arbitrary numbers of inclusions. Leav-
ing applications to situations involving disordered materials with large numbers of inclusions for
future studies, we focus here on periodic geometries, with only one inclusion per period, in or-
der to investigate in depth some fundamental aspects of the crack-inclusion interaction problem.
Our work reveals the subtle three-dimensional coupling between the in-plane and out-of-plane
deformation modes of a crack front during its interaction with a microstructural heterogeneity.
We show that it governs the competition between the in-plane crossing of a tough inclusion and
its out-of-plane by-pass, that ultimately controls the level of reinforcement. This allows to de-
termine that beyond some critical toughness contrast between the inclusion and the matrix, the
particle-induced reinforcement becomes inefficient as the crack by-passes the obstacle. For non-
spherical inclusions, we show that the geometry of the inclusion may counter-balance or enhance
this effect. More broadly, our study reveals that crack deflection is rarely beneficial to the overall
toughness as it can hinder more efficient toughening mechanisms such as crack bowing or crack
bridging.

With regard to modeling aspects, more specifically, the three-dimensional coupling between
the modes of front distortion is addressed within a Linear Elastic Fracture Mechanics (LEFM)
perturbative framework based on the works of Gao and Rice (1986) for the in-plane perturbation
of the crack front and (Movchan et al., 1998) for the out-of-plane perturbation of the crack
surface. The material microstructure is modeled as distributions of tough inclusions embedded
in a weaker matrix. Application of a Generalized Maximum Energy Release Rate (GMERR)
criterion (Gurtin and Podio-Guidugli, 1998; Hakim and Karma, 2005; Chambolle et al., 2009)
at the toughness discontinuity between the inclusion and the matrix allows to model out-of-
place excursions of the crack, without having to introduce an artificial mode II shear loading
component as done in the works of Ramanathan et al. (1997), Bonamy et al. (2006) and Barès
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et al. (2014). With this fracture mechanisms-based model, the issue of the effective toughness
resulting from the interaction between a crack front and inclusions of arbitrary shape and fracture
properties (interfacial toughness and inclusion toughness) can be tackled appropriately in a fully
three-dimensional setting at a low computational cost.

The paper is organized as follows:

• Section 2 presents the theoretical model combining the definition of the material mi-
crostructure, the perturbative three-dimensional LEFM approach permitting the calcula-
tion of the stress intensity factors along the front of a crack arbitrarily perturbed both
within and out of its plane, the suitable criterion for the prediction of the future local di-
rection of propagation and the kinetic law providing the local velocity of the front.

• Section 3 details the numerical implementation of the model, involving notably an ex-
plicit scheme for time-integration, and a convergence criterion for the determination of the
suitable time-step.

• Section 4 is dedicated to the analysis of the competition between the crossing and the by-
pass of tough spherical inclusions. The transition between one mechanism to another, and
its implication on the effective toughness of periodic heterogeneous media is investigated.
We show that beyond some critical value of the inclusion toughness, the crack system-
atically by-passes the obstacle, resulting in a maximum, “plateau” value of the effective
toughness no longer depending upon the inclusion toughness.

• In Section 5, subtler weakening mechanisms, resulting from the collective by-pass of in-
clusions due to the coupling of the in-plane and out-of-plane crack front perturbations,
are also evidenced, by considering ellipsoidal prolate inclusions elongated in the direction
parallel to the crack front.

• Finally Section 6 discusses the competition between crack bowing, crack deflection and
crack bridging, through consideration of the interaction of a crack with prolate obstacles
elongated in the direction perpendicular to the fracture plane.

2. Theoretical modeling

In contrast to variational approaches (Francfort and Marigo, 1998; Nguyen et al., 2017b;
Bleyer and Alessi, 2018; Li and Maurini, 2019) and phase field models (Hakim and Karma, 2005,
2009), where both questions of crack initiation and propagation are addressed within a “global”
approach at the scale of the entire structure, the traditional approach of LEFM, as used in this
paper, relies on local propagation criteria using the Stress Intensity Factors (KI,KII,KIII) (SIFs)
and/or the elastic Energy-Release-Rate G (ERR) in combination with the material toughness
Gc, to predict the crack path and the loading conditions actually inducing propagation. Any
predictive method of crack propagation based on this classical framework thus requires three
main ingredients, be it in the homogeneous or heterogeneous case, for a mode I loading or
mixed-mode conditions :

1. The definition of a given microstructure, which provides, in our specific case, the field
Gc (x) of fracture energy experienced by the crack when propagating. Note that with some

abuse of terminology, we shall refer to the fracture energy Gc ≡
1 − ν2

E
K2

Ic as the “tough-
ness” of the material.
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2. Some way of calculating the SIFs
(
Kp

)
p∈{I,II,III}

and the ERR G along the crack front F , for
any crack configuration differing slightly from a planar crack with a straight front.

3. Some propagation criteria, combining a prediction of the future direction of propagation
and a kinetic law for the crack front advance, based on the previous elements.

The following sections describe how each of these ingredients is accounted for, and how
they are connected to each other. In Section 2.1, we describe the microstructures considered
and explain how they are generated, including a discussion of the simplifying hypotheses made.
Section 2.2 expounds the perturbative three-dimensional LEFM approach used, focusing on the
sole case of a semi-infinite crack subjected to some tensile loading. The combination of these
two ingredients within a Generalized Maximum Energy Release Rate (GMERR) criterion and a
kinetic law is explained in Section 2.3.

2.1. Heterogeneous microstructure and toughness field

We consider an semi-infinite crack embedded in an infinite periodic body. We adopt the
usual convention of LEFM and thus denote x the direction of crack propagation, y the direction
orthogonal to the crack plane, and z the direction parallel to the crack front F . Also, the period
in the z-direction is denoted Lz. The associated unit vectors are denoted

(
ep

)
. At a given time

t, the position of the crack front within the crack plane is noted x (t), the origin O being chosen
arbitrarily within this plane (Fig. 1.a).

Lz

2

�Lz

2

O

x (t)

x

z

y

(a)

x

y

ds

(xs, ys, zs)

Interface :
Toughness Gint

c

Inclusion :
Toughness Ginc

c

Matrix :
Toughness Gmat

c

(b)

Figure 1: (a) Semi-infinite crack facing a polydisperse inclusion distribution with varying toughness; (b) Fracture prop-
erties of the inclusion, the matrix and their interface.

The material is made of two phases: a homogeneous matrix and spheroidal inclusions. The
inclusion distributionD is defined by the inclusion positions (xs, ys, zs, ds)s∈[[1;N]]. The inclusions
are considered to be distributed isotropically and their diameters follow a monodisperse or poly-
disperse distribution, characterized by its mean value d and standard deviation σd.

Two main assumptions are made regarding the mechanical behavior of each phase. First, the
matrix and the inclusions are assumed to be isotropically and linearly elastic and share the same
Young’s modulus E and Poisson’s ratio ν. Second, the phases are assumed to be brittle but differ
in their fracture properties: the inclusions may be tougher and/or weakly bonded to the matrix.
These properties are characterized by an inclusion toughness Ginc

c and an interfacial toughness
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Gint
c as depicted in Fig. 1.b. These fracture properties may vary from one inclusion to another.

A clear separation of lengthscales is assumed between :

• the size of the structure Lstruct ;

• the inclusion size d (Fig. 1.a);

• the size `fpz of the process zone, in which all fracture dissipative processes (e.g. bond
breaking, plasticity, damage) are confined (Fig. 1.b);

• the width `∆ of the interface, within which the toughness properties vary from Gmat
c to Ginc

c ,
with the possible intermediary value Gint

c (Fig. 1.c).

Ginc
c

d
b c

CRACK	TIP INCLUSION	
INTERFACE	

(a) Crack-inclusion interaction

`fpz

(b) Fracture process zone

Gmat
c

Gint
c

Ginc
c

`�

x

G
c

(c) Fracture properties variations

Figure 2: Illustration of the different lengthscales involved during the interaction of a crack with an inclusion : the
inclusion size d, the size `fpz of the process zone, within which all inelastic processes are confined, and the interface
width `∆, characterizing the size of the transition region between the fracture toughness of the matrix and the one of the
inclusion.

Assuming brittle failure, we suppose that the process zone size is much smaller than the
inclusion size. In addition, assuming toughness discontinuitiesat the matrix-inclusion interface
implies that the interface width is much smaller than the process zone size. Finally using a
semi-infinite crack model relies on the assumption that the inclusion size is much smaller than
any structural sizes - otherwise effects tied to the specimen dimensions could be observed, as
reported by Legrand et al. (2011). To summarize, the following assumptions are made:

`∆ � `fpz � d � Lstruct. (1)
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These hypotheses are acceptable for a large range of brittle materials including ceramics, glasses
or brittle rocks like limestone.

The proposed description of a typical microstructure of a heterogeneous brittle solid leads to
a three-dimensional toughness field Gc (z, x, y). This field markedly differs from those considered
in previous three-dimensional perturbative studies (Ramanathan et al., 1997; Barès et al., 2014)
which used a stochastic field of fracture energy deriving from a statistical distribution, since
we consider here actual microstructures resulting from inclusions with given shape and fracture
properties. Also, the perturbations introduced in the set of LEFM equations will not be imposed
heuristically but deduced from the actual interaction between the crack and the inclusions. It is
worth noticing that the methodology proposed may be applied to any defect geometry provided
that the defect boundary and in particular the normal vector to this boundary are unambiguously
defined, which may be achieved for instance using level set methods. An example involving
prolate spheroidal inclusions will be provided in Sections 5 and 6.

2.2. Calculation of the SIFs along the crack front

2.2.1. Macroscopic loading
We consider a semi-infinite plane crack loaded in mode I through some loading character-

ized by some load parameter λ corresponding to either some prescribed displacement or some
prescribed force. The effects of the loading conditions and the sample geometry are accounted
for in our model through the following assumed evolution of the macroscopic ERR G∞ with the
average position x of the crack front:

G∞ (λ, x) = λ2 g(x). (2)

The “geometrical contribution” g(x) to the value of the ERR may be obtained from analytical
solutions or FE simulations. We assume that g′ (x) < 0, ∀x, which warrants stable crack growth,
i.e. crack arrest under constant loading (λ̇ = 0). Note that it is assumed here that the macroscopic
ERR G∞ is constant along the reference straight crack front (independent of z).

In order to keep the study of the effects of loading conditions and sample geometry as simple
as possible, we follow Ponson and Bonamy (2010) and limit our analysis to short propagation
distances x (t) � L, where L is a structural length defined from the variations of the function
g(x). The loading rate λ̇ being considered as constant, we get at the first order :

G∞ (λ, x) = G∞ (λ0, 0) +
∂G∞

∂λ

∣∣∣∣∣
λ0,0

λ̇t +
∂G∞

∂x

∣∣∣∣∣
λ0,0

x (3)

or equivalently:

G∞ (t) = G0

(
1 +

vmt − x (t)
L

)
(4)

where G0 = G∞ (λ0, x0 = 0) is the initial loading. The structural lengthL and the driving velocity
vm are defined by :

L = −G0/
∂G∞

∂x

∣∣∣∣∣
λ0,0

, vm = −λ̇
∂G∞

∂λ

∣∣∣∣∣
λ0,0

/
∂G∞

∂x

∣∣∣∣∣
λ0,0

. (5)

After an initial transient phase, the crack propagates at an average (in time) velocity equals to vm

so that G∞ remains finite during crack propagation (see Eq. (4)).
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2.2.2. Perturbative expression of the local SIFs
In a homogeneous material, the semi-infinite crack would undergo stable coplanar propaga-

tion at the speed vm, and the crack front F would remain straight at the instantaneous position
x(t) = vmt. But material heterogeneities distort the crack front both within the mean fracture
plane (crack trapping) and out of it (crack deflection). In the following, we note fx (z, t) the
in-plane perturbation of the crack front, and fy (z, t) its out-of-plane perturbation. The in-plane
perturbation is defined from the reference crack position x (t) (see Fig. 3) chosen so as to satisfy
the condition 〈 fx (z, t)〉z = 0. With these notations, the coordinates of a point M along the crack
front are given by (zM , xM , yM) =

(
z, x (t) + fx (z, t) , fy (z, t)

)
.

Assuming quasi-static crack propagation,1 one can use the formulæ of Gao and Rice (1986)
(for the in-plane perturbation of the crack front) and those of Movchan et al. (1998) (for the out-
of-plane perturbation of the crack surface) to compute the variations

(
δKp

)
p∈{I,II,III}

of the SIFs
from the reference geometry. At first order in fx and fy, the expressions of the SIFs read:

δKI (z, t)
K∞I (t)

= −
fx (z, t)

2L
−

1
2π

PV
∫ +∞

−∞

fx (z, t) − fx (z′, t)
(z − z′)2 dz′

.
δKII (z, t)

K∞I (t)
=

1
2
∂ fy
∂x

(z, t) +
2 − 3ν
2 − ν

1
2π

PV
∫ +∞

−∞

fy (z, t) − fy (z′, t)

(z − z′)2 dz′

δKIII (z, t)
K∞I (t)

= −
2 (1 − ν)2

2 − ν
∂ fy
∂z

(z, t)

(6)

where K∞I (t) denotes the unperturbed mode I SIF and the symbol PV a Cauchy principal value.
Note that the general expressions of Gao and Rice (1986) and Movchan et al. (1998) have

been simplified here in two respects:

• Since the specimen is assumed to be loaded in pure mode I, K∞II and K∞III are equal to zero.

Furthermore K∞I is related to G∞ through the relation K∞I =

√
E

1−ν2 G∞.

• The largest wavelength of the perturbation of the front is assumed to be much smaller than
the characteristic structural lengths defined by the loading and the specimen geometry,
so one may neglect the terms related to the T -stresses (corresponding to constant terms
in the asymptotic expansion of the stresses) and the A-stresses (corresponding to terms
proportional to

√
r in this asymptotic expansion) in the expressions of the variations of the

SIFs (Leblond and Ponson, 2016).

From Eq. (6), we notice that :

• Even though the crack is loaded macroscopically in Mode I, local Mode II and Mode III
components can arise from out-of-plane distortions of the crack.

• Long-range elastic interactions exist along the crack front through the integral terms. This
may lead to collective response of the crack during its propagation in a three-dimensional
medium as the behavior of a given point along the front is affected by the evolution of all
the other ones.

1The crack speed is assumed to be small with respect to the Rayleigh wave speed at any time and any position
along the front. This assumption is generally satisfied even in the presence of the micro-instabilities resulting from the
depinning of the crack from tough obstacles, as shown in Chopin et al. (2018)
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fx(z, t)

fy(z, t)•M

z

x

y

O

-

�Lz

2

-
Lz

2

x(t)

Figure 3: Geometrical perturbations of a semi-infinite planar crack located in x (t). fx (z, t) and fy (z, t) represent its
in-plane and out-of-plane perturbations, respectively

• There are no terms proportional to fy in the expression of δKI, and no terms proportional
to fx in the expressions of δKII and δKIII, a consequence of the various symmetries of the
problem.

Formulæ (6) permit to compute the SIFs
(
KM

I ,K
M
II ,K

M
III

)
, and thus the ERR G at any location

M along the crack front. Since the toughness values along the front and in its vicinity are deter-
mined from the position

(
z, x (t) + fx (z, t) , fy (z, t)

)
, there remains only one missing piece in the

puzzle, the propagation criterion, which is detailed hereafter.

2.3. The GMERR propagation criterion

2.3.1. Propagation states
During crack propagation, every point along the crack front can be in four different states

depicted in Fig. 4:

• State I: the point is propagating inside the matrix and may encounter an inclusion (Fig. 4.a
and 4.b);

• State II: the point has just “landed” on a tough inclusion and is now trapped at its interface
with the matrix (Fig. 4.c and 4.d);

• State III: after depinning from the matrix-inclusion interface, the crack crosses the inclu-
sion (Fig. 4.e and 4.f);

• State IV: after depinning from the matrix-inclusion interface, the crack by-passes the in-
clusion, thus leaving the original fracture plane (Fig. 4.g and 4.h).

One may distinguish between two types of propagation states. In State i and State iii the
point M is in a homogeneous phase; whereas in State ii and State iv, it lies on a interface
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State I - Matrix cracking

•M

z

x

(a) (xOz) plane

• M
x

y

(b) (xOy) plane

State II - Pinning

•
M

z

x

(c) (xOz) plane

•M
x

y

(d) (xOy) plane

State III - Inclusion crossing

•
M

z

x

(e) (xOz) plane

• M
x

y

(f) (xOy) plane

State IV - Inclusion by-pass

•
M

z

x

(g) (xOz) plane

•M

x

y

(h) (xOy) plane

Figure 4: The four possible states of a point M on a crack front during crack propagation in a heterogeneous medium
with toughness discontinuities

between two materials having different toughnesses. The local angular distribution of toughness
is here anisotropic.

Standard propagation criteria combine a kinetic law (which may or may not be equivalent
to Griffith’s criterion (Griffith, 1921)) together with a criterion for crack path prediction, usually
chosen among the Maximum Tangential Stress criterion (MTS) (Erdogan and Sih, 1963), the
Maximum Energy Release Rate criterion (MERR) (Hussain et al., 1974) or the Principle of
Local Symmetry (PLS) (Gol’dstein and Salganik, 1974; Cotterell and Rice, 1980). To deal with
heterogeneous materials exhibiting toughness discontinuities, the MERR, suitably generalized to
the anisotropic case, is more appropriate as it permits to apply a single criterion to all four states
described previously.

2.3.2. Direction criterion
Generally, a point along the front is assumed to propagate within the plane orthogonal to the

local tangent to the crack front, as depicted in Fig. 5). Here, we consider instead that each point
M on the crack front propagates within the (xMy) plane. This approximation greatly simplifies
the numerical procedure and avoid the costly remeshing strategies performed in(Bower and Ortiz,
1990) and (Lazarus, 2003). The errors introduced are of second-order and thus negligible within
our first-order perturbation model.

For pedagogical reasons, we shall now comment the application of the criterion first to State
ii and State iv, then to State i and State iii.

Pinning on an interface (State II).
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•
M

vvnorm

z

x

Figure 5: Crack propagation direction: each point M of the crack is considered to propagate within the plane (xMy),
along the direction v instead of the direction vnorm orthogonal to the crack front

Let us first consider a point M on a crack front which has just landed on an inclusion with
an attack angle θini at a landing height ylanding =

(
yp − ys

)
, as depicted in Fig. 6. The angle

defining the subsequent propagation direction is denoted θ. The angular distribution of toughness
is defined as follows: 

Gc (θ) = Gmat
c , if θ ∈ [−π,−π + θtan) ∪ (θtan, π]

Gc (θ) = Ginc
c , if θ ∈ (−π + θtan, θtan)

Gc (θ) = Gint
c , if θ = −π + θtan or θ = θtan

(7)

For instance, the variations of Gc versus the angle θ defining the propagation direction are
shown in Fig. 8.a for θtan = 45◦, Ginc

c = 1.4 Gmat
c and Gint

c = 0.8 Gmat
c . This distribution of

toughness is clearly anisotropic. Unlike the PLS which applies to isotropic materials only, the
MERR criterion is basically applicable to anisotropic media as well (Gurtin and Podio-Guidugli,
1998; Hakim and Karma, 2005; Chambolle et al., 2009). We therefore adopt the following
criterion:

Propagation occurs in the direction θ such that (G −Gc) (θ) be globally maximal. (8)

This criterion, called the Generalized Maximum Energy Release Rate (GMERR) in the sequel,
will also be applied when the point of the crack front considered is within the matrix or inside
the inclusion.

✓tan

✓
•M✓ini

ylanding

d
x

y

Figure 6: Crack landing on an inclusion with an attack angle θini at a landing height ylanding corresponding to a local
tangent angle θtan.

The GMERR criterion may equivalently be expressed in a variational form, see Francfort
and Marigo (1998). Indeed, maximizing G − Gc is equivalent to minimizing the sum of the
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elastic (volume) energy and the fracture (surface) energy. This criterion has recently been verified
experimentally through tearing tests of brittle polymeric thin sheets with weakly (Ibarra et al.,
2016) and strongly (Takei et al., 2013) anisotropic fracture properties. It has also been confirmed
numerically through anisotropic phase-field simulations (Hakim and Karma, 2005, 2009; Bleyer
and Alessi, 2018; Li and Maurini, 2019)

Since the point M lies on the interface between two materials with identical elastic properties,
one may apply the so-called Amestoy-Leblond formulæ (see for instance Leblond (1999)). These
formulæ link the local SIFs, K∗, just after an arbitrary kink to those, K, just before it, see Fig. 7.
They read:

K∗ = F (α) .K (9)

where F =
(
Fi, j

)
is a universal operator depending only on the (arbitrary) kink angle α. These

formulæ show that whatever the geometry and the loading, the SIFs right after a kink depend
only on those before the kink and the angle defining this kink. It is also worth noting that
FI,III = FIII,I = 0, which evidences the decoupling of the plane and anti-plane loading modes.

x

y
↵

•
M

Figure 7: Schematics of a crack kinking situation where an initial crack suddenly propagates with an arbitrary large
kink α

We use these formuæ to obtain the angular distribution of the SIFs at the tip of an infinitesimal
extension in the direction defined by the angle θ from the values of the SIFs KM

I , KM
II and KM

III
before the kink : 

KI (θ) = FI,I (θ − θini) KM
I + FI,II (θ − θini) KM

II

KII (θ) = FII,I (θ − θini) KM
I + FII,II (θ − θini) KM

II

KIII (θ) = FIII,III (θ − θini) KM
III

(10)

The values of the SIFs KM
I , KM

II and KM
III are provided by the perturbative framework presented

above, see Eq. (6): 
KM

I = K∞I (t) + δKI (z, t)
KM

I = δKII (z, t)
KM

I = δKIII (z, t)
(11)

.
By combining Eq. (11) with Irwin’s formula, we get :

G (θ) =
1 − ν2

E

(
K2

I (θ) + K2
II (θ)

)
(12)
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where we have eliminated the Mode III contribution, which is of second order in the perturbation
since KIII (θ) is itself of first order. An example of the angular distribution of the ERR thus
defined is given in Fig. 8.b.
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Figure 8: Application of the GMERR direction criterion: (a) Variations of the toughness Gc, (b) the ERR G and (c)
their difference G − Gc with the potential propagation direction θ, for the parameter values θtan = 45◦, θini = −20◦,
Ginc

c = 1.4 Gmat
c and Gint

c = 0.8 Gmat
c , KM

I = 1.25Kmat
I,c and KM

II = −0.05Kmat
I,c .

We then obtain the difference G − Gc as a function of the angle θ defining the propagation
direction that is shown in Fig. 8.c. In practice, it not necessary to compute G − Gc in all direc-
tions, but only along the tangent θtan and along the direction θmax that maximizes G, as shown in
Appendix B.

Application of the GMERR criterion finally amounts to determining the propagation direc-
tion θ satisfying the following conditions:

θ ∈ {θtan, θmax} and (G −Gc)(θ) is maximum. (13)

The physical implications of such a criterion on the crack trajectory will be studied in detail in
Section 4.1.

Propagation along an interface matrix/inclusion (State IV).

When the point M is propagating along an interface between the matrix and the inclusion,
we apply the same criterion as before with the sole difference that θini = θtan since kinking has
already occurred. Note that the crack can remain on the interface, stop by-passing the inclusion
and cross it, or leave the interface and go back to the matrix.

Propagation within homogeneous phases (State I & III).

When a point M is either in the matrix or crossing an inclusion, the angular distribution of
toughness Gc (θ) is isotropic so that the PLS is applicable. However, since the MERR and the
PLS are in practice almost equivalent for the small kink angles encountered in the homogeneous
phases (Amestoy and Leblond, 1992), we retain the GMERR criterion.

2.3.3. Kinetic law
The last missing ingredient is the kinetic law that relates the local crack velocity v to G

and Gc. For brittle materials, this kinetic law can be derived from Griffith (1921)’s criterion by
accounting for the variations of the toughness with the crack speed (Kolvin et al., 2015; Chopin
et al., 2018).
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All points of the crack front are assumed to follow Griffith’s criterion :

G = Gc (v) (14)

where G does not depend on crack speed v under the hypothesis of quasi-static propagation. We
then postulate that the toughness is a given function of the crack speed, Gc = Gc (v). Depending
on the material, the function Gc (v) may take different forms. Its linearization around the mean
crack velocity vm provides a linear kinetic law:

G = Gc (v) = Gc (vm)
(
1 +

v − vm

v0

)
(for v > 0) ⇔ v =

[
vm + v0

G −Gc (vm)
Gc (vm)

]+

(15)

where v0 = Gc (vm) /
∂Gc

∂v

∣∣∣∣∣
vm

is a characteristic velocity of the material emerging from the rate-

dependency of its toughness and [·]+ the positive part function. This equation of motion has been
largely used in the literature (see for example (Gao and Rice, 1989; Ramanathan et al., 1997;
Ponson and Bonamy, 2010)) and was recently shown to capture quantitatively the relaxation dy-
namics of a crack depinning from a single obstacle (Chopin et al., 2018).

2.4. Validity range of the perturbative approach

The perturbative procedure used requires
∣∣∣∣ ∂ fx
∂z

∣∣∣∣ � 1,
∣∣∣∣ ∂ fy
∂z

∣∣∣∣ � 1,
∣∣∣∣ ∂ fy
∂x

∣∣∣∣ � 1, which raises the
issue of the validity range of our approach. Gao and Rice (1989) studied the validity range
of the first-order perturbation for coplanar crack propagation. They showed that for inclusions
with Ginc

c ' 4 Gmat
c , the perturbative approach gives accurate results when compared to boundary

elements simulations. Above this toughness level, the results of the perturbative framework are
no more quantitatively correct and can even be qualitatively wrong. We thus limit our study to
such toughness levels, ensuring the condition

∣∣∣∣ ∂ fx
∂z

∣∣∣∣ � 1.
Regarding the out-of-plane perturbations of the crack, Eq. (6) provides a good estimate of

the SIFs even for large values of the slope θ = arctan
(
∂ fy
∂x

)
, provided it is corrected through use

of Amestoy-Leblond’s formulæ (Amestoy and Leblond, 1992; Leblond, 1999) that provide the
SIFs just after an abrupt, arbitrary change of direction of the crack. The necessary procedure of
correction is described in Appendix A. This procedure permits to handle the large slope which
may arise during the by-pass of inclusions. It is also explained in the same Appendix that even
with the procedure of correction, the mode III contribution is of second-order in the expression
of the ERR G, due to the decoupling of the anti-plane shear mode with respect to the tensile and
plane shear modes in Amestoy-Leblond’s formulæ. Neglect of this contribution implies that the
derivative ∂ fy

∂z plays no role in the model.

3. Numerical implementation

The toughness Gc and the ERR G are the central quantities in our model, so they need to be
computed accurately and efficiently along the crack front at every time step. Section 3.1 presents
the method employed to generate 3D microstructures with heterogeneous fracture properties,
leading to the calculation of Gc, while Section 3.2 describes the procedure used to compute the
SIFs

(
Kp

)
and subsequently G along the front.
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3.1. Microstructure generation

Random isotropic non-overlapping microstructures are built using the so-called random se-
quential addition algorithm proposed by Widom (1966) which consists in placing randomly and
sequentially non-overlapping spheres in a fixed volume. This procedure works efficiently for
low densities (up to 30%) or highly polydisperse microstructures. For higher densities and low
diameter dispersion levels, we use the algorithm proposed by Delarue and Jeulin (2011), which
consists in starting from a dense ordered cubic closed-packing of inclusions, and then randomiz-
ing it by randomly deleting or moving some of them. These efficient methods permit to generate
large-scale isotropic disordered microstructures (typically 106 inclusions) within short computa-
tion times. Some examples of the generated microstructures are shown in Fig. 9.

(a) (b) (c)

Figure 9: Different microstructures considered in our model: (a) monodisperse at 20% density (a), (b) monodisperse at
50% density (c) and polydisperse at 30% density.

3.2. Crack advance procedure

3.2.1. Crack front discretization
The crack front is discretized in N points (Mi)i∈[1,N] separated by a uniform distance ∆z =

Lz
N

as depicted in Fig. 10. The positions
(
x + f i

x, f i
y , zi

)
of these points are tracked at each time step,

subsequent positions being inferred from the instantaneous and local velocity vector vi oriented

in the direction θi = arctan
(
∂ f i

y

∂x

)
in the (xMiy)-plane.

•
• • •

Mi
•

Mi+1

• • • •

�z
z

x

Figure 10: Crack front discretization with a spatial step ∆z
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3.2.2. Accelerated computation of the SIFs
The fast computation of the local SIFs along the front is a key element of the numerical

implementation. Equations (6) relate the distribution of the SIFs to the geometrical perturbations
of the front, and involve integrals along the whole crack front. Such integrals are computationally
costly as their computational time grows as O

(
N2

)
, where N is the number of discretization

points along the front. However, if one assumes that the material is periodic along the crack
front direction, these non-local terms take a simple local form in Fourier’s space. Indeed, if we
define the z-Fourier transform φ̂ of an arbitrary real function φ by the equivalent formulæ :

φ̂ (k, t) =

∫ +∞

−∞

φ (z, t) e−ikzdz⇔ φ (z, t) =
1

2π

∫ +∞

−∞

φ̂ (k, t) e+ikzdk (16)

then the operator defined by the integrals along the crack front takes the following form in
Fourier’s space :

C f (z, t) = PV
∫ +∞

−∞

f (z, t) − f (z′, t)
(z − z′)2 dz′ ⇔ Ĉ f (k, t) = |k|π f̂ (k, t) . (17)

This property allows to compute efficiently the non-local contributions to the SIFs perturba-
tions through direct and inverse Fast Fourier Transforms (FFTs), thus reducing the computational
cost to O

(
NlogN

)
. To optimize the FFT algorithm, the number of crack front points N = 2p is

generally chosen as a power of 2.

3.2.3. Numerical scheme
The computation of the crack evolution employs an explicit scheme in time, that predicts the

configuration of the front at time t + ∆t from that at time t. Each point along the crack front is
characterized by the parameters x (t), fx (z, t), fy (z, t) and θ (z, t), from which the subsequent po-
sition is deduced.2 First, the variations Gc (z, t) of toughness along the front are deduced from the
location of the crack front within the heterogeneous microstructure. Second, the instantaneous
macroscopic loading G∞ (t) is computed from the time t and the average position x (t) using
Eq. (4). The perturbed SIFs

(
Kp

)
are then inferred from the crack front deformations using the

formula provided in Appendix A, with the numerical method described in Section 3.2.2. Finally,
the direction of the velocity vector v (z, t) is determined from the GMERR criterion of Eq. (13),
and its norm is computed from the kinetic law of Eq. (15). Convergence criteria explained below
set the time-step size ∆t, and the simulation runs until the whole microstructured medium is bro-
ken.

3.3. Convergence criteria
Explicit numerical schemes are often preferred to implicit schemes since they are easier to

implement. One of their major drawbacks is that they require a small time step ∆t to ensure nu-
merical stability and control numerical errors. We examine here the possible sources of numer-
ical instabilities and propose a convergence criterion adapted from a Courant-Friedrichs-Lewy
condition.

2Note that knowledge of the past configurations of the front is not necessary, as the fully non-local terms in the
expressions of the perturbed SIFs (Movchan et al., 1998), that consist in integrals over the full fracture surface, can be
neglected, as argued in Section 2.2.2
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Figure 11: Explicit numerical scheme employed for the prediction of the crack evolution

3.3.1. Absolute convergence
The explicit scheme employed in our computations may lead to numerical artifacts in the

form of oscillations of the SIFs along the front. These oscillations result from the toughness
discontinuities considered in the modelling of the microstructure, as illustrated in (Fig. 12.a).
Indeed when a crack lands on some inclusion, the toughness experienced by the point in contact
with the inclusion increases discontinuously, leading to the sudden arrest of this point. However,
as the neighboring points of the crack front keep moving (Fig. 12.b), oscillations in the non-local
contribution of the expressions of the perturbed SIFs may appear (Fig. 12.c).
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Figure 12: Oscillations induced on long-range interactions during pinning of a crack front on an inclusion

Numerical schemes used by other authors (Bower and Ortiz, 1990; Lazarus, 2003; Ponson
and Pindra, 2017) avoid this numerical instability by imposing a maximum value to the crack
growth increment during each time interval. Here, we prefer to impose a maximum time-step
∆tconv adapted to our explicit scheme, since a time-step criterion ensures convergence, irrespec-
tive of the inclusion properties. The maximum time-step ∆tconv is determined from the analysis
of the coplanar crack propagation problem, which is governed by the following dimensionless
equation (Ponson and Pindra, 2017) :

1
v0

∂ fx

∂t
(z, t) = −

1
π

PV
∫ +∞

−∞

f (z, t) − f (z′, t)
(z − z′)2 dz′ + ηc (z, x + fx (z, t)) (18)

where the function ηc describes the relative variations of toughness within the propagation plane.
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Upon discretization along the z-axis with a spatial step ∆z, the integral approximately be-
comes:

−
1
π

PV
∫ +∞

−∞

f (z, t) − f (z′, t)
(z − z′)2 dz′ ' −

1
π

(∫ z−∆z

−∞

+

∫ +∞

z+∆z

)
f (z, t) − f (z′, t)

(z − z′)2 dz′

+
∆z
π

∂2 f
∂z2 (z, t)

(19)

Since the numerical instabilities are caused by the curvature term, a Courant-Friedrichs-Lewy
convergence condition:

∆tconv = α v0 ∆z, (20)

where the constant α is set to 0.2, is employed. This type of condition is widely and success-
fully used in numerical simulations of diffusion problems. Examples of simulations of crack
propagation with ∆tstep = ∆tconv and ∆tstep > ∆tconv are given in Fig. 13.
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Figure 13: (a) & (b) Non-oscillatory behaviour for ∆tstep = ∆tconv; (c) & (d) oscillatory behaviour for ∆tstep > ∆tconv.

3.3.2. Other restraining conditions
Other conditions are imposed to the numerical scheme in order to ensure a realistic and

accurate modeling of the crack evolution:

• Interaction with microstructure – We make sure that no point on the crack front crosses
a toughness discontinuity during a time-interval, as its behavior at such interfaces largely
controls the interaction mechanism between the crack and the inclusion. As a result, the
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time step may be adjusted to a value ∆tinter < ∆tconv to ensure that the crack lands exactly
on the interface;

• Maximum advance – We introduce a maximum value ∆xmax = ∆z/5 of the incremental
crack advance, in order to avoid sudden variations of the non-local contributions to the SIFs
perturbations (see Section 3.3.1). This introduces a maximum time step ∆tadvance =

∆xmax
max
F

v

which is generally much larger than ∆tconv;

• Maximum load variations – A maximum value ∆Gmax of the load variation between
subsequent time steps is introduced to avoid sudden drops of G∞ during the depinning
phases. According to Eq. (4), this leads to an additional time scale ∆tloading = ∆GmaxL/vm.

During each time interval, the time-step ∆t is chosen as the smallest of those defined previ-
ously:

∆t = min
(
∆tconv,∆tinter,∆tadvance,∆tloading

)
. (21)

Given that the crack propagates along a distance Lx at an average velocity vm and that the average
time step ∆t scales as ∆z ∼ 1/N (see Eq. (21)), the simulation requires M ∼ N time steps
computed in a time proportional to NlogN to complete. The computational complexity of the
proposed algorithm is in O

(
N2logN

)
.

3.4. Computational performance

The numerical method presented in this paper, based on approximate analytical expressions
of the SIFs, permits an efficient computation of quantities of interest like the ERR, using only a
1D discretization of the crack front. As no discretization of the (2D) crack surface, or the entire
(3D) body, is required, simulations of crack propagation in heterogeneous media including as
many as 106 inclusions requires only a few hours using a single core computer. With such a
numerical performance, fully 3D fracture simulations of very large specimens can be achieved,
as examplified in Fig. 14 and Fig. 15. However the detailed investigation of the effective fracture
properties of disordered brittle solids is left for future works, and we shall focus in the sequel on
seemingly simpler, periodic microstructures with only a few inclusions per period.

x

y
z

x

y
z

x

y
z

Figure 14: 3D fracture simulations of medium-sized specimens with disordered microstructures illustrating the interac-
tion mechanisms modelled in the newly developed numerical method : crack surface after propagation through a matrix
with randomly distributed tough inclusions, that have either been by-passed (dark grey) or crossed (light grey). The
computation takes approximately one minute on a single core computer.
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Figure 15: 3D fracture simulations of large-scale specimens with disordered microstructures illustrating the computa-
tional performance of the newly developed numerical method. This fracture surface topography characterized by its
height map h(x, y), normalized by the inclusion diameter d, results from the interaction of the crack with about 106 tough
inclusions. The computation takes less than one hour on a single core computer.

4. Inclusion by-pass, a damper of material toughening through crack trapping

4.1. Crack trajectory prediction : competition between by-pass and crossing of inclusions

As is evident in Fig. 14, the competition between crossing and by-pass of inclusions con-
trols the crack trajectory, and so ultimately the effective fracture properties of the heterogeneous
medium, as will be discussed in Section 4.2. We start by investigating the mechanisms of inter-
action of a crack front with a periodic array of tough inclusions, by considering periodic media
containing a single inclusion of diameter d = Lz/4 per period, with a spatial discretization step
∆z = d/32. As mentioned above, the analysis relies on the GMERR criterion of Eq. (13), that
compares the rate G of elastic energy released with the rate of energy Gc dissipated during frac-
ture along the different possible propagation directions.

When the crack front lands on a spheroidal inclusion, two possible propagation mechanisms
are in competition: either the crack by-passes the inclusion by propagating along the interface
(Fig. 16.a), or it crosses the inclusion by remaining within the mean fracture plane (Fig. 17.a).
To by-pass the obstacle, the crack must kink from its initial direction of propagation. As far
as the ERR G is concerned, this kink is detrimental since this ERR is maximal along the mean
fracture plane, and decreases when the kink angle increases (see Fig. 16.c). Yet, as far as the
fracture energy Gc is concerned, kinking allows the crack to select a more favorable path since
Ginc

c ≥ Gmat
c ≥ Gint

c (see Fig. 16.c).
We choose three simple examples to qualitatively illustrate this competition in absence of

weak interface, Gint
c = Gmat

c :

1. in the first example, the crack lands halfway between the equatorial plane and the top of
an inclusion twice tougher than the matrix, Ginc

c = 2 Gmat
c , Fig. 16.a. We denote θtan = 60◦

the angle between the current propagation direction and the matrix-inclusion interface for
the central region of the front (see Fig. 6 with θini = 0 in the present case). As shown in
Fig. 16.c, where the normalized net driving force (G−Gc)/Gmat

c is represented as a function
of the kink angle θ, the drop of G is smaller than the gain in fracture energy along θtan, so
the crack by-passes the inclusion.
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Figure 16: (a) By-pass mechanism during the trapping of a crack front by a tough spherical inclusion with
Ginc

c = 2 Gmat
c ; (b) trajectory of the point of the crack front located in z = Lz/2; (c) application of the GMERR criterion

of Eq. (13) in z = Lz/2; the normalized net driving force is represented as a function of the kink angle at the onset of
depinning.

2. Consider now that the crack lands on the equatorial plane (xOz) of the same inclusion, as
shown in Fig. 17.b. The kink angle required to by-pass the inclusion is then θtan = 90◦, so
that the associated drop of G is significantly larger than in the previous case (Fig. 17.b);
this explains here why the crack crosses the tough inclusion rather than than by-passes it.
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Figure 17: (a) Crossing mechanism during the trapping of a crack front by a tough spherical inclusion with
Ginc

c = 2 Gmat
c ; (b) trajectory of the point of the crack front located at z = Lz/2; (c) application of the GMERR criterion

of Eq. (13) in z = Lz/2; the normalized net driving force is represented as a function of the kink angle at the onset of
depinning.

3. In the limit case of an infinitely tough inclusion, it is clear that the crack cannot remain
trapped as the external loading is increased further and further, so the inclusion must be
by-passed, whatever the landing position of the crack front. Thus we expect existence of
a critical toughness above which all inclusions are by-passed. In Fig. 18, we can see that
such a systematic by-pass is already achieved for an inclusion toughness Ginc

c = 4 Gmat
c .

In general, the competition between crossing and by-pass of a given inclusion is governed
by the GMERR criterion, that can be expressed explicitly thanks to Amestoy-Leblond’s formulæ
of Eq. (10) which provide the value of G after the kink as a function of the SIFs prior to kink-
ing and the kink angle. In our simulations, the SIFs before the kink are computed from the
pertubative LEFM formulæ of Eq. (6), which take into account three-dimensional effects due to
interactions between different regions of the crack front. Thus the ability of a tough inclusion
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Figure 18: (a) By-pass mechanism during the trapping of a crack by a very tough spherical inclusion with Ginc
c = 4 Gmat

c ;
(b) trajectory of the point of the crack front located at z = Lz/2; (c) application of the GMERR criterion of Eq. (13) in

z = Lz/2; the normalized net driving force is represented as a function of the kink angle at the onset of depinning.

to efficiently trap a crack front results from the complex coupling between the in-plane bowing
mode of deformation and the subsequent out-of-plane deviation of the front during the possible
by-pass.

4.1.1. A two-dimensional analysis of the GMERR criterion for a cylindrical inclusion
To analyze this mechanism, we start by neglecting the three-dimensional effects due to the

variation of fx and fy along the crack front and consider a semi-infinite crack landing on an
infinite cylindrical inclusion, as illustrated in Fig. 19. We will subsequently compare the results
of our numerical simulations with this two-dimensional theoretical analysis in which the SIFs
are constant along the front.

Let us assume that the inclusion toughness is Ginc
c and the interface toughness Gint

c . The
initially straight crack lands on the inclusion with an angle θini, at a height ylanding, at some point
on the interface where the tangent angle to the inclusion boundary is θtan. This tangent angle is
linked to the other parameters through the relation:

θtan = arctan


√(

d
2

)2
− y2

landing

ylanding

 . (22)

In order to capture the effect of a mode II component that may result from out-of-plane
perturbations of the crack line, we assume that the crack is loaded under mixed mode I+II and
we note ρII = KII/KI. As shown in Section 2.3, two directions of crack propagation only need
be considered: the direction θmax lying within the inclusion and maximizing G, and the by-pass
direction θtan. According to Amestoy-Leblond’s formulæ, the ERR in the direction θmax is given
by :

Gcross =
1 − ν2

E
K2

I

[(
Fi,i (αmax) + Fi,ii (αmax) ρII

)2
+

(
Fii,i (αmax) + Fii,ii (αmax) ρII

)2
]

(23)

where αmax = θmax − θini is the kink angle in the direction that maximizes G. Similarly, the ERR
for the by-pass scenario is provided by :

Gtan =
1 − ν2

E
K2

I

[(
Fi,i (αtan) + Fi,ii (αtan) ρII

)2
+

(
Fii,i (αtan) + Fii,ii (αtan) ρII

)2
]
. (24)
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Figure 19: Two-dimensional analysis of the crossing/by-pass transition: (a) The 2D approximation consists in replacing
the spherical inclusion through a cylindrical obstacle invariant in the direction of the crack front; (b) the crack lands

with an angle θini at a height ylanding, and may by-pass the inclusion upwards or downwards.

Now gradually lower the inclusion toughness from infinity to the matrix toughness. At the
crossing/by-pass transition, the following equalities must hold:

Ginc
c = Gcross , Gtan = Gint

c (25)

which leads to :

Ginc
c

Gint
c

=
Gcross

Gtan
=

(
Fi,i (αmax) + Fi,ii (αmax) ρII

)2
+

(
Fii,i (αmax) + Fii,ii (αmax) ρII

)2(
Fi,i (αtan) + Fi,ii (αtan) ρII

)2
+

(
Fii,i (αtan) + Fii,ii (αtan) ρII

)2 ? (26)

Specializing this equation to the simpler situation where θini = 0 and ρII = 0, we obtain the
critical toughness ratio at the crossing/by-pass transition :[

Ginc
c

Gint
c

]
crit

=
1

Fi,i (θtan)2 + Fii,i (θtan)2 . (27)

Together with Eq. (22), Eq. (27) allows us to draw phase diagrams of the type shown in
Fig. 20, where the depinning mechanism (crossing vs by-pass) is easily identified from the value
of the toughness ratio Ginc

c /Gmat
c and the relative landing height ylanding/d. Several comments are

in order here:

• An energetic competition takes place between crossing and by-pass, governed by the in-
clusion toughness and the magnitude of the kink angle required for by-pass. The theory
of LEFM is able to quantitatively predict this competition thanks to Amestoy-Leblond’s
formulæ;

• In the absence of mode II (KII = 0) and for an attack angle θini = 0, the theoretically pre-
dicted upward and downward by-pass regions are symmetric with respect to the horizontal
axis ylanding = 0. This is because the depinning mechanisms are identical upwards and
downwards for a given value of

∣∣∣ylanding
∣∣∣ /d. Note also if the crack lands on the upper (resp.

lower) half of the inclusion, only an upward (resp. downward) by-pass is possible.

• The critical toughness ratio beyond which the inclusion is systematically by-passed can be
deduced from consideration of the particular case ylanding = 0 that corresponds to a kink
angle θtan = 90◦. One thus gets

[
Ginc

c /Gmat
c

]
crit
∼ 3.85. This value is in close agreement
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with the simulation results of Fig. 18 where inclusion by-pass was systematically observed
for Ginc

c /Gmat
c = 4, in spite of the different inclusion geometries considered (spherical in

Fig. 18, cylindrical here).

Figure 20: Theoretical phase diagram providing the depinning mechanism (crossing vs by-pass) of a crack pinned by a
cylindrical inclusion (see Fig. 19) as a function of the toughness ratio Ginc

c /Gmat
c and the relative landing height

ylanding/d. Note that the critical toughness ratio
[
Ginc

c /Gmat
c

]
crit
∼ 3.85 beyond which the obstacle is systematically

by-passed corresponds to the landing height ylanding = 0 and a kink angle θtan = 90◦.

4.1.2. Comparison of the two-dimensional theoretical model with three-dimensional numerical
simulations on spherical inclusions

The transition diagram of Fig. 20 being derived from a simplified two-dimensional theory
considering cylindrical inclusions, it is interesting to compare it to the results of fully three-
dimensional simulations considering spherical inclusions, as the 3D case is more complex: when
depinning (crossing or by-pass) occurs, the local SIFs are already perturbed by the deformations
of the crack. The determination of the region of the front that triggers depinning is then not an
easy task, and we shall resort to numerical simulations.

The numerical efficiency of our method allows to run several thousands of simulations with
GNU Parallel (Tange, 2011), to investigate the impacts of both the toughness ratio between the
inclusion and the matrix and the landing height. Since we consider the values θini = 0 and
ρII = 0, the region ylanding/d ∈ ]−0.5, 0[ of the phase diagram is deduced by symmetry from the
region ylanding/d ∈ [0, 0.5[. To draw the diagram, we define the type of depinning mechanism
(crossing versus by-pass) from the behavior of the point of the front located in z = Lz/2, where
θtan is maximal. Interestingly, the two-dimensional and three-dimensional theoretical diagrams
are almost identical, as be seen in Fig. 21. Yet, we shall see in Section 5 that this coincidence
breaks down for other shapes of inclusion.

4.2. Impact of the by-pass mechanism on the effective toughness of periodic heterogeneous me-
dia

Crack deflection has often been viewed as a toughening mechanism (Faber and Evans, 1983;
Suresh, 1985; Steinbrech, 1992), albeit much less efficient than such mechanisms as crack bridg-
ing (Bower and Ortiz, 1991). We want here to stress the idea that in the presence of toughness
discontinuities, crack deflection must be considered more as a severely limiting factor of material
toughening, than as a toughening process per se.
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(a) (b) (c)

Figure 21: Comparison of two- and three-dimensional transition diagrams: (a) Theoretical two-dimensional diagram
for cylindrical inclusions; (b) three-dimensional transition for spherical inclusions obtained from 1200 simulations with
various toughness ratios Ginc

c /Gmat
c and landing heights ylanding/d; (c) difference between the two diagrams, the black

region indicating different behaviors.

4.2.1. Definition of the effective toughness
We first need to define effective fracture properties. In agreement with Gao and Rice (1989),

Bower and Ortiz (1991), Hossain et al. (2014) and Vasoya et al. (2016a), we define the effec-
tive toughness as the maximal macroscopic elastic release rate G∞ (resulting from the variable
loading) encountered during cracking of the whole sample:

Geff
c = max

x∈[0,Lx]
G∞ (x) . (28)

This definition is compatible with Griffith’s definition of toughness, since if the loading is too low
for the value Geff

c to be reached, complete cracking of the specimen cannot occur. An example of
the evolution of G∞, together with the associated definition of Geff

c , are provided in Fig. 22 for the
three-dimensional propagation of a crack interacting with a disordered distribution of inclusions
with the values Ginc

c = 1.75 Gmat
c and Gint

c = Gmat
c .
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Figure 22: Effective toughness Geff
c defined as the maximum ERR imposed by the variable macroscopic loading G∞

during cracking of the entire specimen: (a) evolution of G∞ during crack propagation in the medium-sized disordered
system shown in panel (b). The macroscopic ERR G∞ increases while the front is trapped and decreases when the crack

propagates according to Eq. (4).
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4.2.2. Inclusion by-pass, a limiting mechanism of toughening through crack front trapping
We consider periodic arrangements of spherical inclusions of diameter d = Lz/4. The tough-

ness of the inclusions varies from Ginc
c = Gmat

c to 4 Gmat
c while the interface and the matrix

share the same fracture properties, Gint
c = Gmat

c . The crack lands on the inclusions at a height
ylanding = 0.1 d. The effective toughness is estimated through Eq.(28) from the evolution of the
macroscopic ERR G∞ during crack propagation. Results are plotted in Fig. 23. Convergence of
the results with decreasing front mesh size ∆z is investigated in Appendix C.
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Figure 23: (a) Global impact of the inclusion toughness ratio Ginc
c /Gmat

c upon the effective toughness Geff
c ; (b) crossing

regime: the effective toughness increases linearly with the inclusion toughness according to mixture rule of Eq. (30); (c)
partial by-pass regime: the region of the crack front close to the center of the inclusion crosses the inclusion, whereas

those closer to the edges (where the required deflection angle θtan is lower) by-pass it; (d) by-pass regime: the effective
toughness reaches a plateau. An increase of the inclusion toughness does not toughen the composite any further.

Three regimes may be distinguished here:

1. For low values of the inclusion toughness, up to Ginc
c = 2 Gmat

c , the effective toughness
increases linearly with the inclusion toughness.

2. For medium values of the inclusion toughness, up to Ginc
c = 2.5 Gmat

c , the “toughening
slope” ∂Geff

c

∂Ginc
c

gradually decreases and the effective toughness reaches a peak.

3. For high values of the inclusion toughness, above Ginc
c = 2.75 Gmat

c , the effective toughness
reaches a plateau Geff

c ' 1.395 Gmat
c .

The first regime is characterized by the crossing of the inclusions as depicted in Fig. 23.b.
The situation is thus equivalent to the coplanar propagation of a crack encountering a periodic
array of circular inclusions. This situation has been investigated by Gao and Rice (1989) and
Bower and Ortiz (1991), with the conclusion that a good estimate of the effective toughness is
provided by the following expression:

Geff
c

Gmat
c

= 1 +
d
Lz

√
1 − 4

(ylanding

d

)2
[

Ginc
c

Gmat
c
− 1

]
, for Ginc

c ≤ 2 Gmat
c , (29)

where the linearity with respect to the ratio
Ginc

c

Gmat
c

is apparent. Such prediction is plotted in dashed

black line in Fig. 23.
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Close but below the critical toughness at the crossing to by-pass transition
[
Ginc

c

]
crit
' 2.75 Gmat

c
for ylanding = 0.1 d (Eq. (27)), we observe a transient regime in which the effective toughness is
larger than the plateau value corresponding to inclusion by-pass. This implies that the crack
crosses the inclusion while by-passing it could have been achieved earlier, at a lower loading
level. This rather counter-intuitive observation is discussed in further details in Appendix D. It
stems from the local propagation criterion that consists in maximizing G −Gc at every location
along the front and at every time step. While a global optimization would have favored inclusion
by-pass. These observations are in line with the experimental findings of Takei et al. (2013), who
indeed observed that the choice of crack trajectory corresponds better to a local maximization
of G − Gc than some global maximization. This means that the crack propagates following the
locally weakest path, and can thus globally dissipate more energy than it would by trying to
achieve some global minimization, as also discussed in Osovski et al. (2015). This interesting
feature definitely needs to be exploited to design tougher materials.

Above the critical toughness
[
Ginc

c

]
crit
∼ 2.75 Gmat

c (Eq. (27)), the crack interacts with the
inclusion through a by-pass mechanism (Fig. 23.d). When the crack by-passes the inclusion, it
propagates along the interface so that the inclusion toughness ceases to play any role. This is
why a further increase of the inclusion toughness leaves the effective toughness unchanged. The
conclusion is that there is a quick (though not instantaneous) shift from a first regime where the
inclusion is crossed and the effective toughness of the composite is increased by crack trapping,
to a second one characterized by the by-pass of the inclusion, which activates a less efficient
toughening mechanism, crack deflection.

As the landing height ylanding increases, the tangent angle θtan decreases (Eq. (22)), facilitating
by-pass that happens for lower values of the inclusion toughness. As a result, the plateau regime
is reached earlier, and corresponds to a lower effective toughness, as shown in Fig. 24.a. Pre-
dicting Geff

c analytically when crack deflection occurs is difficult. However it is clear that below
some critical toughness ratio

[
Ginc

c /Gmat
c

]
crit

, the inclusion is crossed and the effective toughness

follows Eq. (29), while it reaches a plateau above
[
Ginc

c /Gmat
c

]
crit

; using then Eq. (27) in spite
of the fact that it strictly applies to 2D situations (cylindrical inclusions), and combining it with
(29), one gets the following rough estimate of the effective toughness:

Geff
c

Gmat
c

= 1 +
d
Lz

√
1 − 4

(ylanding

d

)2
[
min

(
Ginc

c

Gmat
c
,

[
Ginc

c

Gmat
c

]
crit

)
− 1

]
(30)

The comparison between the results of numerical simulations and the theoretical predictions of
Eq. (30) is plotted in Fig. 24. a & b. One observes that Eq. (30) quantitatively describe the ef-
fective toughness in the crossing regime while it only provides an upper-bound prediction during
by-pass.

4.2.3. Impact of microstructural parameters on the effective toughness
We now investigate the impact of other microstructural parameters on the effective toughness,

namely the inclusion spacing and the interface toughness. The former proves to be a decisive
factor for material toughening in the case of coplanar propagation (Gao and Rice, 1989), while
the latter is expected to modify the conditions under which inclusion by-pass prevails over its
crossing and thus influence the ultimate effective fracture properties of the composite.
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Figure 24: Impact of the landing height ylanding on the effective toughness Geff
c : the crossing/by-pass transition occurs at

lower inclusion toughness levels as the landing height increases, making the plateau value decrease accordingly;
comparison of numerical simulations (in black) and theoretical predictions of Eq. 30 (in red) for the effective toughness

(a); renormalization from Eq. (30) (b).

As the spacing Lz between neighboring inclusions increases, the “toughening slope” ∂Geff
c

∂Ginc
c

decreases in the linear regime corresponding to crossing of the inclusion (see Fig.25.a). Yet,
the critical toughness ratio

[
Ginc

c /Gmat
c

]
crit

does not depend on the inclusion spacing but only on
the inclusion mechanical and geometrical properties (see Eq. (27)). Thus the effective toughness
reaches a plateau for a well-defined, constant critical toughness ratio

[
Ginc

c /Gmat
c

]
crit

, but its height
decreases when the inclusion spacing increases as predicted by Eq. (30) (Fig.25.b). The constant
value of the critical toughness ratio

[
Ginc

c /Gmat
c

]
crit

, irrespective of the value of Lz, is reminiscent
of the absence of collective effects in the by-pass of inclusions. In other words, the mechanism
selected by the crack during its interaction with an inclusion is not affected by the presence of
neighboring inclusions. Note however the lower value of Geff

c in the by-pass regime for the denser
arrangement of inclusions (Lz = 2 d). This is signature of collective by-pass of neighboring
inclusions, explained by the fact that a lesser portion of the crack drags the front back in the mean
fracture plane by long-range elastic effects (see Eq. (6)). Its impact on Geff

c remains nonetheless
small when compared to the overall impact of the by-pass mechanism.

Finally, the matrix/inclusion interface may not share the fracture properties of the matrix,
namely be weaker Gint

c < Gmat
c . Reducing the interface toughness favors inclusion by-pass,

which is then triggered at lower inclusion toughness levels (see Fig. 26.a). The impact of a
weak interface on the crossing to by-pass transition is well grasped by Eq. (27), as shown by the
curve renormalization of Fig. 26.b. Given that the maximum value of the macroscopic loading
is reached at the onset of the by-pass event, the effective toughness drops and its plateau value
decreases as crack propagation along the weak interface is made easier.

In conclusion, the by-pass mechanism offers a more energetically favorable trajectory for
crack propagation. It hinders toughening by limiting crack trapping. In order to toughen brittle
materials, one should design inclusion geometries preventing inclusion by-pass; a good example
consists of inclusions with a concave interface, for which by-passing becomes more and more
difficult as the crack progresses along it. This remark is compatible with the results of topological
optimization studies of two-dimensional crack propagation (Da et al., 2018). Concave interfaces
emerge from the optimization process, with the consequence of preventing inclusion by-pass and
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Figure 25: Impact of the inclusion spacing Lz upon the effective toughness Geff
c : both the slope in the linear regime and

the plateau value decrease when the density of tough inclusions decreases; comparison of numerical simulations (in
black) and theoretical predictions of Eq. (30) (in red) for the effective toughness (a) ; renormalization of the curves of

panel (b) using the expression (30) of the effective toughness and a constant value
[
Ginc

c /Gmat
c

]
crit

= 2.75 of the
toughness ratio at the crossing/by-pass transition.

promoting crack nucleation on the other side of the inclusion. This phenomenon ultimately leads
to crack bridging, which has been identified as a particularly efficient toughening mechanism
(Bower and Ortiz, 1991).

5. Inclusion shape as a limiting factor of material toughening

All previous results have been obtained for spherical inclusions. For such an inclusion shape,
the interaction mechanisms are fairly well predicted by a simple two-dimensional theoretical
analysis considering cylindrical inclusions, the explanation being that the difference between
the macroscopic and local SIFs is small. We now investigate the case of spheroidal inclu-
sions elongated along the crack front direction, and bring out a new effect: the coupling of
the in-plane and out-of-plane deformations of the front may modify the conditions of occurrence
of the crossing/by-pass transition, with a dramatic impact on the effective toughness of three-
dimensional heterogeneous materials.

5.1. Collective by-pass of prolate spheroidal inclusions

We consider prolate spheroidal inclusions elongated in the direction z of the crack front. The
length of the i-th principal axis is denoted di. We consider two inclusion geometries, the first
with dz = d, dx = dy = d/2, and the second with dz = d, dx = dy = d/4, as shown in Fig. 27.
For both geometries, the crossing/by-pass transition diagram is obtained by the same procedure
as for spherical inclusions, see Section 4.1. Results are plotted in Fig. 28 and 29.

One immediately notes that the new diagrams fundamentally differ from that obtained for
spherical inclusions, Fig. 21. For prolate spheroidal inclusions elongated in the z-direction, the
by-pass mechanism happens at lower inclusion toughness levels than for the cylindrical (2D) and
spherical geometries. This is a consequence of the coupling of the in-plane and out-of-plane
deformation modes of the crack front, which is enhanced by the new inclusion geometry, as will
now be detailed.
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Figure 26: Impact of the interface toughness Gint
c upon the effective toughness Geff

c : the crossing/by-pass transition
occurs at lower inclusion toughness levels as the interface toughness decreases and by-passing is facilitated by the

weaker interface making the plateau value decrease; comparison of numerical simulations (in black) and theoretical
predictions of Eq. (30) (in red) for the effective toughness (a) ; renormalization of the curves of panel (b) using the

expression (30) of the effective toughness and a varying value
[
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c
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= 2.75 Gint
c of the toughness ratio at the

crossing/by-pass transition.
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Figure 27: Interaction of a crack with spheroidal inclusions elongated in the direction of the crack front: the inclusion is
either spherical (a) or prolate spheroidal, with axes dz = dx = 2 dy (b) or dz = 4 dx = 4 dy (c).
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Figure 28: Comparison of two- and three-dimensional transition diagrams for prolate spheroidal inclusions with
dz = 2 dx: (a) Two-dimensional diagram for cylindrical inclusions; (b) three-dimensional transition diagram for

spheroidal inclusions obtained from 1200 simulations with various toughness ratios Ginc
c /Gmat

c and landing heights
ylanding/d; (c) difference between the two diagrams - the black regions indicate different behaviors.

In the case of prolate spheroidal inclusions elongated in the direction z of the crack front,
pinning of the front stops earlier near the edges of the inclusion than in its central region. This is
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Figure 29: Comparison of two- and three-dimensional transition diagrams for prolate spheroidal inclusions with
dz = 4 dx: (a) Two-dimensional diagram for cylindrical inclusions; (b) three-dimensional transition diagram for

spheroidal inclusions obtained from 1200 simulations with various toughness ratios Ginc
c /Gmat

c and landing heights
ylanding/d; (c) difference between the two diagrams - the black regions indicate different behaviors.

due to the fact that the long-range elastic interaction term of the perturbed SIFs is sensitive to the
local crack front curvature, as underlined in Eq. (19). In Fig. 30, we plot the perturbation of the
Mode I SIF along the crack front, when pinned by the three geometrically different inclusions
considered. In the spherical case, the perturbation of the SIF is maximal at the center of the crack
front (see Fig. 30.d); therefore unpinning occurs there first. For prolate spheroidal inclusions, the
perturbation of the SIF is lower in the central part of the crack front, due to a larger in-plane
curvature (Fig. 30.b & 30.e); therefore unpinning occurs near the edges of the inclusion first.

This difference in depinning dynamics has a decisive impact on out-of-plane deviations of
the crack. The points located near the edges of the inclusion “see” a lower tangent angle θtan and
thus are more prone to by-passing the inclusion. Therefore, when the central point unpins, the
out-of-plane configuration of the crack front is very different for spherical and prolate spheroidal
inclusions. This out-of-plane configuration is plotted in Fig. 31(a-c) for the three geometries
considered here. For the spherical inclusion, the front is almost flat when the central point begins
to by-pass the inclusion; the central point is loaded in pure Mode I and thus follows the theoretical
two-dimensional predictions of Eq. (27). For the prolate spheroidal inclusions, the points of the
crack front located near the edges of the inclusion have already begun to by-pass it when the
central point unpins. The out-of-plane deformation of the front generates a negative long-range
Mode II perturbation δKII at these points, see Fig. 31(d-f). At the central point, G is no longer
maximal in the direction θ = 0◦ but in the direction θmax ' −2δKII/K∞I > 0, thus favoring an
upward by-pass of the inclusion.

Three-dimensional effects arising from a non-spherical inclusion geometry can thus drasti-
cally lower the inclusion toughness level at which the crossing/by-pass transition occurs. These
effects are inherently collective since they are caused by long-range elastic interactions along the
crack front, occurring both within the unperturbed crack plane (with consequences upon propa-
gation dynamics) and out of this plane (with consequences upon the crack trajectory).

Note that this collective behavior is observed in the quasi-static limit vm � v0. Increasing
the driving velocity may change the pinning dynamics and suppress collective crack motion.
Namely, when vm ' v0, the central region of the crack front unpins immediately after landing on
the inclusion when the crack front is still flat fy = 0, preventing collective effects from occurring.
At such driving velocities, the crossing/by-pass transition follows the predictions of Eq. (27).
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Figure 30: Impact of the in-plane perturbation of the crack front on crack depinning dynamics: the in-plane perturbation
fx is plotted just before depinning of the central point of the front, for a spherical inclusion (a), and two different prolate

spheroidal inclusions (b) and (c). The associated perturbations of the Mode I SIF δKI are plotted in (d-f); unpinning
occurs first at the central point of the front for a spherical inclusion, but near the edges of the obstacle for prolate

spheroidal inclusions.

5.2. Impact of collective, three-dimensional effects upon the effective toughness

The change in the conditions governing the crossing/by-pass transition is expected to have
a subsequent impact upon the effective toughness of materials containing periodic arrangements
of tougher inclusions. To address this issue, we consider a crack interacting with the three types
of tough inclusions considered above; the system size is Lz = 4 d = 4 dz. We fix the geometrical
ratio Lz/dz = 4 in order to fix the effective toughness corresponding to inclusion crossing, and
the landing height ylanding = 0.1 dy so that the central point of the crack front (where the kink
angle is maximum) always “sees” the same tangent angle θtan; but we vary the ratio Ginc

c /Gmat
c of

the inclusion and matrix toughnesses. The results are plotted in Fig. 32.
In the case of prolate spheroidal inclusions, the lower toughness threshold for the crossing/by-

pass transition induces a dramatic loss of toughening, as expected from the previous analysis
of the crack trajectory. The value of the critical toughness ratio above which the inclusion
is systematically by-passed is, for ylanding/d = 0.1,

[
Ginc

c /Gmat
c

]
crit
' 2.25 for dz = 2 dx, and[

Ginc
c /Gmat

c

]
crit
' 2.05 for dz = 4 dx, to be compared to the two-dimensional theoretical value[

Ginc
c /Gmat

c

]
crit
' 2.75 for a spherical inclusion. Quite logically, this lower critical toughness ra-

tio has a strong impact upon the plateau value of the effective toughness. Whereas the effective
toughness reaches the plateau value Geff

c ' 1.328 Gmat
c in the spherical case, this value falls down

to Geff
c ' 1.267 Gmat

c for dz = 2 dx, and even Geff
c ' 1.160 Gmat

c for dz = 4 dx.

The toughening reduction results from the three-dimensional coupling of the in-plane and
out-of-plane deformation modes of the crack front, which modifies the interactions of the crack
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Figure 31: Impact of the out-of-plane perturbation of the crack front on crack trajectory: The out-of-plane perturbation
fy is plotted just before the depinning of the central point of the front, for a spherical inclusion (a), and two different

prolate spheroidal inclusions (b) and (c). The associated perturbations of the Mode II SIF δKII are plotted in (d-f); in the
spheroidal case, the non-zero value of δKII at the central point of the front means that those points of the front located

near the edges of the inclusion exert a pulling force on it perpendicularly to the mean crack plane.

and the inclusions, and consequently the effective toughness of the composite. This coupling
was disregarded in previous three-dimensional perturbative studies (Ramanathan et al., 1997;
Barès et al., 2014), where only the question of crack trajectory was addressed; yet what precedes
unambiguously shows that it must be accounted for in studies of effective fracture properties of
three-dimensional heterogeneous materials.

6. The by-pass mechanism as a limiting factor of both crack trapping and crack bridging

We have just showed how the by-pass mechanism may induce a substantial toughening loss,
by limiting material toughening through crack trapping. But crack trapping can only increase the
effective toughness by a factor two or three. Crack bridging is mentioned in the literature as a
much more interesting toughening mechanism, since it may increase the material toughness by a
factor of 10 to 60, as experimentally observed by Krstic et al. (1981) and confirmed numerically
by Bower and Ortiz (1991). When long fibers remain unbroken in the wake of the crack, they
hinder the opening of the crack behind the front, so that a greater load is required to induce
propagation. Such features have been observed in nature, in biological materials such as bone
and nacre, displaying remarkable toughness properties (Barthelat et al., 2007; Wegst et al., 2015).
These observations have triggered the development of bio-inspired materials, in which toughness
properties are adjusted so as to favour crack bridging (Mirkhalaf et al., 2014; Wegst et al., 2015).
Yet, whereas crack deflection permits crack bridging to happen in the case of fibers (Evans et al.,
1991; Naslain, 1998), it is shown in this section that such is not systematically the case for any
inclusion shape, because inclusion by-pass may hinder crack bridging.
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Figure 32: Impact of the aspect ratio of the inclusions upon the effective toughness Geff
c : prolate spheroidal inclusions

elongated in the direction of the crack front are by-passed by the crack at lower toughness levels because of
three-dimensional collective effects, resulting in a lowering of the plateau value of the effective toughness.

Bower and Ortiz (1991) showed that if the inclusions are tough enough, the crack front bows
around the inclusion within its plane, and the parts of this front passing the inclusion on its
left and right coalesce behind it, leaving it in the wake of the crack front. They emphasized
that crack bridging already occurs for inclusions 4.4 times tougher than the matrix, i.e. for
Ginc

c /Gmat
c ≥ 4.4. However, we showed in Section 4 that by-pass systematically happens for

spherical inclusions with toughness ratios Ginc
c /Gmat

c ≥ 3.82, implying that bridging cannot occur
for spherical inclusions since by-pass prevails over crack front trapping. Thus, as crack bridging
does happen for infinitely elongated fibers along the y-direction, one may wonder how elongated
should an inclusion be for crack bridging to prevail over inclusion by-pass.

To address this issue, we consider the interaction of a semi-infinite crack with periodic ar-
rangements of prolate spheroidal inclusions elongated in the y-direction, having dz = dx = d
and0.1 ≤ dy/d ≤ 4 (see Fig. 33). We consider a toughness ratio Ginc

c = 4 Gmat
c , that corresponds

to the upper limit of the validity range of our model (see Section 2.4). We do not model crack
bridging, but rather focus on the estimation of the conditions under which this mechanism may
occur or not. We compare our results, based on the modeling of the coupling of crack trap-
ping and inclusion by-pass, to those obtained for the coupling of crack trapping and bridging by
Bower and Ortiz (1991).

For the toughness contrast and aspect ratios of inclusion considered, the by-pass mechanism
prevails over inclusion crossing. We then compute the loading required to by-pass the inclusion -
that is the effective toughness of the composite - and compare it to that for which crack bridging is
expected to occur. The latter, determined by Bower and Ortiz (1991), corresponds to the loading
required to ensure crack coalescence around a cylindrical inclusions of axis perpendicular to the
crack plane. It depends only on the ratio of the inclusion effective radius (that varies with the
landing height) over the particle inter-distance Lz. The procedure, repeated for various landing
height ylanding/dy, leads to the results of Fig. 34.

For a given landing height ylanding, the effective toughness increases with the aspect ratio
dy/dz. This is due to the fact that the crack front is dragged downward because of the growing
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Figure 33: Inclusion geometries considered in the study of the by-pass/bridging transition: spherical (a), prolate
spheroidal with dy = 2 dz = 2 dx (b) or dy = 4 dz = 4 dx (c)

Mode II contribution δKII while it is by-passing the inclusion upwards. The more elongated the
inclusion, the harder the by-passing - and therefore the larger the load required to induce crack
propagation - because of the larger difference between the propagation direction θtan and that,
θmax, corresponding to the maximum of G. We see that even for elongated inclusions, typically
dy/d = 4, crack bridging is not activated before by-pass can be fully completed.
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Figure 34: By-pass/bridging transition as a function of the normalized landing height ylanding/dy for different inclusion
aspect ratios dy/dz: the effective toughness corresponding to the by-pass mechanism (in dashed/dotted line) is compared

to the predicted effective toughness at the crack trapping/bridging transition (in solid line).

We conclude that in the limit of very long fibers (dy/dz → +∞), Bower and Ortiz (1991)’s
numerical predictions of toughening through crack bridging applies. Yet, as soon as obstacles of
finite elongation are considered, inclusion by-pass prevents crack bridging, thus considerably re-
ducing the material toughening due to inclusions. However these conclusions remain qualitative
insofar as, strictly speaking, our first-order model remains rigorously valid for small out-of-plane
deviations, a condition which is violated as soon as the inclusion gets too much elongated. More-
over, Xu et al. (1998) showed that crack branching may occur at the matrix/inclusion interface.
This type of branching is not included in our model which considers only a single macroscopic
crack. It may induce an increase of the energy dissipated by crack propagation and thus delay
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inclusion by-pass, allowing the trapping/bridging transition to occur.

7. Limitations of the proposed approach

In this paper, we propose a new LEFM-based theoretical framework allowing to model crack
propagation in large-scale three-dimensional heterogeneous brittle materials. If this framework
is applied here to investigate the mechanisms of interaction between a crack and tough inclusions
in a periodic setting, it has been developed to model crack propagation in large-scale disordered
composites containing millions of tough inclusions (see Fig. 15). Reaching such unprecedented
numerical performances requires to make strong assumptions that consequently limit the scope
of the proposed approach. In particular, (i) only toughness inclusions possessing the same elastic
properties as the matrix material are considered and (iii) micro-cracking ahead of the main crack
as well as (ii) crack branching are ignored. These mechanisms and their relative impact are
discussed below.

First, we assume that the matrix and the inclusions share the same elastic properties and only
differ in their fracture properties. Yet elastic heterogeneities have been shown in the literature to
impact both the crack trajectory and the effective fracture properties. In particular, (i) elastic in-
clusions have volume attracting/repelling effects on crack propagation (Gao, 1991; Bush, 1997;
Clayton and Knap, 2014; Lacondemine et al., 2017), while (ii) discontinuities of elastic proper-
ties at the matrix/inclusion interface does not only trigger crack deflection (He and Hutchinson,
1989) but also crack trapping through denucleation/renucleation processes (Leguillon and Mar-
tin, 2013). All those effects have been shown to impact the effective toughness of composite
materials (Li and Zhou, 2013; Hossain et al., 2014; Brach et al., 2019).

The perturbative approach developed in this paper, which allows to estimate SIF variations
arising from geometrical perturbations of the crack front, could be coupled at first-order to the
formulæ of Gao (1991) extended by Muju (2000), which provide SIF perturbations induced by
mild variations of the elastic properties. Such an extension would provide quantitative results on
the influence of volume effects triggered by moderate spatial variations of Young’s Modulus E
or Poisson’s ratio ν on the effective fracture properties of heterogeneous solids. Yet, the local SIF
estimation will then require to compute volume integrals over the whole domain and come at a
higher computational cost, making large-scale simulations impossible to achieve.

Moreover, such an approach will be restricted to smooth variations of elastic properties since,
to the best of the authors’ knowledge, no analytical framework provides the quantitative tools to
handle crack deflection and denucleation/renucleation processes at an elastic interface in three-
dimensions.

Second, the proposed approach models the growth of a single crack, ignoring micro-cracking
ahead of the crack tip. Micro-cracking has been shown in the literature to strongly impact ef-
fective fracture properties through the competition of weakening by micro-crack coalescence
and toughening by micro-crack shielding (Evans and Faber, 1981; Ortiz, 1987, 1988). Note that
failure is here purely brittle and micro-cracking processes mentionned in Ortiz (1987) and Ortiz
(1988) are confined within the process zone, whose size `fpz is negligible when compared to the
size d of the inclusion. Their impact is thus encompassed in the value of the fracture energy
Gc of the materials. Moreover, no micro-cracking induced by inclusion debonding (Evans and
Faber, 1981) can take place when the scale separation condition `fpz � d is fulfilled. Indeed, let
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Figure 35: Crack landing on an inclusion, potentially leading to inclusion debonding along the interface (Point A & A’)
or ahead of the inclusion (Point B).

us consider that all materials (matrix, inclusion, interface) share the same process zone size `fpz.
It relates to the material toughness KIc and its strength σc through (Barenblatt, 1962):

`fpz =
π

8

(
KIc

σc

)2

(31)

Considering that debonding may occur either at the top the inclusion along the interface (Point A
and A’ in Fig. 35) or ahead of the inclusion (Point B in Fig. 35), we compute the opening stress
σ on these points and compare it to the material strength σc:

σa =
2
π

21/4 Kinc
Ic

Kint
Ic

√
`fpz
d
σint

c and σb =
2
π

Kinc
Ic

Kmat
Ic

√
`fpz
d
σmat

c (32)

The scale separation condition `fpz � d of Eq. (1) thus implies that no micro-cracking through
inclusion debonding can take place, as long as we consider only mild variations of toughness KIc
i.e. Gc. The study presented here provide thus quantitative predictions on the effective toughness
in the brittle limit `fpz � d. Advanced numerical methods such as phase-field models may allow
to study the influence of micro-cracking beyond this limit (Nguyen et al., 2016, 2017a).

Third, the pertubative approach only provides explicit formulæ of the local SIF variations
for limited reference crack geometries. Thus, it does not provide an appropriate framework to
investigate the influence of crack branching on the effective toughness. Crack branching may
occur at the matrix/inclusion interface if the crack is pinned long enough on the inclusion Xu
et al. (1998). Additional energy is then dissipated to make both crack grow further and the
effective toughness of the composite is expected to increase. Yet, as suggested by phase-field
simulations conducted by Brach et al. (2019), crack branching may not take place in the brittle
limit `fpz � d as long as the crack lands on an inclined interface and the toughness contrast is
moderate. Our study provides thus quantitative results on the effective toughness except when
the toughness of the interface is significantly lower than the one of the matrix or when the crack
lands on the equatorial plane of the inclusion, facing thus a 90◦ interface.
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Conclusion

This study analyzes the interaction mechanisms between a crack and a tough inclusion in a
fully three-dimensional setting, allowing for out-of-plane excursions of the crack front around
obstacles. A LEFM-based perturbative framework, accounting for the toughness discontinuity
at the matrix/inclusion interface, has been developed in order to predict the spatio-temporal evo-
lution of the front as it deforms and finally escapes from tough inclusions. Our model captures
the complex coupling between in-plane and out-of-plane deformation modes of the front during
its interaction with the inclusion, while remaining computationally very efficient. It is used to
explore the ability of tough inclusions to efficiently trap a crack, and compute the effective frac-
ture resistance of brittle composites reinforced by periodic arrangements of these inclusions. The
conclusions drawn from our study are the following:

• Crack path selection and the resulting fracture properties emerge from a competition be-
tween two depinning mechanisms, namely inclusion crossing, wherein the crack propa-
gates through the obstacle, and inclusion by-pass, wherein instead the crack front gets
around it.

• The selection of one mechanism with respect to the other can be rationalized using the
generalized maximum energy release rate criterion that compares the drop in elastic energy
release rate due to crack kinking during by-pass with the gain in fracture energy resulting
from cracking the matrix instead of the inclusion. It depends on the landing height of the
crack on the obstacle that sets the kink angle required for by-passing, the toughness of
the inclusion and that of the interface. A simplified two-dimensional theory developed for
cylindrical inclusions with axis parallel to the crack front accounts for the transition from
crossing to by-pass observed in fully three-dimensional numerical simulations of cracks
interacting with spherical inclusions.

• This theory also accounts for the existence of a critical inclusion toughness Ginc
c ' 3.85 Gmat

c
above which spherical inclusion are systematically by-passed.

• The by-pass of inclusions has a dramatic impact on the effective fracture properties of the
material. It limits inclusion-induced toughening through crack front trapping, by allowing
the crack to follow a more energetically favored path. As a result, the effective toughness
of the composite does not increase monotonically with the toughness inclusion, but in-
stead reaches a plateau value that cannot be overcome by increasing further the inclusion
resistance.

• The toughening of periodic composites can be limited even further by the inclusion shape.
The three-dimensional coupling of the in-plane and out-of-plane deformation modes of
the crack front can trigger collective effects which facilitate the by-pass of tough prolate
spheroidal inclusions elongated in the direction of the crack front. In this case, crack de-
flection prevails over crack trapping even for rather low values of the inclusion toughness,
thus further limiting the reinforcement of brittle material by tough inclusions. This means
that the obstacle geometry plays a decisive role on the effective toughness of heteroge-
neous brittle materials. This conclusion paves the way to more ambitious inclusion design
strategies, for example through additive manufacturing techniques.
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• Out-of-plane excursions of the crack not only limit material reinforcement through crack
front trapping, but may also hinder other efficient toughening mechanisms such as crack
bridging. Bower and Ortiz (1991) showed that crack bridging occurs for inclusions at least
4.4 times tougher than the matrix. This lower limit being larger than the critical toughness
for by-pass of spherical inclusions, crack bridging cannot occur for such inclusions. Con-
sidering then prolate spheroidal inclusions elongated in the direction perpendicular to the
fracture plane, we show that crack deflection triggered by inclusion by-pass prevails over
crack bridging for inclusion aspect ratios dy/dz . 4. However these predictions might be
of qualitative value only, since our model disregards possible crack branching at the ma-
trix/inclusion interface (Xu et al., 1998).

Our study shows that the selection of the depinning mechanism (crossing or by-pass) deter-
mines the nature of the toughening mechanism (crack front trapping, crack deflection or crack
bridging), and ultimately the overall toughness of the composite material. The complete reso-
lution of the spatio-temporal evolution of the crack front during its interaction with tough in-
clusions is then necessary to address the issue of the effective fracture properties of reinforced
brittle solids. The study focused on rather simple systems (periodic media with only one tough
inclusion per period), but our LEFM-based perturbative model displays unprecedented numerical
performances, which permit to simulate crack propagation in large-scale heterogeneous materi-
als - something currently out-of-reach of standard numerical approaches like the finite element
method. The issue of the effective fracture properties of media containing complex, disordered
distributions of tough inclusions will be the topic of a future paper (Lebihain et al., 2020). The
in-depth understanding of the interaction mechanisms developed in this paper for simple systems
will be essential for the estimation of homogenized fracture properties of more complex ones.

Appendix A Large-angle regularization

In our simulations, the local slope of the crack front in the (xOy) plane, ∂ fy/∂x, may be large
during the by-passing of inclusions. To deal with this issue, we propose heuristic, approximate
expressions of the SIFs and related quantities based on a combination of Eqs. (6) (Movchan et al.,
1998) and (9) (Leblond, 1999).

A.1 Expressions of the stress intensity factors

We consider a point P of abscissa z along the crack front F , and note θ = arctan
(
∂ fy/∂x

)
the angle (which may be arbitrary large) between with the x-direction and the local direction of
crack propagation. Movchan et al. (1998)’s formulæ provide the variations of the SIFs arising
from infinitesimal perturbations of the crack front and crack surfaces, to first order in these
perturbations, that is for small values of θ. One observes in Eq. (6) that the Mode II variation
can be split into a local term δKloc

II proportional to the slope ∂ fy/∂x, and a term δKLR
II depicting

long-range elastic interactions:

δKII (z, t) =
K∞I (t)

2
∂ fy
∂x

(z, t)︸             ︷︷             ︸
δKloc

II

+
2 − 3ν
2 − ν

K∞I (t)
2π

PV
∫ +∞

−∞

fy (z, t) − fy (z′, t)

(z − z′)2 dz′︸                                                      ︷︷                                                      ︸
δKLR

II

(33)
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(Note that the expressions for the Mode I and III variations do not, however, contain any similar
term proportional to ∂ fy/∂x).

On the other hand Leblond (1999)’s formulæ relate the values of the SIFs after an abrupt
change of the direction of propagation to those of the SIFs before this change, for an extension
of vanishingly small length but an arbitrary kink angle.

We therefore propose, for a crack slightly perturbed out of its plane but with a possibly large
slope ∂ fy/∂x, to adopt the following formulæ combining Eqs. (6) and (9):

KI (z, t) = FI,I (θ)
[
K∞I (t) + δKI (z, t)

]
+ FI,II (θ) δKLR

II (z, t)
KII (z, t) = FII,I (θ)

[
K∞I (t) + δKI (z, t)

]
+ FII,II (θ) δKLR

II (z, t)
KIII (z, t) = FIII,III (θ) δKIII (z, t)

(34)

Note that:

• For small angles θ, Eq. (34) reduces to Eq. (6), as desired, by virtue of the following
low-order expressions of the functions Fi,j (θ) (Leblond, 1999):

θ = arctan
(
∂ fy
∂x

)
=
∂ fy
∂x

+ O

(∂ fy
∂x

)3
FI,I (θ) = 1 + O

(
θ2

)
FI,II (θ) = − 3

2θ + O
(
θ3

)
FII,I (θ) = 1

2θ + O
(
θ3

)
FII,II (θ) = 1 + O

(
θ2

)
(35)

• If the crack lands on an inclusion with a zero angle and subsequently kinks along the
interface, at the very beginning of the by-pass Eq. (34) reduces to (9) and is therefore
rigorously correct even for large values of the kink angle.

A.2 Expression of the energy-release-rate

Let us consider, as before, a point P on the perturbed crack front F . The local direction of
crack propagation makes an arbitrary angle θ with the x-direction. The elastic ERR rate for a
kink angle α is given by:

G (α) =
1 − ν2

E

(
K2

I (α) + K2
II (α)

)
+

1 + ν

E
K2

III (α) (36)

where KI (α), KII (α) and KIII (α) are given by Leblond (1999)’s formulæ :
KI (α) = FI,I (α) KI (z, t) + FI,II (α) KII (z, t)

KII (α) = FII,I (α) KI (z, t) + FII,II (α) KII (z, t)

KIII (α) = FIII,III (α) KIII (z, t)

(37)

where the SIFs (Ki (z, t)) are given by Eq. (34).
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Discarding second-order terms in the crack perturbation, we get :

G
α, θ, δKI

K∞I
,
δKLR

II

K∞I

 = G∞
gI (α, θ)

(
1 + 2

δKI

K∞I

)
+ gII (α, θ)

δKLR
II

K∞I

 (38)

where gI and gII are linked to Amestoy-Leblond’s functions
(
Fi, j

)
through the following relation

: 

gI (α, θ) =
(
F2

I,I (α) + F2
II,I (α)

)
F2

I,I (θ)

+
(
F2

I,II (α) + F2
II,II (α)

)
F2

II,I (θ)

+2
(
FI,I (α) FI,II (α) + FII,I (α) FII,II (α)

)
·FI,I (θ) FII,I (θ)

gII (α, θ) = 2
(
F2

I,I (α) + F2
II,I (α)

)
FI,I (θ) FI,II (θ)

+
(
F2

I,II (α) + F2
II,II (α)

)
FII,I (θ) FII,II (θ)

+2
(
FI,I (α) FI,II (α) + FII,I (α) FII,II (α)

)
·
(
FI,I (θ) FII,II (θ) + FII,I (θ) FI,II (θ)

)

(39)

Appendix B Maximization of G − Gc

Use of the GMERR criterion is mandatory to study crack propagation in heterogeneous brittle
materials. Unfortunately such a use apparently requires the determination of the full angular
distribution of G and Gc, implying a heavy and time-consuming numerical procedure. However,
let us introduce the following assumptions :

1. the inclusions are tougher than the matrix, Ginc
c ≥ Gmat

c , whereas the matrix/inclusion
interfaces are weaker, Gint

c ≤ Gmat
c ;

2. for the small values of KII/KI considered here, G increases until θ takes the value θG−max =

θini − 2
KM

II

KM
I

, and decreases beyond this value;

3. we only consider angles θ in the interval
[
− π2 ,

π
2

]
.

Then G − Gc can be maximal either inside the open intervals where Gc is constant (i.e. in
the matrix or the inclusion), or at endpoints of these intervals (i.e. along the matrix/inclusion
interface). Thus it is only necessary to compare the values (G −Gc) (θtan) and (G −Gc) (θG−max).

Appendix C Influence of the mesh size on the effective toughness

One of the main advantage of the proposed numerical method is that it only requires a 1D
discretization of the crack front, making the simulations substantially faster. The mesh size ∆z
may then influence crack propagation and its dynamics in composite materials. The impact of
the mesh size ∆z on the effective toughness is plotted in Fig. 36.a

We observe that the results converge to a single value when ∆z ≥ d/16, where d is the
diameter of the inclusion. Discrepancies for coarser mesh size can be attributed to the inclusion
geometry the crack actually perceives when it lands on the inclusion (see Fig. 36.(b-e)).
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Figure 36: (a) Influence of the front mesh size ∆z on the effective toughness Geff
c and on the inclusion geometry actually

perceived by the crack in the simulations for (b) ∆z = d/4, (c) ∆z = d/16, (d) ∆z = d/64, and (e) ∆z→ 0.

Appendix D Dynamics of the crossing and by-pass interaction mechanisms

We investigate here the dynamics of both crossing and by-pass mechanisms during the inter-
action of a crack with periodic arrangements of tough spherical inclusions. The dynamics of the
crossing mechanism is illustrated in Fig. 37, where is plotted the in-plane perturbation dynamics
in the (zOx) plane are given in Fig. 37.a. The propagation of the central point of the crack front
at z = 0 in the (xOy) plane along with macroscopic loading G∞ is given in Fig. 37.b. We observe
that when the crack starts to cross the inclusion, it does not “know” that the width of the defect
increases in the propagation direction (Ox). The macroscopic loading keeps increasing after the
initial penetration in order to allow for the stable propagation of the crack inside the defect.
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Figure 37: Crossing of periodic arrangements of spherical inclusions with Ginc
c = 1.5 Gmat

c and Lz/d = 4, by a crack
landing at ylanding = 0.1 d. In-plane profiles in the (zOx) plane at various loading states (a). Trajectory in the plane (xOy)

and macroscopic loading evolution for the center point in z = 0 (b).

On the contrary, when the crack chooses to by-pass the inclusion the maximal macroscopic
loading is attained at the kinking event (see Fig. 37). During the subsequent by-pass of the inclu-
sion, the crack can realign with the (Ox) direction favored by the macroscopic tensile loading,
which facilitates its propagation without requiring any additional increase in the driving force.

During its propagation, the crack select the interaction mode which is energetically more
favorable. Yet, as noted by Takei et al. (2013), this choice results from a local maximization of
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Figure 38: By-pass of periodic arrangements of spherical inclusions with Ginc
c = 3.5 Gmat

c and Lz/d = 4, by a crack
landing at ylanding = 0.1 d. In-plane profiles in the (zOx) plane at various loading states (a). Trajectory in the plane (xOy)

and macroscopic loading evolution for the center point in z = 0 (b).

the dissipation rather than a global one. Such behavior accounts for the fact that the global/partial
crossing interaction sometimes prevails over the by-pass one even if such choice is detrimental
on a energetic point of view.
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