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RECENT PROGRESS ON LIMIT THEOREMS FOR LARGE STOCHASTIC

PARTICLE SYSTEMS ∗

Max Fathi1, Pierre Le Bris2, Angeliki Menegaki3, Pierre Monmarché4, Julien
Reygner5 and Milica Tomašević6

Abstract. This article presents a selection of recent results in the mathematical study of physical
systems described by a large number of particles, with various types of interactions (mean-field, moder-
ate, nearest-neighbor). Limit theorems are obtained concerning either the large-scale or the long-time
behavior of these systems. These results rely on the use of a large range of mathematical tools, arising
from both probability theory and the analysis of partial differential equations, and thereby illustrate
fruitful interactions between these two disciplines.

Résumé. Cet article présente une sélection de résultats récents dans l’étude mathématique de systèmes
physiques décrits par un grand nombre de particules, soumis à des interactions de diverses natures
(champ moyen, interaction modérée, plus proches voisins). On y obtient des théorèmes limites con-
cernant le comportement à grande échelle ou en temps long de ces systèmes. Ces résultats reposent
sur l’emploi d’une large gamme d’outils mathématiques, provenant de la théorie des probabilités et
de l’analyse des équations aux dérivées partielles, et illustrent ainsi les interactions fécondes entre ces
deux disciplines.

1. Introduction

The derivation of macroscopic laws for particle systems defined by microscopic evolution rules is the primary
purpose of statistical physics. Beyond natural applications to the kinetic theory of gases or the atomistic
description of condensed matter, this approach has also been successfully employed in various other fields, such
as neuroscience, social or ecological collective behavior modeling, machine learning, game theory, to name but
a few. However, establishing rigorous limit theorems, for instance known as hydrodynamic or thermodynamic
limits, depending on the scalings which are considered, is often a challenge to mathematicians. This may be due
to various phenomena: the lack of satisfactory ergodic properties of the microscopic dynamics, the nonlinearity of
macroscopic equations, a nontrivial interplay between relevant space and time scales... The present article aims
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at presenting recent results which illustrate a selection of topics of current interest, both for the communities
of partial differential equations and probability theory, in the study of large stochastic particle systems.

A first class of systems which is considered concerns particles in mean-field interaction, which interact through
their empirical measure. For such systems, the macroscopic behavior is expected to be induced by the prop-
agation of chaos phenomenon: when the size of the system grows to infinity, particles decorrelate and behave
independently, following a nonlinear evolution equation which encodes the interaction at the macroscopic level.
Mathematical proofs of such a behavior can be traced back to the works of Kac and McKean.

In many cases of interest, in particular for systems involving electrostatic interactions or arising from random
matrix theory or chemotaxis models, particles interact through a pairwise potential which becomes singular
when two particles approach each other. This prevents standard techniques from being employed, and even
sometimes makes the particle system ill-defined. In such cases, a possible approach due to Oelschläger con-
sists in smoothing out the interaction kernel in the definition of the particle system, which leads to so-called
moderate interactions. While seminal propagation of chaos results for such systems are purely qualitative,
Section 2 presents a quantitative rate of convergence. This is made possible by the use of a recently devel-
oped technique, dubbed the semigroup approach, which is especially designed to approximate nonlinear partial
differential equations by smoothed empirical measures.

Section 3 also presents a quantitative propagation of chaos result, for a system of interacting Langevin
diffusions. There, the interaction kernel is smooth and the mean-field particle system is well-defined. However,
the emphasis is laid on the uniformity in time of the propagation of chaos estimate. This result is obtained
by a probabilistic construction, which combines in a nontrivial fashion synchronous and reflection couplings,
following recent works by Eberle and coauthors. Remarkably, the argument allows to address situations where
particles evolve in a non-convex confining potential. Furthermore, it may also be applied directly at the level
of the macroscopic dynamics of the system, for which it yields quantitative rates of convergence to equilibrium.
Overall, this provides a typical example of a situation where a purely deterministic result, the description of the
long time behavior of a nonlinear partial differential equation (the Vlasov–Fokker–Planck equation), is obtained
through a genuinely probabilistic construction.

When propagation of chaos does not hold uniformly in time, local equilibria can arise for large but finite
particle systems. In such cases, the particle system is typically observed to remain in a seemingly stable subset
of the configurational space over a long time period, and then escapes this subset in an ‘unpredictable’ way
— which means, in more probabilistic terms, that the escape time is close to exponentially distributed. This
phenomenon is referred to as a metastable behavior. Metastability induced by finite-size effects in mean-field
particle systems was for instance studied, for a continuous version of the Curie–Weiss model, by Dawson and
Gärtner. Section 4 presents another instance of such a phenomenon, for a system of neurons described by
mean-field interacting piecewise deterministic Markov processes. There again, the proof relies on a coupling
argument, which thus illustrates the versatility of this technique.

Another powerful method to study the long time behavior of large particle systems is the use of functional
inequalities, such as Poincaré or logarithmic Sobolev inequalities. Section 5 specifically addresses the dependency
of constants involved in such inequalities upon the number of particles. The framework is different from that of
the three other sections. Indeed, the interaction is no longer of mean-field (or moderate) type, but particles are
rather chained together and only interact with their nearest neighbors. Such models of chains of oscillators,
when in contact with thermostats, are ubiquitous in the study of heat transfer, with the overall purpose to
derive the Fourier law from microscopic dynamics. In this highly difficult research program, the quantification
of the ergodicity of the microscopic dynamics in terms of the size of the system is an important step. The
results from Section 5, which rely on a generalization of Bakry and Émery’s Γ2 calculus and on a spectral study
of Schrödinger operators, provide explicit and, in certain cases, optimal estimates.

As a conclusion, the present article provides an overview of modern techniques employed to describe the
large scale and long time behavior of stochastic particle systems with various types of interaction. All of them
build on both analytic and probabilistic tools, and thus they exemplify how fruitful interactions between these
two fields may be.
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2. Rate of convergence of moderately interacting particle systems towards
non-linear Fokker-Planck Equations with singular kernels

In this section we are interested in the stochastic approximation of nonlinear Fokker-Planck Partial Differ-
ential Equations (PDEs) of the form{

∂tu(t, x) = ∆u(t, x)−∇ ·
(
u(t, x) K ∗x u(t, x)

)
, t > 0, x ∈ Rd,

u(0, x) = u0(x),
(1)

by means of moderately interacting particle systems. The main interest here is for the kernels K with a
singularity at the origin. The results we will present concern the work [40] to which we refer for more details
and proofs.

The motivation comes from the cases in which K is an attractive kernel whose singular nature may cause an
explosion in finite time in (1) as it is the case in the parabolic-elliptic Keller-Segel model (K(x) = − x

|x|d , d ≥ 2).

On the microscopic level, the kernels we are interested in lead to particle systems for which well posedness
and/or propagation of chaos are not known to hold. A typical family of singular kernels that we consider
derives from Riesz potentials, defined in any dimension d as

Vs(x) :=

{
|x|−s if s ∈ (0, d)

− log |x| if s = 0
, x ∈ Rd. (2)

The associated kernel is then Ks := ±∇Vs, the sign deciding whether the interaction is attractive or repulsive.
Even when it is possible to define the particles, the propagation of chaos may not always hold. For example, in
the tricky case of the 2d parabolic-elliptic Keller-Segel model, the mean-field particle system was shown to be
well-defined [8,23], but the convergence (on the level of measures on the space of trajectories) is known to hold
only for small values of the critical parameter of the equation (see [23]). For the d-dimensional parabolic-elliptic
Keller-Segel model with d ≥ 3 or for the attractive Riesz kernel with s ∈ (d − 2, d), so far the existence result
for the associated particle system in mean field interaction has not been proved.

That is why, we will consider moderately interacting particle systems in the sense of Oëlschlager [38] which
rely on a smoothing of the interaction kernel at the scale N−α, α ∈ [0, 1] (here N is the total number of
particles). The main difficulty is then to prove that such particle systems behave, as N → ∞, in the same
way as the classical mean-field non-smoothed systems would (if they would be well-defined). That is, we show
for a class of singular kernels K that, as N → ∞, our particles behave like independent copies of a non-linear
stochastic process in the sense of McKean-Vlasov. As a consequence, we show that the empirical measure of
our system converges to the mild solution of (1) on its maximal existence time. Moreover, we will quantify the
latter convergence in terms of N and α. For the Riesz kernels, we are able to treat the kernels that derive from
(2) for s ∈ (0, d− 1) in both attractive and repulsive case.

The present work is inspired by the new semigroup approach developed in [19], which allows one to approx-
imate nonlinear PDEs by smoothed empirical measures in strong functional topologies. More precisely, the
convergence of the mollified empirical measure of the moderately interacting particle system is obtained, and
the approach was initially proposed for the FKPP equations. It has already found many applications: see [20]
for a PDE-ODE system related to aggregation phenomena; [43] for non-local conservation laws; [21] for the 2d
Navier-Stokes equation; and [39] for the parabolic-elliptic Keller-Segel systems. However, in these recent works
this convergence was not quantified and the propagation of chaos was not considered.

2.1. The particle system and main hypothesis

Let A > 0 and consider FA : Rd → Rd a sufficiently smooth version of the cut-off function x→ 1{|x|≤A}Id(x)+

A1{|x|>A}1. Let V : Rd → R+ be a smooth probability density function, and assume further that V is compactly
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supported. For any x ∈ Rd, define

V N (x) := NdαV (Nαx), for some α ∈ [0, 1]. (3)

Below, α will be restricted to some interval (0, α0), see Assumption (Aα).
Let T > 0. For each N ∈ N, the particle system we consider is:dX

i,N
t = FA

(
1
N

N∑
k=1

(K ∗ V N )(Xi,N
t −Xk,N

t )

)
dt+

√
2 dW i

t , t ≤ T, 1 ≤ i ≤ N,

Xi,N
0 , 1 ≤ i ≤ N, are independent of {W i, 1 ≤ i ≤ N},

(4)

where {(W i
t )t∈[0,T ], i ∈ N} is a family of independent standard Rd-valued Brownian motions defined on a filtered

probability space (Ω,F , (Ft)t≥0,P). Observe that the interaction kernel K ∗ V N (x) is very close to K(x) when
|x| is sufficiently large compared to N−α. The cut-off may seem unnecessary as the kernel is smoothed with
V N , but it will be well chosen so it is lifted at the limit as N →∞ and it facilitates the analysis for a fixed N .

Our main goal is to prove that under suitable conditions on K (see Hypothesis (AK)) and for a well chosen
A, one has:

(a) {µNt = 1
N

∑N
i=1 δXi,Nt

, t ∈ [0, T ]}, the marginals of the empirical measure of (4), converge to the solution

of the PDE (1) for values of the smoothing parameter α which can be up to ( 1
d )− for some of the models

we consider, which is the typical distance between the particles in problems coming from statistical physics
with repulsive kernels. We get a rate of convergence of order N−%, with % which can be up to ( 1

d+2 )−.

Moreover, one can take FA(x) ≡ x in (4), at the price of a weaker form of convergence.
(b) The system (4) propagates chaos towards the following nonlinear equation (without the cut-off and the

mollifier): {
dXt = K ∗ ut(Xt) dt+

√
2dWt, t ≤ T,

L(Xt) = ut, L(X0) = u0.
(5)

Notice that it is not a priori clear that (5) is well-posed, due to the singularity of K. Hence, we also obtain a
well-posedness result for (5).

As an application, one can use the rate in (a) and a time discretization of (4) to propose a numerical
approximation of the PDE (1). We leave this line of investigation for a future work.

Let us denote the empirical measure on C([0, T ],Rd) of N particles by µN = 1
N

∑N
i=1 δXi,N and the mollified

empirical measure by uNt := V N ∗ µNt , t ∈ [0, T ].
The general hypothesis on the kernel K is the following:

(AK):

(AK
i ) K ∈ Lp(B1), for some p ∈ [1,+∞];

(AK
ii ) K ∈ Lq(Bc1), for some q ∈ [1,+∞];

(AK
iii) There exists r ≥ max(p′, q′), ζ ∈ (0, 1] and C > 0 such that for any f ∈ L1 ∩ Lr(Rd), one has

Nζ(K ∗ f) ≤ C‖f‖L1∩Lr(Rd).

The Assumption (AK) is rather mild, and we provide in Section 2.3 a sufficient condition which is easier to
check in concrete examples. One can check that the Riesz potentials (see (2)) up to s ≤ d−2, whether repulsive
or attractive, satisfy (AK). The case of more singular kernels, e.g. Riesz kernels with s ∈ (d − 2, d − 1) is
treated separately, but in a very similar fashion adapting the hypothesis (AK) and the corresponding proofs to
accommodate for broader functional spaces (see Section 4 in [40]).

Throughout this survey, it will be supposed that the parameter r is such that r ≥ max(p′, q′), where (p, q)
are given in (AK).
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The restriction with respect to the key parameters is given by the following assumption:

(Aα): The parameters α and r (which appear respectively in (3) and (AK
iii)) satisfy

0 < α <
1

d+ 2d( 1
2 −

1
r ) ∨ 0

.

Notice that if the integrability of the kernel is such that r in (AK
iii) could be chosen in the interval [1, 2],

then α could be arbitrarily close to, but smaller than, 1
d (although this will not yield the best possible rate

of convergence). This scaling of order N−( 1
d )− is close to the typical interparticle distance in physical models

with repulsive interactions. This is what we get for instance in the case of 2d Navier-Stokes equation and 2d
Coulomb potential.
However, in the case of attractive interaction, the typical interparticle distance is not necessarily N−

1
d as the

particles may collide or even agglomerate. Indeed, in the case of the parabolic-elliptic Keller-Segel equation,
the associated mean-field particles collide with positive probability (see [23]), whilst in the fully parabolic case
they seem to agglomerate (numerically), see [46, Fig. 7.1, p. 120].

Finally, let us state the assumptions on the initial conditions of the system:

(A): Fix r from (AK). For any m ≥ 1, sup
1≤i≤N,N∈N

E|Xi,N
0 |m <∞ and supN∈N E

[∥∥µN0 ∗ V N∥∥mLr(Rd)

]
<∞.

A sufficient condition for (A) to hold is that particles are initially i.i.d. with a law which is in Lr and αd < 1.

Solutions to (1) are understood in the mild sense. That is, given K satisfying (AK
i )-(AK

ii ) and u0 ∈ L1 ∩
Lr(Rd) with r ≥ max(p′, q′) and T > 0 a function u on [0, T ]× Rd such that u ∈ C([0, T ];L1 ∩ Lr(Rd)) and

ut = et∆u0 −
∫ t

0

∇ · (e(t−s)∆(usK ∗ us)) ds, 0 ≤ t ≤ T. (6)

is a mild solution to (1) on [0, T ]. In [40] the existence and uniqueness of mild solutions for a general K satisfying
(AK

i )-(AK
ii ) is shown locally in time. One may also check case by case, depending on the kernel, if this solution

is global. Denote by Tmax the maximal time of existence of a solution to (1) in the above mild sense.
Before we pass to the main result, we show how to choose the cut-off parameter A (for the function FA) in

the definition of the particle system. Indeed, notice that there exists CK,d > 0 (which depends on a given K
and d only) such that for any f ∈ L1 ∩ Lr(Rd),

‖K ∗ f‖L∞(Rd) ≤ CK,d ‖f‖L1∩Lr(Rd).

Hence, for a local mild solution u on [0, T ], we will use the cut-off AT := CK,d supt≤T ‖ut‖L1∩Lr(Rd).

2.2. Main results

The first main result is the following claim :

Theorem 1. Assume that the initial conditions {µN0 }N∈N satisfy (A) and that the kernel K satisfies (AK).
Moreover, let (Aα) hold true. Let Tmax be the maximal existence time for (1) and fix T ∈ (0, Tmax). In addition,
let the dynamics of the particle system be given by (4) with A greater than suitably chosen AT .

Then, for any ε > 0 and any m ≥ 1, there exists a constant C > 0 such that for all N ∈ N∗,∥∥‖uN − u‖T,L1∩Lr(Rd)

∥∥
Lm(Ω)

≤ C
∥∥‖uN0 − u0‖L1∩Lr(Rd)

∥∥
Lm(Ω)

+ CN−%+ε,
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where

% = min

(
αζ,

1

2

(
1− α(d+ d(1− 2

r
) ∨ 0)

))
. (7)

It is clear from the definition (7) of % that there is a trade-off between choosing α close to 1
d (as imposed by

(Aα), provided r ≤ 2) so as to have more physical particles; and choosing α smaller (such that αζ = 1
2 (1− αd),

for a given ζ and assuming again that r ≤ 2) so as to maximize the rate of convergence. The latter case could
be of importance in numerical applications.

As a corollary, we obtain the same rate for the genuine empirical measure of the system (4):∥∥∥∥ sup
t∈[0,T ]

‖µNt − ut‖0
∥∥∥∥
Lm(Ω)

≤ C
∥∥‖uN0 − u0‖L1∩Lr(Rd)

∥∥
Lm(Ω)

+ C N−%+ε,

where ‖ · ‖0 denotes the Kantorovich-Rubinstein metric.
We can also remove the cutoff FA from the drift of the particle system (i.e. we choose FA = Id in (4), or

equivalently A =∞), but the convergence will then be in probability.
Now we look at the behavior of the trajectories of our particles when N →∞. We have the following result:

Theorem 2. Let the hypotheses of Theorem 1 hold. In particular, recall that u ∈ C([0, T ], L1 ∩ Lr(Rd)). Assume
further that the family of random variables {Xi

0, i ∈ N} is identically distributed and that 〈uN0 , ϕ〉 → 〈u0, ϕ〉
in probability, for any ϕ ∈ Cb(Rd). Then, the empirical measure µN. (defined as a probability measure on
C([0, T ];Rd)) converges in probability towards Q, which is the law of the unique weak solution of (5).

We emphasize here that without the convergence of uN in the convenient functional framework, it would
not be possible to obtain the propagation of chaos in this singular setting. Hence, the result of Theorem 1 is
very much related to the propagation of chaos and should be considered as the most important ingredient when
proving Theorem 2.

2.3. Important examples

First, we comment here how to check Assumption (AK). The first two points of Assumption (AK) are simple
technical conditions and may not require specific comments, except that it would be interesting to lift the first
integrability condition in order to be able to consider more singular kernels. The third assumption is much
more interesting. A sufficient easier-to-check condition that in practice replaces (AK

iii) is the following:

(
˜̃
AK
iii) There exists r ≥ max(p′, q′) and z ∈ [p ∨ q,+∞] ∩ (d,+∞] such that the matrix-valued

kernel ∇K defines a convolution operator which is bounded component-wise from L1 ∩ Lr(Rd)
to Lz(Rd).

Then, K satisfies (AK
iii) with the same parameter r and with ζ = 1− d

z .

Let us now consider the application of Theorem 1 to several classes of models:
• For Coulomb-type kernels, which includes the Biot-Savart kernel in dimension 2, the Riesz kernel with

s = d − 2 and the Keller-Segel kernel, the convergence happens for any α < 1
2(d−1) (note that in dimension 2,

this accounts for choosing α = ( 1
2 )−); the best possible rate of convergence is % =

(
1

2(d+1)

)−
for the choice

α =
(

1
2(d+1)

)+

.

• The 2d Keller-Segel model (K(x) = −χ x
2π|x|2 ). We recall that the PDE has a global solution whenever

the critical parameter χ satisfies χ < 8π, and explodes in finite time otherwise (see [37]). In Theorem 1, we
get a rate for any value of χ which is almost 1

2(d+1) . This result holds even if the PDE explodes in finite time

(χ > 8π). In that case, one works on [0, T ] for any T < Tmax.
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• The Riesz kernels with s > d− 2 do not satisfy Assumption (AK
iii). However, by imposing more regularity

on the initial conditions and smaller values of α (α < 1
2d ), we obtain a rate of convergence for singular Riesz

kernels with s ∈ (d−2, d−1), see [40, Thm. 4.2]. In this framework (AK) is replaced by another set of hypothesis

(ÃK) where the first one is (AK
i ) with p = 1, the second one is identical to (AK

ii ) and (AK
iii) is replaced by

(ÃK
iii) There exists r ∈ (d,∞) and β ∈ ( dr , 1) and ξ ∈ (0, 1] such that for any f ∈ L1 ∩Hβ

r (Rd),
one has for some C > 0

Nζ(K ∗ f) ≤ C‖f‖L1∩Hβr (Rd).

2.4. Main Ideas

We give here the main ideas for proving Theorem 1. To quantify the convergence of uN towards u one derives
the following mild formulation of the mollified empirical measure:

uNt (x) = et∆uN0 (x)−
∫ t

0

∇·e(t−s)∆〈µNs , V N (x−·)F
(
K∗uNs (·)

)
〉 ds− 1

N

N∑
i=1

∫ t

0

e(t−s)∆∇V N (x−Xi,N
s )·dW i

s . (8)

A crucial property of the mollified empirical measure that one can prove using the above mild form is the
following: For q ≥ 1, one has

sup
N∈N∗

E

[
sup
t∈[0,T ]

∥∥uNt ∥∥qLr(Rd)

]
<∞. (9)

In view of the mild formulations for u and uN one can then develop
∥∥‖uN − u‖T,L1∩Lr(Rd)

∥∥
Lm(Ω)

in several

terms and using the assumptions on the kernel K and (9) the terms coming from the drift part are controlled in
such a way that the Grönwall lemma can be applied at the end. This is where the αξ term comes from in (7).

It remains to control in terms of N the moments of ‖MN
t ‖L1(Rd) and ‖MN

t ‖Lr(Rd) where MN
t denotes the last

term in (8) (this control is also required in order to obtain (9)). This is the trickiest part of the proof. Note that(
‖MN

s ‖L1(Rd)

)
s≥0

is not a martingale, but a stochastic convolution integral. To achieve the above controls, we

use a generalization of the Burkholder-Davis-Gundy (BDG) inequality in UMD Banach spaces (see [47]). There
is a classical trick to apply BDG-type inequalities to stochastic convolution integrals, however it only leads to a
bound on ‖‖MN

t ‖L1(Rd)‖Lm(Ω) for a fixed t > 0, instead of a bound on ‖ sups∈[0,t] ‖MN
s ‖L1(Rd)‖Lm(Ω). In order

to keep the supremum in time inside the expectation, we will also use the lemma of Garsia, Rodemich and
Rumsey [25]. Besides, there is an additional difficulty here which is that L1 is not a UMD Banach space, hence
the infinite-dimensional version of the BDG inequality cannot be applied directly. Once this is overcomed, we
obtain a control in N that leads to the second term in the minimum appearing in (7) and this is where our
restriction on α comes from.

3. Convergence rates for the Vlasov-Fokker-Planck equation and uniform in
time propagation of chaos in non convex cases

This section is based on [26], in which the authors proved the existence of a contraction rate for Vlasov-Fokker-
Planck equation in Wasserstein distance, provided the interaction potential is (locally) Lipschitz continuous and
the confining potential is both Lipschitz continuous and greater than a quadratic function, thus requiring no
convexity conditions. Their strategy relies on coupling methods suggested by Eberle [14] adapted to the kinetic
setting enabling also to obtain uniform in time propagation of chaos in a non convex setting.
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3.1. Framework and results

Let U and W be two functions in C1
(
Rd
)

and let us consider the N -particle system in Rd in mean field
interaction

∀i ∈ J1, NK ,


dXi

t = V it dt,

dV it =
√

2dBit − V it dt−∇U
(
Xi
t

)
dt− 1

N

N∑
j=1

∇W
(
Xi
t −X

j
t

)
dt,

(10)

where Xi
t and V it are respectively the position and the velocity of the i-th particle, and

(
Bit, 1 ≤ i ≤ N

)
are

independent Brownian motions in dimension d. The symbol ∇ refers to the gradient operator.
In statistical physics, (10) is a Langevin equation that describes the motion of N particles subject to damping,

random collisions, a confining potential U and interacting with one another through an interaction potential W ,
which can be polynomial (granular media), Newtonian (interacting stellar) or Coulombian (charged matter).

Our goal is to understand what happens as N , the number of particles, goes to infinity. Intuitively, in a
system of N exchangeable particles in mean-field interaction, as N increases, two particles become more and
more statistically independent. This phenomenon has been stated under the name propagation of chaos, an idea
motivated by Kac [32], and greatly developed by Sznitman [44]. The notion of chaos refers to the independence
of particles, and the notion of propagation to the fact that it will often be sufficient to prove such limit as N
tends to infinity at time 0 for it to also hold at later time t.

To prove such result, let us first determine a good candidate for the limiting process. The dynamics of the
first particle can be rewritten{

dX1
t = V 1

t dt,

dV 1
t =

√
2dB1

t − V 1
t dt−∇U

(
X1
t

)
dt−∇W ∗ µNt

(
X1
t

)
dt,

where we denote µNt = 1
N

∑N
i=1 δXit the empirical measure. The symbol ∗ refers to the operation of convolution.

As N goes to infinity, if there is indeed independence, we expect µNt to converge towards the law of X1
t . We

thus define the non linear stochastic differential equation of McKean-Vlasov type
dXt = Vtdt

dVt =
√

2dBt − Vtdt−∇U (Xt) dt−∇W ∗ µt (Xt) dt
µt = Law (Xt) .

(11)

Here, (Xt, Vt) ∈ Rd × Rd, (Bt)t≥0 is a Brownian motion in dimension d, and µt is the law of the position Xt.

The Liouville equation associated to the process (11) is refered to as the Vlasov-Fokker-Planck equation:

∂tνt (x, v) = −∇x · (vνt (x, v)) +∇v · ((v +∇U (x) +∇W ∗ µt (x)) νt (x, v) +∇vνt (x, v)) , (12)

where νt(x, v) is a probability density in the space of positions x ∈ Rd and velocities v ∈ Rd, and

µt (x) =

∫
Rd
νt (x, dv)

is the space marginal of νt.
In order to prove independence at the limit, we thus compare the law of the N particle system to the law of

N independent copies of process (11).
Let us detail the assumptions on the potentials U and W .
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Assumption 1. The potential U is non-negative and there exist λ > 0 and A ≥ 0 such that

∀x ∈ Rd ,
1

2
∇U (x) · x ≥ λ

(
U (x) +

|x|2

4

)
−A. (13)

The condition (13) implies that the force −∇U has a confining effect, bringing back particles toward some
compact set. Since only the gradient of U is involved in the dynamics, the condition U ≥ 0 is thus not restrictive
as it can be enforced without loss of generality by adding a sufficient large constant to U . This condition is
added in order to simplify some calculations.

Assumption 2. There is a constant LU > 0 such that

∀x, y ∈ Rd × Rd , |∇U (x)−∇U (y) | ≤ LU |x− y|.

In particular, non convex potentials U may satisfy the two assumptions.

Example 1. Assume d=1. The double-well potential given by

U (x) =

{ (
x2 − 1

)2
if |x| ≤ 1,

(|x| − 1)
2

otherwise,

satisfies Assumptions 1 and 2.

Assumption 3. The potential W is even, i.e. W (x) = W (−x) for all x ∈ Rd, in particular ∇W (0) = 0.
Moreover, there exists LW < λ/8 (where λ is given in Assumption 1) such that

∀x, y ∈ Rd × Rd, |∇W (x)−∇W (y) | ≤ LW |x− y|. (14)

In particular |∇W (x) | ≤ LW |x| for all x ∈ Rd.

Here we consider an interaction force that is the gradient of a potential W , as we stick to the formalism
of other related works (for instance [12]). Nevertheless, all the results and proofs still hold if ∇W is replaced
by some F : Rd → Rd satisfying the same conditions. The confinement potential may also be non gradient,
however considering ∇U simplifies the construction of a Lyapunov function.

The condition LW ≤ λ/8 is related to the fact the interaction is considered as a perturbation of the non-
interacting process studied in [15]. Therefore, ∇W has to be controlled by ∇U in some sense.

Before proving a result of propagation of chaos, we are first interested in the long-time convergence of the
solution of (11) toward an equilibrium. The reason is that the coupling method used to prove the long-time
convergence will apply, up to some technical modifications, to the proof of propagation of chaos, while being
less cumbersome.

For µ and ν two probability measures on R2d, denote by Π (µ, ν) the set of couplings of µ and ν, i.e. the set
of probability measures Γ on R2d × R2d with Γ(A× R2d) = µ(A) and Γ(R2d ×A) = ν(A) for all Borel set A of
R2d. We define L1 and L2 Wasserstein distances as

W1 (µ, ν) = inf
Γ∈Π(µ,ν)

∫
(|x− x̃|+ |v − ṽ|) Γ (dxdvdx̃dṽ) ,

W2 (µ, ν) =

(
inf

Γ∈Π(µ,ν)

∫ (
|x− x̃|2 + |v − ṽ|2

)
Γ (dxdvdx̃dṽ)

)1/2

.

Our main results will be stated in terms of these distances.
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Theorem 3. Let U ∈ C1
(
Rd
)

satisfy Assumption 1 and Assumption 2. There is an explicit cW > 0 such

that, for all W ∈ C1
(
Rd
)

satisfying Assumption 3 with LW < cW , there is an explicit τ > 0 such that for all

probability measures ν1
0 and ν2

0 on R2d with a finite second moment, there are explicit constants C1, C2 > 0 such
that for all t ≥ 0,

W1

(
ν1
t , ν

2
t

)
≤ e−τtC1 , W2

(
ν1
t , ν

2
t

)
≤ e−τtC2

where ν1
t and ν2

t are solutions of (12) with respective initial distributions ν1
0 and ν2

0 .
In particular, we have existence and uniqueness of, as well as convergence towards, a stationary solution.

The second of our main results is then a uniform in time convergence as N → +∞ of (10) toward (11).

Theorem 4. Let C̃0 > 0 and ã > 0. Let U ∈ C1
(
Rd
)

satisfy Assumptions 1 and 2. There is an explicit cW > 0

such that, for all W ∈ C1
(
Rd
)

satisfying Assumption 3 with LW < cW , there exist explicit B1, B2 > 0, such

that for all probability measures ν0 on R2d satisfying Eν0
(
eã(|X|+|V |)) ≤ C̃0 ,

W1

(
νk,Nt , ν̄⊗kt

)
≤ kB1√

N
, W2

2

(
νk,Nt , ν̄⊗kt

)
≤ kB2√

N
,

for all k ∈ N, where νk,Nt is the marginal distribution at time t of the first k particles
(
(X1

t , V
1
t ), ...., (Xk

t , V
k
t )
)

of

an N particle system (10) with initial distribution (ν0)⊗N , while ν̄t is a solution of (12) with initial distribution
ν0.

3.2. Description of the method

The idea behind the coupling method comes from [15]. To prove Theorem 1, we construct simultaneously two
solutions of (11) that have a trend to get closer with time, since an upper bound on the Wasserstein distance
between two probability distributions is given by the construction of any pair of random variables distributed
respectively according to those. Have (Xt, Vt) be a solution of (11) driven by some Brownian motion (Bt)t≥0

and let (X ′t, V
′
t ) solve 

dX ′t = V ′t dt

dV ′t =
√

2dB′t − V ′t dt−∇U (X ′t) dt−∇W ∗ µt (X ′t) dt
µ′t = Law (X ′t) ,

with (B′t)t≥0 a d-dimensional Brownian motion. A coupling of (X,V ) and (X ′, V ′) then follows from a coupling

of the Brownian motions B and B′.
We identify three main behaviors. First, when one of the particles ventures at infinity, i.e when either

|Xt|, |Vt|, |X ′t|, or |V ′t | becomes too big, the friction and the confinement potential will tend to bring the particle
back into a compact set of R2d. To translate this effect, we construct a Lyapunov function H.

We then observe that, by choosing B = B′, the Brownian noise cancels out in the infinitesimal evolution of
the difference (Zt,Wt) = (Xt −X ′t, Vt − V ′t ). This choice of coupling is named synchronous coupling. In that
case, the difference (Zt,Wt) goes to 0 only thanks to the deterministic drift, as in [4]. Such a deterministic
contraction a priori holds under very restrictive conditions, in particular U should be strongly convex. In our
case, and this is the second identified behavior, the calculation of the evolution of Zt and Wt shows that there
is still some deterministic contraction when Zt + Wt = 0. We can therefore use a synchronous coupling in the
vicinity of this subspace.

The last behavior, when the particles are outside of the contracting space {(z, w) ∈ R2d, z + w = 0} and in
the compact set where the Lyapunov function is not sufficient, we use noise to get the processes closer together.
In order to maximize the variance of this noise, we use a so-called reflection coupling, which consists in B
and B′ being antithetic (i.e B′t = −Bt) in the direction of space given by the difference of the processes, and
synchronous in the orthogonal direction. In other words, writing

et =

{ Zt+Wt

|Zt+Wt| if Zt +Wt 6= 0

0 otherwise
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we consider dB′t =
(
Id− 2ete

T
t

)
dBt. Levy’s characterization then ensures that it is indeed a Brownian motion.

We are thus led to the study of a suitable distance between the two processes of the form

ρt := f(rt)(1 + εH(Xt, Vt) + εH(X ′t, V
′
t )),

with rt = α|Zt| + |Zt + Wt|, where α, ε > 0 and the function f need to be carefully chosen in order for Eρt to
decay exponentially fast. This leads to several constraints, and we have to prove that it is possible to meet all
these conditions simultaneously.

Let us highlight the main points of the construction of the semimetrics. First, in order to deal with the kinetic
process (11), the standard Euclidean norm |x|2 + |v|2 is not suitable and one should instead consider a linear
change of variables, like (x, v) 7→ (x, x + βv) for some β ∈ R. This is the case when using coupling methods
as in [4, 15] but also when using hypocoercive modified entropies involving mixed derivatives as in [2, 7, 45, 48],
the link being made in [36]. This motivates the definition of r above. Then, when using a reflection coupling,
because of the symmetry of the noise, there is a priori no reason why the noise should decrease r rather than
increase it. To deal with this issue we modify this distance r by some concave function f . The concavity is
well adapted to Itô’s formula, enabling the diffusion to provide a contraction effect (in a compact set), as a
random decrease in r has more effect on f(r) than a random increase of the same amount. This method has
been applied to elliptic diffusions in [14], see also [16]. Finally, we multiply the distance by a Lyapunov function
G, which has first been used for Wasserstein distances in [28]. That way, on average, f(r)G tends to decay
because, when r is small, f(r) tends to decay and, when r is large, G tends to decay.

We now write this coupling. Let ξ > 0, and let rc, sc : R2d → [0, 1] be two Lipschitz continuous functions
such that :

rc2 + sc2 = 1,

rc (z, w) = 0 if |z + w| ≤ ξ

2
or α|z|+ |z + w| ≥ R1 + ξ,

rc (z, w) = 1 if |z + w| ≥ ξ and α|z|+ |z + w| ≤ R1.

These two functions translate into mathematical terms the regions in which we use a reflection coupling (rep-
resented by rc = 1) and the ones where we use a synchronous coupling (represented by sc = 1). Finally, ξ is a
parameter that will vanish to zero in the end. We therefore consider the following coupling:

dXt = Vtdt

dVt = −Vtdt−∇U (Xt) dt−∇W ∗ µt (Xt) dt+
√

2rc (Zt,Wt) dB
rc
t +

√
2sc (Zt,Wt) dB

sc
t

µt = Law (Xt)

dX̃t = Ṽtdt

dṼt = −Ṽtdt−∇U(X̃t)dt−∇W ∗ µ̃t(X̃t)dt+
√

2rc (Zt,Wt)
(
Id− 2ete

T
t

)
dBrct

+
√

2sc (Zt,Wt) dB
sc
t

µ̃t = Law(X̃t),

where Brc and Bsc are independent Brownian motions, and

Zt = Xt − X̃t, Wt = Vt − Ṽt, Qt = Zt +Wt, et =

{ Qt
|Qt| if Qt 6= 0,

0 otherwise,

and eTt is the transpose of et. Calculations of the time evolution of the coupling semimetric yield

∀t ≥ 0, ectρt ≤ ρ0 +

∫ t

0

ecsKsds+Mt,
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where Mt is a continuous local martingale and, by regrouping the terms according to how we will use them

Kt =

(
cf (rt) +

(
α
d|Zt|
dt

+ (LU + LW )|Zt|
)
f ′ (rt)

)
Gt (15)

+ 4

(
f ′′ (rt)Gt + 24εmax

(
1,

1

2α

)
rtf
′ (rt)

)
rc (Zt,Wt)

2
(16)

+ ε
(

2B − γH (Xt, Vt)− γH(X̃t, Ṽt)
)
f (rt) (17)

+ LW f
′ (rt)E (|Zt|)Gt + εLW (6 + 8λ)

(
E (|Xt|)2

+ E(|X̃t|)2
)
f (rt) . (18)

Briefly,

• lines (15) and (16) will be non positive thanks to the construction of a ”sufficiently concave” function
f when using the reflection coupling,

• when only using the synchronous coupling, i.e when the deterministic drift is contracting, line (15) alone
will be sufficiently small,

• line (17) translates the effect the Lyapunov function H has in bringing back processes that would have
ventured at infinity,

• finally, line (18) contains the non linearity and will be tackled by taking LW sufficiently small.

Then, Gronwall’s lemma allows us to conclude on the long time behavior of the non linear process, i.e Theorem 3,
as the quantity ρt controls the L1 and L2 Wasserstein distances.

Obviously, for conciseness purposes, the reader is spared from the full calculations. We however wish to draw
their attention to what may constitute one of the most interesting aspect of a coupling method. Notice how,
in (15)-(18), the various expected behaviors of the stochastic particle can be observed. This shows that there
is a back-and-forth between the probabilistic understanding of the dynamics and the calculations. The choice
of the semimetrics was for instance motivated by the expected behavior of the processes, and conversely the
difficulties appearing in the calculations may highlight some physical phenomena concerning the particles, that
then motivate modifications in the studied quantities.

In order to prove Theorem 2 on propagation of chaos, the same method is applied, considering a coupling of
the N particle system (10) with N independent copies of the non linear SDE (11). Some technical difficulties (for
instance the expectations appearing in (18), coming from the non linear aspect of the processes, are replaced by
empirical means) coming from the interactions between particles must be dealt with by modifying the function
ρ, thus considering a new semimetrics. We refer to [26] for more details.

4. Metastability for a system of interacting neurons

This section is based on [34], to which we refer for details and proofs.

4.1. The model and questions

Let us consider a very elementary model for a network of N interacting neurons, introduced in [24]. A neuron
is only described by its membrane potential ui ≥ 0, i ∈ J1, NK, and it emits spikes at a rate λ(ui). When a
neuron spikes, its potential is reset to 0 and the potential of all the other neurons is increased by a fixed value
h/N for some h > 0. Between these jumps, the potential depletes at constant rate, namely ∂tui = −αui for
some α > 0. As a summary, the network is described by the Markov process UN = (UN1 , . . . , U

N
N ) on RN+ with

generator

Aϕ(u) =

N∑
i=1

λ(ui) [ϕ(u+ ∆i(u))− ϕ(u)]− αu · ∇ϕ(u), (19)
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where

(∆i(u))j =

{
h
N j 6= i,
−ui j = i.

(20)

We assume that the jump rate is bounded, increasing (which means the interaction has an excitatory effect),
Lipschitz, and that λ(0) = 0.

An interesting feature about this model is the following. Denote by (Tn)n∈N the random jump times of the
process. Duarte and Ost have proven in [11] that almost surely there is only a finite number of spikes, i.e.

LN := sup{Tn, n ∈ N, Tn <∞} <∞.

This is similar to results on models for population dynamics which exhibit an almost sure extinction. However,
an important difference is that LN is not a stopping time. Indeed, the event {LN ≤ t} is measurable with
respect to the future trajectory {UN (s), s > t}, not the past. After time LN , the process goes at rate α toward
zero, and in particular the Dirac mass at zero is the only invariant measure of the process.

Besides, when N is large, the number of spikes in a given time interval is of order N , approximately deter-
ministic due to the law of large numbers, each of them inducing an increase of order 1/N on the potentials of
the neurons. It is clear that this mean field interaction will produce, as N →∞, a deterministic drift. In other
words as N →∞, the trajectory of a neuron is expected to converge to a process Ū solving

dŪ(t) = −αŪ(t)dt+ hE(λ(Ū(t)))dt− Ū(t−)

∫
R+

1{z≤λ(Ū(t−))}π(dt, dz), (21)

where π(dt, dz) is a Poisson random measure on R+ × R+ having intensity dtdz. In other words, Ū is reset to
0 at rate λ(Ū(t)) and, otherwise, follows the deterministic flow ∂tu = −αu+ hE

(
λ(Ū(t))

)
.

Now, assume that there exists a non-zero stationary distribution of the non-linear equation satisfied by the
law of Ū . If we consider a system of N interacting neurons with independent initial conditions distributed
according to this positive stationary distribution then, on any finite time interval, for N large enough, the
system will behave similarly to N independent copies of the non-linear process (21), and in particular the
empirical measure of the system should stay approximately constant. This implies that LN should go to infinity
in law as N → +∞. Again, we recover a situation which is classical for population models, where a stochastic
birth-and-death chain with almost sure extinction converges to an ODE with a positive attractive stable point.
Then, the process remains for very long time close to the deterministic equilibrium, before a large random
deviation from this limit behavior leads to extinction. Moreover, in this case, due to some renewal mechanism,
the extinction time, normalized by its expectation, converges in law toward an exponential variable, which
means the extinction is unpredictable. This behavior (fast convergence toward a local equilibrium, long time
spent there, unpredictable random exit toward another equilibrium) is called a metastable behavior.

The topic of [34] is the study of the metastable behavior of the system of interacting neurons UN . More
precisely, this means addressing the following questions: can we prove that LN goes to +∞ as N → +∞, with a
quantitative speed? Are there non-zero stationary distributions for the non-linear limit process, and in that case
are they stable and is the Dirac mass at zero unstable? Does LN/E(LN ) converge to an exponential variable?

Some difficulties with respect to the study of birth-and-death processes are the following: the limit process is
a PDE instead of a one-dimensional ODE. The state space of the process UN depends on N . The last spike time
LN is not a stopping time. Also, by comparison with other classical works (for instance in the other sections
of this proceeding) the non-linear limit process is not a diffusion, it corresponds to a non-local PDE with no
regularization properties.

4.2. The results

Similarly to the population dynamics cases, the metastable phenomenon is not expected for all values of
the parameters but only when the excitatory part is stronger than the inhibitory part. For simplicity, assume
that λ(u) = min(ku, λ∗) for some parameters k, λ∗ > 0 (the framework of [34] is slightly more general, but this
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Figure 1. Summary of the results of [34], dependending on the parameters a = α/(kh) and b = λ∗/(kh).

particular form is needed for some results). When a neuron’s potential is close to 0, its jump rate is increased
by kh/N when another neuron spikes. On the other hand, when a neuron spikes, at most, its jump rate goes
from λ∗ to zero. Hence, setting a = α/(kh) and b = λ∗/(kh), the excitatory regime corresponds to small values
of a and b. The results of [34], which partially answer the previous questions, are represented in Figure 1 and
listed here:

• First, if a > 1 (blue part of Figure 1), the only stationary distribution for the non-linear system is
the Dirac mass at zero, and it is asymptotically stable: all other solutions converge exponentially fast
toward this equilibrium (with the Wasserstein distance).

• On the contrary, if a < 1 (yellow, orange and red regions of Figure 1), there exists at least one non-zero
stationary solution for the limit equation, and the solution zero is unstable: for all non-zero initial
condition, lim inf E(λ(Ū(t))) > 0 as t→ +∞.

• If a+ b < 1 (orange and red parts of Figure 1), there exists an explicit κ > 0 such that

P
(
LN ≥ eκN

)
−→

N→+∞
1 ,

under mild conditions on the initial distribution (which hold for instance if initially the particles are
independent and identically distributed according to a non-zero distribution).

• If a and b are small enough (with an explicit condition represented as the red parts in Figure 1), the
non-zero stationary distribution for the limit process is unique and globally attractive: all solutions
converge exponentially fast to it (with the Wasserstein distance).

• If a and b are small enough (with an explicit condition, stronger than the previous one, which is

represented in deep red in Figure 1), considering the stopping time τN = inf{t ≥ 0,
∑N
i=1 λ(UNi (t)) ≤

Nγ} for some sufficiently small threshold γ > 0, then τN/E(τN ) converges in distribution to a standard
exponential variable.

As we see, the asymptotic exponentiality of LN/E(LN ) is not established. However, τN is related to LN , since
the probability that LN ≤ t given that τN > t is exponentially small with N and, conversely, if LN ≤ t, then
the process will deterministically decay after time t and thus will fastly reach the time τN (see [34, Remark 3.3]
for details on the comparison between τN and LN ).

We refer to [34] for the formal statements and the complete proofs of the results mentioned above. However,
in the next section, let us discuss a key ingredient in these arguments.

4.3. Synchronous couplings

A synchronous coupling is a simultaneous definition of two different jump processes in such a way that, as
much as possible, they jump at the same times. This can be done by using the same Poisson measure to define the
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jump times (see also [13] for a detailed construction). If λ1 and λ2 are the respective jump times of the processes
(Xt)t≥0 and (Yt)t≥0, then synchronous jumps for the pair (Xt, Yt) occur at rate min(λ1(Xt), λ2(Xt)) and
asynchronous jumps (at which only the process with the highest jump rate jumps) occur at rate |λ1(Xt)−λ2(Yt)|.
This is somehow an analogous of the parallel coupling of two diffusion processes solution to some SDEs, where
the same Brownian motion is used to drive both equations (as in some part of the space in the problem studied
in Section 3).

Most of the proofs of [34] are based on the synchronous coupling of two suitable processes.
First example: in order to obtain quantitative propagation of chaos estimates, namely the convergence in

some sense of the interacting process UN toward the limit process Ū , an interacting system UN is synchronously
coupled with N independent copies of Ū , with Ūi(0) = UNi (0) (more precisely, for all i ∈ J1, NK, the pair of
particles (UNi , Ūi) are synchronously coupled). We get that the distance between these two systems remains of

order
√
N (and not N as would be the case of independent processes), which means the distance between UNi

and Ūi for a fixed i ∈ J1, NK is of order 1/
√
N .

Second example: in order to obtain the long-time convergence of the limit system toward a unique stationary
distribution, two non-linear processes Ū and Û with different initial distributions are synchronously coupled.
We get, first, that E|λ(Ū(t)) − λ(Û(t))| ≤ Ce−rt for some C, r > 0, which in turns allows to prove that

E|Ū(t)− Û(t)| ≤ Ce−rt, and thus a convergence in Wasserstein distance.
Last example: in order to bound LN , one would like to understand the behavior of the average jump rate

ΛN (t) = 1/N
∑N
i=1 λ(UNi (t)). Unfortunately, this is not a Markov process, namely its evolution does not depend

only on its value at time t but on the whole system UN (t). However, we can get some worst case bounds on
the evolution of λN , namely ∂tΛN ≥ −rΛN for some r > 0 between jumps and ΛN (T ) ≥ f(ΛN (T−)) for some
explicit function f at a jump time T . Moreover, the jump times occur at rate NΛN . Thus, we can couple
synchronously ΛN with a Markov process (ZN (t))t≥0 on R+ which jumps at rate NZN (t) to f(ZN (t−)) and
otherwise follows the deterministic flow ∂tZN = −rZN . That way, we ensure that, almost surely, ZN (t) ≤ ΛN (t)
and moreover all jump times of ZN are jump times for ΛN (and in particular LN is larger than the last jump
time of ZN ). Now, ZN is a very simple one-dimensional Markov process which can be shown to converge to a
deterministic ODE as N → +∞, to which standard Large Deviations results apply, yielding the desired bounds.

5. Rates of convergence to steady states for oscillator chains

The objective of this section is to present quantitative rates of convergence to a stationary state for a family
of heat conducting systems consisting of a chain of interacting oscillators. This is based on the results of the
articles [3, 35] to which we refer for the proofs.

The motivation for this study is the rigorous mathematical understanding of Fourier’s law. Fourier’s law is a
physical macroscopic law that relates the local thermal flux J(t, x) to small variations of temperature ∇T (t, x)
through a proportionality constant κ(T ) known as thermal conductivity :

J(t, x) = −κ(T )∇T (t, x). (22)

At the microscopic scale, matter is made out of particles assumed to evolve according to the classical laws
of mechanics, and one of the goals of statistical physics is to model heat conductivity through a system of
interacting atoms and to achieve a rigorous derivation of constitutive laws such as Fourier’s law [5, 10, 22, 33].
Understanding macroscopic laws of matter when starting from a microscopic system of interacting atoms is a
challenge addressed to mathematicians by Hilbert in his 6th problem [30].

A paradigmatic set up where Fourier’s law is observed to hold with high precision is when one considers a
fluid in a cylindrical slab of height h and uniform cross sectional area A, coupled at the two boundaries, the top
and the bottom of the cylinder, to two heat reservoirs at different temperatures. This is known as the Benard
experiment [5]. The two heat reservoirs keep the system out of equilibrium and produce a stationary heat flow.
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If there is a non-equilibrium steady state (NESS) that is described by a phase-space measure, one would like to
prove that the following limit exists:

0 < κ(N) := lim
N→∞

〈JN (t, x)〉
(A(δT/N))

<∞ (23)

where N is the microscopic length of the cylinder,

δT

N
=
T2 − T1

N

is the effective temperature gradient, 〈JN (t, x)〉 is the expectation of the heat flux with respect to the non
equilibrium steady state and where we write JN (t, x) to stress the dependence of J on N . The above limit
allows us to define the thermal conductivity and the very existence of the limit is a formulation of Fourier’s law.

Our purpose is therefore to investigate how certain quantities, such as the relaxation rates to the NESS of
such systems (the spectral gap of the associated dynamics), scale with the system size, since these are crucial
to making sure that the thermal conductivity has a thermodynamic limit.

5.1. The model and state of the art

The model we focus on is a prototypical example of out-of-equilibrium systems and is a generalized version
of the historical Fermi-Pasta-Ulam (FPU) chain. It consists of a chain of N interacting oscillators on the
phase space R2dN , where the variables are qi, pi for i = 1, . . . , N : the displacements of the particles from
their equilibrium positions and their momenta, respectively. Each particle has its own pinning potential and it
interacts with its nearest neighbours through an interaction potential. We call H the Hamiltonian energy.

The dynamics of this model is such that the particles at the boundary are coupled to heat baths, modelled by
Langevin (Ornstein–Uhlenbeck) processes at (possibly) different temperatures β−1

i , i ∈ F and they are subject
to friction. F ⊂ {1, . . . , N} here is the subset of the particles on which we impose friction and noise and we
also denote by γi > 0 the friction strength at the i-th particle.

The time evolution is then for particles i ∈ {1, . . . , N} described by a coupled system of SDEs:

dqi(t) = (∇piH)dt,

dpi(t) =
(
−∇qiH − γipiδi∈F

)
dt+ δi∈F

√
2γi
βi

dWi,
(24)

where γi, i ∈ F are the friction coefficients.
The generator of the dynamics when F = {1, N} is:

L =

N∑
j=1

pj · ∇qj − [∇qjV (q)] · ∇pj + γ1p1 · ∇p1 − γNpN · ∇pN + γ1TL∆p1 + γNTR∆pN (25)

where TL, TR are the (possibly) different temperatures at the left and right boundary of the network of oscillators.
One of the main difficulties when studying out-of-equilibrium systems is the degeneracy of the systems. In

particular we notice that the operator L is not elliptic, neither coercive. Therefore the validity of functional
inequalities such as Poincare or Log-Sobolev inequalities is not straightforward.

5.1.1. State of the art

The non-equilibrium steady state for the purely harmonic chain, i.e. when both potentials are quadratic
(harmonic), was made precise in [42]. Anharmonic chains were studied in various works [6,9,17,18,31,41], where
existence, uniqueness of a non-equilibrium steady state and exponential convergence towards it were proven in
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certain cases. More specifically the existence, uniqueness of a steady state and exponential convergence, hold
under the assumptions that both the interaction and pinning potentials behave as polynomials near infinity
and that the interaction is stronger than the pinning potential. The last assumption is important as there are
some works which exhibit cases where the relaxation rate is not exponential, i.e. where there is lack of spectral
gap [27,29].

The proof of the above-mentioned results that provide convergence to the stationary measure relies on
compactness arguments and thus they do not give information on how the speed of the convergence behaves
as a function of N . Attempts have been made through hypocoercive techniques to get N -dependent estimates
under certain conditions on the potentials: see the discussion in [48, Section 9.2] where this question was first
raised. The techniques discussed in Villani’s monograph however only yield non-optimal estimates.

5.2. Main results

5.2.1. On the long time behavior

Regarding the long time behavior of the system, we provide explicit rates of convergence to the non-
equilibrium steady state (with optimal lower bound) in a 1-dimensional weakly anharmonic scenario, i.e. when
both potentials are N -dependent perturbations of the harmonic ones.

The first statement concerns a contraction property in Wasserstein-2 distance. We recall the definition of
the Kantorovich-Rubinstein-Wasserstein L2-distance W2(µ, ν) between two probability measures µ, ν:

W2(µ, ν)2 = inf

∫
RN×RN

|x− y|2dπ(x, y)

where the infimum is taken over the set of all the couplings, i.e. the joint measures π on RN ×RN with left and
right marginals µ and ν respectively.

Theorem 5. We consider a 1-dimensional chain of coupled oscillators with rigidly fixed edges so that the
dynamics are described by the system (24) with

H(p, q) =

N∑
i=1

(
p2
i

2
+ a

q2
i

2
+ UNpin(qi)

)
+

N−1∑
i=1

(
c
(qi+1 − qi)2

2
+ UNint(qi+1 − qi)

)
+ c

q2
1

2
+ c

q2
N

2
(26)

for a ≥ 0, c > 0 and under the assumption that

sup
qi

‖∇2UNpin(qi)‖2, sup
ri

‖∇2UNint(ri)‖2 ≤ CN (27)

where ri = qi+1 − qi and CN . N−9/2. 1 For a fixed number of particles N , there is a unique stationary state,
in particular, for initial data f1

0 , f
2
0 we have:

W2(P ∗t f
1
0 , P

∗
t f

2
0 ) ≤ Ca,cN

3
2 e−

λ0
N3 t W2(f1

0 , f
2
0 ) (28)

for Ca,c, λ0 dimensionless constants.

The proof relies on

• an application of a generalized version of the Γ2-calculus of Bakry-Emery [1] for elliptic operators
recently generalized by Baudoin for hypoelliptic operators [2] and

• a careful analysis of a high-dimensional matrix equation.

1This is what we call a weakly anharmonic chain of oscillators.
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The generalised Γ2-calculus allows us to prove the validity of a Log-Sobolev inequality for the invariant
measure, with constant CN . N3. With this inequality in hand we also give a convergence to the stationary
measure in relative entropy as in [48, Section 6]. We first recall the definitions of the following functionals:

For two probability measures µ and ν on R2N with ν � µ, we define the Boltzmann H functional (relative
entropy)

Hµ(ν) =

∫
R2N

h log h dµ, ν = hµ (29)

and the relative Fisher information

Iµ(ν) =

∫
R2N

|∇h|2

h
dµ, ν = hµ. (30)

Theorem 6. We consider a weakly anharmonic 1-dimensional chain of coupled oscillators with rigidly fixed
edges whose dynamics are described by the system (24) under the same assumptions as in the Theorem 5 above.
For a fixed number of particles N , assuming that (i) µ is the invariant measure for Pt and (ii) that it satisfies
a Log-Sobolev inequality with constant CN > 0, for all 0 < f ∈ L1(µ) with

E(f) <∞, and

∫
fdµ = 1,

we have a convergence to the non-equilibrium steady state in the following sense:

Hµ(Ptfµ) + Iµ(Ptfµ) ≤ λa,cN3e−λ0N
−3t
(
Hµ(fµ) + Iµ(fµ)

)
(31)

for dimensionless constants λa,c, λ0.

5.2.2. On the spectral gap

Furthermore, we study the spectral gap for purely harmonic chains and d-dimensional grids of oscillators,
and prove the optimal lower and upper bounds. We also treat non-homogeneous scenarios where the coefficients
of the pinning potentials are not identical. In particular we look at chains of oscillators with an impurity (so
that the particle in the middle of the chain has pinning potential significantly weaker than the pinning potential
of all the other particles) as well as at disordered chains of oscillators. As regards the d-dimensional grids, the
spectral gap depends on which particles are exposed to friction. These are explained in the statement below.

Our setting is the following, we look at the system (24) with F ⊂ {1, . . . , N}d and

H(q, p) =
〈p,m−1

[N ]d
p〉

2
+ Va,c(q) where Va,c(q) =

∑
i∈[N ]d

ai|qi|2 +
∑
i∼j

cij |qi − qj |2. (32)

Theorem 7. Let the positive masses mi and interaction strengths ci of all oscillators coincide, Nd be the
number of oscillators, placed in a square grid with N oscillators on each side, and d the dimension of the
network.

• (Homogeneous chain): Let the pinning strength ai be the same for all oscillators, then
(1) if two particles located at the corners (1, . . . , 1), (N, . . . , N), are exposed to the same non-zero

friction and non-zero diffusion, the spectral gap of the generator decays at the optimal rate N−3d:

λN = O(N−3d).

In particular for the one-dimensional chain of oscillators λN = O(N−3).
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(2) if the same non-zero friction and non-zero diffusion for particles located at the center of two opposite
edges of the network

(1, dN/2e, . . . , dN/2e), (N, dN/2e, . . . , dN/2e),

the spectral gap of the generator decays at the optimal rate N−3−(d−1): λN = O(N−3−(d−1)).
(3) if d = 2 and the particles exposed to the same non-zero friction are located at opposite edges of the

network, the spectral gap satisfies λN ≤ O(N−5/2).
• (Chain with impurity): Let N be even. We assume that all masses and interaction parameters are

positive and coincide and the friction parameters γi of the boundary particles

∂[N ]d := {i ∈ [N ]d;∃in : in ∈ {1, N}} of [N ]d := {1, .., N}d

satisfy supi∈∂[N ]d γi ∈ (0, c)where c is independent of N and the friction is non-zero on at least one

boundary edge. Then, if the pinning strength acd(N) at the center point cd(N) = (N/2, .., N/2) of the
network is sufficiently small compared to the pinning strength of all other oscillators, the spectral gap
λN of the generator decays at least exponentially fast in N , for all d ≥ 1.

In dimension 1 this rate is the optimal one.
• (Disordered chain): We assume that all masses and interaction parameters are positive and coincide

and the friction parameters γi of the particles at the boundary

∂[±N ]d := {i ∈ [±N ]d; ‖i‖∞ = N} of the network [±N ]d := {−N, ..., N}d

satisfy supi∈∂[±N ]d γi ∈ (0, c) where c is independent of N and the friction is non-zero on at least one
boundary edge. Then, if the pinning strengths are iid random variables distributed according to some
compactly supported density ρ ∈ Cc(0,∞), the spectral gap λN of the generator decays exponentially fast
in N , for all d ≥ 1, for all but finitely many N .

The proof relies on an approach for studying non-symmetric spectral problems that reduces the problem to a
spectral analysis of discrete Schrödinger operators. Using a Wigner matrix representation we reduce the study
of this high dimensional spectral analysis to the study of resolvents involving only the heat bath sites.

The reason for the different behaviors of the spectral gap λN as a function of the number of particlesN in these
three different physical scenarios, is because the spectral gap of the generator (25) with the quadratic potentials
(32) is determined -under a constraint on the spacing between its eigenvalues- by the decay rate of eigenstates
of the discrete Schrödinger operator −∆[N ]d + V . Here ∆[N ]d is the Neumann Laplacian weighted with the
interaction strengths and V is a potential fully defined through the pinning coefficients: V =

∑
i∈[N ]d aiδi,

where (δi(u))(j) = δiju(i). Considering now that in the limit N → ∞, the associated Schrödinger operator
in the homogeneous setting has absolutely continuous spectrum with extended eigenstates, while in the strong
impurity and the disordered setting it has -at least one- exponentially localized state, explains the polynomial
decaying of the λN in the homogeneous case and the exponential decaying in the non-homogeneous settings.
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