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A detailed investigation of linear instabilities of double-eyewall hurricane-like vortices with double maxima
(“walls”) of azimuthal velocity and vorticity around the central minimum (“eye”) and of their nonlinear satu-
ration is carried out in the framework of the moist-convective rotating shallow water model. It is shown that
developing barotropic instability leads to inward displacement and gradual disappearance of the inner wall, and
to formation of a nontrivial tripolar quasi-stationary structure, provided the second, outer, wall of the initial
vortex is high enough. The effects of moist convection lead to enhancement of the outer wall. In comparison,
under the influence of the same instability, vortices with an inner wall stronger than the outer one evolve towards
monopolar single-eyewall structures.
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I. Introduction

From the hydrodynamical viewpoint, the horizontal structure of a typical hurricane is characterized by
a low vorticity zone at the center, which is associated with the hurricane’s eye, surrounded by a high vor-
ticity ring, which is associated with the eyewall. However, there is a bulk of observational evidence of
double-eyewall hurricanes, and formation of a secondary eyewall during evolution of the inner core struc-
ture of hurricanes is not an uncommon event, particularly in intense, highly symmetric systems [1, 2].
Satellite-based microwave imagers confirm the existence of secondary eyewalls [3]. For example, roughly
concentric rings have been observed in the satellite microwave images of hurricane Frances on 30 Sep
2004, and hurricane Katrina on 28 Aug 2005 [4]. Analogously to the primary eyewall, secondary wind
maxima are often coupled with a convective ring [5]. A process of eyewall replacement, called eyewall re-
placement cycle (ERC), or a concentric eyewall cycle, is described in the literature [1, 6, 7], and consists of
contraction, or inward shift, of the primary eyewall during the storm intensification, and replacement of the
primary eyewall by the second one, once the secondary eyewall is enough grown. The replacement leads to
weakening and eventual disappearance of the inner wall while the secondary eyewall gets amplified, to the
strength of the primary eyewall, during the ERC as seen in the wind maximum, and vorticity and convec-
tion fields. The word “cycle” in this context refers to repetitive scenarios of contraction and replacement
of the inner eyewall. The contraction of the eyewall is ascribed to a ring of convection inside the radius of
maximum heating that causes an inward shift [8, 9]. By analyzing 31 years of flight-level data, Sitkowski
et al. [10] exhibited 24 ERC events in 14 hurricanes. Although the ERC is well documented, dynamical
processes in double-wall vortices with a “moat” between the walls are not sufficiently understood.

Rotating shallow water (RSW) model, with or without inclusion of diabatic effects, proved to be a simple
and reliable tool for understanding the basics of hurricanes’ dynamics, see the recent papers [11–15] and
references for a bulk of earlier work therein. Recently, this model was applied to double-eyewall tropical
cyclone (TC) like vortices [16] in order to understand the interactions of the two walls across the moat,
which are produced by the instabilities of such configurations. Motivated by this work, we go further
in the same direction, by performing a detailed linear stability analysis of the double-eyewall TC-like
vortices, and by using a consistent inclusion of dynamical effects of moisture, offered by the so-called
moist-convective RSW (mcRSW) [17, 18], for fully nonlinear high-resolution numerical simulations of
the nonlinear development of the instabilities. We thus identify the most unstable modes of the intense
double-wall vortices, study their dependence on the relative height of the walls, and investigate nonlinear
saturation of the instability both in “dry” and moist-convective settings, in order to understand the influence
of moisture upon this process. Our main finding is a robust tripolar vortex structure arising at the late stages
of the evolution of double-wall TC-like vortices with comparable heights of the walls.

II. The model and the vortex configuration

A. A reminder on mcRSW model

We use the simplest one-layer version of the mcRSW model proposed in [17], with an addition of a
source of moisture representing evaporation, as described in [11, 19]. No explicit dissipation of any kind is
included in the model. The equations of the model are: ∂tv+v ·∇v+ f ẑ∧v =−g∇h,

∂th+∇·(vh) =−γC,
∂tQ+∇·(Qv) =−C+E.

(1)

Here x and y are zonal and meridional coordinates on the tangent plane, ∇ = (∂x,∂y), v = (u,v), u and v
are zonal and meridional components of velocity, respectively, h is geopotential height (thickness), f is the
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Coriolis parameter, which is taken to be constant f = f0 as we are working in the f -plane approximation,
and ẑ is the unit vertical vector. Q≥ 0 is specific humidity integrated over the air column, γ is a parameter
depending on the underlying stratification, C is the condensation sink, and E is the surface evaporation
source of moisture. They are parameterized as follows, and in the “dry” version of the model are simply
set to zero:

C =
Q−Qs

τ
H (Q−Qs), E = α

|v|
|vmax|

(Qs−Q)H (Qs−Q). (2)

Here Qs is a saturation threshold, which we consider to be pressure-dependent, as explained in [17], see
below. In principle, the evaporation threshold could be chosen to be different from Qs, as the evaporation,
physically, does not take place through the whole air column. We take it to be the same in the crudest
variant of the model, in order to avoid the proliferation of free parameters. τ is the relaxation time, which is
of the order of several hours in the tropical atmosphere. The parameterization of evaporation in (2) is based
on the standard bulk formula, cf. e.g. [20], which is of frequent use in hurricane modeling [21], where we
renormalized the transmission coefficient by |vmax|, the maximum value of velocity over the domain, i.e. the
maximum wind in the hurricane-like vortices we consider, in order to get the non-dimensional parameter
α regulating the intensity of evaporation. This is a free parameter, the only one representing processes in
the unresolved boundary layer in the present formulation of the model, its value in the simulations will be
given below. H (...) denotes the Heaviside (step-) function, which accounts for the switch character of
condensation and evaporation. As is natural in the context of TC modeling, we consider the vortex motion
mostly over the ocean, where the bulk formula for evaporation (2) is well adapted.

B. TC-like vortex configuration

The equations of the model in polar coordinates read:
dv
dt

+
(

f0 +
v
r

)
ẑ∧v+g∇h = 0,

∂th+ 1
r (∂r(rhu)+∂θ (hv)) =−γC

∂tQ+ 1
r (∂r(rQu)+∂θ (Qv)) =−C+E,

(3)

where v = (u r̂, v θ̂) is velocity in polar coordinates, and the Lagrangian derivative is d/dt = ∂/∂ t +u∂r +
(v/r)∂θ .

In the absence of evaporation, the axisymmetric azimuthal velocity v(r) and thickness h(r) in cyclo-
geostrophic equilibrium

v2

r
+ f0v = g∂r h, (4)

at zero radial velocity u = 0, and arbitrary constant or azimuthally-symmetric Q(r) ≤ Qs give an exact
solution of (3). In the presence of evaporation, in order to provide an exact solution, Q should stay at the
evaporation threshold, i.e. Q = Qs, with the choice of the threshold made above.

In order to construct a double-wall TC-like vortex we start with the non-dimensional profile of azimuthal
velocity V (r) which was already used for single-wall TC in the previous work [15].

V (r) = (r− r0)
ae−c(r−r0)

b
, r > r0, a,b,c > 0 (5)

To control the strength of the vortex we introduce a non-dimensional amplitude ε and renormalize V (r) as
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FIG. 1. Upper row: left panel - azimuthal velocity profile and vorticity of the background barotropic double eyewall cyclone. Right panel -
Chebyshev grid points and thickness of the vortex H(r). Middle row: radial structure of the velocity and thickness perturbations (u,v,η)(r),
respectively, corresponding to the unstable modes with l = 2 (left panel) and l = 3 (right panel). Vertical lines indicate positions of the critical
levels. Lower row: pressure and velocity field of the most unstable mode l = 2, left panel, and the second unstable mode l = 3, right panel.

follows:

V (r)→V (r) = ε
V (r)

max|V (r)|
. (6)

This “abc” profile is placed at a distance r0 from the origin, and is matched at r0 with a linear velocity profile
in the interval [0, r0], in a way to reproduce the observed approximately constant-vorticity eye, and to have
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continuous velocity and vorticity. Here r is the non-dimensional radius from the center of the vortex. We
use the following scaling: horizontal distances are measured in units of the barotropic deformation radius,
Rd =

√
gH/ f , time in units of 1/ f , and velocities are measured in units of

√
gH, where H is the total

thickness of the atmospheric column at rest. According to this scaling, Rossby number Ro is proportional
to ε/RMW , where RMW is non-dimensional radius of maximum wind. Rossby number in the velocity
profile of Fig. 1 is Ro = 1.67.

The velocity profile of a double-eye configuration is obtained by superposition of two (a,b,c) profiles. In
the case of comparable heights of the two walls, which is the main configuration under the present study (see
the next section for another configuration), the parameters (a,b,c) are taken to be equal to (4.5,0.18,48)
for both the inner wall and outer walls, and (r0,ε) for the inner wall and outer walls are (0.01,0.06) and
(0.08,0.09), respectively. A particular feature of this background velocity profile, which can be seen in the
upper-left panel of Fig. 1, together with the corresponding typical double-wall relative vorticity profile, is
its steeper ascent before the radius of maximum wind, and a slower descent out of it, which is in agreement
with observed velocity profiles [22]. The corresponding profile of thickness deviation can be found by
calculating the primitive of the left-hand side of (4), and is shown in the upper-right panel of Fig. 1.

III. Dynamics of double-eyewall TC-like vortex with comparable intensity of vorticity peaks

A. Results of the linear stability analysis

The linear stability analysis is performed along the lines of similar studies of single-wall TC-like vortex
profiles [11, 15]. For this, the equations (3) are linearized about the corresponding profiles of azimuthal
velocity and thickness, cf. the upper row of Fig. 1. Solutions of the linearized equations are sought in
the form of Fourier-modes in time and polar angle (azimuthal modes with integer wavenumber l), with the
radial structure determined by solutions of the resulting eigenproblem for frequencies at a given azimuthal
wavenumber. Solutions are obtained numerically after discretization on a Chebyshev grid shown in the
upper-right panel of Fig. 1, and solving the resulting finite-dimensional matrix eigenproblem.

The lower panel of Fig. 1 displays the phase portraits of the most unstable modes. As follows from the
mutual orientation of velocity and isobars, the most unstable modes are close to the geostrophic balance,
thus being Rossby waves, which are typical for barotropic instability, having azimuthal wavenumbers l =
2 and l = 3, respectively, and propagating along the inner and outer walls due to background vorticity
gradients. The unstable mode with l = 3 is located in the vicinity of the outer eyewall, while the unstable
mode with l = 2 is located at the inner eyewall.

Dependence of the growth rate of the unstable modes on the azimuthal wavenumber for two positions
of the radius of maximum wind of the background vortex is presented in Fig. 2. For comparison, we
simultaneously present these results for a background vortex with the inner wall significantly more intense
than the outer one.

As follows from Fig. 2, at least with the shape of the vortex we use, the azimuthal structure of the most
unstable mode is not sensible to the relative intensity of the walls, but its growth rate is. On the contrary,
both are sensible to the value and position of the RMW. As the next step, we will use separately the most
unstable modes l = 2, l = 3 for initialization of fully nonlinear numerical simulations, by superimposing
them with the weak amplitude 0.015 onto the background vortex.

B. Nonlinear saturation of the instability

We now present results of direct numerical simulations initialized with the perturbations corresponding,
respectively, to the middle- and lower-left , and middle- and lower-right panels of Fig. 1 superimposed onto
the background vortex configuration of the upper row of Fig. 1. The details of the numerical scheme for
mcRSW and its implementation can be found in our previous above-cited works. We should only emphasize
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FIG. 2. Left panel: Variations of the growth rate of unstable modes with azimuthal wavenumber for two background configurations with
ζ1 ≈ ζ2, as in Fig. 1, and with ζ1 > ζ2 presented in Fig. 12 in the next section, where ζ1,2 are first and second maxima of relative vorticity,
respectively. Right panel: Same as in the left panel, but with the radius of maximum wind shifted by 0.02Rd farther from the center.

that the well-balanced finite-volume quasi non-dissipative method we are using allows for long-time high-
resolution simulations representing the saturation of the instability with high fidelity. In the present study
we apply the finite-volume numerical code in the computational domain of the size Lx = Ly = 1.2 [Rd]
subdivided into 400× 400 grid cells. Neumann boundary conditions are used in order to evacuate the
emitted inertial gravity waves. The numerical time step is 10−3 [ f−1

0 ]. All simulations are performed in
both “dry” and moist-convective environments. The main focus of this study is on the double-eyewall
configuration with comparable vorticity at each wall as shown in Fig. 1; nevertheless, a summary of results
for a configuration with the outer eyewall with weaker vorticity is presented in section IV. Following
Bouchut et al. [17] we choose Qs as a function depending on pressure anomaly. The saturation threshold is
taken in the form Qs = Q0 +α ′(h−H) , with α ′ = 0.04, and the initial value of humidityQ0 = 0.9. H = 1,
α and γ (α = 0.5, γ = 0.9) are constants regulating the intensity of surface evaporation and latent heat
release, respectively. Condensation relaxation time τ is taken to be 0.04 [ f−1

0 ].
Fig. 3 shows the evolution of pressure and relative vorticity of the double-eyewall vortex with equal

intensity of the walls with superimposed unstable mode l = 2 in moist-convective environment. As follows
from the Figure, the outer eyewall considerably influences the evolution of the instability, which is initially
located in the vicinity of the inner eyewall. The Figure clearly shows formation of a specific structure at
the end stages of evolution, which consists of a single-eyewall central cyclonic vortex surrounded by two
rings of anticyclonic vorticity, and two external cyclonic lobes beyond. This end state further preserves its
structure for a long time, and, thus, is not axisymmetric, unlike the end-states of evolution of instabilities
of single-eyewall vortices in the same model [11], and is rotating like a vortex tripole. Simulations with
other initializations, e.g., a pure unstable mode with l = 3 (Fig. 4), or a combination of modes l = 2 and
l = 3 (not shown) produce the same scenario at the late stages. Such a structure is robust, and has already
emerged in the adiabatic, “dry”, environment. We show in Fig. 5 a formation of this structure in the
simulations initialized with unstable modes l = 2 and l = 3, respectively, in the “dry” environment. The
fact that the evolution does lead to formation of a coherent structure is confirmed by the scatter plot of
Bernoulli function vs potential vorticity presented in Fig. 6. Such scatter plots are standard in diagnosing
coherent structures of any nature in rotating shallow water models, cf. [23–25] and references therein. The
structure in question is coherent if the points of the plot form a curve, as compared to a dispersed cloud in
the opposite case. We should stress that the observed end-state, although being tripolar in essence, has a
much more complicated form than tripolar vortex solutions known for 2D Euler [26] and rotating shallow
water [23] equations, and observed in laboratory experiments [27], due to essentially non-monotonous and
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FIG. 3. Evolution of the pressure anomaly, relative vorticity, and condensation of double-eyewall cyclone initialized as shown in Fig. 1, with
the most unstable mode, l = 2, in moist-convective environment during the saturation of the barotropic instability, respectively, from top to
bottom.

sign-changing distribution of vorticity in the central vortex.
Following Hendricks et al. [28] and Lahaye and Zeitlin [11], we also investigated tangential momen-

tum and absolute angular momentum budgets during the evolution of the aforementioned double-eyewall
configuration. The equation for absolute angular momentum in the absence of dissipation is

∂M
∂ t

=−û
∂M
∂ r
− rhq∗u∗ (7)

where () indicates the azimuthal average, û = (hu/h) is the mass-weighted average of the zonal velocity,
M = rv+(1/2) f r2 the azimuthal-mean absolute angular momentum per unit mass, u∗ = u− û is the devi-
ation of azimuthal velocity from the mass-weighted average, q∗ = q− (hq/h) is the deviation of potential
vorticity from its mass-weighted azimuthal average. The first and second terms on the right hand-side of
the equation (7) correspond to the processes involving the mean and eddy fields respectively, which will be
referred to below as the “mean flux” and the “eddy flux” respectively. Fig. 7 displays the contributions to
the total angular momentum change due to the eddy and mean fluxes during the three main phases of its
evolution: initial stages, transition to the coherent tripolar state, and later stages, in both “dry” and moist-
convective environments. Integration is based on the trapezoidal rule over time spans using the 0.5 [ f−1

0 ]
output data. At the initial stages (left panel of the Figure) the eddy flux between two radii of maximum
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FIG. 4. Same as in Fig. 3, but for initialization with the unstable mode l = 3.

winds is strong, and leads to filling in the moat and inward displacement of the outer eyewall, which is
clearly seen in the evolution of the mean azimuthal velocity (directly related to the tangential momentum),
as shown in Fig. 10. As in the case of single-eyewall vortex, the contribution of the mean in the “dry” case
is almost inexistent, cf. Lahaye and Zeitlin [11], while it is much more pronounced in the moist-convective
case. At the stage of formation of the tripolar structure (middle panel) we observe a strong eddy flux in
the outer regions of the vortex, which is responsible for the appearance of the cyclonic lobes. It is weaker
in the moist-convective environment, compared to the “dry” one, and its impact is further diminished by
the mean flux oriented in the opposite direction, while the latter is still negligible in the “dry” case. The
mean flux in the moist-convective case is due to vorticity generation by moist convection, as explained by
Lambaerts et al. [18]. Nevertheless, the tripolar structure still forms in the moist-convective case, although
its coherence is influenced by the weaker overall flux, as follows from its more diffused scatter plot in
the right panel of Fig. 6. The picture is similar at the late stages (right panel), although the eddy flux
in the moist-convective case becomes stronger than in the “dry” one, which helps to maintain the tripolar
structure. Similar behaviour is observed during the saturation of the unstable mode l = 3 (Fig. 7).

The details of formation of the end state are seen in Fig. 9, where we present the evolution of the
individual azimuthal components of the azimuthal velocity. As follows from the Figure, the l = 3 modes,
initially following the exponential growth predicted by the linear stability analysis, saturate rather quickly,
while the main contribution comes from the l = 2 mode with an admixture of the l = 4 mode. Modifications
of the double-eyewall structure of the initial vortex due to evolving instability, as seen in the averaged
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FIG. 7. Contributions to angular momentum of eddy, mean, and total fluxes integrated over three different time spans ∆t =
[0, 50], [51, 100], [101, 145] , and [ f−1

0 ], from left to right, during the evolution of double-eyewall vortex with almost equal vorticities of the
walls with superimposed unstable mode l = 2, in “dry” (solid) and moist-convective (dashed) environments. Vertical dots indicate the radial
position of the radii of maximum winds of the inner and outer eyewalls at initial time.

FIG. 8. Same as in Fig. 7, but for initialization with superimposed unstable mode l = 3.
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FIG. 9. Logarithms of the normalized amplitudes of the Fourier modes of azimuthal velocity as functions of time during the evolution of the
barotropic instability in moist-convective environment in simulations initialized with the most unstable mode l = 2, (left panel) and the second
unstable mode l = 3, (right panel). Initial conditions as in Fig. 1. The red straight line represents the growth rate σ as a function of time
following from linear stability analysis.
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FIG. 10. Time evolution of radial distributions of azimuthally averaged azimuthal velocity (left panel) and PV (right panel) in moist-convective
environment for the simulations initialized with the most unstable mode, l = 2, (upper row) and l = 3 (lower row).

azimuthal velocity which is directly related to tangential momentum, and in potential vorticity, are tracked
in Fig. 10. As follows from the right column of the Figure, with both initializations, the inner eyewall,
as seen in the azimuthal velocity field, is being smoothed down and gradually disappears (filling in the
moat), while the outer wall wobbles around its initial position without much changes in the peak velocity.
At the same time, the distribution of potential vorticity is being substantially smeared. We should stress
that the peak azimuthal velocity in the moist-convective configuration is much stronger than in the dry one
at the late stages of the evolution, as follows from Fig. 11, which illustrates the importance of the moist
convection in the process.

IV. Instability of double-eyewall vortex with weaker outer wall, and its nonlinear saturation

In this section we briefly summarize the results of a similar investigation of the double-eyewall TC-like
vortex with an outer wall of lesser intensity. They are presented in subsequent Figures, which parallel
the corresponding Figures in the previous section. For the sake of brevity, we present only the results of
simulations initialized with the most unstable mode l = 2, as shown in Fig. 12. The overall result is that
although the most unstable modes are similar, the evolution of the instability does not lead to a tripolar
structure, but to a single-eyewall TC-like vortex, with the single wall produced by merging of initial inner
and outer walls. Notice a much lesser outward eddy fluxes in the angular momentum budget (Fig. 14) at
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the late stages, which is consistent with the absence of external vorticity lobes in this simulation.

V. Conclusions

Thus, we have shown that already the simplest shallow-water model with moist convection allows to
capture some important features of the ERC. Our results indicate that disappearance of the inner eyewall is a
purely dynamical effect of the developing barotropic instability. We have also shown that the enhancement
of the secondary wall is due to the effects of moist convection. An unexpected result is formation of
coherent essentially tripolar structures as end states of double-eyewall TC-like vortices, which is observed
in nonlinear saturation of the barotropic instability in the case of eyewalls of comparable intensity. This
process is not much influenced by the diabatic processes. The resulting end states have a much more
complicated structure than tripolar vortices studied previously in the framework of 2D Euler and rotating
shallow water systems, and in laboratory experiments. The central vortex of these states, although being
practically axisymmetric, has a complex form with alternating annuli of anticylconic and cyclonic vorticity.
Such structures are interesting by themselves from a purely hydrodynamical viewpoint, and merit further
investigation. We are not aware of observational evidence of such structures, but their robust emergence in
our simulations invites for a closer look into the observations.

Our simulations also show a high sensibility of the evolution scenario to fine details of the double-wall
vortex structure, especially to the relative height of the walls, which hints at difficulties in forecasting the
evolution of double-eye hurricanes.
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FIG. 14. Angular momentum budget integrated over three different time spans ∆t = [0, 50], [51, 100], [101, 145] , and [ f−1
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respectively, of eddy, mean, and sum fluxes of double-eyewall vortex with higher vorticity at the inner wall, as in Fig. 12, during nonlinear
evolution of the most unstable mode, l = 2, in “dry” (solid) and moist-convective (dashed) environments. Vertical dots indicate the radial
position of the radii of maximum winds of the inner and outer eyewalls at initial time.
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