
HAL Id: hal-03683697
https://enpc.hal.science/hal-03683697v2

Submitted on 4 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trajectory Following Dynamic Programming algorithms
without finite support assumptions

Maël Forcier, Vincent Leclère

To cite this version:
Maël Forcier, Vincent Leclère. Trajectory Following Dynamic Programming algorithms without finite
support assumptions. Journal of Convex Analysis, 2023, 30 (3), pp.951-999. �hal-03683697v2�

https://enpc.hal.science/hal-03683697v2
https://hal.archives-ouvertes.fr

Trajectory Following Dynamic Programming algorithms

without finite support assumptions

Maël Forcier∗, Vincent Leclère∗

June 2, 2023

Abstract

We introduce a class of algorithms, called Trajectory Following Dynamic Programming (TFDP) algorithms,
that iteratively refines approximations of cost-to-go functions of multistage stochastic problems with independent
random variables. This framework encompasses most variants of the Stochastic Dual Dynamic Programming
algorithm.

Leveraging a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence and
complexity proof that allows random variables with non-finitely supported distributions. In particular, this leads
to new complexity results for numerous known algorithms. Further, we detail how TFDP algorithms can be
implemented without the finite support assumption, either through approximations or exact computations.

1 Introduction

Multistage stochastic programming problems (MSP) are optimization under uncertainty problems where decisions
are taken sequentially during stages. Between stages, some part of the uncertainty is revealed. These problems
have numerous applications, in, for example, finance, energy and supply chain (see e.g. [Dup02, WZ05, GZ13]
and references therein). Unfortunately, MSP problems are known to be ♯P -hard ([SN05, Sha06, HKW16]) and
numerically challenging especially, when the number of stages grows.

More precisely, considering a probability space (Ω,A,P), we define a sequence of random variables, called noises,
(ξt)t∈[T], where [T] stands for {1, . . . , T} and T is the horizon of the problem. Assuming that each ξt has finite
support of size nξ, an MSP problem admits an equivalent deterministic formulation with O(nT

ξ) variables. There
are multiple algorithms (for a recent introduction to the topic we recommend [RW21]), each with various extensions
and a rich literature, that exploit the special structure of the equivalent deterministic formulation, among which
L-Shaped method [VSW69, LL93], and its extension to MSP i.e. nested Benders decomposition [Lou80, Bir85], or
progressive hedging algorithm [RW91].

However, each of these algorithms is numerically limited to a small horizon T . For a larger horizon, we need
some additional assumptions on the noises. If they have limited memory (i.e. that (ξt, ξt+1, . . . , ξt+τ) is a Markov
chain - for adequate indices) this opens the door to Dynamic Programming methods, among which the Stochastic
Dual Dynamic Programming (SDDP) algorithm [PP91], and its variants (e.g [BDZ17, ZAS19, ACdC20, PWB20]).
All these algorithms compute a state trajectory and then follow it to update approximations of cost-to-go functions.
We call them Trajectory Following Dynamic Programming (TFDP) algorithms.

1.1 Problem setting

We present here the general setting of multistage stochastic problems (MSP) we are considering in the paper. We
also introduce three assumptions that are assumed to hold true throughout the paper.

All random variables (noises ξt or states xt) are assumed to be valued, for some adequate integer nt, in Rnt

endowed with its Borel σ-algebra. To model the constraint of our stochastic problem, we consider for t ∈ [T],
the following Borel-measurable set-valued applications Xt : Rnt−1 × Ξt ⇒ Rnt where Ξt := supp(ξt) ⊆ Rn. We
further assume, for simplicity, that the first noise is deterministic, that is Ξ1 = {ξ1}. For notational consistency
we introduce x0 ∈ Rn0 as a parameter, and x0 as the random variable with support {x0}. We define recursively a
sequence of reachable sets Xr

t ⊂ Rnt , for t ∈ {0, . . . , T}, by
∗CERMICS, Ecole des Ponts, France

1

Xr
0 = {x0}, (1a)

Xr
t =

⋃
xt−1∈Xr

t−1

⋃
ξ∈Ξt

Xt(xt−1, ξ) ∀t ∈ [T]. (1b)

Finally, we consider a sequence of loss functions (ℓt)t∈[T] where ℓt : Rnt × Ξt → R ∪ {+∞}.
Assumption 1 (Compatibility of constraints). We make the following assumptions, for all t ∈ [T],

i) ℓt is a proper normal integrand;

ii) for all xt ∈ Xr
t , the random variable ℓt(xt, ξt) is integrable (in particular ℓt(xt, ξt) < +∞ P-almost surely);

iii) for all xt−1 ∈ Xr
t−1 and almost all ξt ∈ Ξt−1, Xt(xt−1, ξt) is a non-empty compact subset of Rnt .

Finally, we say that (xt)t∈[1:T] is an admissible policy if it is a sequence of random variables such that, for all

t ∈ [T], xt ∈ Xt(xt−1, ξt) P-almost surely, and xt is measurable with respect to σ({ξτ}τ∈[t]). We denote Xad the
set of admissible policies. Then, the multistage stochastic problem (MSP) consists in minimizing over the set of
admissible policies the sum of losses, that is

min
x∈Xad

E
[T∑

t=1

ℓt(xt, ξt)
]

(MSP)

Assumption 1 ensures that (MSP) is well-posed and admits an optimal solution. It also guarantees that we are in a
relatively complete recourse setting in the sense that any sequence of variables (xτ)τ⩽t satisfying xτ ∈ Xτ (xτ−1, ξτ),

for τ ⩽ t can be completed into an admissible policy (xτ)τ⩽T such that E
[∑T

t=1 ℓt(xt, ξt)
]
< +∞.

As we are considering Dynamic Programming methods, the following stagewise independence, as well as exoge-
nous noises, assumption is assumed to hold true.

Assumption 2 (Stagewise independence). (ξt)t∈[T] is a sequence of independent exogenous random variables. By
exogenous we mean that the law of ξt is independent of all decision variables.

Leveraging Assumption 2, we can rewrite Problem (MSP) in the following equivalent nested form (see e.g., [SDR14,
Chap. 3])

min
x1∈X1(x0,ξ1)

ℓ1(x1, ξ1) + E
[

min
x2∈X2(x1,ξ2)

ℓ2(x2, ξ2) + E
[
· · ·+ E

[
min

xT∈XT (xT−1,ξT)
ℓT (xT , ξT)

]]]
, (2)

which can be tackled by Dynamic Programming. To this end, we introduce the following (backward) Bellman
operators.

For a measurable proper l.s.c function Ṽ : Rnt → R ∪+∞, we denote the Bellman operator of Problem (MSP)

applied to Ṽ by

B̂t(Ṽ) =

Rnt × Ξt+1 → R ∪ {+∞}
(xt, ξt+1) 7→ min

xt+1∈Xt+1(xt,ξt+1)
ℓt+1(xt+1, ξt+1) + Ṽ (xt+1)

. (3a)

Further, note that for Ṽ l.s.c. and finite valued on Xr
t , B̂t(Ṽ) is also a normal integrand. We then define,

Bt(Ṽ) : xt 7→ E
[
B̂t(Ṽ)(xt, ξt+1)

]
. (3b)

With this notation we define by induction the expected cost-to-go functions Vt : Rnt−1 → R

VT :≡ 0, (4a)

Vt := Bt(Vt+1) ∀t ∈ {0, .., T − 1}. (4b)

Finally, as the law of ξ1 is a Dirac distribution on ξ1, the value of Problem (MSP) is simply V0(x0), and any admissible
policy (xt)t∈[T] minimizing the Bellman equation (4) for all t ∈ [T], that is such that Vt−1(xt) = ℓt(xt, ξt)+Vt(xt),
is optimal.

2

Remark 1 (Stepwise control). For notational simplicity, we chose to consider loss function ℓt that only depends
on the next state1 xt. However, it is worth keeping in mind that these loss functions are often defined as the partial
minimum of another normal integrand, i.e.

ℓt(xt, ξ) = inf
y∈Rm

ℓ̃(xt, y, ξ).

In theory, the same problem can be tackled by extending the state vector x to also contain the decisions y. However,
this is misleading: the theoretical complexity is exponential in the dimension of x, which is in line with the curse
of dimensionality of Dynamic Programming. Thus extending the state to include y falsely seems to imply an
increase in the number of iterations required by trajectory following algorithms to converge. For example, in long
term electricity management problems it is standard to have decisions y of dimension a few thousand (thermal
generation, transmission on lines...) while the actual state x (hydroelectric storage) is of dimension a few dozen at
most.

We end the presentation of our setting with a non-trivial assumption.

Assumption 3 (Lipschitz). For t ∈ [T], we assume that2

i) Xr
t has a diameter smaller than Dt < +∞;

ii) the expected cost-to-go function Vt is Lt-Lipschitz.

Both parts of Assumption 3 are strong requirements, needed for the convergence results, while still being natural
in most settings. Part i) is satisfied for example if Assumption 1 holds, Xt(xt−1, ·) is Lipschitz for all xt−1 ∈ Xr

t−1

and all Ξt are bounded. Part ii) is satisfied under Assumption 1 in the linear case, or through an extended relatively
complete recourse assumption (see [GLP15]) which requires that states xt that are slightly outside of Xr

t are still
admissible. Note that we do not require the actual knowledge of Dt and Lt to implement the algorithm.

1.2 The SDDP algorithm

As a warm-up for the forthcoming framework and result, we recall the well-known Stochastic Dual Dynamic Pro-
gramming algorithm (SDDP). It was originally designed by Pereira and ([PP91]), based on the nested Benders
decomposition method ([Bir85]), for multistage stochastic linear problems (MSLP) with finitely supported noises.
Note that, in this setting, the expected cost-to-go functions Vt, defined in (4), are polyhedral and in particular
convex. As such, they can be approximated as maxima of k affine functions.

The crux of the algorithm is the following. At step k of the algorithm, we assume that we have, for each t ∈ [T],
a collection of k affine function fk

t , called cuts, such that fk
t ⩽ V k

t . Then, in a forward pass, we randomly draw a
scenario (ξkt), and compute a trajectory (xk

t)t∈[T] that is the best along this scenario according to current cost-to-go
estimation, that is such that

xk
t+1 ∈ argmin

xt+1,θ
ℓt+1(xt+1, ξt+1) + θ

s.t. xt+1 ∈ Xt+1(x
k
t , ξ

k
t+1),

fκ
t+1(xt+1) ⩽ θ ∀κ ∈ [k].

Then, in a backward pass, we use linear programming (or, more generally, convex) duality theory to compute new
cuts fk+1

t . More precisely, define V k
t := maxκ⩽k f

κ
t . Then, we set V

k+1
T+1 ≡ 0, and loop backward in time from t = T

to t = 0. At time t, for all ξt+1 ∈ supp ξt+1, we solve

B̂t(V
k+1
t)(xk

t , ξt+1) = min
xt,xt+1,θ

ℓt+1(xt+1, ξt+1) + θ

s.t. xt+1 ∈ Xt+1(x
k
t , ξ

k
t+1),

fκ
t+1(xt+1) ⩽ θ ∀κ ∈ [k + 1]

xt = xk
t [α̂(ξt+1)]

Let θ̂(ξt+1) = B̂t(V
k+1
t)(xk

t+1, ξt+1) be the optimal value of the above problem, and α̂(ξt+1) be a subgradient of

B̂t(V
k+1
t)(xk

t+1, ξt+1). Then, for all ξt+1 ∈ supp(ξt+1), θ̂(ξt+1) + ⟨α̂(ξt+1), · − xk
t ⟩ ⩽ B̂t(V

k+1
t+1)(·, ξt+1). Taking the

expectation, we can define the new cut fk+1
t = E

[
θ̂(ξt+1)

]
+ ⟨E

[
α̂(ξt+1)

]
, · − xk

t ⟩ ⩽ Bt(V
k+1
t) ⩽ Bt(V t+1) = Vt.

1Cost dependence on xt−1 is not considered here simply for notational convenience.
2We do not necessarily require the knowledge of the diameters or Lipschitz constants.

3

This algorithm has been successfully applied to various applications, especially for energy management problems
(see e.g., [GMH10, MPD+18, CLR12]). It has also given birth to numerous variants, with different types of node
selection methods and/or cuts, that we gather here under the name Trajectory Following Dynamic Programming
(TFDP) algorithm. Our aim is to provide a generic convergence theory for all these algorithms.

1.3 Review of known convergence results

The main idea of SDDP and its various extensions consists in iteratively refining lower (and sometimes upper)
approximations of the expected cost-to-go functions Vt. More precisely, at each iteration, they decide, in a forward
phase, based on a node selection method, trial points at which the approximations should be refined. Then, in a
backward phase, they construct cuts, which are functions that under approximate Vt. These cuts are as close as
possible to the true expected cost-to-go functions around the trial points. The lower approximations are finally
defined as the maximum of computed cuts. This is detailed in Section 2.

To our knowledge, by contrast to our work, almost all prior works make the following assumption or consider
an approximated problem that satisfies this assumption.

Assumption (FSN) (Finitely supported noise). The support of the random process (ξt)t∈[T] is finite.

The first proven convergence result of the SDDP algorithm is due to Philpott and Guan [PG08]. In this paper,
the authors consider the linear setting. Using Assumption (FSN) they prove that the number of (affine) cuts that can
be generated is finite. Then, leveraging the fact that each scenario is sampled an infinite number of times, they prove
the almost-sure convergence in a finite number of iterations, without any bound on this number. Later convergence
results by [GLP15] (then reformulated and adapted to the risk-averse setting in [Gui16]) showed convergence in a
non-linear, convex setting. Again, the proof argues that each scenario is selected randomly an infinite number of
times. A technical lemma coupled with Borel-Cantelli’s yields almost-sure asymptotic convergence.

Instead of random node selection, some deterministic node selection methods have been proposed. The problem-
child algorithm [BDZ17], which maintains both an upper and a lower approximation, proved convergence by showing
that the gap between upper and lower bounds is non-increasing with the iteration. This algorithm has been
extended to convex-concave framework, using saddle-cuts [BDZ18], e.g. allowing for stagewise-dependent objective
uncertainty in [DDB20], or risk-averse problem [GTW19]. In other cases, deterministic samplings are considered as
a first step for proving the convergence of the randomized version [PG08, Lan20, ZS20].

The above papers all rely on affine, often called Benders’, cuts. Some variants of SDDP, handled by our
framework, use other types of cuts and also have proven asymptotic convergence. Zou et. al. presented a version of
SDDP for binary variables, which has an asymptotic convergence proven in [ZAS19] for the convex case, although
the proof can be directly adapted to the Lipschitz case. In addition to traditional Benders’ cuts it relies on integer,
Lagrangian and strengthened Benders’ cut, recalled in Appendix A. Stochastic Lipschitz Dynamic Programming
(SLDP) by Ahmed et. al. [ACdC20] uses concave L1 cuts instead of affine cuts for any Lipschitz Vt. MIDAS by
Philpott et. al. [PWB20] uses step-function cuts for quasi-monotonous Vt and also fall in this category.

Other works have been dedicated to improving the numerical efficiency of the algorithm. Some methods alleviate
the computational burden of each iteration, like Guigues in [Gui20] which considers inexact cuts, or [BG21] which
presents cut selection strategies, deleting some cuts from the representation of Vt. Other methods, like regularization
approaches [AP18, VAdOS19, BFFdO20], try to reduce the number of required iterations. To our knowledge, if
they sometimes preserve asymptotic convergence, none of these approaches provably reduce the number of iterations
required to reach an ε-solution. These extensions are either handled by our framework or discussed in Section 2.2.

It is worth noting that the convergence arguments that rely on each possible scenario being sampled an infinite
number of times are mainly theoretical: due to the sheer number of scenarios, in most applications, the algorithms
sample only a very small subset of scenarios (and probably never twice the same).

In two recent papers ([Lan20, ZS22]) new approaches were developed, focusing on the state space akin to the
complexity proof of Kelley’s cutting plane algorithm. They independently obtained the first explicit bound on the
number of iterations required to obtain an ε-solution. To this end, they fix the error ε and define some saturated
points in the state space. These points are such that the gap between the approximated value and the true value
is controlled. Then, leveraging Lipschitz continuity of the value function they control the error in a ball around
the saturated points. As the reachable sets are compact, only a finite number of such balls exist. They then each
provide a deterministic algorithm with proven convergence and use it as a proxy to bound the expected number
of iterations. Interestingly, the complexity of the deterministic algorithm is polynomial in the horizon T while the
sampled algorithm complexity is exponential in T as it requires a given event to happen at each stage simultaneously.

All the convergence proofs recalled here rely on reachable set compactness, relatively complete recourse and
finitely supported noise assumption. They then fall into two categories: either they directly use the Lipschitz

4

continuity3 of Vt, or argue that there exists only a finite number of possible cuts (e.g., [PG08, ZAS19]). Our
framework covers all these variants, but the convergence proof presented in Section 4, which is built on [Lan20],
does not require finitely supported noise Assumption (FSN). It is instead replaced, for the randomized algorithms,
by a dedicated nested Hoeffding lemma (see Appendix D.1). This is another step toward understanding the practical
convergence of these TFDP algorithms.

Further, without finitely supported noise Assumption (FSN), the standard approach consists in first discretizing
the noise and then solving the discretized problem. A common method consists in sampling the problem through
the Sample Average Approximation (SAA) approaches. The statistical guarantees of this approach are discussed
by Shapiro in [Sha11]. Other sampling strategies are numerically discussed in [HdMDMF11, Löh16]. While never
used, to our knowledge, in the context of TFDP algorithms, there are ways of discretizing the noise distribution in
order to guarantee that the value of the discretized model under (or over) estimates the value of the true problem,
especially in the convex setting, see [BW86, Kuh06, MAB14, MP18].

An alternative approach consists in finding a finitely supported, stagewise independent distribution that min-
imizes the nested-distance [PP12], to provide a good representation of the true problem. Other approaches exist,
like [Fra96, CS05], which uses convexity tools and information relaxation to construct bounds. These approaches
seem more relevant for problems with non-independent noises.

Finally, SDDP has been extended to various problem settings to handle risk aversion (e.g.[STdCS13, GTW19,
DM20]), infinite horizon (e.g. [SD20]), and partially observable problems [DMP20]. We briefly discuss extensions
to risk-averse settings in the last section; other extensions are outside the scope of this paper.

1.4 Contributions and structure of the paper

Our main contributions are the following:

• we provide a flexible framework (including inexact or regularized computations) for TFDP algorithms for
finite horizon, risk-neutral problems, that encompass at least 14 variants of SDDP summed up in Table 1;

• we provide geometric tools to extend those algorithms to non-finitely supported uncertainties, without sam-
pling or approximations in the linear case;

• we give a convergence speed result with an upper bound on the (expected) number of iterations to reach
an ε-solution for these algorithms (which is new for most of those variants) that does not require the finite
support assumption;

• we explain how to adapt those results to the minimax case. Some risk-averse or robust cases are seen as
special cases.

The remainder of the paper is as follows. Section 2 introduces the general TFDP framework for risk neutral
settings. It details further variants, not explicit in Algorithm 1, but to which the theoretical analysis of Section 4
can be easily adapted. Finally, it recalls classical ways of obtaining exact or approximated cuts. Section 3 provides
a new method to leverage polyhedral geometry to implement an exact SDDP algorithm for non-finitely supported
cost for multistage stochastic linear problems. Section 4 provides the main convergence and complexity results.
Finally, Section 5 briefly reviews extensions to some robust and risk-averse settings. Technical proofs and definitions
can be found in the appendices.

1.5 Notation

For ease of reference, we recall here some notational conventions used throughout the paper. [n] is the set of integers
between 1 and n. Bold font (e.g. xt) denotes a random variable, normal font of the same character (e.g. xt) an
element of its support. k and κ are indices of iteration, t and τ are indices of time-step. L represents a Lipschitz-
constant, γ errors allowed in solving the subproblems, ε characterize the quality of the solution obtained. x denote
a state, X a set of states (e.g. Xr

t is the set of reachable states) and X a set-valued application representing set

of states (e.g. Xt(x, ξ) is the set of admissible next states, X ♯
γ,t(Ṽ)(x, ξ) is the set of γ-optimal next state...), ξ a

noise, ℓt is the loss function at time t, V a cost-to-go function, f a cut. Overline is used for upper approximation,
underline for lower approximation, hat (as in B̂) represents functions parametrized by ξ, and their counterpart
without hat (as in B) being their expectation. B (resp. F) represent backward (resp. forward) Bellman operators.
ri(X) is the relative interior of X.

3Actually MIDAS has a slightly milder requirement (see [PWB20, Eq. (17)]).

5

Algorithm’s Node selection: Complexity

name Paper Choice ξkt Ft V k
t V

k

t Hypothesis known

SDDP [PP91] Random sampling Exact Benders cuts Vt Convex ✓

EDDP [Lan20] Explorative Exact Benders cuts Vt Convex ✓

APSDDP [SS22] Random sampling Exact Adaptive partition Vt Linear ×

SDDiP [ZAS19] Random sampling Exact Lagrangian or integer cuts Vt Mixed Integer Linear ×

MIDAS [PWB20] Random sampling Exact Step cuts Vt Monotonic Mixed Integer ×

SLDP [ACdC20] Random sampling Exact Reverse norm cuts Vt Non-Convex ×

[BDZ17] Problem child Exact Benders cuts Epigraph as convex hull Convex ×

[BDZ18] Problem child Exact Benders × Epigraph Hypograph × Benders Convex-Concave ×

RDDP [GTW19] Deterministic Exact Benders cuts Epigraph as convex hull Robust ×

ISDDP [Gui20] Random sampling Inexact Inexact Lagrangian cuts Vt Convex ×

TDP [ACT20] Problem child Exact Benders cuts Min of quadratic Convex ×

[ZS22] Random or Problem Regularized Generalized conjugacy cuts Norm cuts Mixed Integer Convex ✓

NDDP [ZS20] Random or Problem Regularized Benders cuts Norm cuts Distributionally Robust ✓

DSDDP [LCC+20] Random sampling Exact Benders cuts Fenchel transform Linear ×

Table 1: Synthesis of algorithms following the same framework

6

2 Trajectory Following Dynamic Programming framework

Various extensions of the Stochastic Dual Dynamic Programming (SDDP) algorithm, recalled in Section 1.2, have
been developed for different sets of assumptions. In this section, we first present, in Section 2.1, a generic algorithmic
framework for TFDP algorithms (see Algorithm 1) for risk-neutral multistage stochastic programs that encompass
multiple known algorithms (see Table 1). These algorithms consider under and upper approximation of the expected
cost-to-go functions. The under approximations are defined as the maximum of basic functions called cuts (some
classical cuts are recalled in Appendix A). The upper approximations are more diverse and not always computed.
While Algorithm 1 is quite generic, other extensions have been proposed, and are discussed in Section 2.2. Finally,
Section 2.3 present methods to compute cuts in simple settings: exact with finite support assumption and inexact
with convexity assumption. Exact cut computation for the linear setting, without finite support, are discussed in
the next Section 3. The remains of the section detail how to obtain cuts, in particular, Section 2.3.1 presents the
finitely supported case, while Section 2.3.2 builds approximated cuts in the convex case.

2.1 Algorithm

The flexible framework of Algorithm 1 defines improving lower approximations V k
t (resp. upper approximations4

V
k

t) of the expected cost-to-go functions Vt. Each iteration k of the algorithm consists in a forward phase to
determine where to refine the approximations, followed by a backward phase to actually refine the approximations.

During the forward phase, we generate a trajectory xk
1 , · · · , xk

T−1. Each xk
t is chosen as an (almost) optimal

decision at time t starting from state xk
t−1, knowing that the random variable ξt takes the value ξ

k
t , and considering

that the cost-to-go is given by the lower approximation V k−1
t . This is encapsulated in the forthcoming notion of

forward Bellman operator. We denote γ - argminx∈X f(x) the set of x ∈ X such that f(x) ⩽ infx∈X f(x) + γ. We

now define, for any Lipschitz (on Xr
t) function Ṽ , the set X ♯

γ,t(Ṽ) of γ-optimal solutions of the parametrized stage

t problem with cost-to-go function Ṽ , that is,

X ♯
γ,t(Ṽ) : (x, ξ) 7→ γ - argmin

y∈Xt(x,ξ)

ℓt(y, ξ) + Ṽ (y).

Since ℓt+Ṽ is a normal integrand, [RW09, Corollary 14.33] guarantees measurability of X ♯
γ,t(Ṽ). Further, as X ♯

γ,t(Ṽ)

is compact, there exists ([RW09, Cor 14.6]) a measurable selection of ξ 7→ X ♯
γ,t(Ṽ)(x, ξ) for all x ∈ Xr

t .
The following definition mathematically formalizes the selection choice5.

Definition 2 (Forward operator). We say that Ft is a γF
t+1-forward operator if, for all functions Ṽ : Rnt+1 →

R ∪ {+∞}, Lipschitz on Xr
t+1 and x ∈ Xr

t , Ft(Ṽ)(x, ·) is a measurable selection of X ♯

γF
t+1,t+1

(Ṽ)(x, ·).

During the backward phase, we refine the approximations V k
t and V

k

t , they are both assumed to be Lipschitz on
Xr

t . Further, the lower approximations V k
t are defined as the maximum of a finite number of cuts: V k

t = maxκ⩽k f
k
t .

For Algorithm 1 to converge we make the following assumption on the approximations computed.

Assumption 4 (Admissible approximations). The computed cuts fk
t of Bt(V

k
t+1) at x

k
t satisfy:

i) fk
t is γ

t
-tight, i.e. fk

t (x
k
t) ⩾ Bt(V

k
t+1)(x

k
t)− γ

t
,

ii) fk
t is valid, i.e. fk

t ⩽ Bt(V
k
t+1),

iii) V k
t is Lt-Lipschitz.

On the other hand, the upper approximation V
k

t , not necessarily computed, shall satisfy the following properties:

iv) V
k

t (x
k
t) ⩽ Bt(V

k

t+1)(x
k
t) + γt, (tightness)

v) V
k

t ⩾ Bt(V
k

t+1), (validity)

vi) V
k

t ⩽ V
k−1

t , (monotonicity)

4In some common cases, the upper approximations are chosen as V
k
t = Vt but never evaluated.

5This choice is comparable to selecting a stage solver which always returns the same solution among the set of optimal solutions.

7

vii) V
k

t is Lt-Lipschitz.

Data: Random variables ξt, cost function at each step ℓt, constraints set-valued function Xt, initial state
x0, γ

F
t -forward operators Ft.

1 V 0
t ≡ −∞ and V

0

t ≡ +∞ for t ∈ [T];
2 for k ∈ N do

/* Forward phase */

3 Set xk
0 = x0;

4 for t = 1 : T − 1 do
5 Choose ξkt ∈ supp(ξt) ;

6 Let xk
t = Ft−1(V

k−1
t)(xk

t−1, ξ
k
t) ;

7 end
/* Backward phase */

8 Set V k
T ≡ V

k

T ≡ 0;
9 for t = T − 1 : −1 : 1 do

10 Find a Lt-Lipschitz on Xr
t , valid and γ-tight cut fk

t of Bt(V
k
t+1) at x

k
t , i.e. such that

fk
t (x

k
t) ⩾ Bt(V

k
t+1)(x

k
t)− γ

t
and fk

t ⩽ Bt(V
k
t+1) ;

11 Set V k
t = max(V k−1

t , fk
t);

12 Define V
k

t satisfying Assumption 4, Items iv) to vii) ;

13 end

14 end
Algorithm 1: A general framework for TFDP algorithms

For the algorithm to be well-defined we need to guarantee the existence of cuts and upper approximation
satisfying the previous assumption, as formally assumed now:

Assumption 5. For every t ∈ [T] and k ∈ N⋆, there exists at least one cut fk
t of Bt(V

k
t+1) satisfying Assumption 4.

This assumption is for example ensured through relatively complete recourse in the linear setting [PP91], through
extended relatively complete recourse in the convex setting [GLP15], through relatively complete continuous recourse
in the binary setting [ZAS19], and relatively complete recourse and Lipschitz assumption in the Lipschitz setting
of [ACdC20].

Remark 3 (Asymmetry of upper and lower approximations). The framework is not symmetrical in its treatment of
the upper and lower cost-to-go approximations. Indeed, Line 6 should not be done with the upper approximations6 as
it would restrict the exploration of the state space. For example, assume that V t are (slightly Lipschitz-regularized)
indicator functions of a single point, then the forward phase would always produce the same trajectory, and the
upper bound would not be updated.

Further, multiple TFDP algorithms do not actually compute V t, simply setting it to the true expected cost-to-go
Vt (for iterations bounds).

We have a first monotonicity result.

Lemma 4. Under Assumptions 1 to 5, for all k ∈ N, t ∈ [T − 1] and x ∈ Rnt we have

V k−1
t (x) ⩽ V k

t (x) ⩽ Bt(V
k
t+1)(x) ⩽Vt(x), (5a)

Vt(x) ⩽ Bt(V
k

t+1)(x) ⩽ V
k

t (x) ⩽ V
k−1

t (x). (5b)

In particular, the gap can only decrease

0 ⩽ V
k

t (x)− V k
t (x) ⩽ V

k−1

t (x)− V k−1
t (x). (6)

Proof. Direct by double induction on t and k and monotonicity of the Bellman operator.

Remark 5 (The standard SDDP algorithm). The most common TFDP algorithm is the stochastic dual dynamic
programming (SDDP), recalled in Section 1.2.

6The upper approximations (V
k
t)t∈[T] still provide an admissible policy through the forward Bellman operators which have interesting

properties, see [LCC+20].

8

In SDDP, the value of the noise ξkt , chosen in Line 5, is drawn randomly on supp(ξt) which is assumed to be
finite. The lower approximations are defined as a maximum of affine cuts.

Under relatively complete recourse assumption, the cuts can be assumed to be Lt-Lipschitz. Further, in this
simple setting, all errors are null: γ

t
= γt = γF

t = 0. Finally, no upper bounds are computed and the complexity

results of Section 4 are obtained by taking V
k

t = V k
t .

Algorithm 1 is a flexible framework, and some lines remain to be detailed, which we now discuss.

Node selection choice in Line 5 Most TFDP algorithms choose ξkt by drawing it randomly according to the
law of the random variable ξkt . The forward phase can then be seen as a Monte Carlo method for finding a trajectory
xk
1 , · · · , xk

T . Then, it is also possible to choose ξkt thanks to quasi-Monte Carlo methods.
Another way of choosing ξkt consists in picking the ξ ∈ supp(ξt) that maximizes a certain criterion. In [BDZ17],

Baucke, Downward and Zakeri suggested to chose ξkt such that xk
t maximizes the gap between the upper and

lower approximations, i.e., V
k

t (x
k
t) − V k

t (x
k
t). They called this choice of ξkt , the problem child node selection. In

[Lan20], Lan presented the Explorative Dual Dynamic Programming algorithm, where ξkt is chosen so that xk
t is

the most distinguishable point, i.e. such that xk
t is far from the previous computed points, see Eq. (45b), we speak

of explorative node selection.
The proofs of convergence are harder to derive when ξkt is chosen randomly, and the best upper bound known

on the number of iterations of these algorithms are exponential in the horizon T . In comparison, when ξkt is chosen
deterministically as the problem child or as the most distinguishable point, the number of iterations is bounded by
a polynomial in T . However, random sampling is often more efficient in practice (and easier to implement). We
discuss the complexity results in Section 4.

Forward operator choice in Line 6 In most algorithms, we assume that γF
t = 0 for all t ∈ [T − 1], thus

Ft−1(Ṽ)(x, ·) is a measurable selection of argminy∈∈Xt(x,·) ℓt(y, ·) + Ṽ (y). The use of inexact cuts has also been
proposed in [Gui20] to alleviate the computational burden of each iteration.

Further, there have been various propositions to regularize the SDDP algorithm, see [AP18, VAdOS19, GLT20].
They mostly boil down to choosing a different forward operator, e.g., by adding a regularization term, which can
be seen as γF

t -forward operator with γF
t ̸= 0. For example, one can choose Ft−1(Ṽ)(x, ξ) as a proximity operator

proxℓt(·,ξ)+Ṽ (·),α(y̌) := argminy∈Xt(x,ξ) ℓt(y, ξ)+ Ṽ (y)+α∥y− y̌∥22. In that case, if Xt(x, ξ) has a finite diameter D,

for y = Ft−1(Ṽ)(x, ξ), we have ℓt(y, ξ) + Ṽ (y) ⩽ miny′∈Xt(x,ξ) ℓt(y
′, ξ) + Ṽ (y′) + αD. Then, Ft is an αD-forward

operator.
Finally, it is important that the algorithm use a single γF

t -forward operator. Indeed, if the set of γF
t -optimal

solutions X ♯

γF
t ,t

(Ṽ)(x, ξ) is not reduced to a single point, the convergence results only hold for the points selected

by the forward operator. This remark is not only theoretical but has implications in practice: to be safe one
should use the same solver (and parameters) during the training phase and exploitation phase of the algorithm. For
example, consider a problem with two equivalent storage and that only one of them is required to provide an optimal
solution. Consider two forward operators, the first one, F1

t−1, prefers using the first storage while the second, F2
t−1

prefers using the second storage. Now assume that the algorithm ran until convergence with F1
t−1 yielding the

approximations V ∞
t . Then, V ∞

t correctly evaluates the value of the first storage, but has no information on the
second. Consequently, a trajectory given by F2

t−1(V
∞
t) might be far from optimal. A discussion of this fact, and

practical answers, can be found in [Dow18, §2.7].

Cuts fk
t choice in Line 10 We need to compute cuts fk

t to approximate Bt(V
k
t+1) in the neighborhood of

xk
t−1. Recall that in Eq. (3b), Bt is defined as an expectation of parametric Bellman operators Bt(V

k
t+1) =

E
[
B̂t(V

k
t+1)(·, ξt)

]
Eq. (3a). Then, we can compute the average cut fk

t thanks to parametric cuts f̂k
t,ξ. In the finitely

supported case in Section 2.3.1, we show that we can compute the average cut fk
t directly by taking fk

t = E
[
f̂k
t,ξ

]
whereas in the convex, non-finitely-supported case, we present in Section 2.3.2 methods to approximate E

[
fk
t,ξ

]
.

Finally, exact methods for linear problems are developed in Section 3. Furthermore, depending on the problem
structure, there exist several types of parametrized cuts f̂k

t,ξ in the literature. We recall them in Appendix A.

Upper approximations V
k

t choice in Line 12 In most TFDP algorithms, no upper bound function is computed.

In that case, we just set V
k

t ≡ Vt in the convergence proof. However, some algorithms rely on the computation
of these upper bounds, for example for computing a problem-child node selection. In the convex case, assume

9

V (x)

V (x)

• •

•

x

V (x)

Figure 1: An example of upper and lower approximations

that we have, for t ∈ [T], some points (xκ
t , v

κ
t)κ∈[k] that are in the epigraph of Vt. Now define V

k

t such that

epi(V
k

t) = Conv
((

xκ
t , v

κ
t

)
κ∈[k]

)
+ {(x, z) ∈ Rnt × R | Lt∥x∥1 ⩽ z} ⊆ epi(Vt). Then, V

k

t is an upper approximation

V
k

t of Vt on Xr
t . Computing points (xκ

t , v
κ
t)κ∈[k] in the epigraph of V̂t can be done either throughout the algorithm

as in the problem-child approach [BDZ17], or in batch backward in time for a given set of trajectories as suggested
by [PdMF13]. Upper approximation functions can also be obtained through duality see [LCC+20, dCL21].

2.2 Extensions of the TFDP framework

Although we tried to present a general framework, for the sake of simplicity, Algorithm 1 does not integrate every
variant of SDDP. We show here how some variants could be integrated into the TFDP framework, and if the results
and proofs of Section 4 remain valid.

Multiple forward phases. In practice, SDDP is often implemented with multiple forward phases, i.e., at it-
eration k we compute N forward phases (xk,i

t)t∈[T−1],i∈[N], in parallel. Consequently, in the backward phase we

compute, for each time step t ∈ [T − 1], N tight and valid cuts (fk,i
t)i∈[N]. This variation is included in the frame-

work of Algorithm 1 by considering that the cut fk
t is the maximum over i ∈ [N] of all cuts fk,i

t . The complexity
results follow directly (in iteration number).

Multicut. In the finitely supported case, instead of computing an average cut fk
t of the expected cost-to-go

function Vt, it is possible to store for each ξ ∈ supp(ξt) a cut f̂t,ξ of the cost-to-go function V̂t(·, ξ). Un-

like the single-cut case where V k
t (·) = maxκ⩽k f

κ
t (·), in the multicut case, we compute approximation func-

tion as V k
t (·) =

∑
ξ∈supp(ξt)

P
[
ξ
]
maxκ⩽k f̂

κ
t,ξ(·). Up to a slight reinterpretation, by considering a global cut

ft(·) =
∑

ξ∈supp(ξt)
P
[
ξ
]
maxκ⩽k f̂t,ξ(·), this variation is covered by our framework.

However, with continuous random variables, the notion of multiple cuts is not well-defined.

Cut computation in forward. Another variation of SDDP consists in computing the cuts during the forward

phase (and no backward phase). In this variant, the cuts do not approximate Bt(V
k
t+1) and Bt(V

k

t+1) in the

neighborhood of xk
t , but approximate Bt(V

k−1
t+1) and Bt(V

k−1

t+1) in the same neighborhood. Although this variant is
not handled by the framework, all proofs can be adapted straightforwardly. More precisely, we only need to adapt
the forthcoming proof of Lemma 39. In particular, in the proof of Lemma 39, we obtain directly Eq. (86c) and

Eq. (87c), without using the monotonicity, because we approximate Bt(V
k−1
t+1) and Bt(V

k−1

t+1).

Cut selection. After many iterations, the number of cuts can slow down the new iterations. To speed up SDDP
iterations, another idea is to delete some cuts. For example, we can decide to delete only the dominated cuts, i.e.,
the cuts that do not affect the values of the approximations V k

t . The monotonicity property and the complexity
results are still valid in this setting. Unfortunately, finding which cut is dominated is time-consuming which can
make this method numerically inefficient. Instead, we often use some heuristics to delete cuts that are probably
dominated. However, these heuristics do not guarantee that we have the monotonicity property of approximations.
Then, the complexity and convergence results seem harder to obtain. See [BG21] for an asymptotic convergence
result on SDDP with cut selection.

10

Adaptive partition-based methods In [SL15], Song and Luedtke presented the adaptive partition-based meth-
ods (APM) to solve 2-stage linear problems by partitioning the set of scenarios. It was then adapted to the multistage
case in [SS22] where Siddig and Song proposed an adaptive partition-based SDDP, in both cases under the finitely
supported noise Assumption (FSN). The idea of APM is to replace the expected cost-go-function V = E

[
V̂ (·, ξ)

]
by a partitioned expected cost-to-go function VP =

∑
P∈P P

[
ξ ∈ P

]
V̂ (·,E

[
ξ | ξ ∈ P

]
) where P is a partition of the

sample space Ξ. A partition P is said to be tight at x̌, if VP(x̌) = V (x̌), valid if VP(x) ⩽ V (x) for all x ∈ Rnt

and adapted to x̌ if it is valid and tight at x̌. Then, when P is a partition adapted to x̌, we can see the parti-
tioned expected cost-to-go function VP as a valid and tight cut of V at x̌. Such cuts represent the tangent cone
of epi(Bt(V

k
t+1)) at x where Benders’ cut represents a single tangent plane (see [FL22, §3.2]). APM methods were

extended to general distribution in [RPM21]. In [FL22], the authors provided a necessary and sufficient condition
for a partition to be adapted (without Assumption (FSN)) as well as a geometric method to obtain a valid and
adapted partition. In particular, APM SDDP algorithm of [SS22] is a TFDP algorithm falling in the framework of
Algorithm 1. It can be adapted to the non-finitely supported case through the discussion in Section 3.

2.3 Computing cuts

We now focus on finding a cut in Line 10 of Algorithm 1. More precisely, we want to approximate Bt(V
k
t+1) in the

neighborhood of xk
t−1. Recall that Bt is defined as an expectation of parametric Bellman operators B̂t (see Eq. (3)).

We present two known cases: exact cuts under Assumption (FSN) and approximated cuts if the dependence in the
noise is convex.

2.3.1 Cuts with finitely supported distribution

When the distribution of ξt is finitely supported, computing a cut of B̂t(Ṽ)(·, ξ) for each element ξ ∈ supp(ξt)

automatically yields a cut for Bt(Ṽ).

Proposition 6. Assume that ξt is finitely supported with pξ := P
[
ξt = ξ

]
, for all ξ ∈ supp(ξt), then

Bt(Ṽ)(x) =
∑

ξ∈supp(ξt)

pξB̂t(Ṽ)(x, ξ). (7a)

For every ξ ∈ supp(ξt), assume that f̂ξ is a valid and γ̂
t,ξ
-tight cut of function B̂t(Ṽ)(·, ξ) at x̌ , then we have

f :=
∑

ξ∈supp(ξt)

pξ f̂ξ is a valid and γ
t
-tight cut of Bt(Ṽ) at x̌ with γ

t
:=

∑
ξ∈supp(ξt)

pξγ̂t,ξ
. (7b)

In this finitely-supported distribution setting, it remains to find cuts of the function B̂t(Ṽ)(., ξ). There exist
several tight and valid cuts depending on the structure of ℓt and Xt. We present classical cuts of the literature
in Appendix A where we detail under which conditions these cuts are tight and valid and show how to compute
them.

2.3.2 Approximated cuts in the convex case

In this section, we now turn to obtaining approximated cuts leveraging convexity. We present a method based on
the inequalities of Jensen and Edmundson-Madansky, adapting the results of Birge and Wets [BW86] to our setting,
see also [KM+76, 4.7].

We start by recalling two well-known useful convex inequalities.

Proposition 7 (Jensen’s and Edmunson-Madansky inequalities). Let g : Rl 7→ R be a convex function and ξ be a
random variable. Assume that there exists a polytope7 Ξ ⊂ Rl containing supp(ξ).

For any ξ ∈ Ξ we denote SΞ(ξ) the set of barycentric coordinates of ξ, that is the set of coefficients (σ̃Ξ,v)v∈Vert Ξ(ξ) ∈
[0, 1]|Vert Ξ| such that ξ =

∑
v∈Vert(Ξ) σ̃Ξ,v(ξ)v and

∑
v∈Vert(Ξ) σ̃Ξ,v(ξ) = 1. Let ξ 7→ (σΞ,v(ξ))v∈Vert Ξ be any mea-

surable selection8 of SΞ(ξ). We have the following inequality:

g
(
E
[
ξ
])

⩽ E
[
g(ξ)

]
⩽

∑
v∈Vert(Ξ)

E
[
σΞ,v(ξ)

]
g(v). (8)

7The results can be extended to the case where Ξ is an unbounded polyhedron. We must then consider a set Ray(Ξ) of extreme rays
of the recession cone of Ξ (see [EZ94])

8Such a selection always exists. Indeed, if Ξ is a simplex, barycentric coordinates are uniquely defined through a linear application.
Then, any triangulation of Ξ defines a measurable selection as piecewise linear applications.

11

g(ξ)

ξ
v1 v2E

[
ξ
]

g
(
E
[
ξ
])

-

∑
v∈Vert(Ξ) E

[
σΞ,v(ξ)

]
g(v) -

E
[
g(ξ)

]
-

Figure 2: An illustration of Jensen and Edmundson-Madanski inequalities

Moreover, if g is Lipschitz with constant L and Ξ has diameter D, the gap is at most LD:∑
v∈Vert(Ξ)

E
[
σΞ,v(ξ)

]
g(v) ⩽ g

(
E
[
ξ
])

+ LD. (9)

Proof. The left-hand side of Eq. (8) is the classical Jensen inequality. Let ξ ∈ Ξ, as (σΞ,v)v∈Vert Ξ(ξ) are barycentric
coordinates, we have, by convexity of g, g(ξ) ⩽

∑
v∈Vert(Ξ) σΞ,v(ξ)g(v). Taking the expectation leads to the right-

hand side of Eq. (8) called Edmundson-Madanski inequality.
Assume now that Ξ has diameter D. Since Ξ is convex, E

[
ξ
]
∈ Ξ, thus for all v ∈ VertΞ, ∥E

[
ξ
]
− v∥ ⩽ D.

Further, as g is Lipschitz, we have ∥g(v)− g(E
[
ξ
]
)∥ ⩽ LD. Taking the convex combination yields Eq. (9).

These inequalities can be refined. Let P be a finite collection of almost surely disjoint polyhedra covering
supp(ξ), i.e. supp(ξ) ⊂ ∪P∈PP and P

[
P ∩ P ′] = 0 if P ̸= P ′ ⊂ P. Then, by the law of total expectation,

E
[
g(ξ)

]
=
∑

P∈P P
[
P
]
E
[
g(ξ)|P

]
. Applying Jensen and Edmundson inequalities to each term of this sum, we get∑

P∈P
P
[
P
]
g(E

[
ξ|P

]
) ⩽ E

[
g(ξ)

]
⩽
∑
P∈P

P
[
P
] ∑
v∈Vert(P)

E
[
σP,v(ξ)

]
g(v). (10)

In particular, if all polyhedra P ∈ P has a diameter smaller than d, the gap can be bounded by Ld.
We now get back to the problem of Line 10 of Algorithm 1 where we want to approximate Bt(V

k
t+1) in the

neighborhood of xk
t−1. Recall that Bt is defined as an expectation of parametric Bellman operators B̂t (see Eq. (3)).

Unlike in Section 2.3.1 where the random variable where finitely supported, we cannot write the expected cut as
a finite sum of parametric cuts. However, the Jensen and Edmundson-Madansky inequalities allow us to derive
approximate cuts and upper-bound functions.

Proposition 8. Assume that ℓt is a jointly convex function with Lipschitz constant L. Let P be a finite collection
of almost surely disjoint polyhedra covering supp(ξ), such that any P ∈ P has a diameter smaller than d ∈ R+.
Denote for each P ∈ P, pP := P

[
P
]
and ξP := E

[
ξ|P

]
.

For every P ∈ P, assume that f
P

is a valid and γ
t,P

-tight cut of the parametric function B̂t(Ṽ)(·, ξP) at x̌ ,

then by defining γ
t
:= Ld+

∑
P∈P pP γt,P

, we have

f :=
∑
P∈P

pP fP
is a valid and γ

t
-tight cut of Bt(Ṽ) at x̌. (11)

For every P ∈ P and v ∈ VertP , assume that fv,P satisfies f ⩾ B̂t(Ṽ)(·, v) and f(x̌) ⩽ B̂t(Ṽ)(x̌, v) + γt,P ,

then by defining γt := Ld+
∑

P∈P pP
∑

v∈Vert(P) E
[
σP,v(ξ)

]
γt,P , we have

f :=
∑
P∈P

pP
∑

v∈Vert(P)

E
[
σP,v(ξ)

]
fP,v satisfies f ⩾ Bt(Ṽ) and f(x̌) ⩽ Bt(Ṽ)(x̌) + γt. (12)

This result can also be adapted to “saddle” cost functions, i.e. functions that are convex in some coordinates of
ξ and concave in the other coordinates of ξ, by using both inequalities according to the sign of convexity, see e.g.
[Kuh06, §4].

12

3 Exact SDDP in the linear case with generic distributions

Note that Algorithm 1 does not require the finite support assumption ((FSN)) as it directly requires the computation
of cuts for the expected cost-to-go functions. These cuts are often given as expectation of easier-to-construct
pointwise cuts, as done in Section 2.3. In this section, we present new geometrical tools to compute exact cuts
without the finite support assumption for the cost, in the linear case. More precisely, we consider the particular
case of multistage linear stochastic programming i.e., Problem (MSP) where, for all t ∈ [T], ξt = (At,Bt, bt, ct),
ℓt(xt, ξt) = c⊤t xt is linear and Xt(xt−1, ξt) = {xt |Atxt + Btxt−1 = bt, xt ⩾ 0} is a polyhedron. In particular, we
show that we can discretize our problem without getting an approximation error. To do so we leverage the polyhedral
geometry for linear stochastic problem tools developed in [For22, FGL21, FL22]. For the sake of completeness, an
introduction to those tools can be found in Appendix B.1 (see [DLRS10] for a more complete reference).

We start by reformulating the stage problem (3a) as a standard two-stage linear program in Section 3.1. Sec-
tion 3.2 formally defines the notion of adapted partition that allows computing cuts. Section 3.3 leverages the
geometric tools to construct an explicit adapted partition for the multistage linear setting.

3.1 Expected cost-to-go function in standard form

We make the following assumptions:

Assumption (LS) (Linear setting). For t ∈ [T] we have ℓt(xt, ξt) = c⊤t xt and Xt(xt−1, ξt) = {xt ∈ Rnt |Atxt +
Btxt−1 = bt, xt ⩾ 0}. Further, the random variable ξt = (At,Bt, bt, ct) and the approximated expected cost-to-go
functions V k

t satisfy

1. At has a finitely supported distribution;

2. ct and (Bt, bt) are independent9;

3. the lower expected cost-to-go function V k
t are defined as the maximum of affine cuts, i.e., we have (αl

t)l⩽k

and (βl
t)l⩽k such that

V k
t (xt) = max

l⩽k
αl⊤
t xt + βl

t. (13)

Under Assumption (LS), Bellman operator defined in (3a) applied to V k
t reads

B̂t−1(V
k
t)(xt−1, ξt) = min

xt,z
c⊤t xt + z = min

xt,z+,z−,r
c⊤t xt + z+ − z− (14a)

s.t. Atxt +Btxt−1 = bt, s.t. Atxt +Btxt−1 = bt, (14b)

ακ⊤
t xt + βκ

t ⩽ z, ∀κ ⩽ k ακ⊤
t xt + βl

t + r = z+ − z−, ∀κ ⩽ k
(14c)

xt ⩾ 0 xt, z
+, z−, r ⩾ 0. (14d)

To simplify notation, we denote

Q(x,W, q, T, h) := min
y

{
q⊤y | Tx+Wy = h, y ⩾ 0

}
. (15)

Then, for any t ∈ [T] and k ∈ N, setting

x := xt, y := (xt, z
+, z−, r), W :=


At 0 0 0
α1
t −1 1 1
...

...
...

...
αk
t −1 1 1

 , q :=


ct
1
−1
0

 , T :=


Bt

0
...
0

 and h :=


bt
−β1

t
...

−βk
t

 , (16)

we obtain
E
[
Q(x,W , q,T ,h)

]
= E

[
B̂t−1(V

k
t)(xt−1, ξt)

]
. (17)

Under Assumption (LS) we have that i) W is finitely supported, and ii) q and (T ,h) are independent.

9Independence can be replaced by finite support assumption on one of the random variables. More generally, we can consider a
finitely supported random variable Mt such that ct and (Bt, bt) are independent conditionally to Mt.

13

3.2 Partition and cuts

Let n,m, p ∈ N⋆ be integers and W , q,T ,h be integrable random variables taking values respectively in Rp×m, Rm,
Rp×n, Rp. We define the uncertainty set Ξ as the support of (W , q,T ,h). We make the following assumption:

Assumption (FSW) (Finitely supported W). The random variables (W , q,T ,h) satisfies:

1. W is finitely supported,

2. q and (T ,h) are independent.

Note that if the random variables are defined thanks to (16) then Assumption (LS) implies Assumption (FSW).
To alleviate notation, for a measurable set P ⊂ Ξ, we shorten P

[
(W , q,T ,h) ∈ P

]
as P

[
P
]
, and similarly for

conditional expectation.

Definition 9. We define the value function V : Rn → R ∪ {∞}

V (x) := E
[
Q(x,W , q,T ,h)

]
. (18)

Let P be a partition of Ξ. We define the partitioned value function VP : Rn → R ∪ {∞} as

VP(x) :=
∑
P∈P

P
[
P
]
Q
(
x,E

[
W , q,T ,h|P

])
, (19)

where Q is defined in Eq. (15), and we made a slight abuse of notation with,

Q
(
x,E

[
W , q,T ,h|P

])
= Q

(
x,E

[
W |P

]
,E
[
q|P

]
,E
[
T |P

]
,E
[
h|P

])
. (20)

We say that

P is valid if VP(x) ⩽ V (x) ∀x ∈ Rn (21a)

P is tight at x̌ if VP(x̌) = V (x̌) (21b)

P is adapted to x̌ if P is valid and tight at x̌ (21c)

For any partition P, if we know how to compute probabilities and conditional expectations on each element of
the partition, we know by Section 2.3.1 how to compute a tight and valid cut for VP . If P is a valid and adapted
partition, then the cut is still valid for the true value function V .

Proposition 10. Let P be an adapted partition to x̌. For all P ∈ P, let f̂P be a valid and tight cut of
Q
(
·,E
[
W , q,T ,h|P

])
at x̌. Then f :=

∑
P∈P P

[
P
]
f̂P is a valid and tight cut of V at x̌.

Proof. We have

f(x) =
∑
P∈P

P
[
P
]
f̂P (x), (22a)

⩽
∑
P∈P

P
[
P
]
Q
(
x,E

[
W , q,T ,h|P

])
, since f̂P is valid, (22b)

= VP(x) ⩽ V (x), since P is valid. (22c)

Thus, f is valid. Moreover,

f(x̌) =
∑
P∈P

P
[
P
]
f̂P (x̌), (23a)

=
∑
P∈P

P
[
P
]
Q
(
x̌,E

[
W , q,T ,h|P

])
, since f̂P is tight, (23b)

= VP(x̌) = V (x̌), since P is tight. (23c)

Thus, f is tight.

Thus, an adapted partition provides a valid and tight cut. We now detail how to obtain such a partition.

14

3.3 Explicit valid and adapted partition

In this section, we provide an explicit adapted partition for linear stochastic problems in standard form.
By Assumption 1, the feasible primal set {y ∈ Rm |Tx+Wy = h, y ⩾ 0} is non-empty and compact. Then, by

strong duality, we can rewrite Q defined in Eq. (15) as

Q(x,W, q, T, h) = max
λ∈Rp

{
(h− Tx)⊤λ | W⊤λ ⩽ q

}
. (24)

We now define the dual feasible set DW,q as

DW,q := {λ ∈ Rp | W⊤λ ⩽ q}. (25)

We recall that the normal fan N (E) of a set E is the finite collection of all normal cones NE(x):

N (E) := {NE(x) | x ∈ E}, (26a)

where NE(x) := {ϕ | ∀x′ ∈ E, ϕ⊤(x′ − x) ⩽ 0}. (26b)

When W and q are fixed, the value of Q(x̌,W, q, T, h) depends on which normal cone h− T x̌ belongs to. Thus,
we finally define

EN,x̌ := {(T, h) | h− T x̌ ∈ ri(N)} (27a)

Rx̌,W,q, :=
{
EN,x̌ | N ∈ N (DW,q)

}
. (27b)

We begin with the finitely supported q case as a warm-up.

Remark 11 (Finitely supported q). We can show that, when W and q are fixed, Rx̌,W,q is an adapted partition to
x̌ (see [FL22, Thm 3]). If supp(W) and supp(q) are finite, we can extend this result to show that

{
{W} × {q} ×

Rx̌,W,q |W ∈ supp(W), q ∈ supp(q)
}
is an adapted partition to x̌:

E
[
Q(x̌,W , q,T ,h)

]
(28a)

=
∑

(W,q)∈supp(W ,q)

E
[
Q(x̌,W, q,T ,h)

∣∣∣W = W, q = q
]
P
[
W = W, q = q

]
, (28b)

=
∑

(W,q)∈supp(W ,q)

∑
R∈Rx̌,W,q

Q
(
x̌,E

[
W , q,T ,h

∣∣∣ (T ,h) ∈ R,W = W, q = q
])

P
[
(T ,h) ∈ R,W = W, q = q

]
. (28c)

We now extend this result to the case where q has a non-finitely supported distribution. This extension relies
on a partition SW of Rp×m such that q 7→ Rx̌,W,q is constant on each S ∈ SW . Actually, this partition SW is the
collection of relative interiors of secondary cones (see [DLRS10, Definition 5.2.1]) which are classical objects from
polyhedral geometry. We also give a more elementary, but equivalent, construction of SW in Appendix B.1.

To any constraint matrix W , we associate its secondary fan Σ -fan(W) (which is the normal fan of the secondary
polytope defined, e.g., in [DLRS10, Definition 5.1.7]), a well-studied collection of closed cones associated with W .
Let SW be the collection of relative interiors of the elements of Σ -fan(W):

SW :=
{
ri(S) | S ∈ Σ -fan(W)

}
. (29)

In particular; the elements of SW are relatively open (convex) cones of Rm. Further, note that [DLRS10] provides
constructive representation of Σ -fan(W) and thus of SW , which paves the way toward explicit computation of SW .

Lemma 12. Let W ∈ Rp×m and S ∈ SW . For every q, q′ ∈ S we have Rx,W,q = Rx,W,q′ . Consequently, instead of
considering an infinite number of Rx,W,q parametrized by q, we can consider a finite number of Rx,W,S parametrized
by S ∈ SW where

Rx,W,S := Rx,W,q for an arbitrary q ∈ S. (30)

Proof. The proof is given in Appendix B.1.

15

We now leverage this reduction to a finite number of Rx,W,S to define an adapted partition. We start by
showing in Theorem 13 that, for given x and W , the cost-to-go function Q(x,W, q, T, h) is piecewise bilinear in q
and (T, h). More precisely, it is an adaptation of the basis decomposition theorem of Walkup and Wets [WW69] (see
also Sturmfels and Thomas [ST97] or [DLRS10, Theorem 1.2.2] for a more modern presentation).

Theorem 13. Let W ∈ Rl×m and x̌ ∈ Rn. Then, for every S ∈ SW and R ∈ Rx̌,W,S, there exists a basis B ⊂ [m]
such that

∀q ∈ S, ∀(T, h) ∈ R, Q(x̌,W, q, T, h) = q⊤BW
−1
B (h− T x̌). (31)

Proof. The proof is given in Appendix B.2.

We deduce the following lemma which gives regions where we can interchange the function Q with the expecta-
tion. This lemma can be seen as an exact quantization result.

Lemma 14. Let W ∈ Rl×m. Assume that (T ,h) and q are independent random variables, then, for all S ∈ SW

and R ∈ Rx̌,W,S,

Q
(
x̌,W,E

[
q,T ,h | q ∈ S, (T ,h) ∈ R

])
= E

[
Q(x̌,W, q,T ,h) | q ∈ S, (T ,h) ∈ R

]
. (32)

Proof. Let B be the basis in Theorem 13 by independence of (T ,h) and q, we have

E
[
Q(x̌,W, q,T ,h) | q ∈ S, (T ,h) ∈ R

]
= E

[
q⊤
BW

−1
B (h− T x̌) | q ∈ S, (T ,h) ∈ R

]
, (33a)

= E
[
q⊤
B | q ∈ S

]
W−1

B E
[
h− T x̌ | (T ,h) ∈ R

]
, (33b)

= Q
(
x̌,W,E

[
q | q ∈ S

]
,E
[
T ,h | (T ,h) ∈ R

])
. (33c)

Indeed, by convexity of S (resp. R), we have E
[
q | q ∈ S

]
∈ S (resp. E

[
T ,h | (T ,h) ∈ R

]
∈ R).

By summing over all W ∈ supp(W), all S in SW and R ∈ Rx̌,W,S and applying this lemma for every term of
the sum, we can now deduce an explicit adapted partition.

Theorem 15 (Adapted partition for general second stage cost q). Assume that q and ξ are independent condition-
ally to W and that supp(W) is finite. We define Px̌ the following partition

Px̌ =
{
{W} × S ×R | W ∈ supp(W), S ∈ SW , R ∈ Rx̌,W,S

}
(34)

then Px̌ is an adapted partition to x̌.

Proof. The proof, based on Lemma 14, can be found in Appendix B.2.

Remark 16. As we saw in Section 3.2, this explicit adapted partition provides a new method to find tight and
valid cuts in Line 10 of Algorithm 1 without having an approximation error, i.e., γ

t
= 0, in the linear case (under

Assumption (LS) and Assumption (LS)). Moreover, this explicit adapted partition allows to extend the scope of
APM methods. In [FL22], a method to find an explicit adapted partition for deterministic W and q is presented and
the authors state, in Remark 12, that the partition Px̌ is adapted without proving it formally. This section provides
a formal proof of this statement.

Finally, Siddig and Song presented an algorithm combining ideas of APM methods and SDDP in the finitely
supported case. This explicit adapted partition paves the way to an APM-SDDP algorithm with non-finitely supported
random variables.

4 Complexity results

In this section, we give convergence and complexity results for various instances of TFDP Algorithm 1. In Sec-
tion 4.1, we first define the notion of effective iteration and deduce an upper bound on the number of effective
iterations required by Algorithm 1 to get an ε-solution. We then distinguish between deterministic and randomized
node selection processes for Line 5 of the algorithm. For deterministic selection processes, namely the problem-child
and explorative node selections, we show in Section 4.2 that all iterations are effective. Finally, when the node se-
lection is randomized, we show in Section 4.3 the existence of a positive probability for an iteration to be effective.
We then deduce a complexity bound on the expected number of iterations.

16

4.1 Bounding the number of effective iterations

We first recall that the value of Problem (MSP) can be written in a more concise form, by using the nested problem
in Eq. (2) and the definition of expected cost-to-go function in Eq. (4), and keeping in mind that ξ1 is deterministic:

val (MSP) = min
x1∈X1(x0,ξ1)

ℓ1(x1, ξ1) + V1(x1) (35)

Our aim is to show that, for some iteration k, the solution xk
1 is a ε-solution of Eq. (35), and the lower-bound

V 0(x0) is ε-tight. Unfortunately, Assumptions 1 to 5 are not enough to ensure convergence of Algorithm 1: we
need a further assumption on the node selection process.

Regardless of node selection, we define the notion of effective iteration. Recall that γF
t , γ

t
, γt are errors in

forward Bellman operator and approximation update (see Algorithm 1) at time t ∈ [T], and Lt (resp. Lt) are
Lipschitz bounds on the cuts (resp. upper approximation) at time t. In the remainder of the section we consider a

sequence (V
k

t , V
k
t , x

t
k)t∈[T],k∈N produced by Algorithm 1.

Definition 17 (effective iteration). For every t ∈ [T − 1], let δt > 0 and ηt ⩾ 0. By backward induction, we define

εT−1 := γ
T−1

+ γT−1, (36a)

εt := εt+1 + (Lt+1 + Lt+1)(δt+1 + ηt+1) + γF
t+1 + γ

t
+ γt, ∀t ∈ [T − 2], (36b)

ε0 := ε1 + (L1 + L1)(δ1 + η1) + γF
1 . (36c)

For t ∈ [T − 1] and k ∈ N, we say that

xk
t is εt-saturated, if V

k

t (x
k
t)− V k

t (x
k
t) ⩽ εt and

xk
t is δt-distinguishable if ∥xk

t − xκ
t ∥ > δt for all κ < k such that xκ

t is εt-saturated.
We say that an iteration k ∈ N is effective if it generates either a ε1-saturated point, which is also a ε0-solution

to Problem (35), or a new εt-saturated and δt-distinguishable point for at least one t ∈ [T], i.e.,

xk
1 is ε1-saturated and ℓ1(x

k
1 , ξ1) + V1(x

k
1)− val (MSP) ⩽ ε0, (37a)

OR ∃t ∈ [T − 1], xk
t is εt-saturated and δt-distinguishable. (37b)

We now give an upper bound on the number of effective iterations of Algorithm 1 to find an ε0- optimal solution.

Theorem 18 (bound on effective iterations number). Let Assumptions 1 to 5 be satisfied and t ∈ [T − 1], assume
that δt ∈ [0, Dt] and ηt ∈ R+ are given and εt defined by (36). Let

K :=

T−1∑
t=1

(
Dt

δt
+ 1

)nt

. (38)

After at most K + 1 effective iterations we have a ε1-lower bound of Problem (MSP):

V k
0(x0) = ℓ1(x

k
1 , ξ1) + V k

1(x
k
1) ⩾ val (MSP)− ε1. (39)

Further, there exists, among those K + 1 effective iterations, at least one such that xk
1 is an ε0-solution to Prob-

lem (35):
ℓ1(x

k
1 , ξ1) + V1(x

k
1) ⩽ val (MSP) + ε0. (40)

Proof. For t ∈ [T − 1], there are at most (Dt

δt
+1)nt disjoint balls10 of diameter δt in a ball of diameter Dt + δt (see

[ZS22, A.3.2]). In particular, we cannot compute more than (Dt

δt
+ 1)nt , δt-distinguishable points at step t. Thus,

after K =
∑T−1

t=1 (Dt

δt
+ 1)nt effective iterations, for all t ∈ [T], it is impossible to compute a new δt-distinguishable

point. Then, as the iteration k is effective and we cannot have (37b), we have (37a) and in particular xk
1 is an

ε0-solution Moreover, xk
1 is ε1-saturated. Then,

10We consider here balls for the euclidean norm ∥ · ∥2, but the result is still valid with the p-norm ∥ · ∥p for every p ∈ [1,+∞].

17

ℓ1(x
k
1 , ξ1) + V k

1(x
k
1) ⩾ ℓ1(x

k
1 , ξ1) + V

k

1(x
k
1)− ε1, (41a)

⩾ ℓ1(x
k
1 , ξ1) + V1(x

k
1)− ε1, (41b)

⩾ min
x1∈X1(x0,ξ1)

ℓ1(x1, ξ1) + V1(x1)− ε1, (41c)

= val (MSP)− ε1. (41d)

Remark 19. Finally, although the theorems of this section state that we find an ε0-optimal solution at stage 1, we
have no guarantee that the approximations V k

t converge to Vt. We cannot hope that these approximations converge
to the true expected cost-to-go functions far from the optimal and reachable trajectories.

Nevertheless, by considering the sets of points that are δt-close to every optimal and reachable trajectories, we
could hope to have a convergence of strategies generated by F(V k

t) on those sets. If we add a finite diameter of the
support of ξt and Lipschitz assumptions for ξt, we are confident that the proof can be adapted. However, the general
case looks harder and might require different ideas for proving complexity results for the convergence of strategies at
every stage.

For a class of specific (deterministic) implementations of Algorithm 1 each iteration is effective, in which case
we can directly bound the number of iterations required to obtain an ε0-optimal solution.

4.2 Deterministic node selection

In this section, we present sufficient condition for an iteration to be effective. Consequently, for two algorithms
with deterministic node selections (namely problem-child node selection [BDZ17] and explorative node selection
[Lan20]), we show that each iteration is effective, yielding a complexity result.

We first define the distance to the set of εt-saturated points.

Definition 20. Let t ∈ [T − 1] and k ⩾ 1.
We denote yk

t the random variable
yk
t := Ft−1(V

k−1
t)(xk

t−1, ξt). (42)

We denote by dkt the distance function to the set of εt-saturated points until iteration k :

dkt (x) := min
κ<k|xκ

t is εt-saturated
∥x− xκ

t ∥. (43)

In particular, xk
t is δt-distinguishable if and only if dkt (x

k
t) > δt.

The following technical lemma, whose proof can be found in Appendix C, shows that if the new state xk
t (resulting

from the choice of ξkt) is either i) far enough from the set of saturated points, or ii) yielding a large enough gap,
then iteration k is effective.

Lemma 21. Let Assumptions 1 to 5 be satisfied and assume that, for all t ∈ [T −1], δt ∈ [0, Dt], ηt ∈ R+ are given
and εt defined by (36). Let k ∈ N⋆. If, for all t ∈ [T − 1], at least one of the following inequalities is satisfied

E
[
V

k−1

t

(
yk
t

)
− V k−1

t

(
yk
t

)]
⩽ V

k−1

t (xk
t)− V k−1

t (xk
t) + (Lt + Lt)ηt, (44a)

E
[
dkt (y

k
t)
]
⩽ dkt (x

k
t) + ηt. (44b)

then, iteration k is effective.

In [Lan20], Lan suggested choosing xk
t as the most distinguishable point in a new algorithm called Explorative

Dual Dynamic Programming (EDDP). We then speak of explorative node selection. The following lemma shows
that both these selections lead to effective iterations.

Lemma 22. Let Assumptions 1 to 5 hold and assume that, for all t ∈ [T] δt ∈ [0, Dt], ηt = 0, are given and εt is
defined by (36).

We say that we have a problem-child node selection if for all k ∈ N⋆, and t ∈ [T − 1], ξkt is chosen such that it
maximizes the current gap, i.e.,

ξkt ∈ argmax
ξ∈supp(ξt)

V
k−1

t

(
Ft−1(V

k−1
t)(xk

t−1, ξ)
)
− V k−1

t

(
Ft−1(V

k−1
t)(xk

t−1, ξ)
)
. (45a)

18

We say that we have an explorative node selection if for all k ∈ N⋆, and t ∈ [T − 1], ξkt is chosen such that xk
t

maximizes the distance to previous εt-saturated points, i.e.,

ξkt ∈ argmax
ξ∈supp(ξt)

dkt
(
Ft−1(V

k−1
t+1)(x

k
t−1, ξ)

)
. (45b)

Then, with a problem-child or an explorative node selection method, each iteration of Algorithm 1 is effective.

Proof. It is a consequence of Lemma 21. Indeed, as ηt = 0, xk
t = Ft−1(V

k−1
t)(xk

t−1, ξ
k
t) and yk

t = Ft−1(V
k−1
t)(xk

t−1, ξt),
and since the maximum is greater than the expected value, Eq. (44a) implies Eq. (45a) and Eq. (44b) implies
Eq. (45b).

Lemma 22 implies that every iteration of these deterministic node selection methods is effective. Coupled with
Theorem 18 we easily obtain complexity bounds, for example as follows.

Corollary 23. Let Assumptions 1 to 5 hold and assume that every iteration of Algorithm 1 is effective (e.g.,

problem-child or explorative node selection). Further, for simplicity, let the total error be γΣ :=
∑T−1

t=1 γ
t
+ γt + γF

t

and choose n,D,L such that, for all t ∈ [T − 1], nt ⩽ n, Dt = D, Lt = Lt = L. Then, for every ε > γΣ, sufficiently
small (e.g. such that ε ⩽ 2DL + γΣ), Algorithm 1 finds an ε-first stage solution xk

1 within at most Kε iterations
where

Kε :=

(
2DL

ε− γΣ

)n

(T − 1)n+1. (46)

Proof. We set δt :=
ε−γΣ

2L(T−1) and ηt := 0 for all t ∈ [T −1]. Then, as ε ⩽ 2DL+γΣ we have δt ⩽ D = Dt. Moreover,

ε0, defined in Eq. (36), satisfies

ε0 =

T−1∑
t=1

[
(Lt + Lt)(δt + ηt) + γ

t
+ γt + γF

t

]
= (T − 1)2Lδ + γΣ = ε. (47)

With this setting, we have that K, as defined in (38), satisfies

K ⩽ (T − 1)

(
D

δ
+ 1

)n

= T

(
2DL (T − 1)

ε− γΣ
+ 1

)n

.

Now, as ε is assumed to be small enough to have 2DL/(ε− γΣ) ⩽ 1 (i.e. ε ⩽ 2DL+ γΣ) we get

K ⩽ (T − 1)

(
2DL(T − 1)

ε− γΣ

)n

= Kε.

By assumption all iterations are effective and Theorem 18 ends the proof.

Remark 24. Note that the maximum in (45a) (resp. (45b)) is easily obtained under finite noise Assumption (FSN).
Indeed, we can compute the gap (resp. the distance) for every ξt in the support of ξt and keep ξkt maximizing the
gap.

However, without finite noise Assumption (FSN), we just need to find a ξkt leading to a gap worse than the
expected gap (see Lemma 21), and not necessarily a maximizer. This paves the way for a deterministic node
selection, with non-finitely supported random variables.

4.3 Randomized algorithms

When the choice of ξkt is made randomly, there is no guarantee that the iteration will be effective. However,
applying a technical nested Hoeffding lemma shown in Appendix D.1, we show that there is a positive probability p
for an iteration to be effective. Then, by comparing the time to obtain an effective iteration to a geometric random
variable of parameter p in Appendix D.2, we deduce a bound on the expected number of iterations required to get
an ε-optimal solution.

Remark 25 (Notational difficulty of randomized algorithm on stochastic problem). We are now considering a
stochastic algorithm for solving the MSP Problem (MSP). Thus, there are two sources of randomness: the intrinsic

(ξt)t∈[T] and the node selection ξkt = ξ̃kt . To distinguish both, we denote in bold random variables that are (ξt)t∈[T]

measurable, with a tilde random variables that are (ξ̃kt)t∈[T],k∈N∗ measurable (and with both if they are neither).

19

For example, the trajectory determined during the forward phase (x̃k
t)t∈[T] only depends on the past node se-

lections, whereas the tentative points ỹk
t depends both on the past node selections and the actual realization of

ξt.
Under Assumption (FSN), this discussion is usually avoided by representing the dependence on (ξt)t∈[T] with a

(finite) scenario tree, and indexing the variables by the tree nodes.

Let (Ak)k∈N⋆ be the filtration such that Ak := σ
(
ξ̃κt
)
t∈[T−1],κ∈[k]

, and A∞ =
⋃

k∈N Ak. In particular, a random

variable measurable with Ak knows all node selection up to iteration k, which include, for example, V k
t for all

t ∈ [T].

Lemma 26. Let Assumptions 1 to 5 be satisfied and assume that, for all t ∈ [T − 1], δt ∈ [0, Dt], ηt ∈ R+ are
given and εt defined by (36). Further, assume that in Algorithm 1, Line 5, we draw ξkt randomly according to the

distribution of ξt, and independently of all other ξ̃κτ as well as (ξτ)τ∈[T−1].

Then, for all iteration k ∈ N of Algorithm 1 and all event Ak−1 ∈ Ak−1 such that P
[
Ak−1

]
> 0, we have

P
[
Iteration k is effective.

∣∣∣Ak−1
]
⩾

T∏
t=1

(
1− e

−2η2
t

D2
t

)
. (48)

Proof. Let A∞ := σ
(
ξ̃κt
)
t∈[T−1],κ∈N⋆ and k ∈ N⋆. By Lemma 21, we have

P
[
Iteration k is effective. |Ak−1

]
⩾ P

[
∀t ∈ [T − 1], E

[
d̃kt (ỹ

k
t) | A∞] < d̃kt (x̃

k
t) + ηt |Ak−1

]
. (49)

For t ∈ [T − 1], let Ak
t := σ

(
Ak−1, (ξ̃tk)τ∈[t]

)
. We have that σ

(
d̃kt (ỹ

k
t)
)
⊂ σ(Ak

t−1, ξt) from which we deduce

that E
[
d̃kt (ỹ

k
t) | A∞] = E

[
d̃kt (ỹ

k
t) | Ak

t−1

]
. We define the events Ek

t :=
{
ω ∈ Ω | E

[
d̃kt (ỹ

k
t) | Ak

t−1

]
< d̃kt x̃

k
t + ηt

}
.

Thus, P
[
Iteration k is effective |Ak−1

]
⩾ P

[⋂T−1
t=1 Ek

t |Ak−1
]
By applying Lemma 41 with the random variables(

ξ̃kt
)
k∈N,t∈[T−1]

, the filtration (Ak
t)k∈N,t∈[T−1] and the measurable function fk

t : ((ξκτ)τ∈[T−1],κ∈[k−1], (ξ
k
τ)τ∈[t]) 7→

dkt (x
k
t) taking its value in [0, Dt], we have P

[⋂T−1
t=1 Ek

t

∣∣∣Ak−1
]
⩾
∏T

t=1

(
1− e

−2η2
t

D2
t

)
which gives Eq. (48).

We now give a complexity results for all TFDP algorithms (following framework of Algorithm 1) where the
choice of ξkt is made randomly.

Theorem 27. Let Assumptions 1 to 5 be satisfied and assume that in Line 5, we draw ξkt randomly according to
the distribution of ξt, and independently from the previous ξκτ .

Further, for simplicity, let the total error be γΣ :=
∑T−1

t=1 γ
t
+ γt + γF

t and choose n,D,L such that, for all

t ∈ [T − 1], nt ⩽ n, Dt = D, Lt = Lt = L.
Then, for ε > γΣ , sufficiently small (e.g., such that ε ⩽ 4DL + γΣ), the expected number of iterations of

Algorithm 1 required to find an ε-solution xk
1 to problem (35), i.e. , such that ℓ1(x

k
1 , ξ1) + V2(x

k
1) ⩽ val (MSP) + ε

is bounded by (T − 1)
(

4DL(T−1)
ε−γΣ

)n+2(T−1)

.

Proof. We set for all t ∈ [T − 1], δt = ηt =
ε−γΣ

4L(T−1) . Then, as ε ⩽ 4DL+ γΣ we have ηt = δt ⩽ D = Dt. Moreover,

ε0, defined in Eq. (36), satisfies

ε0 =

T−1∑
t=1

[
(Lt + Lt)(δt + ηt) + γ

t
+ γt + γF

t

]
= (T − 1)2L× 2

ε− γΣ
4L(T − 1)

+ γΣ = ε.

Let K̃ the (random) number of iterations needed to compute Kε :=
∑T−1

t=1

(
1 + Dt

δt

)nt

⩽
(

4DL
ε−γΣ

)n
(T − 1)n+1

effective iterations, then by Theorem 18, Algorithm 1 finds an ε-solution after at most K̃ iterations. Let p :=∏T
t=1

(
1− exp

(−2η2
t

D2
t

))
, by Lemma 26, for Ak−1 ∈ Ak−1, we have P

[
Iteration k is effective |Ak−1

]
⩾ p. Thus, by

Lemma 42, we have E
[
K̃
]
⩽ Kε

p .

20

Moreover, since as x 7→ x
1−e−x is an increasing function on (0, 1

2], then for all x ∈ (0, 1], we have 1
1−e−x ⩽

1
1−e−1 × 1

x ⩽ 1.6 × 1
x . Thus, as

2η2
t

D2
t
⩽ 1, we have that 1

p ⩽
∏T−1

t=1 1.6 × D2
t

2η2
t
⩽
(4DL(T−1)

ε−γΣ

)2(T−1)
. We then obtain

E
[
K̃
]
⩽ Kε

p ⩽
(

4DL
ε−γΣ

)n
(T − 1)n+1 ×

(4DL(T−1)
ε−γΣ

)2(T−1)
= (T − 1)

(
4DL(T−1)

ε−γΣ

)n+2(T−1)

.

Remark 28 (Stochastic dominance and comparison with finitely supported noise). The proof of Theorem 27

actually gives more information on the (random) number of iteration K̃ after which we obtain an ε-solution: K̃
is stochastically dominated by a random variable with a negative binomial distribution representing the number of
trials to obtain Kε successes with probability of success p, (see Lemma 42).

Further, under finitely supported noise assumption Assumption (FSN), the probability of choosing the problem

child ξkt (cf Lemma 22) for each t ∈ [T − 1] is lower bounded by
∏T−1

t=1
1

| supp(ξt)| . Then, Lemma 26 still holds after

replacing the right-hand side probability of success by
∏T−1

t=1
1

| supp(ξt)| . We can then deduce other complexity bounds

under Assumption (FSN). For example, in [Lan20], assuming that | supp(ξt)| ⩽ N , for all t ∈ [T−1], the probability
of having an effective iteration is bounded by 1

NT−1 .

5 Extension to risk-averse setting

Finally, we now discuss how we can go farther than the risk-neutral setting. These extensions involve a maxi-
mization problem in the dynamic programming equation, arising for example from multistage risk-averse, robust
or distributionally robust problems. Algorithm 1 can be adapted to such problems, by changing the definitions of
the Bellman operators.

Further, in the risk-neutral case, Algorithm 1 is not symmetrical in its treatment of lower and upper approxi-
mations. As noted in Remark 3, for a minimization problem, in Algorithm 1, the forward phase Line 6 should be
done using the lower approximations V k

t . More generally, one should use an outer approximation (that is under
approximation for min sub-problems and upper approximations for max sub-problems) during the forward phase
to be able to explore the state space. Thus, for those min-max problems, the computation of upper approximations

V
k

t is not optional.

Minimax problems. Baucke, Downward and Zakeri, in [BDZ17], presented a convergent problem-child algorithm
to solve stochastic minimax dynamic programs. Although our framework of Algorithm 1 do not handle such
minimax problem, we can extend it to do so. More precisely, we consider a problem where the decision maker
chooses xt ∈ Xt(xt−1, yt−1, ξt), and then an adversary chooses yt ∈ Yt−1(xt−1, yt−1, xt, ξt). Thus, the Bellman
operators are now defined as

Bt−1(Ṽ)(xt−1, yt−1) = E
[

min
xt∈Xt(xt−1,yt−1,ξt)

max
yt∈Yt−1(xt−1,yt−1,xt,ξt)

ℓt(xt, yt, ξt) + Ṽ (xt, yt)
]
. (50)

The reachable sets then become

Xr
0 = {x0}, Y r

0 = {y0}, (51a)

Xr
t =

⋃
xt−1∈Xr

t−1

⋃
yt−1∈Y r

t−1

⋃
ξt∈Ξt

Xt(xt−1, yt−1, ξt) ∀t ∈ [T], (51b)

Y r
t =

⋃
xt−1∈Y r

t−1

⋃
yt−1∈Y r

t−1

⋃
xt∈Xr

t

⋃
ξt∈Ξt

Yt(xt−1, yt−1, xt, ξt) ∀t ∈ [T]. (51c)

In the forward phase, as in Algorithm 1, the γF
t -optimal solution xk

t should be chosen thanks to the approxi-
mation V k−1

t . However, as we maximize over yt, y
k
t must be a γF

t -optimal solution of the step problem with the

approximation V
k−1

t :

xk
t = Fmin

t−1 (V
k−1
t)(xt−1, yt−1, ξ

k
t) ∈ γF

t - argmin
xt∈Xt(xt−1,yt−1,ξkt)

max
yt∈Yt−1(xt−1,yt−1,xt,ξkt)

ℓt(xt, yt, ξ
k
t) + V k−1

t (xt, yt), (52a)

ykt = Fmax
t−1 (V

k−1

t)(xt−1, yt−1, x
k
t , ξ

k
t) ∈ γF

t - argmax
yt∈Yt−1(xt−1,yt−1,xk

t ,ξ
k
t)

ℓt(xt, yt, ξ
k
t) + V

k−1

t (xt, yt). (52b)

21

Assuming that the reachable sets Xr
t and Y r

t have finite dimensions dx and dy and diameter D, and that the
objective function are L-Lipschitz, the convergence and complexity results still hold developing on the ideas of

[ZS22]. The upper bound on the number of effective iterations then becomes Kε :=
(

2DL
ε−γΣ

)dx+dy

(T − 1)dx+dy+1.

Robust Closely related, in [GTW19], Georghiou, Tsoukalas and Wiesemann presented the Robust Dual Dynamic
Programming algorithm (RDDP) to solve multistage robust optimization problems. In such problems, instead of
minimizing the expectation like in Eq. (MSP), we minimize considering the worst case scenario ξt ∈ Ξt. In this
setting, the Bellman operator reads

Bt−1(Ṽ) = max
ξt∈Ξt

min
xt∈Xt(xt−1,ξt)

ℓt(xt, ξt) + Ṽ (xt). (53)

Note that this robust setting can be seen as a particular case of minimax problems where we have deterministic
random variables. Indeed, if we invert the order of max and min, either by changing the indices or by taking the op-
posite, and Eq. (53) can be written as Eq. (50) where ξt of (53) plays the role of yt and the ξt of (50) are deterministic

parameter. The upper bound on the number of effective iterations then becomes Kε :=
(

2DL
ε−γΣ

)dx+dξ

(T−1)dx+dξ+1.

risk-averse Multistage stochastic problems in the risk-averse setting are MSP where the expectation is replaced
by a multiperiod risk measure. In the nested coherent risk measure framework we present conditions under which
Algorithm 1 can be adapted.

Let ρ be a coherent risk measure (see [ADEH99, ADE+07] or [SDR14, Def 6.4]) the Bellman operator in the
risk-averse setting reads

Bt−1(Ṽ) : xt−1 7→ ρ
(

min
xt∈Xt(xt−1,ξt)

ℓt(xt, ξt) + Ṽ (xt)
)
. (54)

We recall a classical Fenchel representation theorem for proper, lower semicontinuous, law-invariant, coherent risk
measure (see [SDR14, Thm 6.5]). For every random variable z ∈ L1(Ω,A,P,R), we have

ρ(z) = max
y∈Aρ

EP
[
yz
]
. (55)

where Aρ := {y ∈ L∞(Ω,A,P,R) | E
[
y
]
= 1, y ⩾ 0 a.s., E

[
yz′] ⩽ ρ(z), ∀z′ ∈ L1(Ω,A,P,R)}.

With this representation, we get

Bt−1(Ṽ) = max
y∈Aρ

EP

[
min

xt∈Xt(xt−1,ξt)
y ℓt(xt, ξt) + yṼ (xt)

]
. (56)

Up to a slight change of notation, we can write this problem as a minimax problem. In particular, a sufficient
condition to obtain convergence and complexity bounds for risk-averse MSP is that the set Aρ has a finite dimension
and a finite diameter. For example, if Ω is finite, Aρ is contained in the space of random variables in Ω, isomorphic
to a simplex of dimension |Ω| − 1 which has finite diameter. More generally, if Aρ is contained in the convex hull
of n random variables (yk)k∈[n], then Aρ has a finite diameter smaller than maxk,ℓ∈[n](∥yk − yℓ∥∞) and a finite
dimension smaller than n − 1. Thus, we obtain complexity results similar to Corollary 23 and Theorem 27 with

Kε :=
(

2DL
ε−γΣ

)d+n−1

(T − 1)d+n.

We now comment on the particular case of the average value at risk [RU+00] with value α ∈ [0, 1), denoted
AV@Rα and defined as:

AV@Rα(z) := inf
s∈R

{
s+

1

1− α
EP
[
max(z − s, 0)

]}
. (57)

We cannot use the dual representation Eq. (55) to derive complexity bounds as AAV@R has, in general, non-finite

dimension. However, note that in Eq. (57), since AV@Rα(z) ⩽
EP

[
z
]

1−α the infimum on s over R can be replaced by

a minimum on the compact interval [0, 1
1−αEP

[
z
]
]. To obtain an upper bound that does not depend on k and xt−1,

we set z = minxt∈X (xt−1,ξt) ℓt(xt, ξt) + V k
t (xt) then EP

[
z
]
is upper bounded by minxt∈Xr

t
E
[
ℓt(xt, ξt) + V

1

t (xt)
]

which has a finite value by Assumption 3. Thus, MSP with nested average value at risk measure can be handled
by this framework, and we can obtain complexity results similar to Corollary 23 and Theorem 27 with Kε :=(

2DL
ε−γΣ

)d+1

(T − 1)d+2.

22

Acknowledgements We sincerely thank Mr. Julien Weibel for interesting and useful discussions concerning
Appendix D.2, as well as anonymous referees for their insightful comments. This research benefited from the
support of the FMJH Program Gaspard Monge for optimization and operations research and their interactions with
data science.

23

A Cut methodologies

In this section, for the sake of completeness, we give several cuts that are used in different algorithms to solve
particular multistage problems.

Cut Oracle needed Setting and advantages
Benders First order Convex, simple to implement

Reverse norm Zeroth order and Lipschitz constant Lipschitz
Step Zeroth order, ε and γ Monotonic

Lagrangian Solving a dual problem Problem with small duality gap
Integer Zeroth order Binary variables

Adaptive partition Adapted partition oracle Linear, whole tangent cone
Generalized conjugacy Conjugate computation Regularisation

Saddle First order and Lipschitz constant Minimax problems
Fenchel conjugate Compute Fenchel transform of Bellman equation Linear, Exact upper bound

Table 2: Synthesis of different cuts and oracle required

A.1 Benders cuts for convex functions

The most commonly used cuts are the Benders cuts which are affine functions. This kind of cut only works if the
expected cost-to-go functions are convex.

The word cut is actually used because the graph of a Benders cut is a hyperplane that is tangent to the epigraph
of the approximated function.

Proposition 29. Let F be a convex function and g ∈ ∂F (x) a subgradient of F . We define the Benders cut f at
x̂ as

f(x) := F (x̂) + g⊤(x− x̂). (58)

Then, f is valid and tight at x̂.

Proof. By definition of a subgradient, f(x) := F (x̂) + g⊤(x − x̂) ⩽ F (x), thus f is valid. By definition of f ,
f(x̂) = F (x̂) + g⊤(x̂− x̂) = F (x̂) thus f is tight at x.

We see that a first-order oracle for the function F , i.e., an oracle that returns the value F (x̂) and a subgradient
g ∈ ∂F (x̂) for an input x̂, provides a direct algorithm to compute Benders cut.

A.2 Reverse norm cuts for Lipschitz functions

Stochastic Lipschitz Dynamic Programming (SDLP) presented in [ACdC20] provides an algorithm to deal with
non-convex Lipschitz multistage stochastic programs. In this setting, the cost functions ℓt are simply assumed to
be Lipschitz continuous. Thus, the expected cost-to-go functions Ft are not necessarily convex and Benders cuts
are not valid anymore. Ahmed, Cabral and da Costa replaced these cuts with reverse norm cuts or augmented
lagrangian cuts using only the Lipschitz property of expected cost-to-go functions.

Proposition 30. Let F be a function with Lipschitz constant L (for norm ∥ · ∥). We define the reverse norm cut
f of F at x as

f(x) := F (x̂)− L∥x− x̂∥. (59)

Then, f is valid and 0-tight at x̂.

Proof. For any given x and x̂

f(x) = F (x̂)− L∥x− x̂∥, (60a)

= F (x̂)− F (x) + F (x)− L∥x− x̂∥, (60b)

⩽ L∥x̂− x∥+ F (x)− L∥x− x̂∥, (60c)

= F (x). (60d)

Thus, f is valid. By definition of f , f(x̂) = F (x̂)− L∥x̂− x̂∥ = F (x̂) thus f is tight at x.

24

We see that a zeroth order oracle for the function F , i.e., an oracle that returns the value F (x̂) for an input
x̂, together with a Lipschitz constant L provides a direct algorithm to compute reverse norm cuts. Thus, SDLP
integrates our framework in Algorithm 1.

We can also define the norm cut f(x) := F (x̂) + L∥x− x̂∥ . These norm cuts can be used to compute V
k

t . The
algorithm Tropical dynamic programming in [ACT20] uses this upper cuts together with Benders cuts for lower
approximation V k

t and thus integrates the framework of Algorithm 1.

A.3 Step cuts for monotonic functions

We now look at “almost monotonic” expected cost-to-go functions.

Proposition 31. Let F be a function such that there exists δ > 0 and γ ⩾ 0 with

∀x, y, x ⩽ y + δ1 =⇒ F (x) ⩽ F (y) + γ, (61)

where 1 is the vector whose coefficients are all equal to 1. We assume that F is upper bounded by M .
For a point x̂, we define the upper increasing step cut f as

f(x) :=

{
F (x̂) + γ if x ⩽ x̂+ δ1

M otherwise
. (62)

Then, the upper increasing step cut f satisfies

f(x) ⩾ F (x), ∀x, (63)

f(x̌) ⩽ F (x̌) + γ. (64)

Proof. Since x̂ ⩽ x̂ + δ, f(x̂) = F (x̂) + γ. Moreover, if x ⩽ x̂ + δ1, by Eq. (61) F (x) ⩽ F (x̂) + γ = f(x) and
otherwise f(x) = M ⩾ F (x).

We could also define lower increasing step cuts for functions verifying Eq. (61). These cut methods also adapt
to lower bounded decreasing functions, we will define in the same way upper and lower decreasing step cuts.
However, these cuts are not Lipschitz. To integrate the framework of Algorithm 1, we could adapt these step cuts
by interpolating with affine functions between the constant regions of the cuts.

In [PWB20], Philpott, Wahid and Bonnans presented an algorithm called mixed integer dynamic approximation
scheme (MIDAS). This method applies to multistage mixed integer problems, given as a maximization problem.
After adapting the problem by taking the opposite of the expected cost-to-go function, adding the constant γ and
choosing the right affinely interpolated step cut, the algorithm MIDAS integrates the framework of Algorithm 1
with step cuts.

A.4 Lagrangian cuts

Lagrangian cuts were introduced for TFDP by Zou, Ahmed and Sun in [ZAS19]. These cuts are based on the
Lagrangian relaxation of an optimization problem.

Proposition 32. Let F be a function, H be a convex function and x 7→ Y (x) be a graph-convex set-valued mapping
see [RW09, p155] such that F is defined as

F (x) := inf
y∈Y (x)

ℓ(y). (65)

We define the Lagrangian cut f at x̂ as
f(x) := λ̂⊤x+ β̂, (66)

where

λ̂ ∈ argmax
λ

λ⊤x̂+ inf
y,z | y∈Y (z)

ℓ(y)− λ⊤z, (67a)

β̂ = inf
y,z | y∈Y (z)

ℓ(y)− λ̂⊤z. (67b)

Then, the Lagrangian cut is valid and tight at x̂.

25

Proof. Consider x ∈ dom(Y). We rely on a strong duality result:

F (x) = inf
y∈Y (x)

ℓ(y), (68a)

= inf
y,z | y∈Y (z) and z=x

ℓ(y), (68b)

= inf
y,z | y∈Y (z)

max
λ

ℓ(y) + λ⊤(x− z), (68c)

= max
λ

λ⊤x+ inf
y,z | y∈Y (z)

ℓ(y)− λ⊤z. (68d)

(68e)

Indeed, as Y is graph-convex, we have that {(y, z) | y ∈ Y (z)} is a non-empty convex set. Thus, we have

f(x̂) = λ̂⊤x̂+ inf
y,z | y∈Y (z)

ℓ(y)− λ̂⊤z, (69a)

= max
λ

λ⊤x̂+ inf
y,z | y∈Y (z)

ℓ(y)− λ⊤z, (69b)

= F (x), (69c)

and f is tight at x̂. Moreover,

f(x) = λ̂⊤x+ inf
y,z | y∈Y (z)

ℓ(y)− λ̂⊤z, (70a)

⩽ max
λ

λ⊤x+ inf
y,z | y∈Y (z)

ℓ(y)− λ⊤z, (70b)

= F (x), (70c)

and then f is valid.

Note that this result is still true without the convexity assumption if we replace the tightness result with a lower
γ-tighness result where γ is the duality gap.

Secondly, in this simplified setting and when the variable x takes value in a continuous space, the Lagrangian
cut can be seen as a Benders cut since λ̂ is a subgradient of F at x̂. Nevertheless, the point of view of Lagrangian
allows new ideas to compute cuts. In particular, one can define the Lagrangian cut with a different relaxation to
deal with more complex setting such as integer cases as presented in [ZAS19]. We can also combine the Lagrangian
cut with the reverse norm cut, such ideas are presented under the name augmented Lagrangian cuts in [ACdC20].
Thus, the algorithm SLDP from [ACdC20] integrates the framework of Algorithm 1.

Zhang and Sun in [ZS22] generalized these Lagrangian cuts by introducing the point of view of generalized
conjugacy (see [RW09, Chapter 11]). They called these new cuts generalized conjugacy cuts, and proved them to
be tight and valid, thanks to the Fenchel-Young inequality.

A.5 Integer optimality cuts

The integer optimality cuts were first introduced by Laporte and Louveaux in [LL93] for 2-stage sochastic integer
problems.

Proposition 33. Let F be a function taking value in {0, 1}d and x̂ ∈ {0, 1}d be a binary vector with Ŝ := {i |xi = 1}.
We assume that F is lower bounded by M .

We define the integer optimality cut f as

f(x) := (F (x̂)−M)
(∑
i∈Ŝ

xi −
∑
i/∈Ŝ

xi − |Ŝ|+ 1
)
+M. (71)

Then, f is a valid and tight at x̂.

Proof. We have that f(x̂) = (F (x̂) − M)
(
|Ŝ| − 0 − |Ŝ| + 1

)
+ M = F (x̂). Thus, f is tight at x̂. Let x ∈ {0, 1}d

different from x̂, we have
∑

i∈Ŝ xi −
∑

i/∈Ŝ xi ⩽ |Ŝ| − 1. Then, f(x) ⩽ M ⩽ F (x) and thus f is valid.

26

In [ZAS19], Zou, Ahmed and Sun presented an algorithm called Stochastic dual dynamic integer programming
(SDDiP), suggesting to use integer optimality cuts or Lagrangian cuts instead of classical Benders cuts. By tightness
and validity of these cuts, the algorithm SDDiP integrates the framework of Algorithm 1 (with a potentially large
Lipschitz constant).

B Explicit valid and adapted partition, geometric tools and proofs

In this appendix, we give an elementary definition of the partition SW . This then allow us to prove Theorem 13
and Theorem 15 of Section 3.

B.1 Another elementary definition of SW

We give an alternative and equivalent definition of the partition SW without directly using the fundamental notion
of the secondary fan.

Let us denote by (wi)i∈[m] the columns of the matrix W ∈ Rl×m, and choose q ∈ Rm. We shall think of (wi)i∈[m]

as a vector configuration in Rl, and q as a height vector: for each i ∈ [m], we draw the point (wi, qi) ∈ Rl × R.
We now consider the convex hull E of the points (wi, qi) in Rl × R (see Fig. 3). The geometric regular subdivision
induced by the height vector q is the polyhedral complex defined as the projection onto Rl of the lower faces of the
polyhedron E (i.e., the faces of E that a have a normal vector of the form (λ,−1)). A lower face F of E can be
represented by the set of indices of columns of W defining F , that is IF = {i ∈ [m] | (wi, qi) ∈ F}. For example,
if (wi, qi) is an extreme point of F then i ∈ IF . The collection I(W⊤, q) of the sets IF , for F describing the lower
faces of E, is known as a combinatorial regular subdivision. More details can be found in [DLRS10, Chapter 2.5].

(w1, q1)(w2, q2)

(w3, q3)

(w4, q4)

(w5, q5)

w1

w2

w5

w3

w4

(a) For small q5, the lifted vector
(w5, q5) is salient and belongs to three
lower faces:
I(W⊤, q) = Icom∪

{
{5}, {4, 5}, {1, 5}

}

(w2, q2)

(w5, q5)

(w3, q3)

(w4, q4)

(w1, q1)

w1

w2

w3

w4

(b) For large q5, the lifted vector
(w5, q5) is pointed inward, and be-
longs to no lower face:
I(W⊤, q) = Icom ∪

{
{1, 4}

}

(w2, q2)
(w1, q1)(w3, q3)

(w4, q4)

(w5, q5)

w1

w2

w3
w5

w4

(c) In the limit case, the lifted vector
(w5, q5) belongs to one lower face:
I(W⊤, q) = Icom ∪

{
{1, 4, 5}

}
Figure 3: Three lifted vector configurations, their projections and the regular subdivisions I(W⊤, q) induced for

different values of ω5. We define Icom :=
{
∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}

}
These notions are formalized by the following definition.

Definition 34 (Regular subdivisions). Consider a matrix W ∈ Rl×m. Let us denote by (wi)i∈[m] the columns of
the matrix W , and let q ∈ Rm. The (combinatorial) regular subdivision of the configuration of vectors (wi)i∈[m]

induced by the height vector q is the collection I(W⊤, q) of subsets of [m] such that

I(W⊤, q) :=

{
I ⊂ [m]

∣∣∣∣∣ ∃λ ∈ Rl,
w⊤

i λ = qi, ∀i ∈ I

w⊤
j λ < qj , ∀j /∈ I

}
. (72)

27

We define ∼W the equivalence relation on Rm such that q ∼W q′ iff I(W⊤, q) = I(W⊤, q′).

We now give an equivalent characterization of the partition SW defined in Eq. (29), see Chapter 5 and in
particular, Theorem 5.2.16 of [DLRS10] for a proof of this equivalence.

Proposition 35. The partition SW corresponds to the collection of equivalence classes of the relation ∼W .

We now prove that q 7→ Rx,W,q is constant on each S ∈ SW .

Proof of Lemma 12. By [DLRS10, Theorem 9.5.6], for every q ∈ Rn, we have

N (DW,q) = {WIRI
+ | I ∈ I(W⊤, q)}. (73)

Thus, for q, q′ ∈ S, we have N (DW,q) = N (DW,q′). Further, as, by definition (27b), Rx,W,q := {EN,x |N ∈
N (DW,q)}, we get Rx,W,q = Rx,W,q′ .

B.2 Proof of basis decomposition theorem

The goal of this appendix is to prove Theorem 13. We start by recalling some usual definitions and results in linear
programming’s theory that can be found in any standard linear programming book, e.g. [MG07].

Definition 36 (Basic point, reduced cost). We consider the linear problem

Q(x,W, q, T, h) := min
y∈Rm

+

{
q⊤y | Tx+Wy = h

}
. (74)

We say that B ⊂ [m] is a basis if the submatrix WB = (wi)i∈B, where wi is the i-th column of W , is invertible.
The basic point associated to basis B is the vector in Rm, with coordinates yB := (W−1

B (h − Tx))i∈B and 0 for
i /∈ B. A base B is said to be admissible (resp. optimal) if its associated basic point is an admissible (resp. optimal),
solution of Eq. (74). Finally, the reduced cost associated to a basis B is the vector

(qj − w⊤
j W

−1⊤
B qB)j∈[m] (75)

Reduced cost is a key ingredient of the simplex method. In particular, it is well known that an admissible basis
is optimal if and only if its reduced cost is non-negative. More formally, we have:

Lemma 37. Let B ⊂ [m] be a basis. If yB := (W−1
B (h− Tx))i∈B ⩾ 0 and for all j ∈ [m], qj − w⊤

j W
−1⊤
B qB ⩾ 0.

Then, B is optimal and in particular,

Q(x,W, q, T, h) = q⊤BW
−1
B (h− Tx). (76)

Finally, we recall a classic generalization of Caratheodory’s theorem for conic hulls.

Lemma 38 (Caratheodory). Let W ∈ Rl×m be a matrix and a subset of indices J ⊂ [m] such that span((wi)i∈J) :=
WJRJ = Rl where wi is the i-th column of W . Consider a vector h in the conic hull of (wi)i∈J , i.e. h ∈ WJRJ

+.
Then, there exists a basis B ⊂ J such that h is in the conic hull of (wi)i∈B, i.e. h ∈ WBRB

+.

Proof. Let I ⊂ J be such that h ∈ WIRI
+ and (wi)i∈I is spanning Rl. There exist (µi)i∈I ∈ RI

+ non negative
coefficients such that h =

∑m
i=1 µiwi. Assume that I is not a basis, then (wi)i∈I is not linearly independent, that

is there exists a collection (λi)i∈I ∈ RI such that
∑

i∈I λiwi = 0 with at least one λi different of zero, that can be
assumed w.l.o.g positive.

Define j := argmini∈I|λi>0
µi

λi
. Then, we have wj = −

∑
i∈I\{j}

λi

λj
wi and thus h =

∑
i∈I\{j}(µi − µj

λi

λj
)wi.

In particular, (wi)i∈I\{j} is spanning Rl. We now show that each coefficient in this sum is non-negative, that is

h ∈ WI\{j}R
I\{j}
+ . Note that λj > 0 and for all i ∈ I, µi ⩾ 0. Thus, if λi ⩽ 0 we have µi − µj

λi

λj
⩾ 0. Otherwise,

λi > 0, and by definition of j, µi

λi
⩾ µj

λj
and thus µi − µj

λi

λj
⩾ 0. Which shows that h =

∑
i∈I\{j}(µi − µj

λi

λj
)wi ∈

WI\{j}R
I\{j}
+ .

By induction, we drop indices until we get a basis B.

We now have all the tools required for the proof of Theorem 13.

28

proof of Theorem 13. Let S ∈ SW , R ∈ Rx,W,S and q ∈ S. Recall that Rx,W,q =
{
EN,x | N ∈ N (DW,q)

}
. Thus,

there exists N0 ∈ N (DW,q) such that R = EN0,x and N ∈ N (DW,q) a full dimensional cone such that N0 ⊂ N . As
N (DW,q) = {WIRI

+ | I ∈ I(W⊤, q)}, there exists I ∈ I(W⊤, q) such that N = WIRI
+. Since N is full dimensional,

(wi)i∈I is spanning Rl. Finally, by definition of the regular subdivision I(W⊤, q) in (72), there exists λ(I) such
that

∀i ∈ I, w⊤
i λ(I) = qi, (77a)

∀j /∈ I, w⊤
j λ(I) < qj . (77b)

Let (T, h) ∈ EN0,x = {(T ′, h′) | h′ −T ′x ∈ ri(N)}, we have that h−Tx ∈ N0 ⊂ N = WIRI
+. By Caratheodory’s

Lemma 38, as (wi)i∈I is spanning Rl, there exists a basis B ⊂ I, such that h−Tx ∈ WBRB
+ = W⊤

BRl
+. In particular,

we have that yB = W−1
B (h− Tx) ⩾ 0, thus B is an admissible basis. Moreover, as B ⊂ I, by (77a), we have that,

for all i ∈ B, w⊤
i λ(I) = qi which in turn implies λ(I) = W−1⊤

B qB . Thus, for all j ∈ [m], we can compute the

reduced cost coordinate qj − w⊤
j W

−1⊤
B qB = qj − w⊤

j λ(I) ⩾ 0, by (77a) and (77b). By Lemma 37, B is an optimal
basis, leading to

Q(x,W, q, T, h) = q⊤BW
−1
B (h− Tx).

Note that the resulting formula does not depend on the choice of the extracted basis B. Indeed, let B′ ⊂ I
be a basis. As for all i ∈ B′, w⊤

i λ(I) = qi, we also have W−1⊤
B′ qB′ = λ(I) = W−1⊤

B qB . Thus, Q(x,W, q, T, h) =
q⊤BW

−1
B (h− Tx) = q⊤B′W

−1
B′ (h− Tx).

B.3 Proof of explicit valid and adapted partitions

We now prove Theorem 15.

Proof of Theorem 15. We have

VPx̌
(x̌) :=

∑
P∈Px̌

P
[
(W , q,T ,h) ∈ P

]
Q
(
x̌,E

[
(W , q,T ,h) | (W , q,T ,h) ∈ P

])
, (78a)

=
∑

W∈supp(W)

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
W = W, q ∈ S, (T ,h) ∈ R

]
Q
(
x̌,E

[
(W , q,T ,h) |W = W, q ∈ S, (T ,h) ∈ R

])
,

(78b)

=
∑

W∈supp(W)

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
W = W, q ∈ S, (T ,h) ∈ R

]
Q(x̌,W,E

[
(q,T ,h) |W = W, q ∈ S, (T ,h) ∈ R

]
), (78c)

=
∑

W∈supp(W)

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
W = W, q ∈ S, (T ,h) ∈ R

]
E
[
Q(x̌,W, q,T ,h) |W = W, q ∈ S, (T ,h) ∈ R

]
, (78d)

=
∑

W∈supp(W)

∑
S∈SW

∑
R∈Rx̌,W,S

P
[
W = W, q ∈ S, (T ,h) ∈ R

]
E
[
Q(x̌,W , q,T ,h) |W = W, q ∈ S, (T ,h) ∈ R

]
, (78e)

= E
[
Q(x̌,W , q,T ,h)

]
= V (x̌). (78f)

Eq. (78a) comes from the definition of the partitioned expected cost-to-go function VPx̌
(see (19)), and Eq. (78b)

from the definition of Px̌. The equality (78b)=(78c) is simply the abuse of notation presented in (20). Conditioned
by W = W , we can use Eq. (32) to obtain (78c)=(78d). Finally, the law of total expectation yields (78e)=(78f).

We now prove that VPx̌ ⩽ V . For all W ∈ supp(W) and S ∈ SW , we denote EW,S (resp PW,S) the expectation
(resp. the probability) conditional to the event {W = W, q ∈ S}. By the law of total expectation, we have

VPx̌
(x) =

∑
W∈supp(W)

∑
S∈SW

P
[
W = W, q ∈ S

] ∑
R∈Rx̌,W,S

PW,S

[
ξ ∈ R

]
Q(x,W,EW,S

[
(q,T ,h) | (T ,h) ∈ R

]
. (79)

Now by independence of q and (T ,h)

Q(x,W,EW,S

[
(q,T ,h) | (T ,h) ∈ R

]
) = Q(x,W,EW,S

[
q
]
,EW,S

[
(T ,h) | (T ,h) ∈ R

]
). (80)

29

By convexity of (T, h) 7→ Q(x,W, q, T, h) and Jensen inequality, we have that

Q(x,W,EW,S

[
q
]
,EW,S

[
(T ,h) | (T ,h) ∈ R

]
) ⩽ EW,S

[
Q(x,W,EW,S

[
q
]
,T ,h) | (T ,h) ∈ R)

]
. (81)

Now, for an event A, note that we have, by applying the law of total expectation and Lemma 14 twice, and with
the abuse of notation Eq. (20),

EW,S

[
Q(x,W,EW,S

[
q
]
,T ,h)|A

]
, (82a)

=
∑

R∈Rx,W,S

EW,S

[
1(T ,h)∈R Q(x,W,EW,S

[
q
]
,T ,h)|A

]
, (82b)

=
∑

R∈Rx,W,S

PW,S

[
(T ,h) ∈ R

]
EW,S

[
Q(x,W,EW,S

[
q
]
,T ,h) | A ∩ (T ,h) ∈ R

]
, (82c)

=
∑

R∈Rx,W,S

PW,S

[
(T ,h) ∈ R

]
Q
(
x,EW,S

[
(W,EW,S

[
q
]
,T ,h) | A ∩ (T ,h) ∈ R

])
, by Lemma 14, (82d)

=
∑

R∈Rx,W,S

PW,S

[
(T ,h) ∈ R

]
Q
(
x,EW,S

[
(W, q,T ,h) | A ∩ (T ,h) ∈ R

])
, by Eq. (20), (82e)

=
∑

R∈Rx,W,S

PW,S

[
(T ,h) ∈ R

]
EW,S

[
Q(x,W, q,T ,h) | A ∩ (T ,h) ∈ R

]
, by Lemma 14, (82f)

=
∑

R∈Rx,W,S

PW,S

[
(T ,h) ∈ R

]
EW,S

[
Q(x,W , q,T ,h) | A ∩ (T ,h) ∈ R

]
, under W = W, (82g)

= EW,S

[
Q(x,W , q,T ,h)|A

]
. (82h)

By replacing A by (T ,h) ∈ R, for R ∈ Rx̌,W,S to Eq. (82h), we have

EW,S

[
Q(x,W,EW,S

[
q
]
,T ,h) | (T ,h) ∈ R

]
= EW,S

[
Q(x,W , q,T ,h) | (T ,h) ∈ R

]
. (83)

Combining(79),(80) and (81), we now get

VPx̌
(x) ⩽

∑
W∈supp(W)

∑
S∈SW

P
[
W = W, q ∈ S

] ∑
R∈Rx̌,W,S

PW,S

[
ξ ∈ R

]
EW,S

[
Q(x,W , q,T ,h) | (T ,h) ∈ R

]
. (84)

By the law of total expectation, we see that the right term is equal to V (x). Thus, VPx̌
⩽ V (x).

C Sufficient conditions for effective iterations

In this appendix, we want to prove Lemma 21. We start with a technical lemma linking the gap at t− 1 with the
expected gap for tentative points at t.

Lemma 39. Let Assumptions 1 to 5 be satisfied and t ∈ [T − 1], assume that δt ∈ [0, Dt] and ηt ∈ R+ are given
and εt defined by (36). Then, for all algorithms satisfying the framework of Algorithm 1, we have for t ∈ [T − 1]

0 ⩽ V
k

t−1(x
k
t−1)− V k

t−1(x
k
t−1) ⩽ E

[
V

k−1

t

(
yk
t

)
− V k−1

t

(
yk
t

)]
+ γ

t−1
+ γt−1 + γF

t , (85)

where we recall that yk
t := Ft−1(V

k−1
t)(xk

t−1, ξt).

Proof.

V k
t−1(x

k
t−1) ⩾ Bk

t−1(V
k
t)(x

k
t−1)− γ

t−1
(backward phase: γ

t−1
-tight cut), (86a)

= E
[

min
x∈Xt(xk

t−1,ξt)
ℓt(x, ξt) + V k

t (x)
]
− γ

t−1
(definition of Bt), (86b)

⩾ E
[

min
x∈Xt(xk

t−1,ξt)
ℓt(x, ξt) + V k−1

t (x)
]
− γ

t−1
(monotonicity of approx.), (86c)

⩾ E
[
ℓt
(
yk
t , ξt

)
+ V k−1

t

(
yk
t

)]
− γF

t − γ
t−1

(definition of Ft−1). (86d)

30

V
k

t−1(x
k
t−1) ⩽ Bk

t−1(V
k

t)(x
k
t−1) + γt−1 (backward phase), (87a)

= E
[

min
x∈Xt(xk

t−1,ξt)
ℓt(x, ξt) + V

k

t (x)
]
+ γt−1 (definition of Bt), (87b)

⩽ E
[

min
x∈Xt(xk

t−1,ξt)
ℓt(x, ξt) + V

k−1

t (x)
]
+ γt−1 (monotonicity of approx.), (87c)

⩽ E
[
ℓt
(
yk
t , ξt

)
+ V

k−1

t

(
yk
t

)]
+ γt−1 (as yk

t ∈ Xt(x
k
t−1, ξt) P-a.s.). (87d)

Combining these two results we get Eq. (85).

Proof of Lemma 21. Let t ∈ [T − 1]. We first prove that if one of the inequalities Eqs. (44a) and (44b) is satisfied
then, xk

t−1 is εt−1-saturated as soon as xk
t is not δt-distinguishable. Recall that d

k
t (x) := min

κ<k|xκ
t is εt-saturated

∥x−xκ
t ∥.

Assume now that xk
t+1 is not δt+1-distinguishable, then dkt (x

k
t) ⩽ δt and there exists j < k such that xj

t is

εt-satured and ∥xj
t − xk

t ∥ ⩽ δt. If Eq. (44a) is satisfied, we have

E
[
V

k−1

t

(
yk
t

)
− V k−1

t

(
yk
t

)]
⩽ V

k−1

t (xk
t)− V k−1

t (xk
t) + (Lt + Lt)ηt Eq. (44a), (88a)

⩽ V
k−1

t (xk
t)− V

k−1

t (xj
t) + V

k−1

t (xj
t)− V k−1

t (xj
t) + V k−1

t (xj
t)− V k−1

t (xk
t) + (Lt + Lt)ηt, (88b)

⩽ Lt∥xk
t − xj

t∥+ V
k−1

t (xj
t)− V k−1

t (xj
t) + Lt∥x

j
t − xk

t ∥+ (Lt + Lt)ηt (Lipschitz), (88c)

⩽ (Lt + Lt)δt + V
j

t (x
j
t)− V j

t (x
j
t) + (Lt + Lt)ηt (monotonicity), (88d)

⩽ (Lt + Lt)(δt + ηt) + εt (εt-saturation). (88e)

Similarly, if Eq. (44b) is satisfied, we define j(ξ) such that

j(ξ) ∈ argmin
j⩽k−1,xj

tεt-saturated

∥xj
t −Ft−1(V

k−1
t)(xk

t−1, ξ)∥. (89)

In particular, dkt
(
Ft−1(V

k−1
t)(xk

t−1, ξ)
)
= ∥xj(ξ)

t −Ft−1(V
k−1
t)(xk

t−1, ξ)∥ and thus E
[
dkt (y

k
t)
]
= E

[
∥xj(ξ)

t − yk
t ∥
]

E
[
V

k−1

t

(
yk
t

)
− V k−1

t

(
yk
t

)]
⩽ E

[
V

k−1

t

(
yk
t

)
− V

k−1

t (x
j(ξt)
t) + V

k−1

t (x
j(ξt)
t)− V k−1

t (x
j(ξt)
t) + V k−1

t (x
j(ξt)
t)− V k−1

t

(
yk
t

)]
,

⩽ E
[
Lt∥yk

t − x
j(ξt)
t ∥+ εt + Lt∥x

j(ξt)
t − yk

t ∥
]
,

= (Lt + Lt)E
[
dkt (y

k
t)
]
+ εt,

⩽ (Lt + Lt)(δt + ηt) + εt.

Then, in both cases, E
[
V

k−1

t

(
yk
t

)
− V k−1

t

(
yk
t

)]
⩽ (Lt + Lt)(δt + ηt) + εt. By Lemma 39, we have

V
k

t−1(x
k
t−1)− V k

t−1(x
k
t−1) ⩽ E

[
V

k−1

t

(
yk
t

)
− V k−1

t

(
yk
t

)]
+ γ

t−1
+ γt−1 + γF

t , (90a)

⩽ (Lt + Lt)(δt + ηt) + εt + γ
t−1

+ γt−1 + γF
t = εt−1. (90b)

Thus, xk
t is εt-saturated as soon as xk

t+1 is not δt+1-distinguishable.
We now prove by backward induction on t that iteration k is effective. We first prove that, for all k ∈ N⋆, xk

T−1

is εT−1-saturated.

V T−1(x
k
T−1)− V T−1(x

k
T−1) ⩽ BT−1(V

k

T)(x
k
T−1) + γT−1 − BT−1(V

k
T)(x

k
T−1) + γ

T−1
, (91a)

= BT−1(0)(x
k
T−1) + γT−1 − BT−1(0)(x

k
T−1) + γ

T−1
, (91b)

= γT−1 + γ
T−1

= εT−1. (91c)

31

Let t ⩾ 2 such that, for every τ ⩾ t, xk
τ is ετ -saturated . If xk

t is δt-distinguishable, then iteration k is effective.
Otherwise, xk

t is not δt-distinguishable and by the previous paragraph, it implies that xk
t−1 is εt−1-saturated.

Eventually, assuming that xk
1 is ε1-saturated. If xk

1 is δ1-distinguishable, then iteration k is effective. Otherwise,
there exists j < k such that ∥xj

1 − xk
1∥ ⩽ δ1 and xj

1 is ε1 saturated. We get

V1(x
k
1) ⩽ V

j

1(x
k
1), (92a)

= V
j

1(x
k
1)− V

j

1(x
j
1) + V

j

1(x
j
1), (92b)

⩽ L1∥xk
1 − xj

1∥+ V
j

1(x
j
1), (92c)

⩽ L1δ1 + ε1 + V j
1(x

j
1), (92d)

= L1δ1 + ε1 + V j
1(x

j
1)− V j

1(x
k
1) + V j

1(x
k
1), (92e)

⩽ L1δ1 + ε1 + L1∥xk
1 − xj

1∥+ V k−1
1 (xk

1), (92f)

⩽ (L1 + L1)δ1 + ε1 + V k−1
1 (xk

1). (92g)

Then,

ℓ1(x
k
1 , ξ1) + V1(x

k
1) ⩽ (L1 + L1)δ1 + ε1 + ℓ1(x

k
1 , ξ1) + V k−1

1 (xk
1), (93a)

⩽ (L1 + L1)δ1 + ε1 + γF
1 + min

x1∈X1(x0)
ℓ1(x1, ξ1) + V k−1

1 (x1), (93b)

⩽ ε0 + min
x1∈X1(x0)

ℓ1(x1, ξ1) + V1(x1). (93c)

Thus, in all the covered cases, iteration k is effective.

D Probabilistic lemmas

In this appendix, we present useful probabilistic lemmas to prove the convergence of SDDP with randomized choice
of ξkt .

D.1 A nested Hoeffding lemma

Lemma 40. Let (Ω,A,P) be a probability space, X and Y be two independent random variables taking values
respectively in the euclidean spaces X and Y.

Let r > 0 be a positive real and f : X × Y 7→ R be a measurable function such that 0 ⩽ f(X,Y) ⩽ r almost
surely.

Then for every η > 0 and A ∈ σ(X) such that P
[
A
]
> 0, we have

P
[
f(X,Y) > E

[
f(X,Y)|σ(X)

]
− η

∣∣∣A] ⩾ 1− e
−2η2

r2 . (94)

Proof. Recall that the Hoeffding lemma states that if Z is a real random variable such that there exists a, b ∈ R
with a ⩽ Z ⩽ b almost surely then for every η > 0 we have

P
[
Z − E

[
Z
]
⩽ −η

]
⩽ e

−2η2

(b−a)2 . (95)

By taking the complementary event, we have

P
[
Z > E

[
Z
]
− η
]
⩾ 1− e

−2η2

(b−a)2 . (96)

Then for every x ∈ X, by applying the Hoeffding lemma to the random variable Z = f(x,Y), a = 0 and b = r,
we have

P
[
f(x,Y) > E

[
f(x,Y)

]
− η
]
⩾ 1− e

−2η2

r2 . (97)

Let A ∈ σ(X) and B ⊂ X such that A = X−1(B)

32

P
[
{f(X,Y) > E

[
f(X,Y)|σ(X)

]
− η} ∩A

]
=

∫
Ω

1{
f(X(ω),Y (ω))>E[f(X,Y)|σ(X)](ω)−η

}1ω∈AP(dω), (98a)

=

∫
Ω

1{f(X(ω),Y (ω))>EY [f(X(ω),Y)]−η}(ω)1X(ω)∈BP(dω), (98b)

=

∫
X

∫
Y
1f(x,y)>E[f(x,Y)]−η1x∈BPY (dy)PX(dx), (98c)

=

∫
X
1x∈B

(∫
Y
1f(x,y)>E[f(x,Y)]−ηPY (dy)

)
PX(dx), (98d)

=

∫
X
1x∈BP

[
f(x,Y) > E

[
f(x,Y)

]
− η
]
PX(dx), (98e)

⩾
∫
X
1x∈B(1− e

−2η2

r2)PX(dx), (98f)

= (1− e−
−2η2

r2)PX

[
B
]
, (98g)

= (1− e−
−2η2

r2)P
[
A
]
. (98h)

Thus, by dividing by P
[
A
]
, we get P

[
f(X,Y) > E

[
f(X,Y)|σ(X)

]
− η

∣∣∣A] ⩾ 1− e
−2η2

r2 .

Lemma 41. Let (Ω,A,P) be a probability space, (Xn)n∈N be a sequence of independent random variables taking
values in the euclidean space X and An = σ(Xk)k∈N be its adapted filtration.

For every n ∈ N, let rn and ηn be two positive real and fn : Xn 7→ R be a measurable function such that
0 ⩽ fn(X1, . . . , Xn) ⩽ rn almost-surely.

We denote by En the event
{
ω
∣∣∣ fn(X1, . . . ,Xn) > E

[
fn(X1, . . . ,Xn)|An−1

]
− ηn

}
∈ An . Then, for all

m ⩽ n ∈ N and Am−1 ∈ Am−1 such that P
[
Am−1

]
> 0, we have

P

[
n⋂

k=m

Ek

∣∣∣Am−1

]
⩾

n∏
k=m

(
1− e

−2η2
k

r2
k

)
. (99)

Proof. For every n ∈ N⋆, η > 0 and An−1 ∈ An−1 such that P
[
A
]
> 0, by the previous lemma applied to

X = (X1, . . . , Xn−1), Y = Xn, f = fn, η = ηn and r = rn, we have

P
[
En

∣∣∣An−1

]
⩾ 1− e

−2η2
n

r2n . (100)

Let m ∈ N, we now prove our lemma by induction on n. If n = m = 1 the result is true by the Hoeffding lemma
and for n = m > 1 the result is true by Eq. (100) with An−1 = Am−1.

Let n ⩾ m and assume that P
[⋂n

k=m Ek ∩Am−1

]
> 0 and P

[⋂n
k=m Ek

∣∣∣Am−1

]
⩾
∏n

k=m

(
1− e

−2η2
k

r2
k

)
. Then,

P
[n+1⋂
k=m

Ek

∣∣∣Am−1

]
= P

[
En+1

∣∣∣ n⋂
k=m

Ek ∩Am−1

]
P
[n⋂
k=m

Ek

∣∣∣Am−1

]
, (101a)

⩾

(
1− e

−2η2
n+1

r2
n+1

)
n∏

k=m

(
1− e

−2η2
k

r2
k

)
, (101b)

where we underestimate the first factor thanks to Eq. (100) and
⋂n

k=m Ek ∈ An and the second factor thanks to

the induction hypothesis. In particular, P
[⋂n+1

k=m Ek ∩Am−1

]
> 0 and induction ends the proof.

D.2 Stochastic dominance by geometric random variables

Recall that a real random variable X is (first-order) stochastically dominated by a real random variable Y if the
cumulative density function of X is smaller than the cumulative density function of Y . If X and Y are integer

33

random variables, X is stochastically dominated by Y is equivalent to P
[
X ⩾ n

]
⩽ P

[
Y ⩾ n

]
, for all n ∈ N⋆.

We now present a lemma where we leverage this notion to bound the number of effective iteration in randomized
algorithm in Theorem 27.

Lemma 42. Let (Ω,A,P) be a space of probability, (Xn)n∈N be a sequence of independent and identically distributed
random variables and An = σ(Xk)k∈N⋆ be its adapted filtration. Let (Yn)n∈N be a sequence of (non necessarily
independent neither identically distributed) binary random variables, i.e. taking values in {0, 1}, such that σ(Yn) ⊂
An. Assume that there exists p ∈ (0, 1) such that for all n ∈ N⋆ and all An ∈ An such that P

[
An

]
> 0, we have

P
[
Yn+1 = 1 |An

]
⩾ p. (102)

For m ∈ N, we define the stopping time τm := inf{n ∈ N |
∑n

k=1 Yi ⩾ m}. Let Bm,p be a random variable with a
negative binomial distribution representing the number of trials to obtain m successes with probability of success p,

i.e. P
[
Bm,p = n

]
=

(
n− 1
m− 1

)
pm(1− p)n−m, for all n ⩾ m.

Then, τm is stochastically dominated by Bm,p i.e.

P
[
τm ⩾ n

]
⩽ P

[
Bm,p ⩾ n

]
, ∀n ∈ N⋆. (103)

In particular,

E
[
τm
]
⩽ E

[
Bm,p

]
=

m

p
. (104)

Proof. Let (Ỹn)n∈N⋆ a sequence of independent and identically distributed Bernoulli random variables with param-

eter p. For all n ∈ N⋆, we define the random variables Sn :=
∑n

k=1 Yn and S̃n :=
∑n

k=1 Ỹn. We first show by

induction on n that S̃n is stochastically dominated by Sn, i.e. for all a ∈ N⋆, we have P
[
Sn ⩾ a

]
⩾ P

[
S̃n ⩾ a

]
.

Indeed, for n = 1 we have S1 = Y1 and S2 = Y2 then P
[
Sn ⩾ 0

]
= P

[
S̃n ⩾ 0

]
= 1 and P

[
Sn ⩾ 1

]
= P

[
Yn = 1

]
⩾

p = P
[
S̃n ⩾ 1

]
. Finally, for all a ⩾ 2, P

[
Sn ⩾ 2

]
= P

[
S̃n ⩾ 2

]
= 0.

We now assume that there exists n ∈ N⋆ such that for all a ∈ N⋆, P
[
Sn ⩾ a

]
⩾ P

[
S̃n ⩾ a

]
. We then have

P
[
Sn+1 ⩾ a

]
= P

[
Sn+1 ⩾ a,Sn ⩽ a− 2

]
+ P

[
Sn+1 ⩾ a,Sn = a− 1

]
+ P

[
Sn+1 ⩾ a,Sn ⩾ a

]
, (105a)

= 0 + P
[
Sn+1 ⩾ a |Sn = a− 1

]
P
[
Sn = a− 1

]
+ P

[
Sn ⩾ a

]
, (105b)

= P
[
Yn+1 = 1 |Sn = a− 1

]
P
[
Sn = a− 1

]
+ P

[
Sn ⩾ a

]
, (105c)

⩾ pP
[
Sn = a− 1

]
+ P

[
Sn ⩾ a

]
, by assumption (102), (105d)

= p(P
[
Sn ⩾ a− 1

]
− P

[
Sn ⩾ a

]
) + P

[
Sn ⩾ a

]
, (105e)

= pP
[
Sn ⩾ a− 1

]
+ (1− p)P

[
Sn ⩾ a

]
, (105f)

⩾ pP
[
S̃n ⩾ a− 1

]
+ (1− p)P

[
S̃n ⩾ a

]
, by induction assumption, (105g)

= P
[
Ỹn+1 = 1 | S̃n ⩾ a− 1

]
P
[
S̃n ⩾ a− 1

]
+ P

[
Ỹn+1 = 0 | S̃n ⩾ a

]
P
[
S̃n ⩾ a

]
, (105h)

= P
[
S̃n ⩾ a− 1, Ỹn+1 = 1

]
+ P

[
S̃n ⩾ a, Ỹn+1 = 0

]
, (105i)

= P
[
S̃n+1 ⩾ a, Ỹn+1 = 1

]
+ P

[
S̃n+1 ⩾ a, Ỹn+1 = 0

]
, (105j)

= P
[
S̃n+1 ⩾ a

]
. (105k)

Then, by induction, S̃n is stochastically dominated by Sn. For m ∈ N⋆, we recall that we had τm = inf{n ∈
N |Sn ⩾ m}, similarly we define τ̃m := inf{n ∈ N | S̃n ⩾ m}. As S̃n is stochastically dominated by Sn, it is easy to
see that the stopping time τm is stochastically dominated by the stopping time τ̃m. Indeed, P

[
τm ⩾ a

]
= P

[
Sa <

m
]
= 1−P

[
Sa ⩾ m+1

]
⩽ 1−P

[
S̃a ⩾ m+1

]
= P

[
S̃a < m

]
= P

[
τ̃m ⩾ a

]
. Finally, the random variable τ̃1 and the

random variables τ̃k+1 − τ̃k, for all k ∈ N⋆, are independent and identically distributed geometric random variables
with probability of success p. Thus, Bm,p := τ̃m = τ̃1 +

∑m−1
k=1 (τ̃k+1 − τ̃k) is a random variable with negative

binomial distribution representing the number of trials to obtain m successes with probability of success p and τm
is stochastically dominated by Bm,p.

34

References

[ACdC20] Shabbir Ahmed, Filipe Goulart Cabral, and Bernardo Freitas Paulo da Costa. Stochastic lipschitz
dynamic programming. Mathematical Programming, pages 1–39, 2020.

[ACT20] Marianne Akian, Jean-Philippe Chancelier, and Benôıt Tran. Tropical dynamic programming for
lipschitz multistage stochastic programming. arXiv preprint arXiv:2010.10619, 2020.

[ADE+07] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, David Heath, and Hyejin Ku. Coherent mul-
tiperiod risk adjusted values and bellman’s principle. Annals of Operations Research, 152(1):5–22,
2007.

[ADEH99] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
Mathematical finance, 9(3):203–228, 1999.

[AP18] Tsvetan Asamov and Warren B Powell. Regularized decomposition of high-dimensional multistage
stochastic programs with markov uncertainty. SIAM Journal on Optimization, 28(1):575–595, 2018.

[BDZ17] Regan Baucke, Anthony Downward, and Golbon Zakeri. A deterministic algorithm for solving
multistage stochastic programming problems. Optimization Online, pages 1–25, 2017.

[BDZ18] Regan Baucke, Anthony Downward, and Golbon Zakeri. A deterministic algorithm for solving
multistage stochastic minimax dynamic programmes. Optimization Online, 2018.

[BFFdO20] Felipe Beltrán, Erlon C Finardi, Guilherme M Fredo, and Welington de Oliveira. Improving the
performance of the stochastic dual dynamic programming algorithm using chebyshev centers. Opti-
mization and Engineering, pages 1–22, 2020.

[BG21] Michelle Bandarra and Vincent Guigues. Single cut and multicut stochastic dual dynamic program-
ming with cut selection for multistage stochastic linear programs: convergence proof and numerical
experiments. Computational Management Science, 18(2):125–148, 2021.

[Bir85] John R. Birge. Decomposition and partitioning methods for multistage stochastic linear programs.
Operations research, 33(5):989–1007, 1985.

[BW86] John R. Birge and Roger J-B Wets. Designing approximation schemes for stochastic optimization
problems, in particular for stochastic programs with recourse. In Stochastic Programming 84 Part
I, pages 54–102. Springer, 1986.

[CLR12] Santiago Cerisola, Jesus M Latorre, and Andres Ramos. Stochastic dual dynamic programming
applied to nonconvex hydrothermal models. European Journal of Operational Research, 218(3):687–
697, 2012.

[CS05] Michael S Casey and Suvrajeet Sen. The scenario generation algorithm for multistage stochastic
linear programming. Mathematics of Operations Research, 30(3):615–631, 2005.

[dCL21] Bernardo Freitas Paulo da Costa and Vincent Leclère. Dual sddp for risk-averse multistage stochastic
programs. arXiv preprint arXiv:2107.10930, 2021.

[DDB20] Anthony Downward, Oscar Dowson, and Regan Baucke. Stochastic dual dynamic programming with
stagewise-dependent objective uncertainty. Operations Research Letters, 48(1):33–39, 2020.

[DLRS10] Jesús A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations Structures for algorithms
and applications. Springer, 2010.

[DM20] Daniel Duque and David P Morton. Distributionally robust stochastic dual dynamic programming.
SIAM Journal on Optimization, 30(4):2841–2865, 2020.

[DMP20] Oscar Dowson, David P Morton, and Bernardo K Pagnoncelli. Partially observable multistage
stochastic programming. Operations Research Letters, 48(4):505–512, 2020.

[Dow18] Oscar Dowson. Applying stochastic optimisation to the new zealand dairy industry. PhD thesis,
University of Auckland, 2018.

35

[Dup02] Jitka Dupačová. Applications of stochastic programming: Achievements and questions. European
Journal of Operational Research, 140(2):281–290, 2002.

[EZ94] NCP Edirisinghe and William T Ziemba. Bounding the expectation of a saddle function with
application to stochastic programming. Mathematics of Operations Research, 19(2):314–340, 1994.

[FGL21] Maël Forcier, Stéphane Gaubert, and Vincent Leclère. Exact quantization of multistage stochastic
linear problems. arXiv preprint arXiv:2107.09566, 2021.

[FL22] Maël Forcier and Vincent Leclère. Generalized adaptive partition-based method for two-stage
stochastic linear programs: geometric oracle and analysis. Operations Research Letters, 2022.

[For22] Maël Forcier. Multistage stochastic optimization and polyhedral geometry. Phd manuscript, École
des Ponts, 2022.

[Fra96] Karl Frauendorfer. Barycentric scenario trees in convex multistage stochastic programming. Math-
ematical Programming, 75(2):277–293, 1996.

[GLP15] Pierre Girardeau, Vincent Leclere, and Andrew B Philpott. On the convergence of decomposition
methods for multistage stochastic convex programs. Mathematics of Operations Research, 40(1):130–
145, 2015.

[GLT20] Vincent Guigues, Migual A Lejeune, and Wajdi Tekaya. Regularized stochastic dual dynamic pro-
gramming for convex nonlinear optimization problems. Optimization and Engineering, 21(3):1133–
1165, 2020.

[GMH10] Anders Gjelsvik, Birger Mo, and Arne Haugstad. Long-and medium-term operations planning and
stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic program-
ming. Handbook of power systems I, pages 33–55, 2010.

[GTW19] Angelos Georghiou, Angelos Tsoukalas, and Wolfram Wiesemann. Robust dual dynamic program-
ming. Operations Research, 67(3):813–830, 2019.

[Gui16] Vincent Guigues. Convergence analysis of sampling-based decomposition methods for risk-averse
multistage stochastic convex programs. SIAM Journal on Optimization, 26(4):2468–2494, 2016.

[Gui20] Vincent Guigues. Inexact cuts in stochastic dual dynamic programming. SIAM Journal on Opti-
mization, 30(1):407–438, 2020.

[GZ13] Horand Gassmann and William T Ziemba. Stochastic programming: applications in finance, energy,
planning and logistics, volume 4. World Scientific, 2013.

[HdMDMF11] Tito Homem-de Mello, Vitor L De Matos, and Erlon C Finardi. Sampling strategies and stopping cri-
teria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling.
Energy Systems, 2(1):1–31, 2011.

[HKW16] Grani A. Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann. A comment on “computational
complexity of stochastic programming problems”. Mathematical Programming, 159(1-2):557–569,
2016.

[KM+76] Peter Kall, Janos Mayer, et al. Stochastic linear programming, volume 7. Springer, 1976.

[Kuh06] Daniel Kuhn. Generalized bounds for convex multistage stochastic programs, volume 548. Springer
Science & Business Media, 2006.

[Lan20] Guanghui Lan. Complexity of stochastic dual dynamic programming. Mathematical Programming,
pages 1–38, 2020.

[LCC+20] Vincent Leclere, Pierre Carpentier, Jean-Philippe Chancelier, Arnaud Lenoir, and François Pacaud.
Exact converging bounds for stochastic dual dynamic programming via fenchel duality. SIAM Jour-
nal on Optimization, 30(2):1223–1250, 2020.

[LL93] Gilbert Laporte and François V Louveaux. The integer l-shaped method for stochastic integer
programs with complete recourse. Operations research letters, 13(3):133–142, 1993.

36

[Löh16] Nils Löhndorf. An empirical analysis of scenario generation methods for stochastic optimization.
European Journal of Operational Research, 255(1):121–132, 2016.

[Lou80] Francois V Louveaux. A solution method for multistage stochastic programs with recourse with
application to an energy investment problem. Operations Research, 28(4):889–902, 1980.

[MAB14] Francesca Maggioni, Elisabetta Allevi, and Marida Bertocchi. Bounds in multistage linear stochastic
programming. Journal of Optimization Theory and Applications, 163(1):200–229, 2014.

[MG07] Jiri Matousek and Bernd Gärtner. Understanding and using linear programming. Springer Science
& Business Media, 2007.

[MP18] Francesca Maggioni and Georg Pflug. Guaranteed bounds for general non-discrete multistage risk-
averse stochastic optimization programs. SIAM Journal on Optimization, 2052649:1–26, 2018.

[MPD+18] MEP Maceiral, DDJ Penna, AL Diniz, RJ Pinto, ACG Melo, CV Vasconcellos, and CB Cruz.
Twenty years of application of stochastic dual dynamic programming in official and agent studies in
brazil-main features and improvements on the newave model. In 2018 power systems computation
conference (PSCC), pages 1–7. IEEE, 2018.

[PdMF13] Andy Philpott, Vitor de Matos, and Erlon Finardi. On solving multistage stochastic programs with
coherent risk measures. Operations Research, 61(4):957–970, 2013.

[PG08] Andrew B Philpott and Ziming Guan. On the convergence of stochastic dual dynamic programming
and related methods. Operations Research Letters, 36(4):450–455, 2008.

[PP91] Mario V.F. Pereira and Leontina M.V.G. Pinto. Multi-stage stochastic optimization applied to
energy planning. Mathematical programming, 52(1-3):359–375, 1991.

[PP12] Georg Ch. Pflug and Alois Pichler. A distance for multistage stochastic optimization models. SIAM
Journal on Optimization, 22(1):1–23, 2012.

[PWB20] Andrew B Philpott, Faisal Wahid, and J Frédéric Bonnans. Midas: A mixed integer dynamic
approximation scheme. Mathematical Programming, 181(1):19–50, 2020.

[RPM21] Cristian Ramirez-Pico and Eduardo Moreno. Generalized adaptive partition-based method for two-
stage stochastic linear programs with fixed recourse. Mathematical Programming, pages 1–20, 2021.

[RU+00] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal
of risk, 2:21–42, 2000.

[RW91] R. Tyrrell Rockafellar and Roger J.-B. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of operations research, 16(1):119–147, 1991.

[RW09] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

[RW21] Johannes O Royset and Roger JB Wets. An optimization primer, 2021.

[SD20] Alexander Shapiro and Lingquan Ding. Periodical multistage stochastic programs. SIAM Journal
on Optimization, 30(3):2083–2102, 2020.

[SDR14] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic program-
ming: modeling and theory. SIAM, 2014.

[Sha06] Alexander Shapiro. On complexity of multistage stochastic programs. Operations Research Letters,
34(1):1–8, 2006.

[Sha11] Alexander Shapiro. Analysis of stochastic dual dynamic programming method. European Journal
of Operational Research, 209(1):63–72, 2011.

[SL15] Yongjia Song and James Luedtke. An adaptive partition-based approach for solving two-stage
stochastic programs with fixed recourse. SIAM Journal on Optimization, 25(3):1344–1367, 2015.

37

[SN05] Alexander Shapiro and Arkadi Nemirovski. On complexity of stochastic programming problems. In
Continuous optimization, pages 111–146. Springer, 2005.

[SS22] Murwan Siddig and Yongjia Song. Adaptive partition-based sddp algorithms for multistage
stochastic linear programming with fixed recourse. Computational Optimization and Applications,
81(1):201–250, 2022.

[ST97] Bernd Sturmfels and Rekha R. Thomas. Variation of cost functions in integer programming. Math-
ematical Programming, 77(2):357–387, 1997.

[STdCS13] Alexander Shapiro, Wajdi Tekaya, Joari Paulo da Costa, and Murilo Pereira Soares. Risk neutral and
risk averse stochastic dual dynamic programming method. European journal of operational research,
224(2):375–391, 2013.

[VAdOS19] Wim Van Ackooij, Welington de Oliveira, and Yongjia Song. On level regularization with normal
solutions in decomposition methods for multistage stochastic programming problems. Computational
Optimization and Applications, 74(1):1–42, 2019.

[VSW69] Richard M. Van Slyke and Roger Wets. L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM Journal on Applied Mathematics, 17(4):638–663, 1969.

[WW69] David Walkup and Roger J.-B. Wets. Lifting projections of convex polyhedra. Pacific Journal of
Mathematics, 28(2):465–475, 1969.

[WZ05] Stein W Wallace and William T Ziemba. Applications of stochastic programming. SIAM, 2005.

[ZAS19] Jikai Zou, Shabbir Ahmed, and Xu Andy Sun. Stochastic dual dynamic integer programming.
Mathematical Programming, 175(1):461–502, 2019.

[ZS20] Shixuan Zhang and Xu Andy Sun. On distributionally robust multistage convex optimization: New
algorithms and complexity analysis. arXiv preprint arXiv:2010.06759, 2020.

[ZS22] Shixuan Zhang and Xu Andy Sun. Stochastic dual dynamic programming for multistage stochastic
mixed-integer nonlinear optimization. Mathematical Programming, 196(1):935–985, 2022.

38

	Introduction
	Problem setting
	The SDDP algorithm
	Review of known convergence results
	Contributions and structure of the paper
	Notation

	Trajectory Following Dynamic Programming framework
	Algorithm
	Extensions of the TFDP framework
	Computing cuts
	Cuts with finitely supported distribution
	Approximated cuts in the convex case

	Exact SDDP in the linear case with generic distributions
	Expected cost-to-go function in standard form
	Partition and cuts
	Explicit valid and adapted partition

	Complexity results
	Bounding the number of effective iterations
	Deterministic node selection
	Randomized algorithms

	Extension to risk-averse setting
	Cut methodologies
	Benders cuts for convex functions
	Reverse norm cuts for Lipschitz functions
	Step cuts for monotonic functions
	Lagrangian cuts
	Integer optimality cuts

	Explicit valid and adapted partition, geometric tools and proofs
	Another elementary definition of SW
	Proof of basis decomposition theorem
	Proof of explicit valid and adapted partitions

	Sufficient conditions for effective iterations
	Probabilistic lemmas
	A nested Hoeffding lemma
	Stochastic dominance by geometric random variables

