
HAL Id: hal-03651336
https://enpc.hal.science/hal-03651336v1

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bilateral K-Means for Superpixel Computation (the
SLIC Method)

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal
Monasse

To cite this version:
Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse. Bilateral
K-Means for Superpixel Computation (the SLIC Method). Image Processing On Line, 2022,
�10.5201/ipol.2022.373�. �hal-03651336�

https://enpc.hal.science/hal-03651336v1
https://hal.archives-ouvertes.fr

Published in Image Processing On Line on 2022–04–00.
Submitted on 2021–07–30, accepted on 2022–04–05.
ISSN 2105–1232 c© 2022 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2022.373

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Bilateral K-Means for Superpixel Computation

(the SLIC Method)

Robin Gay1, Jérémie Lecoutre1, Nicolas Menouret1, Arthur Morillon1,
Pascal Monasse2

1École des Ponts ParisTech, F-77455 Marne-la-Vallée, France
{robin.gay,jeremie.lecoutre,nicolas.menouret,arthur.morillon}@eleves.enpc.fr
2Université Paris-Est, LIGM (UMR CNRS 8049), ENPC, F-77455 Marne-la-Vallée, France

pascal.monasse@enpc.fr

Communicated by Gregory Randall Demo edited by Pascal Monasse

Abstract

As a substitute to a full segmentation of a digital image, or as preprocessing to a segmentation
algorithm, superpixels provide an over-segmentation that offers several benefits: good adherence
to edges, uniformity of color inside superpixels, a richer adjacency structure than the regular
grid of pixels, and the fact that each node of the graph of superpixels has a shape, which
can be used in subsequent processing. Moreover, their evaluation is less subjective than a full
segmentation, which somehow always involves a semantic interpretation of the scene. The SLIC
method (Simple Linear Iterative Clustering) has been a very popular algorithm to compute
superpixels since its introduction. Its advantage is due to its simplicity and to its computing
time performance. In essence, it consists in a K-means clustering in bilateral domain, involving
both position and color. We study in detail this algorithm and propose a fast, simple post-
processing that ensures that superpixels are connected, a property not ensured by the original
method.

Source Code

The commented C++ source code for SLIC and its documentation are available on the web
page of this article1. Usage instructions are detailed in the README.md file of the archive.

Keywords: superpixel; image segmentation; SLIC (Simple Linear Iterative Clustering)

1https://doi.org/10.5201/ipol.2022.373

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse, Bilateral K-Means for Superpixel Computation
(the SLIC Method), Image Processing On Line, 11 (2022), pp. 1–20. https://doi.org/10.5201/ipol.2022.373

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2022.373
https://doi.org/10.5201/ipol.2022.373
https://doi.org/10.5201/ipol.2022.373
https://doi.org/10.5201/ipol.2022.373

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

1 Introduction

A superpixel is a set of pixels that share some common features: they are close to each other and
they have also close colors. It is interesting to have a full segmentation of the image into superpixels.
This usually provides an over-segmentation, without any semantic inference. Many algorithms can
then be applied to the superpixel graph instead of pixel-level graph: this provides an accelerated
processing because superpixels are much fewer than pixels. Additionally, the shape of the superpixel
can be useful. For instance, superpixels are used directly for tracking [19], stereo [18] and 3D
reconstruction [3], and can also be at the basis of object detection [2] or semantic segmentation [5].

Prior to the publication of the SLIC algorithm by Achanta et al. [1], all superpixel algorithms
had super-linear complexity, at best O(N logN) and more frequently O(N2) or higher, with N the
number of pixels of the image. An exception was TurboPixels [7], which has linear complexity but
with a high constant factor (the average time for a 3 Mpx. image being around 800 seconds [1]).
In contrast, SLIC’s complexity is linear O(N). The number of superpixels can also be decided
beforehand in contrast to some other methods, but what makes it especially attractive is its simplicity.
In essence, it relies on K-means applied with an appropriate distance mixing space proximity and
color closeness. For this reason, it is applied in bilateral space, in the same manner as the bilateral
filter [12]. Moreover, since spatial and color proximity are mixed in a composite distance, the weight
attributed to each can be user-defined. This parameter, referred as compactness, favors either the
spatial proximity or the color similarity, and it can be adjusted to favor round or irregular superpixels.

One drawback of the algorithm is that the connectivity of superpixels is not ensured. This can
be inconvenient for posterior processing based on superpixels. To remedy this problem, we propose
a simple and fast solution that ensures that final superpixels are connected. It simply keeps the
largest connected component of the SLIC superpixels, making pixels of other connected components
orphans2. Then a second pass in a specific order reassigns the orphans to an adjacent superpixel.

Section 2 gives some background. Section 3 explains how the SLIC method proceeds and the
post-processing repairing connectivity is exposed in Section 4. Experiments and discussion follow in
Section 5 and we finish with a conclusion.

2 Background

This section presents the background about K-means, the main procedure underlying the SLIC
algorithm, and explain how the graph or pixels in the regular grid can be transformed into a higher
level graph of superpixels, provided the map from pixels to superpixels is known.

2.1 K-Means

The K-means algorithm is a simple method to approximate the solution of a hard problem. Let us
consider points {xi}, i ∈ {1, . . . , n} in Rd and the problem of clustering the points in K clusters, K
being a positive integer, which can be formulated as

arg min
{Xk},{εik}

K∑
k=1

n∑
i=1

εikD(xi, Xk), (1)

s.t. ∀i εik ∈ {0, 1},
∑
k

εik = 1. (2)

2We call parent of a pixel the superpixel that contains it, and following this terminology, orphan a pixel losing its
parent before a subsequent adoption.

2

Bilateral K-Means for Superpixel Computation (the SLIC Method)

Points Xk ∈ Rd are called the superpixel centers. D is a distance or an increasing function of a
distance. Condition (2) means that each xi must be assigned to a single superpixel Xk that is the
closest one. This defines a partition of the points xi. A superpixel is then defined as its center Xk

and its pixels P (Xk) = {xi : εik = 1}.
An approximate solution can be found by block coordinate descent, a popular optimization strat-

egy [17], separating the problems of finding Xk and εik

∀i, k εik = 1

(
k = arg min

j
D(xi, Xj)

)
, (3)

∀k Xk = arg min
X

n∑
i=1

εikD(xi, X). (4)

Both steps are alternated until a fixed point is reached. The first one is called the assignment step
and the second one the update step. The former is trivial to solve for any D: select for xi the closest
Xk, in contrast the latter is a hard problem whose solution strongly depends on properties of the
choice of D. If D is the Euclidean norm, no closed form formula solves the update step, though the
Weiszfeld’s iterative algorithm is guaranteed to converge to the solution [16]. However, if D is the
squared Euclidean norm, the solution is

Xk =

∑
i εi,kxi∑
i εik

. (5)

Equation (5) assumes that at least one point xi is assigned to Xk.

The complexity of the assignment in step (3) is O(KN). At first sight, it is also the case of the
update step (4), but using the fact that most εik are null, it is convenient to record as output of (3)
a map ` indicating the index k for which εik = 1

`(i) = arg min
j
D(xi, Xj), (6)

and we can just write

εik =

{
1 if k = `(i)

0 otherwise
. (7)

Then (5) can be computed in a single scan of the image, as shown by Algorithm 1, in complexity
O(N). The bottleneck of each iteration is therefore in the assignment step. Fortunately, it can be
easily parallelized.

Algorithm 1: Applying the update formula (5) in O(N)

Input: Map ` associating to each point i its cluster index k = `(i)
Output: Vectors Xk according to (5)
∀k, Xk ← 0, nk ← 0;
foreach i do

X`(i) ← X`(i) + xi; // Numerator of (5)
nl(i) ← nl(i) + 1; // Denominator of (5)

∀k, Xk ← Xk/nk;

3

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

2.2 Graph of Superpixels

The K superpixels form a partition of the image: each pixel is assigned to a single superpixel, called
its parent. We have the map ` associating to each pixel p an index in {1, . . . , K} of the assigned
superpixel, where each superpixel can be made explicit by more than its index. Its centroid can be
computed, so as its average color. Direct access to its pixels without a full scan of the map ` can be
achieved with a sorted array of pixels, as shown in Algorithm 2.

Algorithm 2: Direct access from a superpixel to its pixels

Input: Map ` associating to each pixel index its superpixel index
Output: Array of pixels S, for each k an interval [bk, ek] in S of the pixels of the superpixel

Xk

S ← Sort {(xi, `(i))} by increasing value of `
`− ← −1 // Previous label

for index i of S do
if S[i].` 6= `− then

bS[i].` ← i
else

eS[i].` ← i

`− ← S[i].`

We can lift the adjacency of pixels to superpixels: two superpixels Xj and Xk are adjacent if

∃x ∈ P (Xj), ∃y ∈ P (Xk), such that x and y are adjacent. (8)

We choose 4-connectivity, but 8-connectivity may also be considered. When an efficient data structure
for a mathematical set (data collection without repetition) is available3, the way to recover the
adjacency is straightforward, see Algorithm 3. Since the graph is undirected, we can consider the
full neighborhood of pixel p and put a single link, or, as in our implementation, a half neighborhood
and put both links between neighbor superpixels. The latter is more efficient as it involves fewer
cache misses when reading `. In 4-connectivity, we consider East and South neighbors of p, and in
8-connectivity East, South-East, South and South-West neighbors.

Algorithm 3: Recovering the adjacency structure of superpixels

Input: Map ` associating to each pixel index its superpixel index
Output: For each superpixel Xk, the set of indexes of its neighbors Nk

∀k, Nk ← ∅
foreach pixel p of ` do

foreach Neighbor q of p do // Half-neighborhood is sufficient

if `(p) 6= `(q) then
N`(p) ← `(q) // Insert in set

N`(q) ← `(p)

3The type std::set<int> of the C++ Standard Template Library fits this requirement

4

Bilateral K-Means for Superpixel Computation (the SLIC Method)

3 The SLIC Method

3.1 Overview

The algorithm is initialized by putting initial superpixel positions on a regular grid inside the image,
according to the number K chosen by the user. The spatial distance between nearest superpixels is
then a value S. Each one is assigned the color (r, g, b) of its nearest pixel. Concatenating position
and color, we get points Xk = (xk, yk, rk, gk, bk) ∈ R5 as clusters and points xi = (ui, vi, ri, gi, bi) ∈ R5

to assign to them. A loop of assignment/update iterations is performed until convergence according
to the standard K-means algorithm in R5.

3.2 Initialization

Given K the prescribed number of superpixels, each will have an “influence” zone of radius S pixels
around it, hence the step size

S =
⌊√

N/K
⌋
. (9)

A regular grid of bw/Sc × bh/Sc places the spatial position of the superpixels, w × h being the
dimension of the image. It is centered in the image through the computation of the total padding
pad = (w − Sbw/Sc, h− Sbh/Sc), the remainder of the Euclidean division of each dimension by S.
The positions are thus at

(i S + S/2 + padx/2, j S + S/2 + pady/2), (10)

with integer values i and j, as illustrated in Figure 1.

Figure 1: Superpixel centers (red circles) on the initial grid (black lines).

Notice that the resulting number of superpixels may be different than requested: apart from low
or large values of K, K � N or K ∼ N , in which the rounding effects are noticeable, images of size
W × H with W � H or H � W may distort K because superpixels are placed on a regular grid.
For instance, for an image 16× 16 with requested K = 64, (9) yields S = 2 and the exact number of
superpixels K ′ = K are created. For the same number of pixels N in an image of dimension 256× 1,
K ′ = 128 = 2K.

3.3 Gradient Correction

Superpixels should be placed in homogeneous regions. The blind initialization may place some on
an edge, characterized by a strong gradient. An optional parameter g is considered to shift to the

5

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

Algorithm 4: Minimal gradient shift of superpixel position

Input: Image I, initial position X = (x, y) of a superpixel, radius of search g
Output: Corrected position X ′ with minimal gradient
m← +∞
for p ∈ [x− g, x+ g]× [y − g, y + g] do

G← ‖I(p)− I(p+ (1, 0))‖2 + ‖I(p)− I(p+ (0, 1))‖2
if m > G then

m← G
X ′ ← p

position with lowest gradient in the window [−g, g] × [−g, g] centered at the initial position, this is
done following Algorithm 4.

I(p) is a 3-vector (r, g, b), and the squared Euclidean distance between I(p) and I(q) = (r′, g′, b′)
is (r−r′)2+(g−g′)2+(b−b′)2. Care must be taken that neighbors p+δ do not fall outside the image.
When that happens, p− δ should be used instead. It may also happen that some positions p in the
search square are out of bounds. Such positions must be ignored in the minimum computation.

3.4 The Bilateral Distance

Superpixel centers are characterized by position and color, a vector of R5 in the form X = (x, y, r, g, b).
To compare to a pixel x = (x′, y′, r′, g′, b′) we shall consider both spatial and color distances

Ds(x,X) =
√

(x− x′)2 + (y − y′)2, (11)

Dc(x,X) =
√

(r − r′)2 + (g − g′)2 + (b− b′)2. (12)

The Euclidean distance in R5 is
√
D2
s +D2

c but position and color have different scales, hence a
weighting factor m should be used

D(x,X)2 = m2Ds(x,X)2

S2
+Dc(x,X)2. (13)

The normalizing factor S2 is meant to give an interpretation of m independent of K: a zoom-in by
a factor 2 of the image with the same numbers K and m results in the same zoomed-in superpixels.
The weight m can be interpreted as a compactness parameter: the higher, the more weight is given
to spatial distance and superpixels are more compact. When m � 1, only spatial distance counts
and the initial regular grid of superpixels is optimal.

3.5 Pseudo-code

The pseudo-code of SLIC, Algorithm 5, is simple and follows the K-means algorithm almost unmodi-
fied. The difference is that the influence region of a superpixel is limited spatially to the neighborhood
[−S, S]2 around its center. This is sensible since strongly elongated superpixels are not desired. It
also accelerates the assignment step: whereas it is normally of complexity O(KN), the search area
is reduced to 4S2 pixels instead of N . Since S ≈

√
N/K, 4S2 ≈ 4N/K and the step becomes O(N).

The strict convergence condition E = 0 is relaxed to E being small. Various stopping criteria are
discussed in Section 5.5.3.

6

Bilateral K-Means for Superpixel Computation (the SLIC Method)

Algorithm 5: Bilateral K-means applied to SLIC

Input: Image I, number of superpixels K, compactness parameter m, radius of minimal
gradient search g (optional)

Output: Map ` giving for each pixel the index k of its assigned superpixels, superpixels
centers Xk ∈ R5

Initialize centers Xk and compute radius S // See Section 3.2

Gradient-driven shift of each Xk // Algorithm 4 if g > 0
E ← +∞
while E > 0.5 do
∀p, d(p)←∞ // Min distance to each pixel

for k = 1 . . . K, pixel p ∈ [xk − S, xk + S]× [yk − S, yk + S] do // Assignment step

e(p)← D ((p, I(p)), Xk)
2

// (13) depends on m
if d(p) > e(p) then

d(p)← e(p)
`(p)← k

X ′k ← Update step // Algorithm 1

E ←
√∑

kDs(Xk, X ′k)
2/K // Compute shift between iterations

Xk ← X ′k

4 Connectivity Enforcement

The main weakness of the SLIC algorithm is the lack of a component that enforces the connectivity
of the superpixels. For a low compactness parameter m in (13), color homogeneity is favored over
spatial proximity. Even for a fairly high value of m, the connectivity is not guaranteed as a hard
constraint. See Figure 2 for an example of disconnected superpixel. For practical reasons, it is best
to work with connected superpixels, and we propose here an algorithm ensuring this property.

Figure 2: This image was treated by SLIC without enforcing connectivity. The superpixel with pink color has three connected
components (green dots represent superpixel centers).

The principle is to keep only the connected component with largest area of each superpixel. The
pixels of the other minor connected components are temporarily declared orphans and are adopted
in a second phase. The adoption proceeds by looking at neighbors of these pixels: if all labeled
neighbors are from the same superpixel, the orphan pixel is assigned to it; if several labels appear
among neighbors, the one closest in color is selected. Without precaution, this procedure is too

7

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

greedy, as a newly adopted pixel can propagate directly its assignment to its neighbors that had
initially no labeled neighbors. To mitigate this effect, a distance-guided propagation is performed as
described in Section 4.3.

4.1 Labeling the Connected Components

The map ` stores for each pixel the index of its parent superpixel, an integer. The iso-levels of this
map must be labeled by connected component. Many such algorithms exist [6] and we choose an
elementary one. Two main categories of algorithms exist: label-propagation and label-equivalence-
resolving. The method we propose is in the first category (see Algorithm 6).

Pixels are scanned in raster scan order. All bear initially the label −1 in map cc. When the
current pixel p is not labeled, a new label is created and cc(p) receives this label. It is then put
in a stack (any dynamic data collection is adequate) and the algorithm iterates until the stack gets
empty, at which point the connected component of iso-level of ` containing the pixel is labeled in cc.
A pixel is popped from the stack, and all its unlabeled neighbors with the same value in ` get the
current label and are stored in the stack for subsequent propagation. The latter condition is crucial
so that a pixel can never enter the stack more than once and the algorithm finishes. The raster scan
can then proceed with the pixel next to p. Pixels having four neighbors, each one can be reached
only four times by propagation and the number of reads in ` is about 4N , therefore Algorithm 6 has
linear complexity O(N). At the same time, the number of pixels in each connected components is
counted for later usage, that is, the histogram of cc.

Algorithm 6: Connected component labeling

Input: Image `
Output: Image of labels cc, histogram H of cc
cc(.)← −1 // Invalid label

n← 0 // Current label

for pixel p do
if cc(p) == −1 then

cc(p)← n
C ← p // C is any dynamic array, stack or queue

H(n)← 0
while C 6= ∅ do

q ← C // Pop a pixel from C
H(n)← H(n) + 1
foreach r ∼ q do // Neighbors of q

if `(r) = `(p) and cc(r) = −1 then
cc(r)← n
C ← r // Push in C

n← n+ 1

4.2 Discard Minor Connected Components

The next step’s goal is to make orphans (label value −1) the pixels of ` that are not in the major
connected component of their parent superpixel. Notice that the label of this component in cc is
unknown, so it has to be computed first. ` having K labels, an array of K elements Mi is filled with

8

Bilateral K-Means for Superpixel Computation (the SLIC Method)

the label of the running maximum area of the superpixel’s components. The image is scanned pixel
by pixel p, and if H(M`(p)) > H(cc(p)) then M`(p) is changed to cc(p). Second, each superpixel weeds
out the pixels of its minor connected components, which become orphans. For that, we scan the pixels
and each one p whose label in cc is not M`(p) becomes orphan. The whole procedure in Algorithm 7
makes two scans of the image, so has complexity O(N). An example of orphan superpixels is in
Figure 3. Since the superpixels were modified, their average color may be recomputed.

Algorithm 7: Make orphans the pixels in minor connected components of their superpixel

Input: Map ` giving for each pixel the index k of its assigned superpixels, map cc of
connected components of `, histogram H of cc

Output: ` is modified with some pixels getting an invalid label −1
∀k = 1 . . . K, Mk ← −1 // Invalid label

foreach pixel p do
if M`(p) is a valid label and H(M`(p)) > Hcc(p) then

M`(p) ← cc(p)

foreach pixel p do
if cc(p) 6= Ml(p) then

cc(p)← −1

(a) Original image (b) Orphan pixels in color and superpixels’ major
connected components

Figure 3: An image before and after SLIC and the first two steps of the connectivity enforcement algorithm.

4.3 Adoption of Orphans

Orphans are processed in order of their distance to labeled pixels. This avoids having an orphan
adjacent to a superpixel and propagating its label to a large region of orphans. We use the Manhattan
distance DM(p, q) = |xp − xq| + |yp − yq|, ensuring that distances are integers and that a shortest
path algorithm gives the solution. The chosen distance coincides with the 4-connectivity graph of
pixels and any shortest path algorithm on graph can be used. The problem is simple here since each
edge has a weight one. A good candidate is the Dijkstra algorithm [4]. However, this requires the
use of a priority queue and then sorting the pixels by their distance.

9

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

To compute the distance map to labeled pixels, we prefer a simpler method implemented in just a
few lines of code: perform successive dilations of set of pixels, Algorithm 8. First, pixels at distance
0 (labeled pixels) are dilated, the orphan pixels affected have distance 1; perform a new dilation
and affected orphan pixels are at distance 2 and so on until all pixels get a distance. We store the
distance directly in ` with negative integers: regular labeled pixels (at distance 0) have a positive
label, while orphans have as label the opposite of their distance. Each dilation requires a scan of the
image. At worst, we need up to N dilations before it finishes and therefore the algorithm has worst
case complexity O(N2). Actually, the distance of an orphan is O(S) yielding at most O(S2) = O(N)
dilations. In practice, distances do not become large and the algorithm stops much earlier. When
pixels have their distance computed, they can be queued, so that the second stage does not need a
sort procedure.

Algorithm 8: Distance of orphans to labeled pixels

Input: Map `, with negative labels for orphans
Output: Pixels of ` with negative labels are replaced by the opposite of their distance to

labeled pixels, queue Q of orphans ordered by distance
foreach pixel p do

if `(p) < 0 then `(p)← −∞ // Actually smallest representable integer

for d = −1,−2, . . . do // Stops when no pixel has changed

foreach pixel p do
if `(p) > d then

foreach q ∼ p do // Neighbors of p
if l(q) < d then

l(q)← d
Q← q // Push pixel in queue

The second stage proceeds by propagating the label of the superpixel closest in color to orphans,
following Algorithm 9. The minimum in the formula involves the neighbors of p and it is guaranteed
that one of them at least has a valid label. This is due to the fact that Q is popped in increasing
order of distance. The procedure requires a single pass through the queue, which has less than N
pixels, and the minimum involves four neighbors for p, hence a complexity of O(N).

Algorithm 9: Adoption of orphans

Input: Image I, map `, queue Q of orphans ordered by distance, superixels Xk

Output: Map ` without orphans
while Q not empty do

p← Q // Pop from queue

q ← arg minq∼p,`(q)≥0Dc

(
(p, I(p)), X`(q)

)2
// Neighbors of p with valid parent

superpixel

l(p)← l(q)

10

Bilateral K-Means for Superpixel Computation (the SLIC Method)

5 Experiments

5.1 Implementation

The input of SLIC is the color or gray-scale image and the parameters K, m, g. Its output is the full
graph of the superpixels along with the map ` giving for each pixel the index of its parent superpixel.
Contrary to the original implementation by the authors of [1], the map ` is not stored to a file4.
The program outputs only an image representing the superpixels: pixels get the color of their parent
superpixel, but pixels at the boundary of a superpixel are displayed in white (user-configurable). To
this end, pixels having a neighbor with a different superpixel are marked. To avoid thick borders of
2 pixels, only half the neighborhood is examined, namely East and North neighbors.

5.2 The Minimum Gradient Preconditioning

The authors of SLIC [1] propose to initialize the superpixels by relocating the centers to the pixel of
minimum gradient in a 3×3 square centered at their initial grid position, as explained in Section 3.3.
This is meant to avoid initializing superpixel centers on an edge of the image. This pre-processing is
supposed to improve the results of the algorithm in terms of contour adherence.

(a) Original image (b) Result without any preconditioning

(c) Result with a 3× 3 minimum gradient search
zone

(d) Result with a 10× 10 minimum gradient
search zone

Figure 4: Results with K = 300 and m = 30 for various gradient preconditionings.

Figure 4 illustrates different sizes of correction window, from none to a large one, through the

4They output a binary file with extension .dat: most standard image formats do not support 32-bit integers for
pixels, except TIFF. However, very few image viewers support TIFF 32-bit.

11

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

prescribed 3× 3 size. Little difference is noticeable; on the tail of the spiral, the 3× 3 initialization
shows better color fidelity. However the 10× 10 initialization is even less precise than the standard
initialization in this zone. The adverse effect of a large radius can be explained as follows: as soon
as g > S/2, the potential shift regions of adjacent superpixels intersect. A low pixel gradient in
this intersection can attract both superpixels to the same position, which is inefficient. The default
choice in our implementation is a value g = 0, meaning no gradient-guided shift, though it can be
changed by the user.

5.3 Performance

5.3.1 Runtime

The runtime of a superpixel algorithm is of utmost importance, as it is a pre-processing algorithm.
Figure 5 shows the runtime for the SLIC algorithm itself and the connectivity enforcement procedure.
These are measured on an Intel Core i7 CPU @ 2.60 GHz, the C++ code being compiled with GCC
7.5 under Linux. It can be observed that the connectivity step is always a fraction of the SLIC
step. The general trend is a decreasing processing time with respect to K. For large images with
proportionally few superpixels, the runtime is too large as many iterations are necessary before the
superpixels stabilize. However, even for 16 Mpixels, the runtime goes below 10 s, which is probably
small compared to further processing.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
 (

s)

K

Runtimes
SLIC

Connectivity

0.5 Mpx.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
 (

s)

K

Runtimes
SLIC

Connectivity

1 Mpx.

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
 (

s)

K

Runtimes
SLIC

Connectivity

2 Mpx.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
 (

s)

K

Runtimes
SLIC

Connectivity

4 Mpx.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
 (

s)

K

Runtimes
SLIC

Connectivity

8 Mpx.

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
 (

s)

K

Runtimes
SLIC

Connectivity

16 Mpx.

Figure 5: Runtime as a function of K, for different image resolutions (0.5 . . . 16 Mpx). Compactness parameter m = 40.

5.3.2 Convergence

There is no theoretical guarantee of convergence of the K-means procedure, though in practice a few
iterations are sufficient (precise measures appear below). Still, we ran over a pathological case (one
among several thousands of images) where the SLIC repeats the same periodic pattern indefinitely
after 354 iterations, see Figure 6. To have a finite runtime, our code limits to 1000 iterations. If the
algorithm stops because of this limit, a warning message is displayed.

12

Bilateral K-Means for Superpixel Computation (the SLIC Method)

Figure 6: A pathological binary image sending the K-means into a periodic loop of 19 images after the first 354 iterations.
Left: original image. Right, from left to right and top to bottom: the superpixels at bottom-right corner after 355 to 374
iterations. At iteration 374, the superpixels are the same as at iteration 355. The segmentation remains identical in the
rest of the image.

5.4 Comparison with the Original Implementation

The code from the authors of [1] is generally faster than ours, since it systematically stops after ten
loops. This allows it to be fast whatever the size of the image. For example, a 16 Mpx image can take
over a minute of treatment with our program, against a few seconds with theirs. Regarding precision,
we noticed a few shortcomings in their program. As can be seen on Figure 7, our superpixels adapt
better to the contours of the guitar head’s top and body.

Images treated by both algorithms are presented in Figure 8 for comparison. Note that the
original version displays the original image in the background of the output image, while our version
has been programmed to return an image in which the superpixels are displayed in their average
color. Their implementation computes the Euclidean color distance in Lab color space instead of
RGB for ours. This color space is closer to human perception, but it is questionable to what extent
it improves the results.

5.5 Benchmark

Quantitative results can be computed and they are at the basis of superpixel benchmarks, such as [15]
and [11]. Superpixels are supposed to constitute an over-segmentation of an image and among the
multiple metrics used to measure its quality, two stand out: boundary recall and under-segmentation
error. They are relative to a ground truth segmentation G = {Gi}, a partition of the set of pixels.
The computed superpixels are in the partition S = {Sj}. Ideally, each Gi is a union of some Sj and
we measure the deviation from this.

5.5.1 Metrics

The first measure, boundary recall, measures the proportion of boundary pixels of Gi being boundary
pixels of some Sj, within a tolerance of one pixel. A boundary pixel p ∈ Gi is such that one of its

13

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

(a) Original image

(b) Our version of SLIC (c) Original SLIC

Figure 7: Zooms on an image treated by the two versions of SLIC with the same parameters.

four neighbors q ∈ Gk with i 6= k. Noting ∂Gi the boundary pixels of Gi, we get

BR =

∑
i

∑
p∈∂Gi

1[∃j,∃q ∈ ∂Sj : ‖q − p‖∞ ≤ 1]∑
i |∂Gi|

. (14)

We have 0 ≤ BR ≤ 1 and higher is better.

The second measure, under-segmentation error, indicates the amount of leakage of superpixels
with respect to G. The principle is to “assign” each Sj to one Gi and count the pixels of Sj outside
Gi. The principle used by Van den Bergh et al. [13] is to assign Sj to the Gi with maximal overlap,
leading to the formula

UE ′ =
1

w h

∑
j

∣∣∣∣Sj \ arg max
Gi∈G

|Sj ∩Gi|
∣∣∣∣ . (15)

14

Bilateral K-Means for Superpixel Computation (the SLIC Method)

(a) Original pictures

(b) Original authors’ SLIC program

(c) Our SLIC program

Figure 8: Results of both versions of SLIC on images from [8], (K = 600, m = 30).

An alternative formula due to Neubert and Protzel [9], and the one we use, is

UE =
1

w h

∑
i,j

min(|Sj ∩Gi|, |Sj \Gi|). (16)

To interpret such formula, notice that summing the two terms of the minimum yields |Sj|, hence one
is at least |Sj|/2. Suppose there is some Gi such that |Sj ∩Gi| > |Sj|/2. Then Sj is assigned to Gi

and the contribution of Sj to the sum is

|Sj \Gi|+
∑
k 6=i

|Sj ∩Gk| = 2 |Sj \Gi| < |Sj|. (17)

Each pixel leaking out of Gi is counted twice. On the contrary, if no Gi contains more than half the
pixels of Sj, the result of the minimum is |Sj ∩Gi|, which yields |Sj| when summed over all i. This
means Sj has no assignment Gi and all its pixels leak. Notice that 0 ≤ UE ≤ 1 and lower is better.

Finally, a third measure independent of the ground truth is the explained variation, the relative
variance change when each pixel is replaced by the mean value of its superpixel

EV =

∑
j |Sj| ‖S̄j − Ī‖2∑
P ‖I(p)− Ī‖2

, (18)

where X̄ denotes the average of the image over the set of pixels in X. We put a norm here because
the image may be in color. We have 0 ≤ EV ≤ 1 and higher is better. The upper bound of 1 can be
proved by a convexity argument.

15

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

5.5.2 Benchmark Protocol

We use the Berkeley Segmentation Dataset [8] (BSDS), a collection of 500 small size images (481×
321), among which 200 are in the test section. These come with user-annotated segmentations, at
least five for each image (one image has only four segmentations). The score is computed follow-
ing [11]. For each image in the test set, the worst measures, that is, lowest BR, higher UE, and
lowest EV, when comparing the superpixel segmentation to the five ground truth segmentations is
recorded. This score is averaged over all images of the test set. This is performed for 18 values of
K, from 200 to 5200, yielding a curve for BR, UE, and EV. The area under the curve (AUC) for
1−BR, UE and 1−EV gives finally a compound score for each criterion, where lower is better.

5.5.3 Comparison of Implementations

The code associated to [11] includes the evaluation routines along with wrappers for 28 superpixel
algorithms. Among them, three implementations of SLIC are included: the original one from [1], the
reimplementation in VLFeat [14] and a fast variant, preemptive SLIC [10]. This allows a quantitative
comparison of the implementations. The original implementation contains a connectivity enforcement
function, not mentioned in the article, that relabels pixels following Algorithm 10. Notice that,
contrary to our method, there is no guarantee that the number of superpixels cannot increase after
relabeling. For instance, consider initially K = 2 superpixels, with two connected components of
5/16× w h pixels for the first one, and two connected components of respective size 5/16× w h and
1/16 × w h pixels for the second one. Since 5/16 × w h > 4/16 × w h = 1/2 × w h/K, we get after
relabeling K ′ = 3 > K superpixels.

Algorithm 10: Connectivity enforcement in the code of [1].

Input: Map ` giving for each pixel the index k of its assigned superpixels
Output: Corrected map `′ ensuring connected superpixels
`′(.)← −1 // Invalid label

foreach pixel p do
if `′(p) < 0 then

C ← cc(` = `(p), p) // Connected component of iso-level containing p

if |C| > 1
2
wh
K

then
k ← new label

else
k ← min(0,maxq∼p `

′(q)) // Existing label k ≥ 0 of 4-neighbor of p

`′(C)← k // Put label to all pixels of C

return `′

The implementation of VLFeat has a similar function but the threshold for the number of pixels
is user-defined and defaults to 1, which does not enforce connectivity. It is important to set it as
the same value as the original SLIC: by default, the benchmark code of [11] relabels each connected
component with a unique label, which increases greatly the number of superpixels and the metrics
do not make sense any more.

To perform our tests, we use a fork of D. Stutz’s code5, which allows the build with recent versions
of OpenCV and fixes a few bugs: measure of AUC was faulty and led even to NaN (“Not a Number”)
in some situations; the results on the last image of the dataset were not incorporated in the statistics.

5Original: https://github.com/davidstutz/superpixel-benchmark, fork: https://github.com/pmonasse/

superpixel-benchmark

16

https://github.com/davidstutz/superpixel-benchmark
https://github.com/pmonasse/superpixel-benchmark
https://github.com/pmonasse/superpixel-benchmark

Bilateral K-Means for Superpixel Computation (the SLIC Method)

Table 1: Metrics (see Section 5.5.1) for different SLIC implementations.

Implementation AUC(1−BR) AUC(UE) AUC(1−EV)
Achanta et al. [1] 10.9 7.88 10.1

preSLIC [10] 13.0 8.22 10.6
vlSLIC [14] 11.7 9.09 12.8

Ours 10.8 7.64 8.85

Table 1 and Figure 9 show the metrics for the different implementations. In terms of BR, vl-
SLIC and especially preSLIC have worse performance compared to the other two, which are on
par. Concerning UE, the best is our implementation and the worst vlSLIC. Finally, concerning
EV we get a significant best performance for our implementation and the worst for vlSLIC, original
implementation and preSLIC yielding intermediate results.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 1000 2000 3000 4000 5000 6000 7000

BR (boundary recall)
Our implementation

Achanta et al.
preSLIC

vlSLIC
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1000 2000 3000 4000 5000 6000 7000

1-UE (1-undersegmentation error)
Our implementation

Achanta et al.
preSLIC

vlSLIC
 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1000 2000 3000 4000 5000 6000 7000

EV (explained variance)
Our implementation

Achanta et al.
preSLIC

vlSLIC

Figure 9: Quantitative comparison of four implementations of SLIC in terms of BR, 1−UE and EV (higher is better). We
took the default value of the original implementation m = 40.

Table 2: Metrics (see Section 5.5.1) for different stopping criteria. Xi
k is the center of superpixel k at iteration number i.

Stopping criterion AUC(1−BR) AUC(UE) AUC(1−EV)
maxk ‖X i

k −X i−1
k ‖ = 0 10.9 7.44 8.32

maxk ‖X i
k −X i−1

k ‖ < 0.5 10.9 7.45 8.34√∑
k ‖X i

k −X
i−1
k ‖2/K < 0.5 10.8 7.64 8.85

10 iterations 10.9 7.52 8.49

We also tested several stopping criteria in our implementation, depending on the relative motion
of superpixels compared to previous iteration: we note X i

k the position of superpixel of index k at
iteration number i.

• No change (maxk ‖X i
k −X i−1

k ‖ = 0), capped at 1000 iterations.

• Maximum motion below 0.5 pixel (maxk ‖X i
k −X i−1

k ‖ < 0.5).

• Root mean square motion below 0.5 pixel (
√∑

k ‖X i
k −X

i−1
k ‖2/K < 0.5).

• 10 iterations (like the original implementation).

The actual number of iterations for the first three cases appears in Figure 10 and the metrics
in Table 2. The first effect to note is that the number of iterations decreases with the number
of superpixels. Normally, the algorithm would need to run until convergence, that is, there is no
motion of superpixels anymore. Actually, the cap of 1000 iterations is reached in a few cases. Even
discarding these pathological images, the number of iterations can be several hundreds for a low

17

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000 6000

Run until maximal move=0

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1000 2000 3000 4000 5000 6000

Run until maximal move < 0.5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000

Run until RMS of move < 0.5

Figure 10: Number of iterations on BSDS test set, as a function of K, according to the stopping criterion.

number of superpixels, which is too long: Remember that superpixel extraction is assumed to be a
fast preprocessing task. Relaxing this condition to imposing that the maximum move of a superpixel
is below 0.5 pixel still leads to good metrics but does not prevent a high number of iterations. Finally,
imposing the root mean square of superpixel motions being less than 0.5 pixel is an attractive target:
it always stops quickly, and in less than 10 iterations for a high number of superpixels. This is
actually the fastest alternative, but at the cost of a slightly lower quality. The choice of the original
implementation to stop at 10 iterations by default is a good compromise between speed and quality.

6 Conclusion

Despite the numerous alternative algorithms proposed since the publication of SLIC (first preprint
appearing in 2010) [15], it remains the reference due to its simplicity, good adherence to contours and
fast runtime performance. Fast processing is a prime requirement for superpixels, but several metrics
are also used to compare the results. The requirement of connected superpixels is not ensured by
the SLIC in itself, but results from a post-processing, not described (though implemented) in the
original article. We proposed an alternative one and we showed that it yields better quantitative
results.

Image Credits

(Sassy) The Big Lez Show by Jarrad Wright CC-BY-SA 3.0 (2012)

(Spiral) photograph by Thomas Williamson and Robin Gay, CC-BY-SA 4.0 (2017)

(Pond) photograph by Robin Gay, CC-BY-SA 4.0 (2017)

(Guitar) photograph by Thomas Williamson, CC-BY-SA 4.0 (2017)

(Castle, Boy, Mushroom, Fish, Woman) Berkeley Segmentation Dataset [8]6

(Green background) by Ribaisu, CC-BY-SA 4.0 (2004)7

(Naxos tree) by ERWEH, CC-BY-SA 2.0 (2004)8

6https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html.
Images #118035, #189011, #208001, #210088, #302003.

7https://commons.wikimedia.org/wiki/File:Green_Background.png
8https://commons.wikimedia.org/wiki/File:Naxos-Tree.imp-1.jpg

18

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://commons.wikimedia.org/wiki/File:Green_Background.png
https://commons.wikimedia.org/wiki/File:Naxos-Tree.imp-1.jpg

Bilateral K-Means for Superpixel Computation (the SLIC Method)

(Background) by Pasqualino Ubaldini, CC-BY-SA 4.0 (2016)9

(Jardin botanique Vauville) by Suzelfe, CC-BY-SA 3.0 (2008)10

(Chinagarten) by Burkhard Mücke, CC-BY-SA 4.0 (2017)11

(Quanhua temple, Taiwan) by CEphoto, Uwe Aranas (2015)12

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, SLIC Super-
pixels Compared to State-of-the-art Superpixel Methods, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34 (2011), pp. 2274–2282. https://doi.org/10.1109/TPAMI.

2012.120.

[2] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik, Multiscale com-
binatorial grouping, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014, pp. 328–335. https://doi.org/10.1109/CVPR.2014.49.

[3] A. Bódis-Szomorú, H. Riemenschneider, and L. Van Gool, Superpixel meshes for fast
edge-preserving surface reconstruction, in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 2011–2020. https://doi.org/10.1109/CVPR.2015.7298812.

[4] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische mathematik,
1 (1959), pp. 269–271. https://doi.org/10.1007/BF01386390.

[5] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller, Multi-class segmentation
with relative location prior, International Journal of Computer Vision, 80 (2008), pp. 300–316.
https://doi.org/10.1007/s11263-008-0140-x.

[6] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, The connected-component labeling
problem: A review of state-of-the-art algorithms, Pattern Recognition, 70 (2017), pp. 25–43.
https://doi.org/10.1016/j.patcog.2017.04.018.

[7] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi,
Turbopixels: Fast superpixels using geometric flows, IEEE Transactions on Pattern Analysis and
Machine Intelligence, (2009), pp. 2290–2297. https://doi.org/10.1109/TPAMI.2009.96.

[8] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring ecological statis-
tics, in International Conference on Computer Vision (ICCV), vol. 2, July 2001, pp. 416–423.
https://doi.org/10.1109/ICCV.2001.937655.

[9] P. Neubert and P. Protzel, Superpixel benchmark and comparison, in Forum Bildverar-
beitung, vol. 6, 2012, pp. 205–218.

9https://commons.wikimedia.org/wiki/File:Background_1.jpg
10https://commons.wikimedia.org/wiki/File:JardinBotaniqueVauville-T%C3%AAteDeLion.JPG
11https://commons.wikimedia.org/wiki/File:Chinagarten_IGA_2017_03.jpg
12https://commons.wikimedia.org/wiki/File:Miaoli-County_Taiwan_Quanhua-Temple-03.jpg

19

https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/CVPR.2014.49
https://doi.org/10.1109/CVPR.2015.7298812
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/s11263-008-0140-x
https://doi.org/10.1016/j.patcog.2017.04.018
https://doi.org/10.1109/TPAMI.2009.96
https://doi.org/10.1109/ICCV.2001.937655
https://commons.wikimedia.org/wiki/File:Background_1.jpg
https://commons.wikimedia.org/wiki/File:JardinBotaniqueVauville-T%C3%AAteDeLion.JPG
https://commons.wikimedia.org/wiki/File:Chinagarten_IGA_2017_03.jpg
https://commons.wikimedia.org/wiki/File:Miaoli-County_Taiwan_Quanhua-Temple-03.jpg

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse

[10] , Compact watershed and preemptive SLIC: On improving trade-offs of superpixel segmen-
tation algorithms, in International Conference on Pattern Recognition (ICPR), IEEE, 2014,
pp. 996–1001. https://doi.org/10.1109/ICPR.2014.181.

[11] D. Stutz, A. Hermans, and B. Leibe, Superpixels: An evaluation of the state-of-the-art,
Computer Vision and Image Understanding, 166 (2018), pp. 1–27. https://doi.org/10.1016/
j.cviu.2017.03.007.

[12] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in International
Conference on Computer Vision (ICCV), vol. 1, IEEE, 1998, pp. 839–846. https://doi.org/

10.1109/ICCV.1998.710815.

[13] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool, SEEDS: Superpixels extracted
via energy-driven sampling, International Journal of Computer Vision, 111 (2015), pp. 298–314.
https://dx.doi.org/10.1007/s11263-014-0744-2.

[14] A. Vedaldi and B. Fulkerson, VLFeat: An open and portable library of computer vision
algorithms. https://www.vlfeat.org/, 2008.

[15] M. Wang, X. Liu, Y. Gao, X. Ma, and N.Q. Soomro, Superpixel segmentation: A
benchmark, Signal Processing: Image Communication, 56 (2017), pp. 28–39. https://dx.doi.
org/10.1016/j.image.2017.04.007.

[16] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnés est minimum,
Tohoku Mathematical Journal, First Series, 43 (1937), pp. 355–386.

[17] S.J. Wright, Coordinate descent algorithms, Mathematical Programming, 151 (2015), pp. 3–
34. https://doi.org/10.1007/s10107-015-0892-3.

[18] K. Yamaguchi, D. McAllester, and R. Urtasun, Efficient joint segmentation, occlusion
labeling, stereo and flow estimation, in European Conference on Computer Vision (ECCV),
Springer, 2014, pp. 756–771. https://doi.org/10.1007/978-3-319-10602-1_49.

[19] F. Yang, H. Lu, and M-H. Yang, Robust superpixel tracking, IEEE Transactions on Image
Processing, 23 (2014), pp. 1639–1651. https://doi.org/10.1109/TIP.2014.2300823.

20

https://doi.org/10.1109/ICPR.2014.181
https://doi.org/10.1016/j.cviu.2017.03.007
https://doi.org/10.1016/j.cviu.2017.03.007
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1109/ICCV.1998.710815
https://dx.doi.org/10.1007/s11263-014-0744-2
https://www.vlfeat.org/
https://dx.doi.org/10.1016/j.image.2017.04.007
https://dx.doi.org/10.1016/j.image.2017.04.007
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/978-3-319-10602-1_49
https://doi.org/10.1109/TIP.2014.2300823

	Introduction
	Background
	K-Means
	Graph of Superpixels

	The SLIC Method
	Overview
	Initialization
	Gradient Correction
	The Bilateral Distance
	Pseudo-code

	Connectivity Enforcement
	Labeling the Connected Components
	Discard Minor Connected Components
	Adoption of Orphans

	Experiments
	Implementation
	The Minimum Gradient Preconditioning
	Performance
	Runtime
	Convergence

	Comparison with the Original Implementation
	Benchmark
	Metrics
	Benchmark Protocol
	Comparison of Implementations

	Conclusion

