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ABSTRACT:

The registration of indoor and outdoor scans with a precision reaching the level of geometric noise represents a major challenge for
Indoor/Outdoor building modeling. The basic idea of the contribution presented in this paper consists in extracting planar polygons
from indoor and outdoor LiDAR scans, and then matching them. In order to cope with the very small overlap between indoor
and outdoor scans of the same building, we propose to start by extracting points lying in the buildings’ interior from the outdoor
scans as points where the laser ray crosses detected facades. Since, within a building environment, most of the objects are bounded
by a planar surface, we propose a new registration algorithm that matches planar polygons by clustering polygons according to
their normal direction, then by their offset in the normal direction. We use this clustering to find possible polygon correspondences
(hypotheses) and estimate the optimal transformation for each hypothesis. Finally, a quality criteria is computed for each hypothesis
in order to select the best one. To demonstrate the accuracy of our algorithm, we tested it on real data with a static indoor acquisition

and a dynamic (Mobile Laser Scanning) outdoor acquisition.

1. INTRODUCTION
1.1 Context

The Building Indoor/Outdoor Modeling (BIOM) project aims
at automatic, simultaneous indoor and outdoor modelling of
buildings from heterogeneous data. The heterogeneity is both
in data type (image and LiDAR) and acquisition platform (ter-
restrial indoor/outdoor and aerial). State of the art approaches
generally deal with either the indoor or the outdoor, and often
use strong priors of parallelism and orthogonality that are not
necessarily verified.

Terrestrial laser scans can be acquired in static or dynamic mode,
i.e., from static stations or a mobile mapping system. In order
to cover all the faces of the object, several points of view are ne-
cessary. In this work, we assume the outdoor (mobile mapping)
scan to be the reference as its georeferencing system has direct
access to GNSS data, so our problem is to register the indoor
scans together and with the outdoor scan. The indoor scans
are each defined in a local reference frame relative to the laser
scanner. The registration consists in referencing all these point
clouds in the same coordinate system. The goal is therefore to
determine the geometric transformation (rotation, translation)
necessary to bring the data in coherence. According to (Mon-
nier et al., 2013) the registration technique can be decomposed
in:

1. Feature extraction from each dataset.
2. Feature matching

3. Using matched features to determine the optimal trans-
formation to apply.

The main contribution of this paper is to leverage on the prior
that man made object present large planar parts which give two

rotational and one translational constraint, such that matching
three pairs of polygons (with independent normals) is enough
to recover a 6D (rotation+translation) transform between two
scans.

1.2 State of the art

The ICP (Iterative Closest Point) algorithm is considered the
most used approach in the registration of point clouds (Besl,
1992). ICP starts with two overlapping point clouds and initial
guess. The transformation parameters can be iteratively estim-
ated by generating pairs of corresponding points and minimiz-
ing the error metric. The major disadvantage of this method is
the convergence towards a local solution if the initial data are
not spatially close or if the initial transformation is poorly es-
timated.

Several variants of the ICP algorithm have been proposed to
improve its robustness such as using a point-to-plane error met-
ric. At each iteration of the algorithm, the relative pose that
gives the minimal point-to-plane error is usually estimated us-
ing a standard nonlinear least-squares methods. (Low, 2004)
proposes an approximation of the nonlinear optimization prob-
lem with a linear least-squares one that can be solved more ef-
ficiently. An extension of the ICP framework to nonrigid regis-
tration that uses the same convergence properties of the original
algorithm was proposed in (Amberg et al., 2007). Another ap-
proach (Sharp et al., 2002) proposes to use Euclidean invariant
features in a generalization of ICP registration of range images.
To find the correspondence of 3D range camera, the authors
proposed to use either spherical harmonics or the second order
momentum. A new method for detecting uncertainty in pose
has been introduced in (Gelfand et al., 2003)), where the trans-
formations that can cause unstable sliding in the ICP algorithm
have been estimated using a sampling strategy and the points
that best contain this sliding have been picked. Other non-
iterative methods have dealt with the problem of registration
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Figure 1. Outdoor MLS scan acquired with an MMS

of 3D point clouds, such as the method proposed in
et al., 2012)), where the authors used virtual tie points gener-
ated by the intersection of three non-parallel planes in two dif-
ferent scans. The objective of this registration algorithm is to
search for the assignment which preserves the geometric con-
figuration of the largest possible subset of all tie points. The
authors of (Forstner, Khoshelham, 2017) have proposed meth-
ods to efficiently register point clouds by introducing new op-
timal and sub optimal direct solutions based on plane-to-plane
correspondences for determining the relative motion. A fast 3D
point cloud registration method has been proposed in
al., 2012}, where the objective is to maximize the spherical cor-
relation on S2. A big planar patches have been employed as
attributes to find the maximum using a novel search algorithm.
Other works based on deep learning techniques have been pro-
posed in the literature, such as the method proposed in
[al., 2017), where the authors selected super points using a Ran-
dom Sphere Cover Set and then matched them. A deep neural
network auto-encoder has been used to encode local 3D geo-
metric structures.

1.3 Data

The data used for this study was acquired by two different means
(Mobile LiDAR Scan for the outside and static scans for the in-
side) on the Zoological Museum of Strasbourg.

1.3.1 Outdoor data The outdoor data used to experiment
our method is a Mobile LiDAR Scan (MLS) (cf Fig. |I| acquired
with the Stéréopolis IT Mobile Mapping System (MMS)
[aroditis et al., 2012)). The acquisition system gives access to the
sensor topology inherent to such MLS acquisitions, that is usu-
ally lost during export to formats such as .las or .ply. The data
was collected from three streets, north, south and east of the mu-
seum, the west facade facing a park inaccessible to the MMS.
Each outdoor scan contains approximately 3 million points.

1.3.2 Indoordata The indoor dataused in our study is com-
posed of 30 static LIDAR scans of the inside of the Musée Zo-
ologique, one or two per room. Each scan consists of roughly
500 million points, which were downsampled to around 2 mil-
lion points for practical reasons.

1.4 Contributions

In this paper, we propose a new method for the indoor/outdoor
registration that consists in first, extracting indoor and outdoor

Figure 2. Indoor scan acquired in static mode inside the
Zoological Museum of Strasbourg.

Figure 3. Indoor scans of the ground floor of the Zoological
Museum of Strasbourg.

polygonal parts from the data, and then matching these poly-
gons. The interest of polygons relative to planes is that they
have a spatial extent limited to the areas where they have sup-
porting points in the input data, so they form a simple and com-
pact summary of our LiDAR scans. Given the specificity of
LiDAR data that pass through windows, we propose to start
with the extraction of the buildings’ interior points captured
from external scans; these are the points where the laser ray
crosses the facades through apertures, mostly windows. After-
wards, we perform the registration. The work carried out has
confirmed that the environment and the type of data drive the
choice of the registration algorithm. For example, in man-made
environments, where most objects are bounded by planar sur-
faces, the ideal is to choose a method of registration based on
plane correspondences (Theiler et al., 2012) or primitive cor-
respondences. The basic idea of our contribution is to perform
an extraction of the planar polygons, from both the indoor and
outdoor data, then to group them into three clusters according
to their normals, which will be used subsequently for the estim-
ation of the transformation.

The remainder of this paper is organized as follows. Section 2]
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Figure 4. Indoor and outdoor scans acquired in static mode at
the Zoological Museum of Strasbourg: blue(outdoor scans),

RGB(indoor scans).
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Figure 5. Pipeline Details

describes the two methods used for the extraction of planar
polygons according to the nature of the data. Section [3 details
the registration method, followed by results and discussion in
Section ] Conclusion and future works are proposed in Sec-
tionBl

2. PLANAR POLYGONS EXTRACTION

Due to its robustness to noise and outliers, RANSAC became
the most popular method for LiDAR point cloud segmentation.
Despite this success, it can generate false segments consisting
of points from several nearly coplanar surfaces. False planes
made up of points from different planes or roof surfaces rep-
resent a real obstacle for RANSAC (Xu et al., 2016). In order
to exceed the limitations of RANSAC, we have exploited two
methods depending on the nature of the data.

2.1 RANSAC Based on Sensor Topology

For the outdoor scans, we have access to the sensor topology

(adjacency between successive pulses in the same line and between

lines) so we can use it to enhance the polygon RANSAC de-
tector. We use for that a recent method (Guinard et al., 2020)

that exploits the sensor topology to extract compact planar patches

instead of planes:

e Sample selection: as we are looking for compact planar
patches, once a first sample point is drawn randomly from
the point cloud, the other two are drawn in a local neigh-
borhood (defined based on the sensor topology).

Figure 6. Inliers of the estimated planes from an outdoor scan
computed with Sensor topology based RANSAC
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Figure 7. Robust estimation of a plane using MSAC .

e Region growing: instead of computing the distances of all
the points of the cloud to the hypothetical plane, a region
is grown starting at the first sample in order to recover a
compact planar patch.

At each iteration, the planar patch with most inliers is selected
and approximated by a single polygon using the a-shape al-
gorithm (Edelsbrunner et al., 1983). Figure [f]shows the inliers
of the detected planes from an outdoor scan.

2.2 Polygon MSAC

As we did not have access to the sensor topology for the indoor
scans, we could not use the aforementioned method for the ex-
traction of planar polygons. This is why, we have proposed
a straightforward adaptation of MSAC (M-estimator Sample
Consensus) which is a RANSAC extension that provides a po-

tential solution to the spurious planes problem (Torr, Zisserman,|
[2000). While RANSAC gives the same unit score to all inliers:

0 if € <t
1 otherwise

Cransac(ei) = { ey
MSAC gives each point a penalty score measuring how well the
point corresponds to the model:

Cusac(e;) = min(e2, t2) )

where ¢; is the distance of LIDAR point P; to the current hypo-
thetical plane and ¢ is a distance threshold.

As RANSAC, MSAC produces hypothetical planes by randomly
selecting three input points. The score of the sample plane is
simply the sum of (@) over all the points P; of the input scan.
When the scores have been computed for all planes, the one
with the highest score is extracted, its inliers (points P; such that
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Figure 8. Top: Inliers of the estimated planes from an indoor
scan, Bottom: Polygons extracted from the prominent plane.

€; < t) removed from the point cloud, and the process is iter-
ated until the score of the best plane is below a given threshold,
as detailed in Figure[7] For each detected plane, we project its
inliers to the plane and extract planar polygons by computing
the a—shape (Edelsbrunner et al., 1983) of these projected in-
liers. Figure shows the inliers of the detected planes from an
indoor scan and the polygons computed by the a-shape for the
plane with the most inliers (corresponding to the ceiling).

3. INDOOR/OUTDOOR REGISTRATION

A crucial step of the BIOM project is achieving a registration
of indoor and outdoor scans with accuracy close to the scan
accuracy. To achieve such accuracy, we rely on matching planar
polygons extracted from both indoor and outdoor data. This is
quite difficult because obviously most polygons detected from
one scan will not be visible in the other. In order to facilitate
this matching, we will detect points from the outside scan that
are inside the building and extract planar polygons only from
these points.

3.1 Detecting points inside buildings in the outside scan

As the LiDAR beam usually passes through windows as shown
in Figure 0] we propose to start by detecting fagades from the
outdoor scan, then detecting indoor points as points behind a
facade by ray tracing.

3.1.1 Facade detection For facade detection, we decided to
use the planar polygon detection of Section 2.1 to detect the
facades as large vertical polygons. Thus we will keep only the
detected planar polygons which are sufficiently vertical (devi-
ation below 3°).

The choice of the threshold on inlier distance is a crucial factor
as a bad choice can cause important under or over detection of

Figure 9. LiDAR rays that pass through windows.
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T
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Set of M threshold. W
o; (i=1..M)

F detected planes (\ K ““de‘;ﬂ:i planes:
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Figure 10. Design of the contrario validation method.

facades, leading to a bad detection of interior points. In order
to select automatically an appropriate threshold, we propose an
a contrario algorithm that takes as input M possible thresholds
and selects the threshold with the lowest NFA (Number of False
Alarms). Given a 3D point cloud of N points, the definition of
the minimum size ming;, of a planar region allows us to deduce
the maximum number of possible planar regions:

jr—l 3)

MNgjze

For each given threshold, RANSAC estimates ' < R planes,
so at most K = R — F' planes are undetected as shown in Fig-
ure Inspired by (Bughin, Almansa, 2010), we can define the
error as being the probability that a significant existing planar
region is not detected. Another possibility is the probability
that the number of detected planes is less than the number of
undetected planes:

NFA(c) = Nier X p(K > F | 0) 4

The probability p(K > F | o), can then be upper bounded by
the tail of the binomial law of parameter P defined by:

20 x diag?

Plo) = ©)

v

where diag is the diagonal diameter of the bounding box of the
3D point cloud and V' its volume. Then:

p(K>F|o)< éi( >

Y (1=P@)* 7 (6)
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Figure 11. Indoor points detected from an outdoor scan, pink:
the detected points, blue : inliers of the vertical plane that
represents the facade

3.1.2 RayTracing Once the facades are detected, we detect
indoor points by ray tracing:

1. For each point P;, trace a ray R; from the LiDAR optical
center to F;.

2. Find the intersection points P/ of R; with the supporting
planes P; of each fagcade polygon Fj.

3. Testif Pl-j is inside the polygon (using the CGAL library.

4. In order to remove ouliers close to the facade plane, we
additionaly require the point to be at least 1 m away from
the intersected polygon: (dist(P;, P) > 1m).

5. If one P/ satisfies both criteria (inside the polygon and

3

sufficiently far from the fagade), tag it as an indoor point.

A result of this indoor point detection method is presented in
Figure[TT] Finally, the polygon detection algorithm of Section[?]
is run only on the points detected as indoor from the outdoor
scan, yielding a limited number of polygons.

3.2 Matching planar polygons

Selection of correspondences is a crucial step for the registra-
tion. If we have at least three correct correspondences of poly-
gons with independent normals, it is possible to find the relative
rotation/translation between the indoor and outdoor scans. We
will start by presenting a simple threshold based matching in
Section 32.1]in order to introduce the three main criteria used
to match polygons, then propose a more robust matching based
on clustering algorithm in Section[3:2.2]

3.2.1 Threshold based matching Let us call:

n; and n» the corresponding plane normals

g1 and g» the corresponding centroids.

P1,2 their bisector plane.

e P{ and P; the projections of P; and P; on the plane P .
We propose first a simple filter based on three measures:

1. Angle: Angle(P1, P2) = (n1,nz)

2. Distance: as there is not a standard definition for this dis-
tance, we have chosen to define it as the sum of distances
from the centroid of each polygon to the bisector plane:

Distance(Pl, PQ) = dist(gl, P172)+dist(g2, 731,2) (7)

3. Overlap:

|Pi N P

Overlap(Py, P2) = m

®

where |.| denotes the area. Note that we did not use the
union on the denominator because a planar part of the in-
side scene is seen through an opening from the outside so
only a very limited portion of it can be detected which
would result in very low overlap with a more standard
definition.

In practice, finding appropriate thresholds for these three cri-
teria is tedious and leads often to multiple or no matchings. This
is why we propose a more robust approach.

3.2.2 Cluster based matching We propose a more robust
matching for polygons based on three main principles: clus-
tering the polygons (by direction then by offset), enumerating
match hypotheses between the clusters and evaluating which
hypothesis is the best.

Algorithm 1 Greedy direction clustering

Input: P; a set of planes with normals n; and number of
inliers n;. € a tolerance angle (typically = /4rad).
2: Clusters initialization:

e Cy = {P} where P is the plane with most inliers

e Cy = {P>} where P, is the plane with most inliers
among planes for which n;.n; < cos(e)

e (O3 = {Ps} where Ps is the plane with most inliers
among planes for which n;.n; < cos(e) and n;.ny <
cos(e)

Mark P;, P> and P;s as processed and all other P; as unpro-
cessed

4: Each cluster C, has a normal ¢, computed as the weighted

centroid of all the normals of the planes in C},
Let P, be the unprocessed plane with the most inliers.
Mark P, as processed.
6: compute kpin = argmingl — |7;.Ck|
compute d; = 1 — |1;.Cx,,,;,

8: If d; < ¢, add P; to the cluster C,, ;.. .
Call C™ and tag as horizontal the cluster for which 1—|2.&|
is minimum.

10: Call C** and C"2? and tag as vertical the two remaining
clusters.

e Py and P; detected planar 3D polygons from the two LiDAR  Direction clustering: For each input scan, we greedily cluster

scans: indoor scan (Scani) and outdoor scan(Scanz)

planes P; according to their normals 7i; by decreasing number
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of inliers n; as detailed in Algorithm[I0]that produces 3 clusters
C", C*1 and C2 for each scan.

Direction cluster matching We associate C'" for the two scans.
We associate each remaining cluster (C** and C**) to the ver-
tical cluster from the other scan with the smallest angle.

Alignment: we compute the rotation that aligns the three clusters:
the vertical C¥* and C? and the horizontal clusters using the
method described in Section[3.3]

Hypotheses enumeration: for each associated direction cluster,
we enumerate possible plane matches:

e For each of the three associated main cluster pair A,, =
(C’,ﬁ1 , C’,fz ) we will call I,, the set of pairs of planes (P;; €
C;I’PZ?Z € Clzg)

e for each (Ji1, Ja, J3) in Iy x I X I3, compute the transla-
tion that aligns the planes in (J1, J2, J3) using the method
described in Section[3.4]

e note that I3 is extracted from the horizontal clusters which
cover the displacement along z,l> is extracted from the
vertical clusters which have the smallest angle with the y
axis and [; is extracted from the vertical clusters which
have the smallest angle with the X axis.

e keep the translation calculated by the best hypothesis.

Selection of the best hypothesis: To asses which hypothesis
is the best, we define a criterion that (1) is robust to outliers
as many planes detected in one scan have no counterpart in the
other (2) favors important polygon overlaps and (3) favors small
distances over these overlapping parts. For robustness, we need
a distance threshold d¢x, above which a polygon is just con-
sidered an outlier. Then for two polygons P;, P> with centroids
01, O3 in the same cluster, we define a robust error:

Ednr (P1, Scans) =

dQL / min(diy,, dist(P, Scanz)®)dP )
thr J PeP;

We see that the distance is 0 when P; is completely overlapped

by polygons of Scans with a distance of 0 (the perfect case)

and increases as distance augments and overlap decreases up to
| P1| when the overlap is empty and/or the distance is over dyp,.

In practice we make the approximation:

Ednr (P1, Scans) ~

max(0, d2,, — Distance(P1, P2)?)
d2

thr

|PENP; | (10)

>

PyeScany

Note that we do not use our modified relative Overlap function
anymore as a large overlap surface should be favoured to a small
one as it correponds to more input points. Finally our global
criteria writes:

rdist(Scani, Scan2) = Z E%hr(Py, Scanz)

PyeScany

We consider that the best hypothesis is the one that maximizes
this criterion.

3.3 Rotation estimation

Assuming that we have an association between three directional
clusters of two scans:

e C! and C¥ the horizontal clusters of scans 1 and 2, &% and
& their normals.

e C7* the first vertical cluster of scan 1 and C* the associ-
ated vertical cluster of scan 2, ¢;* and ¢5' their normals.

e (72 the second vertical cluster of scan 1 and C3? the aso-
ciated vertical cluster of scan 2, ¢}? and 5?2 their normals.

We want to find the rotation that best aligns these three pairs of
directions. Let @1=¢7 and @o=ch. We are looking for the two
vector:

{o1,02} = (11

arg min (v1,v2)

— U U — U U
vre{e]t,e 2}, pe{Eyt 852}

We want to create a first orthogonal basis M7 from u; and v1,
and a second orthogonal basis M> from us and v, so we have:

e ¢i=the projection of ¥; on the orthogonal plane to @

e ¢>=the projection of ¥ on the orthogonal plane to >

Projorth,Planeal (Ul) =V — %{T’;)|ﬁl| (12)
. R R (Ua.U2),
Pro]orth,Pla’neaZ (UQ) = V2 — W|u2| (13)
Il = i1 x Q1 (14)
=1t % @ (15)
we have:
[ui(z) qi(z) b(@)]
M= {wi(y) @(y) Ly (16)
[ui(z)  @1(z)  hi(z)]
and
[u2(z)  g2(z)  la()]
Mz = |u2(y) q2(y) l2(y) an
uz(z)  q2(2)  l2(2)]

We can calculate the rotation as the base change matrix between
M and Mo:

My = RM; (18)

R = MyM;* (19)

3.4 Translation estimation

We have defined a hypothesis as three pairs of planes. Each
pair is extracted from two matched clusters (C; € scanA, C; €
scanB).

For each hypothesis we have:
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pair; = {Plane; (N;,1,di1), Plane; (N1, djq)}-

where [ represents the pair index in the hypothesis and i,j rep-
resent the indices of the two matched clusters. For each pair we
have the following properties:

Ny = RN;, (20)

NT =d;; —djy, 21

therefore according to the two equations above and the defini-
tion of a hypothesis, we can deduce the following linear system:

N1 (I) N1 (y) Nl(z) Tz di,1 - dj,1
Na(z) Na(y) No(2)| |Ty| = |diz—dj2| (22
Ng(w) N3(y) Ng(z) TZ di,3 — dj,3

by solving this linear system, we can find the translation.

4. EVALUATION AND DISCUSSION

Our proposed method has been tested on real data to evaluate its
effectiveness. The proposed algorithm works without any con-
straints on the initial position of the two scans, unlike iterative
methods which require the correct estimation of the initial pos-
ition to be able to converge to a global solution. The key step of
our algorithm is the estimation of planar polygons which was
carried out using two methods depending on the nature of the
data.

The first evaluation of our algorithm was carried out on two in-
terior scans from which a perfect registration was done manu-
ally. Each input scan was subsampled to around 260 000 points.
Starting from this perfect position, we have altered one of the
two scans with an initial translation error ranging from a few
centimeters to a few meters and an initial rotation error ran-
ging from a few degrees to a few tens of degrees as shown in
Tabldl] The chosen setting allowed us to estimate 22 planes
from the first scan, and 23 planes from the second scan. The
obtained results show that our algorithm is able to register the
two scans within a reasonable calculation time regardless of the
initial error. Afterwards, we performed the registration of in-
door and outdoor scans. As we do not know the ground truth
we only considered the visual results. We consider that the ob-
tained results demonstrate our algorithm’s ability to efficiently
register indoor and outdoor data as shown in Figure[I2]

Achieving precise results requires fine-tuning of the algorithm’s
parameters. The iterations number of MSAC must be calculated
according to the number of points of the scan to ensure the ro-
bustness of the algorithm. The number of estimated planes de-
pends on the inliers threshold and the minimum size of a planar
region, whereas the number of extracted polygons is reliant on
the value of . If we estimate more planes, we can generate
more hypotheses and use more polygons for the evaluation of
each hypothesis, and therefore we can find a more precise res-
ult.

Implementation: Our algorithm was implemented in C++.
All geometric calculations were carried out using the CGAL
library https://www.cgal.org/). In addition we used the
Boost library https://www.boost . org/ to calculate polygons
intersection, Eigen library https://eigen.tuxfamily.org/
dox/|for matrix calculation and The Point Cloud Library (PCL)
https://pointclouds.org/ for point cloud processing.

Initial error Final error Time

Metric error | Angular error | Metric error | Angular error
0.099 m 0.001° 0.00793 m 0.0008° 263s
044 m 0.528° 0.0213 m 0.06° 244s
127 m 3° 0.0241 m 0.043° 269s
415m 12° 0.0402m 2° 294s

Table 1. Result of indoor/indoor registration tests
5. CONCLUSION AND FUTURE WORKS

In the present work, we have proposed a method based on poly-
gon detection and matching to address the challenging prob-
lem of indoor/outdoor registration whereas state of the art ap-
proaches tackle either the indoor or the outdoor registration
problem. To the best of our knowledge, no method has pro-
posed a joint indoor/outdoor registration with a unified formal-
ism. Our preliminary tests have highlighted the potential of the
proposed method. Our main perspective concerning this work
is to extract outdoor points from the indoor scans in order to get
additional information, and to precisely detect windows outline
in order to introduce additional constraints in the registration.
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