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Continuum damage analysis of delamination in composite laminates using a
stress-based layerwise plate model

Paul Bouteillera, Jeremy Bleyera,∗, Karam Saba

aLaboratoire Navier, ENPC, Univ Gustave Eiffel, CNRS,
Cité Descartes, 6-8 av Blaise Pascal, 77455 Champs-sur-Marne, FRANCE

Abstract

This contribution addresses the modelling of delamination in a stress-based layerwise plate model. Such

models benefit from a good representation of the local 3D stress field, especially inter-laminar stresses

which are natural generalized stress unknowns arising in their derivation. We extend their construction to

situations involving onset and propagation of interfacial delamination. We propose a variational formulation

relying on a continuous damage description of the opening and sliding interfacial degradation processes using

two damage variables. A mixed-mode delamination propagation criterion can be obtained through proper

coupling between both variables. Finally, the model predictions are validated against classical delamination

tests in pure and mixed modes.

Keywords: generalized continuum, stress-based model, multilayered plates, delamination, damage model,

variational approach

1. Introduction

Laminated composites are commonly encountered in industrial applications where the problem of mass

is critical. Growing demand to obtain lightweight designs with higher damage tolerance implies a com-

prehensive understanding of the mechanisms involved during the failure processes. The strong anisotropy

of the constituent plies and the stacking sequence induces important inter-laminar stresses, leading to the

onset and propagation of delamination. Delamination is one of the most critical mechanisms affecting the

structural integrity in industrial applications. Moreover, it is most often imperceptible to an operator’s eye

inspection [1] and must therefore be modelled accurately.

Alongside the J-integral and the virtual crack closure technique[2–4], the most common way of modelling

delamination in composite laminates is to resort to a full 3D modelling of the multilayered plate in con-

junction with interface elements which employ a Cohesive Zone Model (CZM) of the interfacial behaviour.
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Interface CZM elements can efficiently predict both the onset and propagation of delamination since the

fracture plane is known in advance. Besides, upon proper coupling between both opening (mode I) and

shearing (mode II) fracture modes, mixed mode propagation criterion can also be considered. However, the

use of 3D solid elements and interface CZM poses some difficulties in terms of robustness and computational

costs. Indeed, owing to the high slenderness of composite plates, the retained mesh size must be quite

small to avoid 3D elements being too elongated which would be detrimental to the solution accuracy and

system conditioning. Convergence difficulties of the underlying nonlinear solver are also widely reported in

the literature [5–8] which are heavily influenced by the shape of the cohesive law, the choice of the tangent

operator, the numerical quadrature, the mesh size, the critical stress, etc. Finally, the use of intrinsic CZM

also introduces a somewhat artificial elastic stiffness of the interface the value of which is not always easy

to choose properly. In addition to softening the laminate structural stiffness, it plays also an important role

in the convergence behaviour of the numerical iterative process.

An alternative to a 3D CZM modelling is to resort to two-dimensional layerwise plate models, such

as Reddy’s [9, 10] or those based on the Carrera Unified Formulation (CUF) [11, 12] enable to obtain an

enhanced description kinematics through the thickness. Recently, only a few works have considered de-

lamination in layerwise models such as 1D CUF models [13], 2D CUF models with impact [14], mode II

propagation with a refined zig-zag theory [15], layerwise beam models in mixed-mode propagation [16] or a

Rayleigh-Ritz formulation for buckling-induced delamination [17].

In such displacement-based approaches, interlaminar stresses are only obtained as a result from the

thickness displacement expansion and may not be evaluated accurately enough in general. Although in-

cluding high-order kinematics in each layer may improve the stress predictions, another possibility is to

resort to stress-based layerwise models, in which stresses (and in particular, interlaminar stresses) appear

as naturally emerging quantities in such models. For instance, [18] first proposed a polynomial expansion

of the stress field in each layer. Simplified models have been later proposed based on this work such as the

M4-2n+1 model [19, 20] or the more-refined M4-5n model [19, 21–23], now renamed LS1 model1 to fit the

CUF nomenclature, or the most recent SCLS1 model [24–26]. In particular, such models have been shown

to properly capture free-edge effects and yield an accurate prediction of stress singularities near delami-

nated areas [20, 27, 28]. A first proposal to model the propagation of delamination in a 1D setting using

the Virtual Crack Closure Technique (VCCT) has been proposed in [29] using the LS1 model whereas [30]

considered the case of elastoplastic interfaces. As a result, there exist no contribution on a stress-based lay-

erwise 2D plate models capable of handling the onset and propagation of delamination in multiple interfaces

and mixed-mode loading. The present work therefore aims at bridging this gap. To do so, we consider the

1Layerwise Stress model of degree 1 (polynomial degree of the membrane stresses)
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stress-based layerwise model and formulate a continuum damage model in order to describe the progressive

evolution of delamination in both mode I and mode II.

The paper is organized as follows: Section 2 is dedicated to a brief reminder of the theoretical formulation

of the LS1 model. We also discuss how delaminated interfaces affect the laminate generalized stiffness

matrix. Section 3 introduces a new model which we call Lumped-LS1 model and which approximates

the corresponding out-of-plane and shear complementary energies to obtain a much simpler generalized

model with a diagonal structure. This model is then used for the formulation of a generalized continuum

damage model that is thermodynamically consistent and which benefits from a variational formulation, as

detailed in section 4. Section 5 then discusses the expression of the damaged-dependent elastic strain energy

whereas section 6 details some key elements of the numerical implementation. Finally, section 7 presents the

validation of the proposed approach on classical pure and mixed-mode delamination tests and illustrates its

efficiency on a multi-interface problem.

2. The stress-based layerwise LS1 model

2.1. Reminder of the LS1 model derivation

We here briefly remind the main characteristics of the considered LS1 layerwise model. For the sake of

concision, the reader can refer to Appendix A for additional details regarding notations and derivation of

the model.

(a) Description of the 3D laminated plate (b) Equivalent description of the 3D laminated plate

Figure 1: Description of the laminated plate

In the following, we consider a 3D plate domain Ω consisting of n layers of thickness ei of reference

middle plane ω in the (x1, x2) in-plane directions, x3 being the out-of-plane direction. In each layer i, h−i ,

h+
i and hi are, respectively, the bottom, top and mid-plane x3-coordinate of the layer. Each ply is initially

assumed to be perfectly bonded to each other and is made of an orthotropic elastic material of compliance

fourth-order tensor Simnpq. The pair j, j + 1 refers to the interface between layer j and j + 1. By extension,

the pair 0, 1 corresponds to the plate lower face ω− and n, n+ 1 to the upper face ω+.
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The LS1 model is obtained from a specific Ansatz on the local 3D stress field σ3D(x) along the x3-

direction as a function of some generalized stresses vector Σ(x1, x2). More precisely, the main hypothesis is

that the membrane stresses σi,3Dαβ in layer i are assumed to be an affine function of x3. In order to satisfy the

local equilibrium equation without body forces, the shear stresses σi,3Dα3 must be quadratic in x3, whereas

the out-of-plane stress σi,3D33 must be cubic in x3, see (A.1)-(A.2)-(A.3). The involved generalized stresses

Σ in this polynomial expansion have simple physical meanings since they consist of:

• N i: the in-plane stress resultant tensor in layer i,

• M i: the bending moment resultant tensor in layer i,

• Qi: the resultant shear forces vector in layer i,

• τ i,i+1: the inter-laminar shear stress at the interface between the layer i and i+ 1,

• νi,i+1 the out-of plane stress at the interface between the layer i and i+ 1.

The last two quantities are related to the local 3D stress field at the corresponding interface as follows:

σi,3Dα3 (x1, x2, h
+
i ) = τ i,i+1

α (x1, x2) (1)

σi,3D33 (x1, x2, h
+
i ) = νi,i+1(x1, x2) (2)

and therefore provide direct access to quantities of interest (inter-laminar stresses) for the study of delami-

nation.

The local 3D equilibrium equations translate into 5n equilibrium equations linking our generalized

stresses:

N i
αβ,β + τ i,i+1

α − τ i−1,i
α = 0 (3a)

M i
αβ,β −Qiα +

ei

2
(τ i,i+1
α + τ i−1,i

α ) = 0 (3b)

Qiα,α + νi,i+1 − νi−1,i = 0 (3c)

The dual kinematic quantities associated with each equilibrium equation (3a)–(3c) represent the generalized

displacements U of the LS1 model which can be interpreted in terms of specific weighted averages of the

3D local displacement field (see [11], [21], for more details). In a nutshell, U is of size 5n and consists of

layerwise in-plane displacements U iα (associated with (3a)), in-plane rotations Φiα (associated with (3b))

and out-of-plane displacement U i3 (associated with (3c)). As a result, the proposed model can be seen as a

collection of individual layers, possessing a Reissner-Mindlin kinematics and in interaction with each other.

Upon writing the weak form associated with the above strong equilibrium equations, the corresponding

generalized strains E appearing in duality with the generalized stresses Σ are obtained. Their expression in

terms of U are given in (A.4).
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Finally, the LS model’s generalized elastic constitutive law is obtained through the minimum comple-

mentary energy principle. Upon integrating the local elastic energy through the thickness and after some

simplifying approximations which have been detailed in [24, 31], one obtains the corresponding generalized

complementary elastic energy density:

Ψ∗(Σ) =
1

2
ΣSΣ (4)

which enables to derive the generalized elastic constitutive law as follows:

Eel =
∂Ψ∗

∂Σ
= SΣ (5)

where S designates the generalized compliance matrix and Eel is the generalized elastic strain. Note that,

in presence of surface loading on the top or bottom surfaces ω±, the elastic strain is given by Eel = E−E0

where E0 can be interpreted as a loading-induced pre-strain. Equivalently, the above elastic law can be

written as Σ = CEel where C = S−1 denotes the laminate generalized stiffness matrix at a given point

x = (x1, x2) ∈ ω.

An important aspect for the following discussion is that the generalized compliance S enjoys a block-

diagonal structure (we refer to Appendix A.4 for the detailed expressions). In particular, the membrane-

bending compliance SK associated with (N i,M i), the peeling compliance Sν associated with the νi,i+1

and the shear compliance SQ associated with (Qi, τ i,i+1) are decoupled from each other. In addition,

SK possesses a further block-structure per layer so that the membrane/bending compliance of each layer

is decoupled from one another. However, this is not the case for both Sν and SQ. Indeed, the former

enjoys a tridiagonal structure whereas the latter is pentadiagonal. The corresponding generalized stiffnesses

Cν = (Sν)−1 and CQ = (SQ)−1 are therefore full matrices in general. This aspect is a key feature of

such stress-based layerwise models and introduces an additional complexity when attempting at building a

damage model for interfacial delamination.

2.2. Generalized stiffness in presence of delaminated interfaces

We now discuss how the LS1 model generalized stiffness C is modified in presence of delaminated inter-

faces. Let us consider a given interface m,m+ 1 in the stacking sequence which we now assume to be fully

delaminated at a given point x ∈ ω. In this case, the inter-laminar stresses should vanish i.e. νm,m+1 = 0

and τm,m+1
α = 0. We formally note these conditions as T>Σ = 0 where T is a rectangular matrix with

0/1 entries. This generic notation can therefore generalize the previous conditions to multiple delaminated

interfaces. When deriving the elastic strain Eel from the generalized elastic complementary energy Ψ∗(Σ)

in presence of such internal constraints, an associated Lagrange multiplier µ appears such that:

Eel =
∂Ψ∗

∂Σ
+
∂(T>Σ)

∂Σ
µ = SΣ + Tµ (6)
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Inverting the above equation and inserting into the stress-free constraint T>Σ = 0, we obtain:

T>Σ = T>C(Eel − Tµ) = 0 (7)

µ =
(
T>CT

)−1

T>CEel (8)

Σ = CdEel (9)

where the “delaminated” generalized stiffness matrix is given by:

Cd = C− CT
(
T>CT

)−1

T>C (10)

Thanks to the block structure of S and thus of C, (9) is divided into two sub-operations: namely

the computation of the delaminated out-of-plane stiffness Cd
ν and the delaminated shear-stiffness Cd

Q (see

Appendix A.5 for details). For instance, the out-of-plane stiffness matrix of a 5 plies, 4 interfaces, laminated

composite, divided in 2 parts by the delamination of the interface between plies 2 and 3 reads:

C2,d
ν =




cν11 −
(cν12)2

cν22

0 cν13 −
cν12c

ν
23

cν22

cν14 −
cν12c

ν
24

cν22

0 0 0

cν33 −
(cν23)2

cν22

cν34 −
cν23c

ν
24

cν22

SYM. cν44 −
(cν24)2

cν22




(11)

where cνij are the entries of the initial out-of-plane stiffness Cν . Interestingly, due to the stress-based nature

of the LS1 model, the presence of a delaminated interface does not split the out-of-plane stiffness into two

independent blocks as off-diagonal coupling terms still exist.

3. A new Lumped-LS1 model

One difficulty when extending such stress-based layerwise plate models arises from the existence of

couplings between generalized stresses in the generalized compliance matrix, yielding, in general a full

generalized stiffness matrix when inverting the latter as discussed before. Such formulations also make it

difficult to use local 3D nonlinear constitutive behaviours whereas the derivation of nonlinear constitutive

equations based on generalized stresses is not an easy task either. For all these reasons, simpler formulations

of the stress-based model would be beneficial to its extension towards nonlinear behaviours. This is the

purpose of the present section.
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3.1. Approximate out-of-plane behaviour

When evaluating the contribution of layer j to the out-of-plane elastic energy density in the original LS1

model, one obtains:

ψjν =
1

2
ejSj3333

(
13

35
(νj−1,j)2 +

13

35
(νj,j+1)2 +

18

70
νj−1,jνj,j+1

)
(12)

=
1

2
ejSj3333

{
νj−1,j νj,j+1

}



13
35

9
70

9
70

13
35






νj−1,j

νj,j+1





which induces coupling between adjacent layers due to the off-diagonal term. To avoid such a coupling, we

therefore propose to replace the above computation with the following approximation:

ψjν ≈
1

2
ejSj3333

(
1

2
(νj−1,j)2 +

1

2
(νj,j+1)2

)

=
1

2
ejSj3333

{
νj−1,j νj,j+1

}



1
2 0

0 1
2






νj−1,j

νj,j+1



 (13)

which results in an expression which does not induce such couplings. The above approximate expression

can be seen as a mass-lumping procedure as commonly done in structural dynamics.

3.2. Approximate shear behaviour

In the original formulation of the LS1 model, the out-of-plane shear stress σiα3 in layer i is expressed as

a quadratic polynomial in x3 parametrized by the interfacial shear stresses τ i−1,i
α , τ i,i+1

α and the resultant

shear force Qiα. In order to derive an approximation similar to the out-of-plane behaviour, we reformulate

the out-of-plane shear stress as a function of the mid-layer shear stress τ̄ iα = σiα3(x3 = h̄i) instead of the

shear force Qiα:

σiα3(x3) = y(2y − 1)τ i−1,i
α + (1− 4y2)τ̄ iα + y(2y + 1)τ i,i+1

α (14)

where y = (x3 − h̄i)/ei.

The contribution of the out-of-plane shear of layer i to the elastic energy density reads:

ψiτ =
1

2

∫ h+
i

h−
i

4Siα3β3σα3σβ3dx3 (15)

=
1

2
4eiSiα3β3

1

30
(τ iα)T




4 2 −1

2 16 2

−1 2 4


 τ

i
β

where τ iα =
{
τ i−1,i
α τ̄ iα τ i,i+1

α

}T

. Again, off-diagonal terms induce a coupling between adjacent layers.

Similarly to the out-of-plane term, we therefore propose to ”lump” the corresponding matrix at the layer
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bottom, mid and top planes as follows:

ψiτ ≈
1

2
4eiSiα3β3

1

6
(τ iα)T




1 0 0

0 4 0

0 0 1


 τ

i
β (16)

Note that such a lumping procedure is equivalent to using a Simpson quadrature rule to evaluate the integral

in (15)approximately.

3.3. Generalized behaviour

As a result of the above lumping approximation, the corresponding generalized behaviour now possesses

a diagonal block structure, in particular regarding the out-of-plane and shear parts of the behaviour. The

corresponding out-of-plane strain energy reads:

1

2
ET
ν CνEν =

1

2

n−1∑

i=1

ci,i+1
ν (εi,i+1

ν )2 (17)

where εi,i+1
ν is the corresponding out-of-plane generalized strain and:

ci,i+1
ν =

2

eiSi3333 + ei+1Si+1
3333

(18)

The shear strain energy reads:

1

2
ET
τ CτEτ =

1

2

n−1∑

i=1

ci,i+1
τ,αβ D

i,i+1
α Di,i+1

β (19)

+
1

2

n∑

i=1

c̄iτ,αβD̄
i
αD̄

i
β (20)

where:

[ci,i+1
τ,αβ ] = 6

(
ei[4Siα3β3] + ei+1[4Si+1

α3β3]
)−1

(21)

[c̄iτ,αβ ] =
3

2ei
[4Siα3β3]−1 (22)

3.4. Free-edge effect

The consistent LS1 model presented in Section 2 has proven its remarkable accuracy to compute singular

interface stresses in the vicinity of the free edges in laminated composites [32]. The lumped LS1 model

simplifies the evaluation of the shear and out-of-plane when computing the complementary energy. This

approximation must however be assessed in a critical configuration in which shear and out-of-plane stresses

exhibit strong variations. We therefore consider a (0, 90)s plate subject to uniaxial tension in the 0◦ direction.

The The Poisson’s ratio effect induces a singular shear stress at the interface between the 0 and 90 plies.

The Lumped-LS1 and LS1 models are compared with a highly refined 3D finite element reference. The
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Material parameters Geometric parameters

EL =130 GPa ET = EN =7.7 GPa e =0.14 mm b = 8e

GLT = GLN =4.8 GPa νLT = νTN = νLN = 0.33

Table 1: Material and geometric properties of the free-edge effect analysis

Figure 2: Uniaxial extension of a (0, 90)s laminate

geometric and material parameters of a T700GC/M21 type carbon fiber [33] are reported in Table 1 (see

also Figure 2).

The normalized inter-laminar shear stress
σxy
ELεxx

, as a function of the normalized distance y = y/e is

shown in Figure 3. The overall agreement is very good up to very small distances to the edge. At edge

3D-FEM Lumped-LS1 LS1

0 1 2 3 4 5 6 7 8
Normalized distance y

0.0000

0.0025
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0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

No
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ize

d 
sh

ea
r 

xy

E L
xx

7.80 7.85 7.90 7.95 8.00
0.000

0.005

0.010

0.015

0.020

Figure 3: Normalized shear at the interface between the 0◦ and 90◦ plies.

distances less than one fifth of the ply thickness, the predictions of the highly refined 3D model and our model

begin to differ. Obviously, the LS1 consistent model is much more accurate in capturing strong singularities,
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however, the difference with the lumped model is only significant at such small scales that considering the

material as a homogeneous anisotropic continuum is no longer relevant. Whether the difference observed in

the peak stress near the edge is important or not will be assessed in the following sections when investigating

initiation and propagation of delamination.

4. Variational approach of continuum damage

We now proceed to the modeling of progressive delamination in our layerwise plate model, in which each

interface is susceptible to experience delamination due to excessive inter-laminar normal or shear-stress. In

this work, we make the modeling choice of proposing an ad hoc generalized damage model to account for

such a phenomenon instead of relying on cohesive interface behaviours between the plies which may have

required the introduction of an artificial interface stiffness. In the following, we rely on a thermodynamic

formulation based on the framework of generalized standard materials (GSM) [34, 35].

For this purpose, we consider a vector-valued internal variable d representing the inter-laminar degrada-

tion of the layered structure. It consists of two scalar damage variables dm,m+1
ν , dm,m+1

τ for each interface

which will enable us to model the mixed-mode interaction between mode I and mode II delamination. The

generalized stored elastic energy is therefore assumed to be coupled with damage Ψ(E,d) as discussed later

in section 5. In addition, we also consider a dissipation pseudo-potential Φ of the damage rate ḋ, possibly

parametrized by the value of the damage variable d. We assume that each interface contributes similarly

and independently to the dissipation potential so that:

Φ(ḋ;d) =

n−1∑

m=1

φ(α̇m;αm) + IR+(ḋ) (23)

where αm = (dm,m+1
ν , dm,m+1

τ ) for interface m, φ(α̇m;αm) is the interface dissipation pseudo-potential

which we assume to be a convex positively homogeneous function of α̇m (rate-independent behaviour).

Within the GSM framework, we readily obtain the following damage evolution laws:

Y = −∂Ψ

∂d
(24)

Y ∈ ∂ḋΦ(ḋ;d) (25)

where Y is the thermodynamic force associated with d and ∂ḋΦ denotes the pseudo-differential of Φ.

Accounting for (23), the evolution equation can be rewritten for each interface m as:

Y m = − ∂Ψ

∂αm
≤ ∂φ

∂α̇m
(26)

if φ is differentiable with respect to α̇m. This defines the corresponding damage criterion in the Y -space.
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4.1. Dissipation potential and delamination propagation criterion

We now specify the choices made for the damage dissipation potential. We essentially aim at formulating

a mixed-mode propagation criterion accounting for the interaction between mode I and mode II energy release

rates and their associated fracture energies GIc, GIIc.

For this purpose, many mixed-mode interaction criteria have been proposed in the literature such as the

power-law criterion ([36–38]): (
GI

GIc

)α
+

(
GII

GIIc

)γ
≤ 1 (27)

for which the particular case α = 1, γ = 1 yields the linear criterion [39–42]. One can also mention

the Benzeggagh-Kenane criterion [43]. A complete presentation of delamination criterion can be found for

instance in [44]. In the following, we will focus on the power law interpolation (27) with α = γ:

(
GI

GIc

)γ
+

(
GII

GIIc

)γ
≤ 1 (28)

Dropping the interface superscript m for simplicity, let us introduce the following function:

ϕ(α) = ϕ(dν , dτ ) =
(
(GIcwν(dν))β + (GIIcwτ (dτ ))β

)1/β
(29)

where β ≥ 1 and the wi(di) are continuous, positive, increasing functions such that wi(0) = 0 and wi(1) = 1.

We then define the dissipation pseudo-potential for each interface as follows:

φ(α̇;α) =
∂ϕ

∂α
· α̇+ IR+(α̇) =

˙
ϕ(α) + IR+(α̇) (30)

which is indeed convex and positively homogeneous with respect to α̇ and where IR+ is the indicator function

corresponding to the damage irreversibility condition ḋν , ḋτ ≥ 0.

Such a choice corresponds to the following damage criterion:

Y ≤ ∂ϕ

∂α
(31)

that is:

Yν ≤ (GIc)βw′ν(dν)wν(dν)β−1S1/β−1 (32)

Yτ ≤ (GIIc)βw′τ (dτ )wτ (dτ )β−1S1/β−1 (33)

where S = (GIcwν(dν))β + (GIIcwτ (dτ ))β (34)

This criterion implies: (
Yν/w

′
ν(dν)

GIc

)γ
+

(
Yτ/w

′
τ (dτ )

GIIc

)γ
≤ 1 (35)

with γ = β/(β − 1).
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Note that it is always possible to replace the damage variables α = (dν , dτ ) with α̃ = (wν(dν), wτ (dτ )).

In this case, the corresponding associated thermodynamic force from (24) reads:

Ỹ = −∂Ψ

∂α̃
= −∂Ψ

∂α

∂α

∂α̃
(36)

that is:

Ỹν =
Yν

w′ν(dν)
(37)

Ỹτ =
Yτ

w′τ (dτ )
(38)

As a result, we recover from (35) the power-law delamination criterion (28) for:

GI = Ỹν =
Yν

w′ν(dν)
(39)

GII = Ỹτ =
Yτ

w′τ (dτ )
(40)

Finally, in the case where β →∞, (29) becomes:

ϕ(α) = max{GIcwν(dν);GIIcwτ (dτ )} (41)

and is associated with the linear criterion GI

GIc
+ GII

GIIc
≤ 1. Similarly, if β = 1, (29) reads:

ϕ(α) = GIcwν(dν) +GIIcwτ (dτ ) (42)

and we recover a delamination criterion with no mixed-mode interaction: GI ≤ GIc and GII ≤ GIIc.

4.2. Incremental variational principle

The system evolution equation between time tn and tn+1 is then obtained by resorting to the minimization

of the incremental potential for rate-independent systems [45–47]:

(Un+1,dn+1) = arg min
U ,d

En(U ,d) (43)

where the energy potential on this load increment is given as the sum of the potential energy and a dissipated

contribution by:

En(U ,d) = Epot(U ,d) +Dn(d) (44)

Epot(U ,d) =

∫

ω

Ψ(E,d) dω −Wext(U) (45)

Dn(d) =

∫

ω

∫ tn+1

tn

Φ(ḋ;d)dt dω (46)
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with Wext being the work of external loads. With Φ given by (23) and (30), we get:

(Un+1,dn+1) = arg min
U ,d≥dn

En(U ,d) (47)

with Dn(d) =

n∑

m=1

∫

ω

ϕ(αm) dω (48)

where the irreversibility condition ḋ ≥ 0 has been transformed into the incremental condition d ≥ dn and

where we dropped the constant term in ϕ(αmn ) at time tn in the expression for Dn since it does not impact

the energy minimization.

5. Damage-dependent elastic energy

In this section, we discuss our modeling of the damage-dependent elastic energy Ψ(E,d) by first consid-

ering the simple case of only one damageable interface.

5.1. The special case of a single delaminated interface

Let us consider here that only one interface can delaminate. In section 2.2, we detailed the derivation

of the generalized out-of-plane Cd
ν and Cd

τ stiffness matrix in presence of one delaminated interface for the

original LS1 model. In this single interface case, we propose to consider the following simple interpolation

between the sound and the delaminated stiffness:

Cν(dν) = g(dν)Cν + (1− g(dν))Cd
ν (49)

Cτ (dτ ) = g(dτ )Cτ + (1− g(dτ ))Cd
τ (50)

where g(d) is a positive decreasing function such that g(0) = 1 and g(1) = 0 characterizing the stiffness

degradation.

5.2. The multi-interface case

In the general situation in which p different interfaces can delaminate, the generalization of the above

procedure is not practical when p is large since it would rely on proposing an interpolation between the

sound state and the 2p different delamination configurations and their associated stiffness matrices.

In the general case, we therefore propose to rely on the ”lumped” LS1 model derived in section 3 which

benefits from a diagonal stiffness matrix. We then naturally consider the following damage-dependent out-

of-plane and shear stiffness matrices:

Cν(dν) = diag(g(di,i+1
ν )ci,i+1

ν ) (51)

Cτ (dτ ) = diag(c̄1τ , g(d1,2
τ )c1,2τ , c̄2τ , . . . , g(dn−1,n

τ )cn−1,n
τ , c̄nτ ) (52)

13



where we remark that the stiffnesses c̄iτ corresponding to the mid-ply shear stress are not degraded as we do

not consider intra-ply delamination mechanisms. Let us also point out that (51)-(52) coincide with (49)-(50)

when replacing Cν and Cτ with the corresponding lumped stiffness matrices.

5.3. Modelling choices

In addition to the damage-dependent elastic stiffness described above, we also enhanced the elastic energy

with a bound constraint d ≤ 1 on the damage variable.

Specific instances of the proposed layerwise damage model are hence characterized by three distinct

choices:

• the mixed-mode delamination exponent β (or, equivalently, γ)

• the dissipated energy density functions wν(dν) and wτ (dτ )

• the stiffness degradation function g(d)

In the following, we will consider:

g(d) = (1− d)p (53)

wi(di) = d2
i i = ν, τ (54)

Our model is therefore characterized by the mixed mode exponent β and the p-exponent.

The opening behaviour of a generic interface, omitting the interface index exponent for the sake of

simplicity, can be written as ν = g(dν)cνε
ν where cν is the corresponding interface opening stiffness and

εν the corresponding opening strain. Writing down the corresponding damage evolution criterion gives the

following damage-dependent stress evolution:

ν(d) = 2

√
GIccν
p

√
d(1− d)p+1 (55)

from which we deduce the corresponding expressions for the maximal opening stress:

νmax =





4

3
√

3

√
GIccν for p = 1

9

8
√

6

√
GIccν for p = 2

(56)

We see that the model with p = 2 therefore produces a smaller maximum opening stress than for the model

with p = 1. The corresponding stress-deformation curves have been reported in Figure 4. We can see that

the p = 1 exhibits a much more brittle behaviour with a finite deformation for which the stress vanish

whereas the p = 2 model is more progressive, the stress vanishing only asymptotically for εν →∞.
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Figure 4: Interface behaviour in pure opening mode

Finally, we see that these maximum stresses are completely determined by the the interface fracture

energy GIc and the interface stiffness cν , which depends on the surrounding ply thickness and elastic proper-

ties. As a result, these models cannot account for an independent value of the interface critical stress which

would be, for instance, measured from the bonding material tensile strength. In general, interfacial bond

strengths are much lower than the critical stress computed from (56).

To overcome this issue, the previous models can be generalized by considering, for instance, the following

fracture energy densities:

wi(di) =
(κi − 1)d2

i

κi − d2
i

for i = ν, τ (57)

which involve two additional non-dimensional parameters κν , κτ > 1. Note that, in the limit case κi →∞,

the previous model wi(di) = d2
i is retrieved. The choice of κi will influence the value of the corresponding

maximum opening/shear stress which can range between 0 and the value given by (56) for κi ranging from

1 and +∞. No closed form expression of κi as a function of the maximum stress is available but the

corresponding relation can be solved numerically as detailed in Appendix A.6.

Finally, let us conclude by saying that other choices leading to other stress-deformation curves are

possible, following for instance the work of Wu [48].

6. Numerical implementation

6.1. Finite-element discretization

The weak form of the LS1 model multilayered plate model has been implemented in the open-source

finite element FEniCS package [49, 50] using quadratic triangular elements for all kinematical variables and

selective reduced integration on the shear part of the strain energy to remove shear-locking as in classical

Reissner-Mindlin models [51]. In the following, damage is represented as an element-wise constant field and

computed using a single quadrature point rule.
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6.2. Nonlinear damage problem resolution

In order to solve the nonlinear system arising from the incremental variational problem (47), we rely

on a staggered algorithm which consists in alternate minimization on the displacement U at fixed damage

and on the damage d at fixed displacement, until reaching convergence on a given load step. This approach

offers high robustness, especially during unstable delamination propagation phases, at the expense of a

larger number of iterations compared to Newton-like methods. This approach is widely used in phase-field

models of brittle fracture [52–55] and can benefit from various acceleration strategies, including Anderson

acceleration [56, 57], over-relaxation [57, 58], etc.

This alternate minimization strategy therefore requires the resolution of two single-field minimization

sub-problems:

• minimization with respect to U corresponds to a linear elasticity problem at fixed d.

• minimization with respect to d results in a nonlinear minimization problem with bound constraints

dn ≤ d ≤ 1 accounting for both the incremental irreversibility and the bounded damage constraint

included in the stored energy density.

The latter problem is in fact of pure local nature (with respect to the in-plane discretization) and can be

solved at the material point-level using a local non-linear solver in general. In addition, due to the diagonal

form (51)-(52) of the damage-dependent stiffness matrix, each interfacial damage problem is decoupled from

one another. Only di,i+1
ν and di,i+1

τ are coupled by the mixed-mode criterion, except in the case β = 1 where

the opening and sliding damage problems decouple from each other.

6.3. Taking into account tension/compression asymmetry

In the model description of the previous sections, opening damage could occur either in tension or

in compression. To avoid unphysical damage in compression, one could split the stored energy into a

positive and negative part with respect to the sign of the interface opening strains. This would make

the U -minimization sub-problem nonlinear, incurring additional computational cost. Instead, we made

the choice of a hybrid strategy, akin to that of [54], where this positive/negative split of the energy is

considered only when evaluating the damage criterion i.e. Y = −∂Ψ+

∂d
where Ψ+ =

1

2
Eel,+C(d)Eel,+ with

Eν, el,+ = 〈Eν, el〉+ for the opening strains associated with νi,i+1 and Eel,+ = Eel otherwise.

Moreover, to prevent layers interpenetration in compression, the opening damage variable dν are mo-

mentarily set to 0 if the corresponding strain is negative and restored to its previous value when the strain

is positive.
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6.4. Opening and sliding fracture coupling

With the current formulation, introducing two damage variables representing opening and sliding modes

enables to describe independently the damage evolution process for both modes while coupling both of them

through the power-law interaction criterion. However, upon full fracture (d = 1), this strategy can lead

to an independent evolution between two distinct “opening” and “sliding” delamination fronts, which is

clearly non-physical. This problem has been mentioned by [5]. In this work, we use the approach proposed

by [59] which consists in imposing dν = dτ as soon as one variable reaches a value dc ≈ 1.

7. Validation and illustrative delamination examples

(a) DCB (b) ENF (c) FRMM

Figure 5: Geometry of the considered delamination tests

We will now validate our modelling strategy against pure and mixed mode delamination tests. Com-

parisons with analytical solutions will be carried out on an isotropic beam of with the following mechanical

properties: E = 70 GPa, ν = 1/3, GIc = GIIc = 1 J/m2. The beam length is L = 200 mm and both arms

have a thickness of h = 6 mm each. In the subsequent sections, the comparison with simple tests analytical

solutions will be done in the linear elastic fracture mechanics (LEFM) setting. As a result, we will, from

now on and until further notice, consider a damage model without any critical stress, that is κν , κτ →∞.

7.1. Double Cantilever Beam

We first validate our model on the classical mode I Double Cantilever Beam (DCB) test. A vertical

displacement ±∆/2 is prescribed at the end of a specimen containing an initial pre-crack of length a0 (see

Figure 5a). Using a Timoshenko beam model in the LEFM setting, the vertical displacement and the

reaction force are related by the following analytical formula [60]:

∆(F ) =
2Fa3

0

3EI

(
1 +

3EI

a2
0µAs

+
3

a0

√
EI

µAs

)
, (58)

F ≤ Fmax =

√
EIbGc

a0 +
√

EI
µAs

(59)
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where Fmax denotes the critical applied force corresponding to the onset of delamination, b is the beam width,

As the effective cross-section of one arm As = 5A/6 = 5(bh)/6, I = bh3/12 is its area moment of inertia

and finally µ is the shear modulus. As the crack advances to a current length a, the above expressions are

simply updated by replacing a0 with a. Note that more advanced analytical expressions taking into account

elastic foundation effects can also be found in [61, 62].
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(a) p = 1 damage model
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(b) p = 2 damage model

Figure 6: Load-displacement curve F (∆) for two damage models and various mesh sizes, dashed line: LEFM analytical solution.

Figure 6 displays the obtained load-displacement curves F (∆) for two damage models with exponent

p = 1 or p = 2 and various uniform mesh sizes. As expected, the p = 1 model (Figure 6a) yields an almost

brittle behaviour, that is the occurrence of an elastic phase before the onset of delamination. Clearly, we

obtain a satisfying mesh convergence to the LEFM solution, with coarse meshes leading to load-displacement

oscillations in the propagation phase due to local unstable propagation on a single element. The p = 2
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damage model (Figure 6b) exhibits a very satisfying mesh convergence and a smoother overall behaviour.

Indeed, due to its different stress-deformation curve (see again Figure 4), damage is evolving slowly at low

load levels, which tends to smoothen the stress peak and oscillations for coarse meshes. Finally, we can

highlight that both models yield a smaller initial elastic stiffness. This slight deviation can be attributed to

the large aspect ratio of both arms in the pre-cracked configurations which enhances the differences between

the LS1 numerical solutions and the Timoshenko beam analytical solution of [60].

Secondly, comparison between the lumped LS1 model (51)-(52) and its consistent version (49)-(50) is

illustrated on Figure 7 for for a mesh size of 1 mm. One can notice that the differences between both model

predictions are extremely small. In particular, even if the diagonal compliance term in (12) increases by 25%

when considering the lumped expression (13), its impact on the global elastic slope is completely negligible

for this problem. A small difference in the peak load can be observed but both models are very close to

each other in the propagation phase. As a result, all forthcoming simulations will be conducted using the

lumped LS1 model.

Finally, we test the DCB problem with the critical-stress dependent model (56) by varying the critical

stress σcν and thus κν . Results are represented in Figure 8 for σνc ∈ [20, 30, 40, 50] MPa. As expected, for

smaller σνc , the maximum load is smaller with a much flatter peak with all curves converging to the LEFM

solution in the full propagation phase.

7.2. End Notched Flexure

The End Notched Flexure (ENF) test is a mode II failure test, as illustrated in Figure 5b. For an

Euler-Bernoulli beam model, closed-form relation between the vertical displacement and the applied force

are available in [63]. Again, refined expressions can be found in [61, 64].

Contrary to the DCB test which always results in a stable propagation with displacement-control, the

ENF test leads to a stable propagation only if a0 ≥ 0.327L = 65.4 mm [63]. We therefore compare our

results with two different pre-crack lengths, a0 = 80 mm or a0 = 40 mm which should lead to either a stable

or unstable propagation respectively.

Figure 9 displays the load-displacement curves of the two damage models for a uniform mesh size of

1 mm. Once again, the results are quantitatively very satisfactory, both models reproducing the loss of

stability depending on the initial crack length a0. Again, the quadratic p = 2 model smoothes the peak

load which also leads to an earlier onset of the unstable propagation phase in the case a0 = 80 mm. At the

expense of a large number of iterations, the staggered alternate minimization algorithm enabled to reach

the new equilibrium but without any convergence problem.

Finally, similarly to the pure mode I DCB test, the β exponent characterizing the mixed-mode propaga-

tion criterion has no impact on this pure mode II test.
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(a) p = 1 damage model
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(b) p = 2 damage model

Figure 7: Load-displacement curve F (∆) obtained with the consistent or lumped LS1 model, dashed line: LEFM analytical

solution.

7.3. Mixed-mode delamination

We now turn to a mixed-mode delamination test for which crack propagation occurs when the total

energy release rate G reaches a critical value Gc which depends on the mode mixity ratio θ = GI/GII and

on the chosen mixed-mode interaction criterion.
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Figure 8: p = 2, Load-displacement curve for various critical out-of-plane stress σc, mesh size 1 mm

For the power-law criterion considered in this work, we have during propagation:

GI +GII = G (60a)
(
GI

GIc

)γ
+

(
GII

GIIc

)γ
= 1 (60b)

GI = θGII (60c)

The effective total critical energy restitution rate Gc(θ) during propagation at fixed mode mixity is

therefore given by:

Gc(θ) =
(1 + θ)

((
θ
GIc

)γ
+
(

1
GIIc

)γ)1/γ
(61)

The Fixed Ratio Mixed Mode (FRMM) test which we now consider, is precisely a mixed mode test

resulting in a constant mode mixity of θ = 4/3 throughout the whole test. It is akin to a DCB test in which

the displacement is applied to one arm only, see Figure 5c. The analytical solution for an Euler-Bernoulli

beam model [65] reads:

∆(F ) =
L3 + 7a3

3EItot
F (62)

with





a = a0 before propagation

a =

(
2bEItotGc

7F 2

)1/2

during propagation
(63)

where Itot = b(2h)3/12 is the beam total second moment of area .

Similarly to the ENF test, for a sufficiently small pre-crack (a0 ≤ 0.415L = 83 mm), LEFM predicts

an unstable propagation. Figure 10 displays the results obtained during a stable test with a0 = 120 mm
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(a) a0 = 80 mm (stable propagation)
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(b) a0 = 40 mm (unstable propagation)

Figure 9: Load-displacement curve of the ENF test for both damage models and two pre-crack lengths, dashed line: LEFM

analytical solution.

and an unstable test with a0 = 80 mm. Again, the quantitative comparison is excellent. The stress peak is

correctly evaluated and the softening phase is well reproduced. The mixed-mode exponent β has a strong

influence on these two points, so that the accuracy of our two numerical curves highlights that the elliptic

interpolation induced by our coupled cracking energy density is correct.

7.4. Multi-interfaces failure

We now consider the multi-interface delamination experimental test introduced by [66] and reproduced

numerically in [5], [67]. It consists in a DCB with two initial delaminated regions on two different interfaces

(see figure 11). Despite both failure modes are activated in this test, it is essentially mode I dominated

so that the β exponent of the interaction criterion plays only a little role here. The considered beam is a
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p = 1 p = 2

(a) a0 = 120 mm (stable propagation) for various β exponents.

(b) a0 = 80 mm (unstable propagation)

Figure 10: Force-displacement curve force for two pre-crack lengths.

laminate of 24 unidirectional 0◦ plies with parameters given in Table 2 [66]. In our implementation, the

laminate is modelled as three effective plies consisting respectively of 10, 2 and 12 UD layers.

Figure 12 displays the load-displacement curve obtained with our model. The final deformed configura-

tion involving important delaminations of both interfaces has been represented in Figure 13. Overall, our

results match the phenomenology of the experimental test very well, with only a minor difference as regards

the different propagation phases. Indeed, similarly to the numerical model of [67], our model predicts two

instabilities. The first stress drop 2○ corresponds to the unstable propagation of the rightmost crack until

reaching the tip of the second one. The second stress-drop 3○ corresponds to a small unstable propagation

of the top crack only (Figure 14c). Finally, phase 4○ corresponds to a stable propagation phase of both

cracks, the bottom one advancing faster than the top one. Finally, note that the second unstable phase 3○
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Material parameters

EL = 115 GPa ET = 9.5 GPa νTN = 0.3

GLT = GTN = GLN = 4.5 GPa νLT = νLN = 0.29

GIc = 330 J m−2 GIIc = 800 J m−2

Table 2: Material parameters for the multi-interface DCB test

Figure 11: Multi-interface Double Cantilever Beam geometry

Experimental data [66] p=1 p=2

Figure 12: Load-displacement curve for the multi-interface DCB test

is not observed in the experiments but has also been reported numerically in [67]. As seen in Figure 12, the

quantitative agreement with the experimental load-displacement curve is very good.

8. Conclusions and perspectives

In this work, we considered a stress-based layerwise plate model and its extension towards delamination

modelling. Continuous damage mechanics has been used to formulate a damage-dependent layerwise model.
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Figure 13: Final deformed configuration (×2) for the multi-interface DCB test.

(a) Delamination fronts just before the first unstable propagation

1○.

(b) Delamination fronts just after the first unstable propagation

2○.

(c) Delamination fronts just after the second unstable propagation

phase 3○.

(d) Simultaneous propagation of both delamination fronts 4○.

Figure 14: Delamination fronts on both interfaces during the multi-interface DCB test.

A simplified expression of the original layerwise model, akin to mass-lumping procedures in dynamics, en-

abled us to obtain a much simpler formulation, avoiding complex coupling between the various plies in the

laminate global stiffness matrix. The variational character of the mechanical problem is ensured by the

generalized standard media theory. In this framework, a coupled dissipation potential has been proposed to

take into account the coupling of the failure modes at the interface. Many classical benchmarks have been

run to validate our approach. Numerical simulations show a very good agreement with respect to reference

solutions. A multi-interface cracking test illustrated the excellent capabilities of our model to reproduce

non-trivial damage kinetics.

A natural continuation of this work concerns its extension to intra-laminar failure mechanisms such as

fiber breakage and matrix cracking. Damage modeling of ply failure mechanisms is more challenging due to

the potential occurrence of damage localization. Local ply damage models must therefore be regularized to

avoid any mesh-dependency issue. In this regard, phase-field approaches of brittle fracture seem promising

and would easily fit into the current variational and numerical framework. Interaction between delamination
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and ply failure would therefore be worthy to investigate in order to enhance the LS1 model capabilities to

simulate failure phenomena fully in layered structures. In particular, investigation of failure patterns caused

by low-velocity impacts is particularly challenging due to the strong interplay between the various failure

mechanisms.
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Appendix A. LS1 layerwise model

Appendix A.1. Notations and hypotheses

• On the lateral part ∂ΩD, homogeneous Dirichlet boundary conditions are applied

• The plate is loaded on the upper ω+ and lower ω− surface, gathered under the notation ∂ΩN , with a

force distribution T+ = (T+
k ) and T− = (T−k ) respectively. Body forces are neglected.

• The Greek subscript α, β, γ, δ designate the in-plane components and take their values in J1; 2K. The

Latin indices i, j designates the general components and take the values J1; 3K.

• Einstein’s summation convention is used.

• Small strain hypothesis is retained.

Appendix A.2. LS1 stress field

We postulate that in each layer, the membrane stress field is written ∀(x1, x2) ∈ ω, x3 ∈ [h−i , h
+
i ]:

σi,3Dαβ (x1, x2, x3) = N i
αβ(x1, x2)

P i0(x3)

ei
+M i

αβ(x1, x2)
12P i1(x3)

ei
2 (A.1)

where we make use of the polynomial basis P ik(x3) := Lk

(
x3 − h̄i
ei

)
built from Legendre polynomials:

L0(y) = 1; L1(y) = y; L2(y) = −6y2 +
1

2
; L3(y) = −2y3 +

3

10
y

In order to satisfy the local 3D balance equations, the out-of-plane shear stress must necessarily be

quadratic and the out-of-plane normal stress must be cubic with respect to x3. Taking into account the

continuity of the stresses σi,3Dα3 (x1, x2, x3) and σi,3D33 (x1, x2, x3) at the interfaces between the layers, it can
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be easily established that such stress fields have the following expressions in layer i:

σi,3Dα3 = Qiα(x1, x2)
P i0(x3)

ei
+
[(
τ i,i+1
α − τ i−1,i

α

)
(x1, x2)

]
P i1(x3)

+

[
Qiα −

ei

2

(
τ i,i+1
α + τ i−1,i

α

)
(x1, x2)

]
P i2(x3)

ei

(A.2)

σi,3D33 =

[(
1

2
(νi,i+1 + νi−1,i) +

ei

12
(τ i,i+1
,α − τ i−1,i

,α )

)
(x1, x2)

]
P i0(x3)

+

[(
ei

10
(τ i,i+1
,α + τ i−1,i

,α ) +
6

5
(νi,i+1 − νi−1,i)

)
(x1, x2)

]
P i1(x3)

+

[(
ei

12
(τ i,i+1
,α − τ i−1,i

,α

)
(x1, x2)

]
P i2(x3)

+

[(
ei

2
(τ i,i+1
,α + τ i−1,i

,α ) + (νi,i+1 − νi−1,i)

)
(x1, x2)

]
P i3(x3)

(A.3)

where the introduced generalized stresses are related by the generalized balance equations (3a)–(3c).

Appendix A.3. Generalized strain measures

The generalized strain measures respectively associated with the generalized stresses N i, M i, Qi, τ j,j+1

and νj,j+1 are given as follows in terms of the generalized displacements:

εi =
1

2

(
grad(U i) + grad>(U i)

)

χi =
1

2

(
grad(Φi) + grad>(Φi)

)

γi = Φi + grad(U i3)

Dj,j+1 = U j+1 −U j − ej+1

2
Φj+1 − ej

2
Φj

εj,j+1
ν = U j+1

3 − U j3

(A.4)

In the following, we adopt Voigt’s notation for the generalized stress and the associated strain:

E> = {EK,>,Eν,>,EQ,>} Σ> = {ΣK,>,Σν,>,ΣQ,>}

EK,> = {ε1
11, ε

1
22, 2ε

1
12, χ

1
11, χ

1
22, 2χ

1
12, . . . , (A.5)

. . . , εn11, ε
n
22, 2ε

n
12, χ

n
11, χ

n
22, 2χ

n
12}

Eν,> = {ε1,2
ν , . . . , εn−1,n

ν } (A.6)

EQ,> = {γ1
1 , γ

1
2 , D

1,2
1 , D1,2

2 , . . . , Dn−1,n
1 , Dn−1,n

2 , γn1 , γ
n
2 } (A.7)

ΣK,> = {N1
11, N

1
22, N

1
12,M

1
11,M

1
22,M

1
12, . . . , (A.8)

. . . , Nn
11, N

n
22, N

n
12,M

n
11,M

n
22,M

n
12}

Σν,> = {ν1,2, . . . , νn−1,n} (A.9)

ΣQ,> = {Q1
1, Q

1
2, τ

1,2
1 , τ1,2

2 , . . . , τn−1,n
1 , τn−1,n

2 , Qn1 , Q
n
2} (A.10)
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in which the exponents K ,ν , Q,respectively refer to the generalized Kirchhoff stress/strain, the generalized

out-of-plane stress/strain and the generalized shear stress/strain (both intra and inter-laminar).

Appendix A.4. Compliance matrix

The generalized compliance matrix of the laminate has a diagonal block structure:

S =




SKLS1 0 0

0 SνLS1 0

0 0 SQLS1




So does the generalized Kirchhoff-compliance:

SKLS1 =




SK1 0 . . . . . . 0

0 SK2 0 . . .
...

0
. . .

. . .
. . .

...
... . . .

. . .
. . . 0

0 . . . . . . 0 SKn




(A.11)

where SKi refers to the Kirchoff compliance of the ith layer

SKk =




Sk
11

ek
Sk
12

ek
Sk
16

ek
0 0 0

Sk
21

ek
Sk
22

ek
Sk
26

ek
0 0 0

Sk
16

ek
Sk
26

ek
Sk
66

ek
0 0 0

0 0 0
12Sk

11

(ek)3
12Sk

12

(ek)3
12Sk

16

(ek)3

0 0 0
12Sk

12

(ek)3
12Sk

22

(ek)3
12Sk

26

(ek)3

0 0 0
12Sk

16

(ek)3
12Sk

26

(ek)3
12Sk

66

(ek)3




(A.12)

in which Sαβ = Sααββ , Sα6 = Sαα12 and S66 = S1212.

The out-of-plane compliance admits the following tridiagonal structure:

Sν =




13(e1S1
3333+e2S2

3333)
35

9e2S2
3333

70 0 . . . 0

. . .
. . .

. . .
...

. . .
. . . 0

SYM
. . . 9en−1Sn−1

3333

70

13(en−1Sn−1
3333+enSn

3333)
35




(A.13)
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Finally, the shear compliance collecting both intra and inter-laminar contributions reads:

SQ =




6S1
Q

5e1

−S1
Q

10 0 · · ·
−S1

Q
10

2(e1S1
Q+e2S2

Q)

15

−S2
Q

10

−e2S2
Q

30 0 · ·

· 0
−S2

Q
10

6S2
Q

5e2

−S2
Q

10 0 ·

· 0
−e2S2

Q
30

−S2
Q

10

2(e2S2
Q+e3S3

Q)

15

−S3
Q

10 ·

. . .
· · · · · · ·

6Sn
Q

5en




(A.14)

where SkQ = [4Skα3β3]

Appendix A.5. Lagrange condensation

T> ·Σ = 0 ⇒




TQ>m ·ΣQ = 0

T ν>m ·Σν = 0

TQm is a 4n− 2× 2-matrix, T νm is a n− 1-vector, with these notations (9) now reads:

Cνcorr = Cν − Cν · T νm ·
(
T ν>m · Cν · T νm

)−1

T ν>m · Cν

CQcorr = CQ − CQ · TQm ·
(
TQ>m · CQ · TQm

)−1

TQ>m · CQ
(A.15)

Appendix A.6. Critical stress identification

Following the discussion of section 5.3, the opening stress as a function of interfacial damage for a pure

opening deformation mode with the density given in (57) reads:

ν(d) = 2
√
GIccν

√
κν(κν − 1)d(1− d)p+1

p(κν − d)2
(A.16)

One can then find the corresponding value of the damage parameter associated with the maximum stress,

which is given by:

dc =
1− κν
ς

+ ς + 1 (A.17)

with ς = 3

√
(
√
κν − 1) (κν − 1) (A.18)

for p = 1, and:

dc =
2κν −

√
2κν(2κν − 3

2 )

3
(A.19)

for p = 2.

Given some fixed interfacial material strength σνc , the corresponding value for κν is found by solving

the following scalar non-linear equation ν(dc) = σνc in terms of κν for ν(dc) given by (A.16) and (A.17) or

(A.19). Finally, a similar procedure is used to identify κτ as function of a given interfacial shear strength

στc .

29



In order to validate this procedure, Figures A.15-A.16 represent the computed opening stress as a function

of an imposed interfacial opening εν for a laminate consisting of two plies and a single interface and various

target interfacial strengths σνc . The mechanical properties of the laminate are those of T300/977-2 carbon

[68] with 0.192 mm thick plies.
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Figure A.15: Stress-deformation curve for a 2-ply laminate and various σνc p = 1

0.000 0.005 0.010 0.015 0.020 0.025
Out-of-plane strain  (mm)

0

20

40

60

80

100

120

Ou
t-o

f-p
la

ne
 st

re
ss

 
 (M

Pa
)

c = 30MPa
c = 50MPa

9
8 6

GIcc

Figure A.16: Stress-deformation curve for a 2-ply laminate and various σνc p = 2

References

[1] H. Zhang, E. Bilotti, T. Peijs, The use of carbon nanotubes for damage sensing and structural health monitoring in

laminated composites: a review, Nanocomposites 1 (2015) 167–184.
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