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General Relative Entropy inequality for Cauchy problems preserving
positivity in function spaces

Étienne Bernard

CERMICS, École des Ponts, Marne-la-Vallée, France

Abstract

The Generalized Relative Entropy inequality is a ubiquitous property in linear Cauchy problems
conserving positivity of the solution over time. Yet, it is currently proved on a case-by-case basis
in the literature. Here, we first prove that by considering the Cauchy problems in the framework
of Riesz spaces, GRE is actually a generic consequence of a Jensen-type inequality applied to a
vector-valued convex function associated to the relative entropy. Next, we extend the method to
the simplest case of nonlinearity, i.e. the affine case, and we show that it also implies either GRE
for a subclass of convex functions either a relaxed GRE for a larger subclass, which suggests a new
avenue of research for the challenge of GRE in nonlinear problems arising in population dynamics.
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1. Introduction

Generalized Relative Entropy inequality (GRE in short) is a property that often occurs in
linear Partial Differential Equations (PDE) preserving the positivity of the initial condition over
time. We recall the principle of GRE: consider L be a (possibly unbounded) linear operator in an
ambient space E, typically a (weighted) Lebesgue space, and let the associated Cauchy problem:{

∂n
∂t = Ln,
n|t=0 = nin,

(1)

and assume that it preserves positivity over time, meaning that for any time t, the solution n of
(1) is nonnegative whenever its initial condition nin is nonnegative. Assume also that there exists
(λ0, φ, ψ) with λ0 ∈ R and nonnegative functions φ ∈ E,ψ ∈ E′ solving the eigenproblem and its
dual: {

Lφ+ λ0φ = 0 in E,

L∗ψ + λ0ψ = 0 in E′.
(2)

The Cauchy problem above is then said to satisfy GRE, if for any convex function H defined on

R+ and provided that the integral
∫
φ(x)ψ(x)H

(
e−λ0t n(t,x)

φ(x)

)
µ(dx) makes sense for any t > 0, the

following functional, the so-called relative entropy, is nonincreasing over time:

t 7→ Hψ(n |φ ) :=

∫
φ(x)ψ(x)H

(
e−λ0t

n(t, x)

φ(x)

)
µ(dx). (3)
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Notice that by writing u(t, x) = e−λ0tn(t, x) and noticing that d
dtu(t, x) = d

dt

(
e−λ0tn

)
=

−λ0u(t, x) − Lu and d
dtu(t, x) + (λ0 + L)u = 0. So that, by replacing L by (λ0 + L), we can

assume henceforth without loss of generality that λ0 = 0. The GRE plays a fundamental role in5

mathematical models in biology or physics of polymerization (see [1, 2, 3, 4] and references therein)
where it is used to get a priori estimates or long time convergence to a steady state or periodic so-
lutions (e.g. [5, 6, 1, 7]). It has been established for various linear PDE but only on a case-by-case
basis. Moreover, in a few papers such as in [7], it remains at a formal level. The present paper ad-
dresses this question by introducing a framework in which it rigorously defines the relative entropy10

and establishes the GRE as a generic property of positivity-preserving solutions of initial problems.

The heuristic observation is that the general relative entropy functional defined in (3) can be
seen as

Hψ(u |φ ) = 〈ψ|Hφ(u)〉E′,E

with the functional Hφ(u) := u ∈ E 7→ φH
(
u
φ

)
that is convex with value in E by convexity of the

real valued function H. This, with the remark that for a large class of Cauchy problems, building
a positive solution amounts to defining, for any t > 0, a positive operator Tt such that u = Ttu

in is
solution of the Cauchy problem with uin as initial condition. All this together leads us to expecting
a Jensen-type inequality applied to the E-valued convex function Hφ and the positive operator
Tt:

Hφ(Tt) 6 TtHφ(u).

If such an inequality is valid in E, as ψ is nonnegative and as L∗ψ = 0, which implies T ∗t ψ = ψ
for any t > 0;

Hψ
(
Ttu

in |φ
)

=
〈
ψ
∣∣Hφ

(
Ttu

in
)〉
E′,E

6
〈
ψ
∣∣TtHφ

(
uin
)〉
E′,E

6
〈
T ∗t ψ

∣∣Hφ

(
uin
)〉
E′,E

6
〈
ψ
∣∣Hφ

(
uin
)〉
E′,E

6 Hψ
(
uin |φ

)
.

Therefore, GRE would be a consequence of the expected Jensen-type inequality. A first diffi-
culty in this approach is the definition of Hφ. Indeed, the division of two functions is in general
not defined in any function space E except in a few rare cases such as the space of measurable15

functions relative to a measurable space. A way to get around the obstacle is to work first in the
space of measurable functions, and then to extend the result in a function space fairly close to the
first one such that the inequality can remain valid in both. As we will see, the theory of Riesz
spaces provides the framework and tools for such a task, but we have to lay the foundations before
stating precisely the main results.20

Besides, given the importance of GRE in the study of linear models in population dynamics,
some authors have established to a certain extent GRE in some nonlinear cases (e.g [8, 9, 10]).
But unlike the linear case, the GRE does not always hold in general for any convex function in
the nonlinear case, e.g. Remark 8 in [4]. Finding in which case and for which convex function25

GRE holds is a challenging task. The proof of Lemma 3.2 gives a possible solution to the problem
of finding the convex functions with which the GRE can hold, or even finding some inequalities
in the same spirit as GRE without being so in the strict sense; in other words, a kind of relaxed
GRE. What we will see in the affine case that is the simplest form of nonlinearity.

30

Consequently, the paper is organized as fellows: in Section 2, we set the framework in which
the problem will be rigorously set, and we then state the main result. Afterward, we establish
the various consequences of the Jensen-type inequality. In Section 3, we prove the Jensen-type
inequality. Eventually, in Section 4, we show how the method of proof used in Section 3 can be
adapted in the affine case to establish a Jensen-type inequality for a subclass of convex functions35
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compatible with the nonlinear structure. We will also see how to get a variant of Jensen-type
inequality who will leads to a kind of relaxed GRE if we have a law of conservation.

2. Reformulation of the problem and main results

Before giving the main results, we give its framework by recalling first the notions of Riesz
spaces and of function spaces, then we specify the meaning of preserving positivity property for a40

Cauchy problem. Afterward, we define the relative entropy functional both in L0 and in a function
space.

2.1. Function spaces

Speaking of Cauchy problems preserving positivity necessitates an ambient space endowed
with a (partial) order relation compatible with its topology. The theory of Riesz spaces gives a45

convenient framework. The literature upon the subject is huge, a good starting point is [11, 12],
but for the sake of completeness, we recall briefly its main aspects.
A vector space E over R endowed with an order relation 6 is a ordered vector space if these axioms
are satisfied:

1. x 6 y ⇒ x+ z 6 y + z for all x, y, z ∈ E,50

2. x 6 y ⇒ λx 6 λy for all x, y ∈ E and λ ∈ R+.

An element x of E is said to be positive if 0 6 x and the subset E+ := {x ∈ E : x > 0} is called
the positive cone of E. A linear map A of E is said to be positive if A(E+ ∩D(A)) ⊂ E+. It is
moreover a vector lattice (also called Riesz space) if x ∨ y := sup{x, y} and x ∧ y := inf{x, y} are
well-defined in E. A subset U of E is called solid if 0 6 x 6 y for some y ∈ U and x ∈ E implies55

that x ∈ U . Every solid subspace F of E is called an (order) ideal in E.

Let us give an important exemple of Riesz space. Let (X,Σ, µ) be a complete σ−finite measure
space, then the set L0(X,Σ, µ) of all Σ−measurable µ−almost everywhere finite real valued func-
tions modulo µ-null functions endowed with the pointwise order (f 6 g if and only if f(x) 6 g(x)
µ−a.e.) is a Riesz space (see [12] p. 12). To reduce the amount of notation, we drop henceforth
(X,Σ, µ) and we write only L0 for L0(X,Σ, µ). In the same spirit, in the following, the abbreviation
a.e. is implicitly relative to (X,Σ, µ). We also introduce the following notation:

L0
++ :=

{
f ∈ L0 |f(x) > 0 µ− a.e.

}
The Lebesgue spaces Lp(X,Σ, µ) (1 6 p < ∞) are lattice subspaces of L0 and are also ideals of
L0. Notice that the set L0

++ coincides with the one of weak order units, i.e. the set of positive
vectors e such that |x| ∧ e = 0 implies x = 0 (Definition 23.5 in [12] p.163 and remark below it,60

we recall that L0 and its ideals are Archimedean, see Example 9.2 (iv) in [12] p.40)

We now underline a difficulty in the definition of relative entropy (3). Generally, we consider
Cauchy problems in spaces such as Lebesgue spaces or Sobolev spaces that are ”smaller” than L0.
Yet, in L0, the division of any function by a strictly positive function give a measurable function65

and is well-defined in L0. Therefore, the definition of the relative entropy functional does not pose
any difficulty in L0. The situation can be different in the case of classic spaces used in the study
of Cauchy problems. Consequently, we have to work both in L0 and in one of its subspaces, which
motivates the introduction of function space whose the definition is recalled below:

Definition 2.1. A function space E is simply an ideal of L0.70

It is a classic concept, although little known: see e.g. [15] p. 194. Function spaces include L0,
Lebesgue, Orlicz, Orlicz-Lorentz and Marcinkiewicz spaces. Notice that the spaces of (bounded,

3



vanishing at infinity, and so on) continuous functions are not ideals of L0 and therefore are not
function spaces. Henceforth, we denote for any function space E :

E++ := E ∩ L0
++.

Notice that E++ 6= ∅ is not a trivial statement since it implies that the support of E is X and
thus that E is order dense in L0 (see Definition 1.93 and Lemma 1.94 p.60 in [15]). That leads to
the first assumption:

Assumption 1. The ambient space E of the Cauchy problem is a function space with E++ 6= ∅.

2.2. The notion of preserving positivity over time75

We now specify the notion of preserving the positivity of a solution for a linear Cauchy problem.
It is a well-known fact that there are many ways to define a solution to a Cauchy problem such
as (1) depending on the properties of the operator L and the ambient space E; for instance the
mild solution if it generates a C0-semigroup ([16]), the weak solution ([17]), the very weak solution
(see for instance [18]), and so on. In order to take them all into account, we consider an abstract80

version of theory of solutions by considering it as a family of (possibly unbounded) operators:

Definition 2.2. A theory of solution for a given Cauchy problem in a function space E is a family
of (possibly unbounded) linear operators (Ft)t∈I in E with 0 ∈ I ⊆ R+ such that:

1. for any u ∈ D(F0) ⊆ E F0u = u,

2. and Ftu ∈ E is a solution of the Cauchy problem with u as initial condition.85

We underline that we do not make any assumptions on the regularity of t 7→ Ft nor the semi-
group property that is Ft+s = Ft ◦ Fs = Fs ◦ Ft. That explains why we have avoided the term
of (semi-)flow that necessitates the notion of semigroup. That enables us to take into account
for instance solutions of Cauchy problems with memory such as integro-differential equations (see
for instance [19]) which have not the semigroup property. Notice also that the assumptions on I90

includes the discrete-time case. All we need is a positive operator in a function space.

Within this framework, speaking of a Cauchy problem preserving positivity over time in a
function space E amounts to considering a theory of solutions as a family of positive operators of
E. That leads to our second assumption:95

Assumption 2. Let E be a function space, let L be a (possibly unbounded) operator. When we tell
that the associated Cauchy problem is positivity-preserving, we mean that there exists a family of
positive operators Ft : D(Ft) 7→ E that is a theory of solutions for the Cauchy problem associated
to L.

2.3. The relative entropy100

We can now make precise the notion of relative entropy. We first introduce the following class
of convex functions:

Definition 2.3. A real-valued function f belongs to the set C if and only if

1. the function f is lower semi-continuous.

2. The nonnegative reals are included in its effective domain, i.e. R+ ⊆ domf := {x |f(x) < +∞}.105

3. the function f is bounded from below by a constant on R+: ∃C ∈ R : f(x) > C ∀x ∈ R+.
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Notice that C is obviously a real vector space. Moreoever, the constant functions and the
classical functions in relative entropy theory such as x 7→ |x|, x 7→ 1

2 |x|
2
, x 7→ x lnx+x−1 belong

to C. We denote C+ the subset of nonnegative functions belonging to C.
Let H ∈ C and let φ ∈ L0

++, then we define

Hφ : u ∈ L0
+ 7→ φH

(
u

φ

)
. (4)

As φ > 0 a.e., 1
φ is finite a.e. and measurable, which implies that u

φ is measurable for any mea-110

surable u as pointwise product of measurable functions. As H ∈ C, it is continuous on R+ (see

Corollary 2.5 p. 13 in [21]), thus H
(
u
φ

)
is measurable and so is φH

(
u
φ

)
as pointwise product of

measurable functions. Therefore Hφ is a well-defined functional on L0
+ with value in L0.

Now let E be a function space, and we introduce:

D
(
HE
φ

)
:= {u ∈ E+ |Hφ(u) ∈ E },

and the map in E:
HE
φ : u ∈ D

(
HE
φ

)
7→ Hφ(u).

Obviously, R+φ ⊂ D
(
HE
φ

)
, thus D

(
HE
φ

)
6= ∅. Moreover, the convexity of H implies the one of

D
(
HE
φ

)
. We can now define for every ψ ∈ E′ and φ ∈ E++ the relative entropy in E:

Hψ(· |φ ) : u ∈ D
(
HE
φ

)
7→
〈
ψ
∣∣HE

φ (u)
〉
E′,E

2.4. The main results115

Before giving the main results, we underline that the GRE stated in (3) can have two different
interpretations in the new framework. Either it means a control by the initial condition in the
following sense:

for any u ∈ D
(
HE
φ

)
s.t. Ftu ∈ D

(
HE
φ

)
, Hψ(Ftu |φ ) 6 Hψ(u |φ ), (5)

for a family of positive operators that is a theory of solution for a Cauchy problem. Or the
functional is nonincreasing meaning that for any t, s > 0 s.t. 0 6 s 6 t and for any u ∈
D
(
HE
φ

)
such that Ftu, Fsu ∈ D

(
HE
φ

)
:

Hψ(Ftu |φ ) 6 Hψ(Fsu |φ ). (6)

for a family of positive operators that is a theory of solution for a Cauchy problem. That is
the most used in literature as in [6]. Obviously, if the theory of solutions (Ft)t∈I is in fact a
semi-flow, hence having the semigroup property, then (6) is a consequence of (5). Here, we aim
to establish GRE in the sense (5) and therefore, it is enough to find which conditions on an
unbounded positive operator A in a function space E and on (φ, ψ) ∈ E × E′ entail for any

u ∈ D
(
HE
φ

)
∩D(A) such that Au ∈ D

(
HE
φ

)
:

Hψ(Au |φ ) 6 Hψ(u |φ ). (7)

Our first result is an abstract Jensen-type inequality applied to relative entropy:

Theorem 2.4. Let E be a function space, and let A be a positive (possibly unbounded) linear
operator. Let H ∈ C, and φ ∈ E++ such that there exists φ̃ ∈ D(A)∩E++ with φ = Aφ̃. Then we
have the following stability property:

for any u ∈ D(A) ∩D
(
HE
φ̃

)
such that Hφ̃(u) ∈ D(A), we have Au ∈ D

(
HE
φ

)
,

and the Jensen-type inequality:

for any u ∈ D(A) ∩D
(
HE
φ̃

)
such that Hφ̃(u) ∈ D(A), HE

φ (Au) 6 AHE
φ̃

(u).
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Let’s make several remarks.

1. As we work in both L0 and E where the order relation is the same, we have to be careful
about the context of any inequality between two terms: does it happen in L0 or in E ? If
both functions are nonnegative, then by Definition 2.1, if the upper function is in E then120

the lower function is also in E. But if the sign of the lower function is unknown, then we
can’t deduce in general that the inequality holds in E even if the upper function is in E.

That explains why in (7) we have written as condition Au ∈ D
(
HE
φ

)
. But that condition is

dropped in Theorem 2.4 because, as we will show in the proof of Lemma 3.2, the existence
of a lower bound to H and the presence φ and φ̃ as pivot functions imply that Hφ(Au) ∈ E125

provided that AHφ̃(u) ∈ E, no matter the sign of Hφ(Au).

2. It is not the first Jensen-type result in Banach lattice theory, see [22] and especially [13]. The
main difference with these papers is that we have established it for a vector-valued convex
function Hφ whose ”pivot” functions enables us to consider a larger class of real-valued
functions and positive operators than in [22, 13](see the proof of Lemma 3.2).130

3. As f 7→ 〈ψ|f〉E′,E is a positive linear form for any ψ ∈ E′+, Theorem 2.4 implies that with
the same assumptions that for any ψ ∈ E′+ ∩D(A∗) :

∀u ∈ D(A) such that Hφ̃(u) ∈ D(A), 〈ψ|Hφ(Au)〉 6
〈
A∗ψ

∣∣∣Hφ̃(u)
〉
E′,E

And therefore, we get the second main result:

Corollary 2.5 (Abstract GRE). Let E be a function space, and let A be a positive (possibly
unbounded) linear operator. Let H ∈ C, and φ ∈ E++ such that there exists φ̃ ∈ D(A)∩E++

with φ = Aφ̃. Then for any ψ ∈ E′+ ∩D(A∗):

∀u ∈ D(A) such that Hφ̃(u) ∈ D(A), Hψ(Au |φ ) 6 HA∗ψ
(
u
∣∣∣φ̃)

Which implies immediately GRE in the form (7) when we have moreover A∗ψ = ψ and
Aφ = φ.

4. When L is generator of a C0-semigroup (Tt)t∈R+
, then the solution (φ, ψ) ∈ E × E′ to the

eigenproblem (2) with λ0 = 0 satisfies Ttφ = φ and T ∗t ψ = ψ and thus Corollary 2.5 implies135

immediately GRE for the semigroup in the classical sense (5), thus the third main result:

Corollary 2.6 (GRE for positive C0-semigroups). Let E be a function space, and an un-
bounded operator L being generator of a positive C0-semigroup (Tt)t∈R+

such that there exists

nonnegative functions (φ, ψ) ∈ E × E′ being solutions of{
Lφ = 0 in E,

L∗ψ = 0 in E′.

Then for any u ∈ D
(
HE
φ

)
and any t > 0, we have Ttu ∈ D

(
HE
φ

)
and

t 7→ Hψ(Ttu |φ ) is nonincreasing.

5. The main results presented above can be generalized in several directions.

• We can retrieve the main results with L0(X,Σ, µ) replaced by C(X), Cb(X) or C0(X)
that are Riesz spaces ([12] p.14) provided that we assume moreover that D(Hφ) is stable
for A, since the spaces evoked above are not ideals of L0.140

6



• In Definition 2.3, we have considered convex functions whose effective domains include
R+, but we can replace R+ by any interval I ⊆ R+ keeping the main results provided
that we assume moreover that the linear operators satisfy the following property

∀u such that ∀x, u(x) ∈ I ⇒ ∀x,Au(x) ∈ I.

That enables us to extend for instance the main results to the Kermack-McKendrick
function x 7→ x − lnx with I = R

∗
+ for linear Cauchy problem preserving the strict

positivity.

• It can also be extended to stochastic partial equations preserving positivity such as the
Black-Scholes equation.145

3. A Jensen-type theorem for linear positive operators

The present section is devoted to the proof of Theorem 2.4. We first recall that for any H ∈ C
and any φ ∈ L0

++, the L0−valued functional Hφ set as in (4) is well-defined. The heuristic remark
that motivates Theorem 2.4 is that by φ ∈ E+ and convexity of H, we have for any u, v ∈ E+ and
any λ ∈ [0, 1] :

Hφ(λu+ (1− λ)v) 6 λHφ(u) + (1− λ)Hφ(v).

In other words, the L0-valued function Hφ is convex on L0
+. We therefore expect that it shares some

properties with real-valued convex functions. The lemma below extends to it a well-known property
of real-valued l.s.c. convex functions, i.e. being the pointwise supremum of affine functions:

Lemma 3.1. Let H ∈ C, and let φ ∈ L0
++ and let Hφ be defined on L0 as in (4). Then, there

exists F ⊂ R2 such that for any u ∈ L0

Hφ(u(x)) = sup
(a,b)∈F

anu(x) + bnφ(x),

Proof. As H ∈ C, it is equal to the pointwise supremum of all its lower affine functions by
Proposition 3.1 p.14 in [21]. Therefore, there exists ≡ F ⊂ R2 such that

H(x) = sup
(a,b)∈F

ax+ b.

That implies that:

H

(
u(x)

φ(x)

)
= sup

(a,b)∈F
a
u(x)

φ(x)
+ b

That means that whatever (a, b) ∈ F , we have. au(x)φ(x) + b 6 H
(
u(x)
φ(x)

)
and for µ-a.e x there exists

a sequence (an, bn) ∈ F such that an
u(x)
φ(x) + bn ↑ H

(
u(x)
φ(x)

)
. As φ is nonnegative, we have for any x

anu(x) + bnφ(x) 6 φ(x)H
(
u(x)
φ(x)

)
and for any x, for the same sequence above anu(x) + bnφ(x) ↑

φ(x)H
(
u(x)
φ(x)

)
. Therefore there exists F ⊂ R2 such that

Hφ(u(x)) = sup
(a,b)∈F

au(x) + bφ(x),

which is the desired conclusion.150

We can now prove a Jensen-type inequality:

Lemma 3.2. Let H ∈ C and φ ∈ E++. Let Hφ defined as in (4). Let E be a function space. Let

A be a positive linear map of E such that there exists φ̃ ∈ E++ with Aφ̃ = φ Then we have the
Jensen-type following inequality: for any u ∈ D(A) ∩ L0

+ such that Hφ̃(u) ∈ D(A),

Hφ(Au) 6 A
(
Hφ̃(u)

)
both in L0 and in E.

7



Proof. We know that by Lemma 3.1, there exists a subset F of R2 such that

Hφ(u(x)) = sup
(a,b)∈F

au(x) + bφ(x). (8)

We first consider A as a positive unbounded operator defined on L0 with value in L0. We have
then for any u ∈ D(A) ∩ L0

+,

Hφ(Au)(x) = sup
(a,b)∈F

a(Au(x)) + bφ(x),

= sup
(a,b)∈F

a(Au(x)) + b
(
Aφ̃
)

(x), (9)

= sup
(a,b)∈F

A
(
au+ bφ̃

)
(x) (by linearity of A),

6 A

(
sup

(a,b)∈F

(
au+ bφ̃

))
(by order-preserving property of A),

= A
(
Hφ̃(u)

)
(by (8)).

That implies the first inequality in L0. Now, we show that it holds also in E. Let u ∈ D
(
HE
φ̃

)
∩E+

such that HE
φ̃

(u) ∈ D(A). As A is also an unbounded operator of L0 with values in L0 we have

by (9) :

Hφ(Au) 6 A
(
Hφ̃(u)

)
in L0.

First assume that H ∈ C+, then since Au ∈ E+ by positivity of A and since u ∈ D(A) with
HE
φ̃

(u) ∈ D(A) and φ ∈ E, we have:

0 6 Hφ(Au) 6 A
(
Hφ̃(u)

)
in L0,

with A
(
Hφ̃(u)

)
∈ E. That implies, since E is by definition an ideal of L0, that Hφ(Au) ∈ E and

therefore
0 6 Hφ(Au) 6 A

(
Hφ̃(u)

)
in E.

Now consider the general case: H ∈ C. There exists a constant C such that H + C ∈ C+ and we
can take C > 0. Notice that for any ∀u ∈ L0,

(H + C)φ(u) = Hφ(u) + Cφ.

Therefore, as φ ∈ E, we have u ∈ D
(
HE
φ

)
if and only if u ∈ D

(
(H + C)

E
φ

)
. As φ̃ ∈ D(A) and

Hφ̃(u) ∈ D(A), we have (H + C)φ̃(u) ∈ D(A) and thus by the first case

0 6 (H + C)φ(Au) 6 A(H + C)φ̃(u) in L0 and in E (10)

That implies by the same argument as in the case H ∈ C+ that:

Hφ(Au) + Cφ ∈ E,

thus, since φ ∈ E:
Hφ(Au) ∈ E.

Consequently, Au ∈ D
(
HE
φ

)
and by (10):

Hφ(Au) 6 A
(
Hφ̃(u)

)
in E,

which is the desired conclusion.
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Remark 3.3. 1. The proof is reminiscent of a classical way of proving Jensen inequality that is
often taught at university [23] (Theorem 1.8.1 p. 45 or Theorem 3.6.4. p.125) And that trick
of convex function as supremum of affine functions has been used in [24] (see Proposition 3.4155

p. 82) and in [25] to extend the classical Jensen inequality to (possibly infinite) measure space
provided that H is moreover positively homogeneous.

2. Lemma 3.2 can be seen as a generalization of (i)⇒ (ii) in Proposition 1 in [22] or Proposi-
tion 3.4 in [24]. We underline that in [22, 24], the authors have assumed that the operator
is (sub)markovian, meaning that AC 6 C for any constant C in order to handle the term160

b in (9). In our work, the markovianity is dropped as assumption thanks to the presence of
the terms φ and φ̃ as pivot functions as showed in the proof above.

4. A Jensen-type theorem for relative entropy in the affine case

Given the importance of GRE in mathematical models in biology of population, some authors
have tried to establish it in a few nonlinear Cauchy problems. However, it presents a number of
challenges. One of which is the impossibility of defining an adjoint operator for a nonlinear one.
In order to have GRE from a Jensen-inequality for a given nonlinear operator A in the same spirit
as in Theorem 2.4, we have to assume moreover a law of conservation, i.e. a positive vector ψ ∈ E′
such that:

For any φ ∈ E+, 〈ψ|Aφ〉 = 〈ψ|φ〉E′,E .

That being said, we will focus on the Jensen-type inequality and its variants. More precisely, we
will see how the proof of Lemma 3.2 gives a method to find the convex functions with which the165

GRE can hold in its strict form or relaxed in the affine case.

Let’s first explain the approach. Let’s consider in (1) the nonhomogeneous case, i.e. when the
map L is an affine operator, i.e. L : u 7→ Au+ f :{

∂
∂tu = Au+ f,

u|t=0 = uin,
(11)

with A is a (possibly unbounded) linear operator and a prescribed function f with values in E,
called the source term. Assume moreover that A is a generator of a C0-semigroup Tt and assume
that f ∈ L1(R+, E) then a function u ∈ C(R+;E) is a mild solution of 11 if

u(t) = Ttu
in +A

∫ t

0

u(s)ds+

∫ t

0

Tt−sf(s)ds,

(see [16] p. 451 or [26]). We can thus define for any t > 0 :

Ft : uin 7→ Ttu
in +A

∫ t

0

u(s)ds+

∫ t

0

Tt−sf(s)ds.

It is obviously an affine map with uin 7→ Ttu
in + A

∫ t
0
u(s)ds as linear part and

∫ t
0
Tt−sf(s)ds as

fixed part. Notice that the linear part is a positive operator and that as f is nonnegative, the
fixed part is also a nonnegative function. Therefore, in the same spirit as in the linear case, we170

can consider a GRE as a consequence of a Jensen-type theorem for affine map both in L0 and in
a function space E. But, as we will see, the nonlinear feature is an additional constraint on the
class of admissible convex function. We introduce the following

Definition 4.1. Let K > 0. A real-valued function f belongs to the set C[K] if and only if

1. the function f is nonnegative.175

2. the function fbelongs to the set C.
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3. There exists F ⊂
{

(a, b) ∈ R2 |a+ b 6 K
}

such that

for any x ∈ R+, H(x) = sup
(a,b)∈F

ax+ b.

Remark 4.2. The first assumption that is the nonnegativity is to avoid some technicalities, as
the aim of the present section is to show the possible extension to the nonlinear case of the method
exposed in Section 3.

We can now state the main result:180

Proposition 4.3. Consider a function space E and the affine operator A = A0 + f with A0 being
a positive unbounded linear operator and f ∈ E+. Let φ ∈ E++ such there exists φ̃ ∈ E++ ∩D(A)
with φ = Aφ̃. Then for any H ∈ C[K], any u ∈ D(A) such that Hφ̃(u) ∈ E we have:

Hφ(Au) ∈ E,

and
Hφ(Au) 6 (K ∨ 1)A

(
Hφ̃(u)

)
both in L0 and E.

That implies

Corollary 4.4. With the same assumptions as in Proposition 4.3 and assume moreover that the
affine operator has ψ ∈ E′ as law of conservation, then:

Hψ(Au |φ ) 6 (K ∨ 1)Hψ
(
u
∣∣∣φ̃).

When K 6 1, we retrieve GRE in its classical form. Otherwise, we get a kind of relaxed GRE,
one of which we can still deduce some a priori estimates. And provided a careful study of the
multiplicative constant over time, the relaxed GRE can be useful for the study of the long-time
behavior. That suggests a program of research in the nonlinear case: not only look for some185

convex functions for which GRE holds, but also variants of GRE that can still be useful.

That being said, we now prove Proposition 4.3

Proof. By Lemma 3.1, we have

Hφ(Au)(x) = sup
a,b∈F

φ(x)a
Au(x)

φ(x)
+ b,

= sup
a,b∈F

aAu(x) + bφ(x),

= sup
a,b∈F

aA0u(x) + bA0φ̃(x) + (a+ b)f(x),

6 sup
a,b∈F

A0

(
φ̃

(
a
u

φ̃
+ b

))
(x) +Kf(x), since H ∈ C[K],

6 (K ∨ 1)
(
A0

(
Hφ̃(u)

)
(x) + f(x)

)
by positivity of A0,

6 (K ∨ 1)A
(
Hφ̃(u)

)
(x)in L0.

As H ∈ C[K], it is nonnegative, and thus since u ∈ E+ and Au ∈ E+, we have

0 6 Hφ(Au) 6 (K ∨ 1)A
(
Hφ̃

)
in L0

with A
(
Hφ̃

)
∈ E+, which implies that, E being an ideal of L0, that Hφ(Au) ∈ E and thus the

inequality above is also valid in E. Whence the desired result.190
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