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Abstract In the field of nonlinear mechanics, many challenging problems (e.g.
plasticity, contact, masonry structures, nonlinear membranes) turn out to be ex-
pressible as conic programs. In general, such problems are non-smooth in nature
(plasticity condition, unilateral condition, etc.), which makes their numerical reso-
lution through standard Newton methods quite difficult. Their formulation as conic
programs alleviates this difficulty since large-scale conic optimization problems can
now be solved in a very robust and efficient manner, thanks to the development of
dedicated interior-point algorithms. In this contribution, we review old and novel
formulations of various non-smooth mechanics problems including associated plas-
ticity with nonlinear hardening, nonlinear membranes, minimal crack surfaces and
visco-plastic fluid flows.

Keywords Conic programming · Variational problems · Non-smooth mechanics ·
Plasticity
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1 Introduction

In full generality, a conic program denotes the problem of optimizing a linear
function over the intersection of an affine subspace and a convex cone K, for
instance:

min
x
cTx

s.t. Ax = b

x ∈ K
(1)

It turns out that every convex optimization problem consisting of minimizing
a convex function f(x) over inequality constraints defined using convex functions
fi(x) can be expressed as a conic program of the form (1).
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However in practice, efficient solving algorithms are available for conic pro-
grams associated with a specific class of cones only, the so-called magic family

[Juditsky and Nemirovski, 2021]. One can mention in particular:

– positive orthants Rm+ ;
– Lorentz quadratic (or second-order) cones:

Qm = {(x, t) ∈ Rm−1 ×R+ s.t. ‖x‖2 ≤ t} (2)

– semi-definite cones S+
m, the cone of semi-definite positive m × m symmetric

matrices;
– power cones Pαm parameterized by α s.t. 0 < α < 1:

Pαm = {z ∈ Rm s.t. z = (z0, z1, z̄) and zα0 z
1−α
1 ≥ ‖z̄‖2, z0, z1 ≥ 0} (3)

– exponential cones:

Kexp = {z ∈ R3 s.t. z = (z0, z1, z2) and z0 ≥ z1 exp(z2/z1), z0, z1 ≥ 0} (4)

Conic programs containing only positive orthants yield linear programs (LP),
those containing quadratic Lorentz cones yield second-order cone programs (SOCP)
and programs containing semi-definite cones yield semi-definite programs (SDP).
An important property shared by these cones is that they are self-dual which is
a corner-stone for the development of efficient interior-point (IP) solvers [Ander-
sen et al., 2003]. Non-self dual power and exponential cones [Dahl and Andersen,
2021] were recently introduced in solvers such as Mosek for instance [MOSEK ApS,
2019b], increasing even more the modeling capabilities using such simple elemen-
tary bricks. For practical reasons, we will therefore refer to conic programs as
those using cones belonging to these categories and which are efficiently solvable
in practice, rather than the general abstract setting.

As a result, since every convex program can be turned into a conic format,
we will also distinguish convex functions which are representable using such cones
from generic abstract convex functions. Despite limiting ourselves to this family
of cones, it turns out that it is sufficient to express a wide range of convex opti-
mization functions appearing in practice [MOSEK ApS, 2019a].

Convex variational problems frequently arise in the modelling of many phys-
ical systems, in particular in the field of solid mechanics. As detailed later, the
response of a material or a structure can often be described via an energy poten-
tial which encodes both balance and constitutive equations in a single variational
principle. In a wide range of situations, such a potential happens to be convex. For
instance, for linear elastic materials in small-strain, the latter is a simple positive-
definite quadratic function. The associated optimality conditions therefore result
in a simple linear variational equation. For more complex cases, the corresponding
variational equation becomes non-linear which requires the use of a specific non-
linear resolution method. Newton-type methods are most widely used and are very
efficient when the system potential is smooth. However, in many important cases
of applications, the underlying physics is described through some kind of thresh-
old condition which correspond to non-smooth potentials. The seminal example is
that of the obstacle problem where an elastic membrane deforms under some rigid
obstacle position. The solution is therefore characterized by the coexistence of a
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contact and a no-contact zone in the geometrical domain. For this specific case, the
associated problems turns out to be a bound-constrained quadratic problem. How-
ever, this system is still quite simple and active-set strategies are for instance very
efficient to solve it. In more complex cases, such as for instance frictional contact
[Wriggers and Laursen, 2006], elastoplasticity [Simo and Hughes, 2006], viscoplas-
ticity [Dean et al., 2007], no-tension materials [Del Piero, 1998], the corresponding
non-smooth variational problem is much more difficult to solve and tailored nu-
merical methods must be developed (fixed point iterations, semi-smooth Newton
methods, Augmented Lagrangian algorithms, etc.).

Another approach is to consider the corresponding optimization problem as
a conic programming problem and solve it using IP solvers, provided that the
corresponding potential can be represented using the ”magic cone” family. This
approach has been mainly undertaken to solve limit analysis problems which are in-
herently formulated as constrained optimization problems which look for the max-
imal load factor a structure can sustain under equilibrium and convex yield con-
ditions. Although alternative approaches have been proposed, the conic program-
ming approach has emerged as the method of choice for solving large-scale limit
analysis problems with applications ranging from soil mechanics [Krabbenhøft
et al., 2008] to steel construction [El Boustani et al., 2020], reinforced concrete
[Vincent et al., 2018] or masonry structures [Portioli et al., 2014]. Following the
success of such methods in a limit analysis setting, some contributions explored
their application to elastoplastic problems [Krabbenhoft et al., 2007, Krabbenhøft
et al., 2007], including a recent extension towards non-convex finite strain plastic-
ity [El Boustani et al., 2021]. Topology optimization and plastic design of struc-
tures [Strang and Kohn, 1983] have also been formulated either as LP programs
for trusses [Gilbert and Tyas, 2003] or generic conic programs for solids [Mourad
et al., 2021]. In the field of non-Newtonian fluids, viscoplastic (or yield stress)
present the peculiarity of flowing like a liquid only when the stress reaches some
yield stress limit. Below this yield stress, it behaves as a rigid solid. Interior-point
algorithms based on conic programming have also been proposed as an efficient al-
ternative to Augmented Lagrangian approaches which were commonly used in this
community [Bleyer et al., 2015, Bleyer, 2018]. Finally, let us finish by mentioning
the reference book on convex optimization in non-smooth mechanics [Kanno, 2011]
which, in addition to considering frictional contact, plasticity and no-tension ma-
sonry structures, also deals with robust compliance optimization, cable networks,
nonlinear membranes, etc.

Finally, we can see that conic programming formulations arise for many dif-
ferent non-smooth mechanical problems and become attractive due to the use
of efficient IP solvers for their resolution. It is therefore not possible to give a
complete overview of all these applications. Rather, we decide to select in this
manuscript a few topics, some being old like elastoplasticity, others being orig-
inal, and give new insights on modern conic programming formulations of such
non-smooth mechanics problems.

The manuscript is organized as follows. Section 2 discusses generic conic repre-
sentation of convex functions and variational problems and presents the numerical
framework used to produce the simulation results. Section 3 presents a generic in-
cremental variational formulation for evolution problems of standard generalized
materials. This setting encompasses a wide range of material behaviour, either
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rate-dependent or rate-independent. Section 4 then applies the previous incre-
mental principle to a hardening plasticity example. In particular, we consider an
exponential hardening model which is formulated using recently developed expo-
nential cones in IP solvers. Section 5 deals with the determination of minimal crack
surfaces in heterogeneous materials. It draws some links with min-cut and max-
flow problems. Both primal and dual problems are, for the first time, solved using
a conic programming formulation. Section 6 then deals with nonlinear membranes
as in [Kanno, 2011] but considers a more generic formulation based on Ogden-type
potentials which are reformulated using the newly introduced power cones in IP
solvers. Finally, we finish with viscoplastic fluids flowing into the shallow geometry
between two surfaces. We show that the dimensional reduction operation can be
done from the underlying 3D fluid potential by retaining the conic-representation
nature of the obtained potential. Again, this formulation is completely original to
our knowledge. Section 8 closes the manuscript with some conclusions and per-
spectives.

Notations In the following, vector and second-rank tensor will be represented using
bold-face letters. We will use ‖x‖ to denote the corresponding Euclidean norm of

a quantity x i.e. ‖x‖ =
√∑

i x
2
i for a vector and ‖x‖ =

√∑
i

∑
j x

2
ij for a second-

rank tensor. The double product ”:” will denote the inner product on second-rank
tensors i.e x : y =

∑
i

∑
j xijyji. Fourth-rank tensors will be represented with

blackboard capital letters.

2 Conic representation of convex functions and variational problems

In this work, given a convex function f(x), we say that it is conic-representable
if it can be written in the following form:

f(x) = inf
y
cT
xx+ cT

y y

s.t. bl ≤ Ax+By ≤ bu
y ∈ K

(5)

where cx, cy, bl, bu are given vectors of appropriate size, A and B are given ma-
trix and K = K1 × . . . × Kn is a product of cones where each Ki belongs to one
of the previously mentioned class of cones. Note that the above representation is
not necessarily unique. However, as soon as one equivalent form of (5) is available,
minimizing f(x) can be done using dedicated IP solvers. As mentioned in [Juditsky
and Nemirovski, 2021], any given convex function does not necessarily possess an
obvious conic reformulation and specific calculus rules must therefore be used in
order to obtain such a representation. This process can be automated using Disci-
plined Convex Programming, as done for instance in the CVX software [Grant and
Boyd, 2014]. Without being exhaustive, we give in the following several examples
of simple conic-representable functions and some convexity-preserving operations
which also maintain conic representability from that of the original function(s).
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2.1 Simple conic-representable functions

Many interesting conic-representable functions can be obtained using simple
building blocks such as:

– affine functions
– positive definite quadratic functions
– p-norms with p ≥ 1: p = 2 requires quadratic cones, p = 1 or ∞ requires linear

inequalities and p /∈ {1, 2,∞} can be expressed using generic power cones.
– logarithm and exponential functions using exponential cones
– maximum and minimum principal values using SDP cones
– and many more.

We refer for instance to [MOSEK ApS, 2019a] for more details on conic formula-
tions of other usual functions.

2.2 Operations on functions

Based on the above simple functions, more complex functions can be obtained
using simple operations on functions which all preserve the conic-representability.
For instance, the sum of two conic-representable f1(x) + f2(x) functions is obvi-
ously also conic-representable. Without being exhaustive, other examples include:

– linear precomposition by a linear operator A:

(f ◦A)(x) = f(Ax) (6)

– epigraph:
(x, t) ∈ epif ⇔ f(x) ≤ t (7)

– perspective:
perspf (x, t) = tf(x/t) (8)

– inf-convolution f1�f2 between two functions f1,f2:

(f1�f2)(x) = inf
x1,x2

f1(x1) + f2(x2)

s.t. x = x1 + x2

(9)

– the marginal f \A of f through a linear operator A [Fitzpatrick and Simons,
2001]:

(f \A)(x) = inf
y
f(y)

s.t. x = Ay
(10)

– a generalized marginal operator through a set of n linear operators Ai and
positive weights ci ≥ 0:

(f \ {Ai, ci})(x) = inf
y1,...,yn

n∑
i=1

cif(yi)

s.t. x =
n∑
i=1

Aiyi

(11)

– convex conjugate:
f∗(y) = sup

x
yTx− f(x) (12)



6 Jeremy Bleyer

2.3 Conic-representable variational problems

In mechanics, many problems benefit from a variational principle which consists
in minimizing some potential Ψ(u) with respect to some mechanical field u. Often
this potential can be expressed from a corresponding potential density ψ(u) per
unit volume. The resulting variational problem formulated on a domain Ω generally
reads as:

min
u∈V

∫
Ω

ψ(u) dΩ (13)

where V is some affine, or at least convex, space gathering various constraints on
u e.g. boundary conditions, physical bounds, etc.

When such a potential density ψ turns out to be convex, the possibility of using
conic programming to solve the problem therefore amounts to knowing whether ψ
is conic-representable or not using the conic magic family. As regards numerical res-
olution of the continuous variational problem (13), it is usually transformed into a
discrete finite-dimensional variational problem by considering a finite-dimensional
subspace Vh ⊂ V and by evaluating the corresponding integral through a numerical
quadrature such as:

min
ū=(ui)∈Vh

G∑
g=1

ωiψ(Lgū) (14)

where ωg are positive quadrature weights and Lg are linear operators relating the
vector of unknowns ū = (ui) ∈ Vh to the value of the continuous field u at the
corresponding quadrature point.

2.4 Numerical tools

In the present work, we heavily rely on the FEniCS software package [Logg
et al., 2012] for discretizing variational problems using the finite-element method.
FEniCS provides various types of interpolation ranging from standard Lagrange
polynomials, either in a continuous Galerkin or a discontinuous Galerkin form but
also Raviart-Thomas elements, Brezzi-Douglas-Marini elements, etc. Concerning
the resolution of discrete conic programs, we will make use of Mosek v9.0. The
formulation of conic variational programs within the FEniCS environment is per-
formed using the fenics optim software package which is freely available [Bleyer,
2020b]. fenics optim is a domain-specific language which enables easy definition
of convex variational problems via conic representation of functions/constraints
and combination of such using pre-implemented operators (e.g. perspective, inf-
convolution, epigraph, etc.). For more details on the interaction between conic
programming formulations and finite-element discretization, we refer the reader
to the paper [Bleyer, 2020a] which complements the package documentation.

Since spatial discretization is not the primary focus of the present work, the
following variational problems will all be written in a continuous setting such as
(13). It is however implied that their concrete implementation and resolution is
performed using a specific discretization such as (14) through the choice of an
appropriate finite-element function space Vh and a quadrature rule.
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3 Conic programming formulation of evolution problems for generalized

standard materials

3.1 Generalized standard materials

We consider here the context of generalized standard materials [Halphen and
Nguyen, 1975] which are characterized by a set of state variables, a free energy
potential and a dissipation pseudo-potential. This thermodynamic approach bene-
fits from a variational formulation which satisfies the first and second fundamental
thermodynamic principles under some appropriate convexity assumptions for the
free energy and dissipation pseudo-potential.

Ignoring temperature effects for simplicity and restricting to a small strain
setting, we assume that state variables consist here of the total linearized strain ε
and a set of internal state variables α describing the irreversible behavior of the
material. The material free energy density is denoted by ψ(ε,α). We assume here
that ψ is convex. Finally, we introduce φ(ε̇, α̇) the pseudo-potential which is also
assumed to be a convex function of (ε̇, α̇). In general, one could assume that φ
also depends on (ε,α). For the sake of simplicity, we assume here that this is not
the case.

3.2 Incremental pseudo-potential

Consider now a time increment [tn, tn+1] for which the state (εn,αn) at time
tn is known.

It can be shown that the solution at time tn+1 in terms of displacement u
and state variables can be obtained as the solution to the following minimization
principle [Ortiz and Stainier, 1999, Mielke, 2005]:

(un+1, εn+1,αn+1) = arg min
(u,ε,α)

∫ tn+1

tn

∫
Ω

(ψ̇(ε,α) + φ(ε̇, α̇)) dΩ dt

−
∫ tn+1

tn

Pext(u̇) dt

s.t. (u, ε) ∈ KAn+1

(15)

where:

– Pext(u̇) is the power of external loads which we assume to consist only of fixed
body forces fn+1 on the time step, so that:∫ tn+1

tn

Pext dt =

∫ tn+1

tn

∫
Ω

fn+1 · u̇dΩ =

∫
Ω

fn+1 · (u− un) dΩ (16)

– KAn+1 denotes the state of kinematically admissible fields defined as:

KAn+1 =

{
(u, ε) s.t.

∣∣∣∣ ε = ∇su in Ω

u = ūn+1 on ∂ΩD

}
(17)

where ūn+1 corresponds to imposed displacements at time tn+1 on the Dirichlet
boundary ∂ΩD.
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Further introducing a backward-Euler approximation for the state variables
evolution :

ε̇(t) ≈ ε− εn
∆t

; α̇(t) ≈ α− αn
∆t

(18)

where ∆t = tn+1 − tn, we have:∫ tn+1

tn

∫
Ω

φ(ε̇, α̇) dΩ dt ≈
∫
Ω

∆tφ
(
ε− εn
∆t

,
α− αn
∆t

)
dΩ (19)

The above minimum principle can thus be replaced with:

(un+1, εn+1,αn+1) = arg min
(u,ε,α)

∫
Ω

(ψ(ε,α)− ψ(εn,αn)) dΩ

+

∫
Ω

∆tφ
(
ε− εn
∆t

,
α− αn
∆t

)
dΩ

−
∫
Ω

fn+1 · (u− un) dΩ

s.t. (u, ε) ∈ KAn+1

(20)

Ignoring the constant terms ψ(εn,αn) and un, (20) becomes:

(un+1, εn+1,αn+1) = arg min
(u,ε,α)

∫
Ω

J(ε,α) dΩ −
∫
Ω

fn+1 · udΩ

s.t. (u, ε) ∈ KAn+1

(21)

where:

– for rate-dependent materials:

J(ε,α) = ψ(ε,α) +∆tφ
(
ε− εn
∆t

,
α−αn
∆t

)
(22)

– for rate-independent materials:

J(ε,α) = ψ(ε,α) + φ (ε− εn,α−αn) (23)

since the pseudo-potential φ is, in addition, a positively homogeneous convex
function in this specific case.

Finally, the incremental pseudo-potential J is a convex function of (ε,α) which
makes problem (21) a convex optimization problem. Provided that both ψ and φ

are conic representable, the resulting problem can be expressed as a conic program.

4 Application to associated plasticity

4.1 J2-plasticity with nonlinear isotropic hardening

We now particularize the previous generic formulation to the case of associated
plasticity with nonlinear isotropic hardening. The internal state variables for this
setting are the plastic strain εp and the cumulated equivalent plastic strain p. The
free energy density ψ consists of a stored elastic ψel and hardening ψh potentials:

ψ(ε, εp, p) = ψel(ε− εp) + ψh(p) (24)
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We consider isotropic linear elasticity:

ψel(ε
el) =

1

2
εel : C : εel =

κ

2
(tr(εel))2 + µdev(εel) : dev(εel) (25)

where κ is the compressibility modulus, µ the shear modulus and dev(εel) the
deviatoric elastic strain.

The hardening potential is assumed to be of exponential type as follows:

ψh(p) = (σu − σ0)

(
p+

1

ω
exp(−ωp)

)
(26)

where σ0 (resp. σu) is the initial (resp. ultimate) yield strength and ω a saturation
parameter. This potential defines the following hardening thermodynamic force:

R(p) =
∂ψh

∂p
= (σu − σ0)(1− exp(−ωp)) (27)

which will increase the yield stress R(p) from σ0 at p = 0 to σu when p→∞.
Finally, we assume a J2-plasticity dissipation pseudo-potential:

φ(ε̇p, ṗ) =

{√
2
3σ0‖ε̇p‖ if tr(ε̇p) = 0

+∞ otherwise
(28)

which involves a plastic incompressibility constraint. However, as such, we are
missing the link between the plastic strain and the cumulated equivalent plastic
strain. Classically, one defines the equivalent plastic strain as follows:

p =

∫ t

0

√
2

3
‖ε̇p‖dt (29)

or, equivalently in rate form:

ṗ =

√
2

3
‖ε̇p‖ (30)

4.2 Conic reformulations

We now discuss the conic representation of the various convex functions ψel, ψh

and φ involved in the definition of J(ε, εp, p).
Starting with the plastic dissipation (28), let us first mention that the con-

straint (30) is non-convex. The proper constraint linking both internal state vari-
able rates in a convex manner is to relax the equality and redefine φ using ṗ as
follows:

φ(ε̇p, ṗ) =

{
σ0ṗ if tr(ε̇p) = 0 ;

√
2
3‖ε̇p‖ ≤ ṗ

+∞ otherwise
(31)

Formulation (31) corresponds to an epigraph form of (28) which is readily ex-
pressed using a second-order cone constraint.

Considering now the elastic potential, the quadratic form (25) must be ex-
pressed using a Cholesky factorization. Accounting for the fact that the spherical
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Fig. 1: A 2D beam clamped at both ends and subject to a vertical body force f .

and deviatoric parts of a second-rank tensor define orthogonal subspaces, we can
readily show that:

ψel(ε
el) =

1

2
‖Q : εel‖2 (32)

where:

Q : εel =
√

3κ
1

3
tr(εel)I +

√
2µdev(εel) (33)

which yields the following conic epigraph formulation:

ψel(ε
el) = inf

t,s,y
t

s.t. y = Q : εel

‖y‖2 ≤ 2ts
s = 1

(34)

Finally, the hardening potential term can be readily reformulated using an
exponential cone as follows:

exp(−ωp) = min r0 s.t. exp(−ωp) ≤ r0 (35)

This non-linear constraint can be reformulated using an exponential cone Kexp

as follows:

exp(−ωp) ≤ r0 ⇔ r1 = 1, , r2 = −ωp, (r0, r1, r2) ∈ Kexp (36)

4.3 Numerical illustration

We consider a 2D rectangular domain of length L = 5 and height H = 0.5,
fixed on both lateral extremities and subjected to a uniform downwards vertical
body force f = −fey as illustrated in Figure 1. The domain is meshed with
50 × 20 elements on the boundaries. The displacement field is discretized using
a continuous quadratic Lagrange function space whereas internal state variables
are represented using a discontinuous piecewise affine space. We consider a plane
strain setting and use the following material properties E = 210 GPa, ν = 0.3,
σ0 = 450 MPa, σu = 700 MPa and ω = 50.

The beam is first loaded by progressively increasing the body force from 0 to

f+ =
2√
3

4σuH

L2
which is the theoretical limit load using a beam theory model.

Then, we perform a full unloading up to f = 0. The loading stage is imposed using
10 load increments, the unloading stage being elastic using only one increment.
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Fig. 2: Load vs. mid-span deflection evolution during plastic loading and elastic
unloading.

Fig. 3: Equivalent plastic strain distribution and deformed configuration at f = f+.

Figure 2 represents the evolution of the beam downwards vertical displacement
at its mid-span center point (L/2, H/2) as a function of the imposed loading. One
can observe an initial elastic phase up to f ≈ 0.4f+ followed by a strongly non-
linear hardening phase. Note that the load f = f+ can still be supported by the
structure due to the difference between a 2D model as here and a 1D beam theory
solution. Note that, for the present 2D structure with the considered mesh, the
ultimate load is found to be around f ≈ 1.1f+. As expected for plasticity problems,
the unloading stage is indeed elastic and exhibits a permanent residual deflection.
The distribution of equivalent plastic strain p at f = f+ has been represented in
Figure 3. One can clearly observe the formation of plastic hinges near the clamped
supports and a more diffuse plastic field at the beam mid-span.

As regards numerical resolution statistics, let us point out that each instance
of a single step elasto-plastic problem consists in roughly 250,000 optimization
variables, 170,000 linear constraints and 36,000 quadratic or exponential cones.
Each resolution with Mosek v.9.0 took between 2.5 and 3.5 seconds (10 to 18 IP
iterations) depending on the loading step (fully plastic steps near f = f+ took
a larger number of iterations than initial elastic steps). Overall, we find that the
IP solver exhibits a very robust behaviour in terms of number of iterations with
respect to the load step level or to the problem size (after mesh refinement for
instance).
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Fig. 4: Load-deflection evolution depending on the total number of load increments
(only one used in the unloading phase).

Although not being fully competitive against standard Newton methods in
multi-step plasticity, the conic programming approach becomes interesting when
much larger load steps are considered. For instance, Figure 4 shows the same load-
displacement curve as before using different numbers of load steps. Interestingly,
the computed displacement at the ultimate state near collapse (f = f+) is already
very accurate using a single load step, see also [Krabbenhoft et al., 2007, El Bous-
tani et al., 2020]. Again, solver robustness does not seem to be affected by the load
step amplitude since the number of IP iterations remains very similar.

5 Minimal crack surfaces

In this section, we consider the problem of computing the effective crack resis-
tance of a heterogeneous medium with locally varying fracture energy Gc(x). We
consider Ω to be some representative volume element (RVE) of the heterogeneous
material. In [Braides et al., 1996], a periodic homogenization result regarding the
variational approach to fracture [Francfort and Marigo, 1998] has been established.
In particular, the effective fracture energy Geff

c (n) associated with a crack of mean
normal n was explicitly characterized from the computation of minimal surfaces
inside Ω, weighted by the local fracture energy Gc(x). [Schneider, 2020] proposed
a convex optimization formulation inspired by min-cut/max-flow problems in a
periodic setting. More precisely, given a prescribed crack plane normal n, they
consider the following variational problem:

Geff
c (n) = inf

φ∈V

1

|Ω|

∫
Ω

Gc(x)‖∇φ+ n‖2 dΩ (37)
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Fig. 5: Minimal crack surfaces for 0◦ (red) and 45◦ (blue) imposed crack plane
orientation.

where V denotes the space of smooth scalar functions which are periodic over Ω.
This min-cut problem is known to have minimizers corresponding to Gc-weighted
periodic minimal surfaces.

5.1 Illustrating example

We consider a simple microstructure consisting of a periodic square unit cell
and circular inclusions of radius R ≤ R0 = 1/(2

√
2) located at the cell center and

at its four corners, see Figure 5. R0 denotes the maximum radius corresponding
to each inclusion touching each other. The inclusion material possesses a fracture
energy which is much larger than that of the matrix. Inclusions can thus be consid-
ered as infinitely resistant so that minimal crack surfaces will always pass through
the matrix material only with fracture energy Gc.

Let us first consider the effective fracture energy for cracks of normal ex (or ey
for symmetry reasons). For small enough inclusions i.e. R ≤ 1/4, there always exists
a straight crack plane passing inside the matrix (Fig. 5a). Thus, Geff

c (ex) = Gc for
any R ≤ 1/4. For larger R up to R = R0, the optimal path consists of a part of the
circular inclusion border connected by a straight line between each inclusions. In
the limit case R = R0, the straight line vanishes and the total path length is πR0

(Fig. 5b). As a result, the effective fracture energy is Geff
c (ex) =

π

2
√

2
Gc ≈ 1.11Gc.

Regarding crack planes oriented at ±45◦, for any R up to R0 there exists a
±45◦ degree line connecting the mid-point of the square domains as indicated in
Figure 5. As a result, the corresponding fracture energy will always be Geff

c = Gc

for this orientation.

5.2 Numerical computation

The convex problem (37) is inherently non-smooth and hence difficult to solve
in practice with standard Newton-methods. In [Schneider, 2020, Ernesti and Schnei-
der, 2021], first-order proximal algorithms have been proposed in conjunction with
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a Fast Fourier Transform-based discretization technique. In the present contribu-
tion, we can easily solve this problem using conic programming and a finite-element
discretization. However, FFT-based proximal algorithms should be definitely more
competitive for large scale 3D problems.

Considering a triangular mesh and cell-wise constant values for Gc(x), we used
a linear interpolation including periodic boundary conditions for the unknown field
φ(x) in the min-cut problem (37). The corresponding optimal value is an upper
bound estimate to Geff

c (n) which will converge upon mesh refinement.
Moreover, in order to assess the influence of spatial discretization on the com-

puted fracture energy, we also solve the corresponding dual max-flow problem:

Geff
c (n) = sup

τ∈W

1

|Ω|

∫
Ω

τ · ndΩ

s.t. div τ (x) = 0 ∀x ∈ Ω
‖τ (x)‖2 ≤ Gc(x)

(38)

where W is a function space of smooth periodic vector fields with normal com-
ponent continuity. Upon proper discretization of the above problem e.g. using a
first-order Raviart-Thomas function space (see the Cheeger set example in [Bleyer,
2020a]), the obtained optimal value can be shown to provide a lower bound to the
exact effective crack energy Geff

c (n). Solving both min-cut and max-flow problems
with proper discretization will therefore furnish a bracketing of the exact value.

5.3 Results on the illustrative example

Figure 6 represents the evolution of Geff
c (n) for the microstructure in Fig. 5

and n = cos θex + sin θey. Colored regions denote the bracketing obtained on a
150× 150 mesh when solving both min-cut and max-flow problems (37) and (38).
First, we indeed obtain Geff

c = Gc for any R ≤ R0 at θ = ±45◦ and at θ = 0◦ or
90◦ for R ≤ 1/4. When R approaches R0 ≈ 0.3535, we have Geff

c ≈ π/R0 ≈ 1.11
as expected. We also notice that the relative error between both bounds increases
when R approaches the limit R0. The optimal crack density fields ‖∇φ+ n‖ have
been represented in Figure 7. Let us note that minimal crack surfaces are not
necessarily unique. For instance, in Fig. 5b, the mirror path on the right of the
central inclusion is also a minimizer for the case θ = 0◦ as well as any combination
of the left and right paths. The minimizer of the discrete problem seems to select
a symmetric solution (Fig. 7a) very close to the expected solution of Fig. 5b. For
θ = 45◦, we also obtain the expected solution. Minimizers for intermediate angles
θ seem to be obtained as a weighted combination of the 0◦ and 45◦ paths, which
results in an increased effective fracture energy.

5.4 Application to a microstructure with random inclusions

We now consider a similar setting in which the microstructure is obtained as
a random collection of potentially overlapping disks of varying radius. We used
a 250 × 250 mesh. The obtained optimal crack surfaces have been represented in
Figure 8. One can clearly see that purely vertical cracks are not allowed in this
case for θ = 0◦, which results in an increased effective fracture energy by roughly
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Fig. 6: Evolution of Geff
c (n) for the microstructure in Fig. 5 as a function of the

crack plane orientation n(θ). Colored regions are delimited by the min-cut upper
bound (solid lines) and the max-flow lower bound (dashed lines).

(a) θ = 0◦ (b) θ = 15◦ (c) θ = 30◦ (d) θ = 45◦

Fig. 7: Crack density field for R = 0.34

5%. Similarly for θ = 90◦, the deviation from a horizontal crack is even more
important, resulting in an increased fracture energy by 13%.

6 Nonlinear membranes

In this section, we consider the computation of the displacement field u of
an hyperelastic membrane subject to imposed tractions T on the Neumann part
of the boundary ∂ΩN and to fixed displacement u = 0 on the Dirichlet part of
the boundary ∂ΩD. In the finite-strain setting, the hyperelastic potential of a
3D material can be expressed as a function of some nonlinear strain measures.
For instance, let us consider the Cauchy-Green strain tensor C = FTF where
F = I + ∇u is the deformation gradient. The free energy hyperelastic potential
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(a) θ = 0◦, Geff
c = 1.048Gc (b) θ = 15◦, Geff

c = 1.097Gc

(c) θ = 30◦, Geff
c = 1.158Gc (d) θ = 45◦, Geff

c = 1.128Gc

Fig. 8: Crack density field for a microstructure with random inclusions

is then ψ(C) and the displacement field can be obtained as the solution to the
following minimum principle:

inf
u,C

∫
Ω

ψ(C) dΩ −
∫
∂ΩN

T · udS

s.t. C = I +∇u+∇uT +∇uT∇u
u = 0 on ∂ΩD

(39)

In the general case, such a problem is not convex which makes the analysis of
hyperelastic materials rather complex. In particular, some equilibrium positions
can be unstable and lead to buckling phenomena.

6.1 Tension field elastic membrane

As regards thin hyperelastic membranes, local buckling (or wrinkling) will
occur at very low load levels in compressed regions. In the limit of infinitely thin
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membranes, compressed stress states cannot be supported at all. Tension field
theory [Wagner, 1929, Reissner, 1938] has been proposed in order to simplify the
analysis of thin membranes.

In the finite-deformation case, the tension-field theory has been first formalized
by [Pipkin, 1994] by introducing a relaxed strain energy functional. More precisely,
introducing the following quasi-convexification of ψ:

ψmemb(C) = inf
Cel

ψ(Cel)

s.t. Cel � C
(40)

the tension field variational principle is obtained when replacing ψ with ψmemb in
(39):

inf
u,C

∫
Ω

ψmemb(Cel) dΩ −
∫
∂ΩN

T · udS

s.t. Cel � I +∇u+∇uT +∇uT∇u
u = 0 on ∂ΩD

(41)

The above relaxed potential then provides a tension-field constitutive equation
in terms of the second Piola-Kirchhoff stress S as follows:

S = 2
∂ψ

∂C
(Cel) (42a)

C = Cel +Cw (42b)

Cw � 0, S � 0, S : Cw = 0 (42c)

where Cw can be seen as an inelastic wrinkling strain accounting for the occurrence
of wrinkles in compressed regions. As a consequence, the resulting stress is always
tensile.

6.2 Conic reformulation

Finally, Pipkin showed that when ψ is a convex function of C, ψmemb turns out
to be a convex function of F or, equivalently, of the displacement gradient G = ∇u
[Pipkin, 1994]. Indeed, if ψ(Cel) is convex, the relaxed minimum principle (41) is
a convex program due to the following conic reformulation of the SDP constraint
(see also [Kanno, 2011]):

Cel � C = I +G+GT +GTG (43)

Let us first recall the Schur complement lemma for a PSD block-matrix:

Lemma 6.1 A symmetric block-matrix

Z =

[
U V

V T W

]
(44)

is positive semi-definite if and only if W � 0 and U − VW−1V T � 0.
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Let us then consider the following symmetric matrix:

Z =

[
Cel I +GT

I +G I

]
� 0 (45)

we have W = I � 0 and U −VW−1V T = Cel− (I+GT)(I+G) = Cel− I −G−
GT −GTG = C. As a result, using the Schur complement lemma, Z � 0 if and
only if Cel � C.

In conclusion, if ψ(C) admits a convex conic representation in terms of C,
problem (41) is a convex conic program.

6.3 Ogden-type hyperelastic materials

In [Kanno, 2011], only Saint-Venant-Kirchhoff materials were considered for
which ψ(C) is a quadratic function. Unfortunately, this simple material model
is not appropriate for modelling hyperelastic membranes. In the following, we
consider an incompressible Ogden-type material (with only one term for simplicity)
for which the 3D potential reads:

ψ(λ1, λ2, λ3) =
2µ

α2

3∑
i=1

λαi (46)

where µ is the shear modulus, α is some power-law exponent (which we assume
in the following to be larger than 2) and λ1, λ2, λ3 denote the principal stretches.
The latter are the positive square roots of the Cauchy-Green tensor eigenvalues.
Note that the case α = 2 corresponds to a neo-Hookean material.

In the incompressible case, we have J = λ1λ2λ3 = 1 which yields a reduced
energy:

ψ̂(λ1, λ2) = ψ(λ1, λ2, λ
−1
1 λ−1

2 ) =
2µ

α2

(
λα1 + λα2 +

1

λα1 λ
α
2

)
(47)

From the following relation for the principal stretches in 2D:

λ2
1 =

1

2

(
C11 + C22 +

√
(C11 − C22)2 + 4C2

12

)
(48)

λ2
2 =

1

2

(
C11 + C22 −

√
(C11 − C22)2 + 4C2

12

)
(49)

(50)

one can see that the reduced energy can be equivalently expressed as a convex
function of C as follows:

ψ̂(C) = min
s,t

µ

2β2

(
(t+ s)β + (t− s)β + (t2 − s2)−β

)
s.t. t =

1

2
(C11 + C22)

1

2

√
(C11 − C22)2 + 4C2

12 ≤ s

(51)

where we assume that β = α/2 ≥ 1.
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The above expression can further be re-expressed introducing additional aux-
iliary variables as:

ψ̂(C) = min
r,s,t,y

µ

2β2
(x0 + y0 + z0)

s.t.

{
(C11 − C22)/2

C12

}
=

{
y1

y2

}
√
y2
1 + y2

2 ≤ s
(t+ s)β ≤ x0

(t− s)β ≤ y0

(t2 − s2) ≥ u2

u−2β ≤ z0

(52)

and where the last constraints can be formulated using a suitable quadratic and
power cones as follows:

(t+ s)β ≤ x0 ⇔


x2 = t+ s

x1 = 1

|x2| ≤ x1/β
0 that is x ∈ P1/β

3

(53a)

(t− s)β ≤ y0 ⇔


y2 = t− s
y1 = 1

|y2| ≤ y1/β
0 that is y ∈ P1/β

3

(53b)

(t2 − s2) ≥ u2 ⇔
√
s2 + u2 ≤ t that is (t, s, u) ∈ Q3 (53c)

u−2β ≤ z0 ⇔ 1 ≤ uz2β
0 ⇔ 1 ≤ u

1
1+2β z

2β
1+2β

0 that is (u, z0, 1) ∈ P
1

1+2β

3 (53d)

6.4 Material point response validation

We formulate the variational problem (41) using the incompressible Ogden-
type behaviour expressed using the previous conic constraints. We simulate the
response of a material point by prescribing an affine displacement field on the
boundary:

u = G · x on ∂Ω (54)

with an imposed displacement gradient of the form:

G =

[
δx γ

0 δy

]
⇒ C =

[
(1 + δx)2 γ(1 + δx)
γ(1 + δx) (1 + δy)2 + γ2

]
(55)

where δx (resp. δy) is a horizontal (resp. vertical) elongation and γ a shear dis-
tortion. These specific boundary conditions induce a uniform deformation state
that is G = ∇u = G inside Ω. The principal true (or Cauchy) stresses in the
incompressible case for a plane-stress membrane (σ3 = 0) are then given by:

σi = λi
∂ψ̂

∂λi
=

2µ

α

(
λαi −

1

λα1 λ
α
2

)
, i = 1, 2 (56)

In our numerical implementation, the stress is recovered from the Lagrange
multiplier associated with the SDP constraint Z � 0. Indeed, one can easily show
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(a) εy = δ = 0 (b) εy = 0.05, δ = 0.5

Fig. 9: Symbols correspond to the numerical tension field state and solid/dashed
lines correspond to expression (56). The latter is not valid in the light blue region
(dashed lines) which denotes the wrinkled state where σ2 = 0.

from SDP duality that the latter dual variable ΛZ is a block-matrix which is also
positive:

ΛZ =

[
ΛU ΛV
ΛT
V ΛW

]
� 0 (57)

and that one has at the optimum:

ΛU =
∂ψ

∂C
(Cel) � 0 (58)

which gives the Piola-Kirchhoff stress S up to a factor 2.

In Figure 9, we report results for the evolution of both principal true stresses
as a function of an imposed axial elongation εx either in a pure uniaxial elongation
case εy = δ = 0 (Fig. 9a) or in a combined elongation and shear case εy = 0.05,
δ = 0.5 (Fig. 9b). One can see that the numerical tension field results match
exactly with the theoretical expression (56) in regions where both σ1, σ2 > 0 (solid
lines). In the remaining region where the analytical σ2 ≤ 0, the numerical tension
field stresses deviate from equation (56) (dashed lines) and yields a pure tension
state with σ2 = 0 and σ1 > 0 which corresponds to wrinkles having formed along
principal direction 2.

6.5 Annular square membrane deformation

We illustrate our implementation on a square annular membrane initially lo-
cated in the (Ox1x2) plane, embedded in R3. Its outer boundary of size Wout = 50
mm is fixed whereas the inner boundary, of size Win = 17.5 mm, is subjected
to an in-plane torsion of angle 90◦ and to an out-of-plane vertical displacement
of amplitude tWout/2 for t = 0 to t = 1. Note that a similar example has been
investigated in [de Rooij and Abdalla, 2015] with a Neo-Hookean model whereas
we use here α = 3.5.
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(a) t = 0.2 (b) t = 0.5 (c) t = 1

Fig. 10: Annular square deformed membrane at various loading steps. Blue regions
denote wrinkled regions. Black arrows indicate principal stresses amplitude and
orientation.

In this setting, since we consider out-of-plane displacements, the displacement
and deformation gradients G and F are in fact 3× 2 matrices such that:

F = I +G where I =
[
e1 e2

]
∈ R3×2 (59)

where e1, e2 denotes orthonormal basis vectors of the membrane initial reference
plane. The strain tensors C,Cel are still 2× 2 matrices. The only modification to
apply to section 6.2 concerns the SDP constraint. We now have:

Cel � I2 + I
T
G+GTI +GTG (60)

where In is the identity matrix of dimension n. The latter constraint can now be
equivalently reformulated as follows:

Z =

[
Cel I

T
+GT

I +G I3

]
� 0 (61)

Figure 10 reports different snapshots of the deformation and wrinkled state
of the membrane. We can observe that initially a large inner region is in a wrin-
kled state due to compression induced by the torsion. At larger load steps, the
wrinkled region extent tends to diminish due to the important tension exerted
by the vertical displacement. In the last stage, the shape of the wrinkled regions
is quite complex due to the combination of excessive shearing and elongation.
The obtained wrinkled regions are quite similar to those obtained in [de Rooij
and Abdalla, 2015] with a slightly different material model. Finally, let us remark
that it was not necessary to subdivide the final loading into smaller load steps.
Interior-point methods are known to be remarkably robust and quite insensitive
to a good or bad initial guesses for the solution. The final solution, as well as even
more extremely deformed configurations for t > 1, could be obtained in only 20
iterations.
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Fig. 11: Flow in a Hele-Shaw cell for a viscoplastic fluid and dimensional reduction

7 Viscoplastic fluid flows in Hele-Shaw cells

A Hele-Shaw cell consists of two plates which are extremely close to each other
in order to induce a bi-dimensional flow. This serves as a model for flows in porous
media. Each plate is located at a position z = ±H(x, y) (symmetric configuration
with respect to z = 0).

Although the flow is macroscopically two-dimensional and can be described
by a macroscopic in-plane velocity U = Ux(x, y)ex + Uy(x, y), the local three-
dimensional flow u(x, y, z) admits a specific profile in the transverse z-direction
between both plates.

In order to link the local 3D behaviour of the fluid with an effective 2D be-
haviour, a dimensional reduction procedure is considered accounting for several
hypotheses [Huilgol, 2015]:

– the transverse velocity is negligible: uz ≈ 0
– the velocity variations in the transverse directions are much larger than the

in-plane variations ‖u,x‖, ‖u,y‖ � ‖u,z‖
– a no-slip condition is assumed along both plates walls z = ±H
– inertia and body forces can be ignored

Such a procedure is not trivial in the case of a Bingham fluid [Dean et al.,
2007, Bleyer, 2018] which exhibits solid and flowing regions along the transverse
direction. The yield point between flowing and solid region is unknown a priori
and depends upon the corresponding stress and pressure gradient.

Indeed, with the above hypotheses, one can easily show that the shear stress
field varies linearly along the transverse direction as follows:

σ(x, y, z) ≈

 0 0 τx
0 0 τy
τx τy 0

 (62)

with τ (x, y) = z∇p(x, y) (63)

where τ (x, y, z) is the anti-plane shear stress vector and p(x, y) is the fluid pressure.
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7.1 Determining effective potentials

The Hele-Shaw effective behaviour can be described through effective poten-
tials, either in stress-based form as a potential function Ψ(G) of the pressure gra-
dient G(x, y) = −∇p(x, y) or in velocity-based form as a potential function Φ(U)
of the macroscopic velocity U(x, y). Both potentials are dual to each other, that
is they are related via Legendre-Fenchel transform Ψ = Φ∗ and we have:

U = ∂GΨ(G) , G = ∂UΦ(U) (64)

The stress-based potential for instance can be obtained from the integrated
stress potential as follows:

Ψ(G) =
1

2H

∫ H

−H
ψ(σ(x, y, z)) dz (65)

where ψ is the 3D stress-based potential of the constituting fluid.

For instance, for a Newtonian fluid, one has ψ(σ) = (σ : σ)/(4µ) with d =
∂σψ = σ/(2µ). The corresponding effective potential is then given by:

Ψ(G) =

∫ H

−H

1

4µH
z2G ·Gdz =

H2

6µ
G ·G (66)

which results in the following linear effective constitutive relation:

U = ∂GΨ(G) =
H2

3µ
G (67)

from which we recover the classical Darcy equation between two parallel plates.

Alternatively, the velocity-based potential is obtained via Legendre-Fenchel
transform:

Φ(U) = sup
G
{U ·G− Ψ(G)} (68)

which after standard convex duality computations yields:

Φ(U) = inf
γ(z)

1

2H

∫ H

−H
φ(d(z)) dz

s.t. d(z) =

 0 0 γx(z)
0 0 γy(z)

γx(z) γy(z) 0


U +

1

2H

∫ H

−H
zγ(z) dz = 0

(69)

In the above formulation, we see that when interpreting γ(z) as the local strain
rate γ(z) = u,z, the constraint indeed enforces the link with the macroscopic
velocity:

U +
1

2H

∫ H

−H
zu,z dz = U − 1

2H

∫ H

−H
udz = 0 (70)
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7.2 The Bingham case and its conic representation

7.2.1 Numerical approximation

For a Bingham fluid of viscosity µ and yield stress τ0, the velocity-based po-
tential can be expressed as:

Φ(U) = inf
γ(z)

1

2H

∫ H

−H

(
µ

2
‖γ(z)‖2 + τ0‖γ(z)‖

)
dz

s.t. U +
1

2H

∫ H

−H
zγ(z) dz = 0

(71)

Unfortunately, there is no closed-form expression for solving the inner mini-
mization over the γ(z) field. For a practical numerical implementation, we there-
fore have to resort to some numerical approximation. In the following, we choose
to restrict the field γ(z) to a finite set of values γi = γ(zi) at some integration
points zi. The above integrals are then replaced by a numerical quadrature us-
ing such points. Moreover, we benefit from our initial assumption of a symmetric
configuration so that the integral is performed over [0;H] only. Introducing, the
non-dimensional integration points ξi = zi/H and their corresponding quadrature
weights ωi on [0; 1], we finally have the following approximate potential depending
on the number m of quadrature points:

Φm(U) = inf
γi

m∑
i=1

ωi

(
µ

2
‖γi‖2 + τ0‖γi‖

)
s.t. U +H

m∑
i=1

ωiξiγi = 0

(72)

Note that such an approach has already been proposed in [Bleyer and De Buhan,
2016] when deriving effective strength criteria of shells from the local 3D strength
criterion.

7.2.2 Definition using the generalized marginal operator

Implementing directly the above representation lacks generality since it must
be repeated each time one wants to change the underlying fluid potential e.g.
considering a Hershel-Bulkley fluid for instance. Instead, we can use the generalized
”marginal” operator (11) so that any Hele-Shaw potential Ψ can be obtained as
the ”marginal” of the underlying fluid potential φ(γ) through the linear operators
Ai = −HωiξiI and the coefficients ci = ωi. Note that the Lagrange multiplier
associated with the last constraint gives directly access to the pressure gradient
G = ∂UΦ(U).
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Fig. 12: Flow curves (norm of the pressure gradient G = ‖G‖ as a function of
filtration velocity magnitude U = ‖U‖) of the Bingham Hele-Shaw model for
different quadrature points m. Black curves correspond to (73).

7.3 Validation of the quadrature discretization

We now compare in Figure 12 the obtained flow curves with the analytical
solution provided in [Huilgol, 2015]:

U =
H2

3µ

(
1− 3

2‖G‖ +
1

2‖G‖3
)
G if ‖G‖ > τ0/H (73)

U = 0 otherwise

One can see that with m = 2 quadrature points, the behaviour resembles
that of a Bingham fluid (piecewise linear flow curve) with an overestimated yield
stress and an underestimated asymptotic regime. Introducing more points enables
to approach the non-linear black curve with a piecewise linear curve of better
quality. The choice m = 4 in particular is already extremely satisfying.
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7.4 Flow in a random porous medium

7.4.1 Flow equations and variational principle

We now consider the Hele-Shaw flow on some domain Ω. The main unknowns
for this problem are the filtration velocity U and the pressure field p. They must
satisfy the balance equation and mass conservation condition:

∇p = 0 in Ω (74)

divU = 0 in Ω (75)

and they are related through the Hele-Shaw potential:

G = −∇p = ∂UΦ(U) (76)

along with some boundary conditions on pressure or velocity:

p = p0 on ∂ΩD (77)

U · n = q on ∂ΩN (78)

where n is the outward unit normal, p0 and imposed pressure and q an imposed
flux.

One can then easily see that the above equations can be derived from the
following filtration velocity variational principle:

min
U

∫
Ω

Φ(U)dΩ −
∫
∂ΩD

p0U · ndS

s.t. divU = 0 in Ω

U · n = q on ∂ΩN

(79)

with the pressure field being obtained from the Lagrange multiplier associated
with the mass conservation equation.

7.4.2 A random medium setting

As an illustration, we aim at simulating the flow of such a fluid in a ran-
dom porous-like medium. In particular, we consider a medium with a varying
heights distribution H(x, y) for which some regions are almost completely ob-
structed (H(x, y) ≈ 0). In such situations, it is expected to find channelized flows
near the yield point when macroscopic flow starts to occur, as discussed in details
in [Hewitt et al., 2016] for instance.

We consider here a unit square domain Ω = [0; 1]× [0; 1], subjected to U ·n = 0
on the bottom and top surfaces and imposed pressure p = 0 on the left boundary
and p = pout on the right boundary, mimicking an imposed macroscopic pressure
gradient G = pout/L with L = 1 here. In the following, we choose µ = 1 and τ0 = 1
as well as m = 4 for the Hele-Shaw potential representation.

The Hele-Shaw cell consists of a heights distribution H(x, y) ∈ [0; 1] which is
randomly generated through the piecewise combination of Gaussian profiles cen-
tered around random seed points (see Figure 13). The field of heights is represented
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Fig. 13: Random realization of a Hele-Shaw cell with spatially varying height.

(a) G = 2 (b) G = 2.5 (c) G = 3

Fig. 14: Horizontal filtration velocity maps for different imposed pressure gradients
G.

on a piecewise constant space which will also be used to discretize the pressure
field. The velocity field is discretized using a Brezzi-Douglas-Marini space of de-
gree k = 1. The pressure field being a discontinuous function of degree k − 1 = 0,
this pair of function spaces is known to provide a stable approximation for such
mixed Poisson-like systems [Brezzi et al., 1985]. The mass conservation equation
div(U) = 0 is enforced weakly using the pressure as a Lagrange multiplier.

Solving the Hele-Shaw variational principle (79) indeed results in the following
observations. First, the local velocity is always zero if the applied pressure is below
a certain threshold (here around G ≈ 1.5) and above this threshold, the flow starts
occurring in localized channels only (see Figure 14a). For higher pressure gradients
(Figure 14c), the flow then resembles that of a classical Newtonian fluid.

8 Conclusions and outlook

In this work, we showed how conic programming can be applied to formulate
various complex problems arising in non-smooth mechanics. We have discussed
how the incremental variational problem of standard generalized materials can be
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formulated as a conic program provided both the free energy density and the dissi-
pation pseudo-potential are convex functions which admit a conic representation.
However, such a satisfying convex variational framework is not always applicable.
For instance, softening behaviours introduce formidable challenges as the corre-
sponding potentials become non-convex, resulting in mathematical ill-posedness,
existence of localized solutions and mesh-dependency of the corresponding numer-
ical methods. Similarly, non-associated behaviours depart from the existence of a
potential but can be formulated as mixed complementary programs. Alternative
strategies relying on iterative resolutions of classical conic programs have already
been proposed [Portioli et al., 2014, Nodargi et al., 2021] and should deserve more
investigation in the future.

Finally, convex programs also frequently appear in the context of optimal de-
sign and topology optimization. In this context, uncertainties on problem data are
often difficult to include and may strongly influence the optimal solution. Robust
optimization [Ben-Tal et al., 2009], which often benefits from a tractable conic pro-
gramming reformulation, might be an interesting approach for taking into account
uncertainties in a conic programming framework.
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