
HAL Id: hal-03529670
https://enpc.hal.science/hal-03529670

Submitted on 17 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive strain-gradient homogenization of a
pantographic material with compliant junctions

Baptiste Durand, Arthur Lebée, Pierre Seppecher, Karam Sab

To cite this version:
Baptiste Durand, Arthur Lebée, Pierre Seppecher, Karam Sab. Predictive strain-gradient homoge-
nization of a pantographic material with compliant junctions. Journal of the Mechanics and Physics
of Solids, 2022, 160, �10.1016/j.jmps.2021.104773�. �hal-03529670�

https://enpc.hal.science/hal-03529670
https://hal.archives-ouvertes.fr


Predictive strain-gradient homogenization of a pantographic material with
compliant junctions

Baptiste Duranda, Arthur Lebéea, Pierre Seppecherb, Karam Saba

aLaboratoire Navier (UMR 8205), École des Ponts ParisTech, Université Gustave Eiffel, CNRS, Marne-la-Vallée, France
bInstitut de Mathématiques de Toulon, Université de Toulon, Toulon, France

Abstract

This paper presents an architectured material featuring significant strain-gradient effects and called

pantographic material. It is a plate made of a single and continuous linear elastic material containing

voids and thus is easy to fabricate. The pattern consists of triangles connected by thin junctions

and arranged in such a way that two floppy strain modes are present. A homogenization scheme

based on the two-scale asymptotic expansion is suggested, keeping only significant strain-gradient

contributions in the homogenized energy by means of an adequate projection. The predictions from

the homogenization scheme are validated against a full-scale simulation and yield very good L2 error

estimates whereas the classical first-gradient homogenization fails. Furthermore, the relative position

of the unit-cell of the full-scale computation does not have a significant influence on the quality of the

prediction.

Keywords: Strain-gradient continuum, Higher-order homogenization, Metamaterial, Compliant

mechanism

1. Introduction

Architectured materials are heterogeneous materials with a designed microstructure, most often

periodic. Their macroscale behavior emerges rather from the microstructure than from the properties of

the constituent materials. Recent advances in manufacturing techniques, such as additive manufacturing

processes, raised a considerable interest in these materials as they provide solutions to the demand

for better mechanical performances in engineering applications. Indeed, even in elasto-statics, a

theoretical result shows that a vast variety of macroscale mechanical behaviors may be obtained

from an arbitrary mixture of materials (Camar-Eddine and Seppecher, 2003): not only the classical

first-gradient elasticity theory but also generalized continua (Cosserat and Cosserat, 1909; Mindlin,

1964) or metamaterials (Kadic et al., 2019). Hence, a new framework has emerged, called material by

design, which consists in designing the microstructure of an architectured material with design tools

such as topology optimization, in order to obtain the desired behavior at the macroscopic scale. This

framework relies deeply on predictive up-scaling methods relating the microscopic properties of the

architectured material to its overall mechanical behaviour. In these methods, the microstructure may

be modelled either as a discrete mechanical system or as a continuous medium. However, following
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a material by design framework, we focus here on media which are continuous at the microscopic

scale with reasonable volume fraction and are thus easy to fabricate and can result from topology

optimization.

Up-scaling methods for a continuous medium leading to first-gradient elasticity are now well

established in statics as well as in dynamics. They are based on the leading order of the two-scale

asymptotic expansion and convergence results have been proved (Jikov et al., 1994). Hence architectured

material properties have been widely explored and optimized in this framework ((Bendsøe and Sigmund,

2004; Amstutz et al., 2010; Wang et al., 2014; Zhu et al., 2017; Thomsen et al., 2018) among many

others). This is not the case of up-scaling methods for generalized continua which were derived either

from discrete microstructures or still require ad hoc hypothesis or specific stiffness contrast assumptions

for a continuous microstructure.

In the present paper we focus on the linear strain-gradient elasticity theory which, unlike first-

gradient theory, can take into account fast variations of the strain fields. In dynamics, this is mandatory

when the wavelength λ becomes very small compared to the overall size of the material T . In such a case,

boundary layers may be neglected and strain-gradient elasticity brings out some dispersive properties

of the architectured material as illustrated for instance in (Rosi and Auffray, 2016). The natural

framework for investigating wave propagation in architectured materials is Bloch wave decomposition

(Lee and Yang, 1973; Willis, 1980; Auriault and Bonnet, 1985; Nassar et al., 2015; Vondřejc et al.,

2017). Its close link with the two-scale asymptotic expansion (with respect to the small parameter

η = t/T characteristic of the scale separation) was pointed out and a strain-gradient up-scaling method

capturing acoustic branches of the dispersion diagram was suggested as well as higher-order convergence

justified when η tends to zero. (Santosa and Symes, 1991; Allaire et al., 2016). Hence, topology

optimization in this framework has already been performed (Bonnet and Cornaggia, 2017; Allaire and

Yamada, 2018; Bonnet et al., 2018; Cornaggia and Bellis, 2020).

The case of elasto-statics investigated in this paper is more challenging. Indeed, without a

wavelength to compare with, size effects in statics must be compared to the overall size T of the elastic

body and are meant to vanish when T tends to infinity. Hence, strain-gradient effects are classically

presented as higher-order corrections with a small typical characteristic or internal length. In this

direction, numerous up-scaling methods leading to an effective strain-gradient continuum were suggested.

Following historical contributions from Mindlin (1964) and Germain (1973) a family of approaches

is based on quadratic periodic boundary conditions applied to the unit-cell (Gologanu et al., 1997;

Kouznetsova et al., 2002; Auffray et al., 2010). These methods are based on the intuition that the unit-

cell may be curved when strain gradients are significant. However, they present inconsistencies which

were reviewed by Monchiet et al. (2020) who pointed out a relation with the second family of up-scaling

methods based on higher orders of the two-scale asymptotic expansion. Indeed, as for dynamics, higher-

order contributions terms involve higher gradients of the macroscopic strain (Bakhvalov and Panasenko,
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1989; Gambin and Kröner, 1989; Triantafyllidis and Bardenhagen, 1996; Boutin, 1996). A consistent

variational derivation of higher-gradient theories was suggested by Smyshlyaev and Cherednichenko

(2000) and a higher-order convergence result was obtained with very specific assumptions on the

boundary conditions and the averaging method. This result has not been extended to more general

boundary conditions and strain-gradient effects seems to remain very limited for the investigated

microstructures (Peerlings and Fleck, 2001; Ameen et al., 2018).

This motivated another direction for designing microstructures presenting significant effective

strain-gradient effects. Indeed, when the first-gradient effective constitutive law is degenerate, there

exists some zero-energy, or floppy, deformation modes with a non-vanishing strain. In this case,

strain-gradient elastic energy may become preponderant. This requires to break out of the classical

assumptions in homogenization methods which always lead to a non-degenerate strain energy. To that

aim, two approaches were followed. First, mechanisms, that is discrete microstructures with perfect

junctions, were considered: with a well-chosen configuration of perfect, or zero-energy, junctions, it is

possible to design microstructures with floppy strain modes and derive a strain-gradient homogenized

model (Alibert et al., 2003; Dell’Isola et al., 2016). However, this requires an educated guess of the

microstructure which is also rather difficult to fabricate (Dell’Isola et al., 2019). Second, one has to

assume specific contrast and geometry for the continuous microstructure (Pideri and Seppecher, 1997;

Abdoul-Anziz and Seppecher, 2018a,b; Abdoul-Anziz et al., 2021). Again, this leads to a rigorous

justification of strain-gradient continua in elasto-statics which was validated in (Jakabčin and Seppecher,

2020) but is specific to each microstructure and not suitable for topology optimization.

The main objective of this paper is to assess the prediction of the higher-order effective behavior

given by the two-scale asymptotic expansion applied to a continuous microstructure featuring significant

strain-gradient effects. To that aim, we consider the pantographic microstructure from Abdoul-Anziz

and Seppecher (2018a) simply made of triangles connected by compliant junctions (Figure 1). Indeed,

slender bars investigated in (Jakabčin and Seppecher, 2020) are strongly subject to buckling at the

microscopic level and thus are not suitable for an experimental study nor to practical use. On the

contrary, it is expected that considering solid triangles will mitigate this non-linear effect. However, no

higher-order convergence result is established for this class of microstructure, motivating the present

study.

First, we investigate in Section 2 the behavior of the architectured material we consider when

connections between triangles become thin and show that first-gradient elasticity is not able to correctly

predict the homogenized behavior. Then, in Section 3, the higher-order homogenization scheme

based on the asymptotic expansion is recalled. As the contrast is here infinite and the shape of the

microstructure is evolving with thinner and thinner junctions, the considered structure falls out of the

classical assumptions in homogenization. The strain-gradient homogenized stiffness tensor given by

the higher-order homogenization corresponds to different intrinsic lengths. When the strain does not
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belong to a degenerate direction of the first-gradient homogenized stiffness tensor, these lengths are

extremely small (of the order of the size of the periodic cell) and, at the macroscopic level, the effect of

such strain-gradient terms can be ignored. On the contrary, this effect becomes important, maybe

preponderant, when the strain belongs to a degenerate direction of the first-gradient homogenized

stiffness tensor. Hence we project the strain-gradient homogenized stiffness tensor in these directions

(Section 4). This presents two advantages. First the model that we derive is actually a macroscopic

one as it does not try to describe the equilibrium solution at the scale of the unit-cell. Secondly the

model leads to well-posed problems, which is not always the case when the whole strain-gradient

tensor is retained (Allaire et al., 2016; Smyshlyaev and Cherednichenko, 2000). Finally, in Section 5,

we perform extensive numerical simulations in order to compare the strain-gradient model and the

first-gradient model to a numerical reference solution. The simulations reveal the very good predictions

of the strain-gradient model.

2. The continuous pantographic metamaterial

2.1. The microstructure

The proposed pantographic metamaterial is a bi-dimensional body with a periodic microstructure.

This microstructure is composed of identical triangles and of rhombi connected at their vertices by

thin junctions, as shown in Figure 1a. It is made of a homogeneous isotropic linear elastic material.

We denote c the stiffness tensor of this constituent material. The remaining space is empty.

pantograph

strip n°i+ 1pantograph

strip n°i

pantograph strip

x1

x2(a) (b) (c)

(d)

A

a

a

2a

t1

t2

a

0.3a

B–B

A

∅2ρa

Figure 1: (a) The periodic microstructure (b) Geometric configuration of the unit-cell (c) Geometric construction of the

junctions (d) Illustration of mesh density around the junctions

The chosen unit-cell used for the computation of the effective behavior is rectangular and its

geometry is presented in Figure 1b. The geometry of the microstructure depends on two parameters:
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the length a and the dimensionless junction thinness ρ. The dimensions of the unit-cell in the global

coordinate system are t = t1 = 4a and t2 = 8a. Hence, t is the typical size of the unit-cell and

τ = t2/t1 = 2 is the aspect ratio of the unit-cell. The area fraction of solid with respect to the unit-cell

area t1t2 is denoted φ.

The junction geometry is defined as follows: a circle of radius ρa is centered at the common vertex

of adjacent triangles and rhombi (orange circle in Figure 1c); then each void angle sector is smoothed

with a circle (drawn in red in Figure 1c) tangent to both edges and the orange circle. The parameter ρ,

representative of the junction thinness has a significant influence on the behavior of the metamaterial.

Indeed, the shape of the junctions makes them much more compliant to bending moment than to

traction or shear forces. It is thus expected that they almost behave like revolute joints when ρ is small

enough.

More precisely, the unit-cell configuration allows macroscopic strains with low energy called floppy

modes. First, the arrangement of triangles as horizontal strips in Direction 1 allows almost free stretch

in this direction. This mode is denoted pantograph mode in reference to the classical mechanism.

One pantograph strip is hatched on Figure 1a. Secondly, rhombi which connect vertically pantograph

strips allow an almost free horizontal relative motion in Direction 1 between all strips. These floppy

modes were already investigated for structures containing perfect junctions (Alibert et al., 2003) and

Γ-convergence results were obtained when the unit-cell is the assembly of slender beams (Anziz, 2018;

Abdoul-Anziz and Seppecher, 2018b).

2.2. Emergence of strain-gradient effects

x1

T = 50t1

T/2
w = T/10

B–B

x2

Figure 2: 2D linear elastic boundary value problem for the pantographic metamaterial. The domain is periodic in

Direction 2.

We consider a 2D rectangular body that is clamped at x1 = 0 and free at x1 = T in plane-strain

linear elasticity (Figure 2). In Direction 2, periodic boundary conditions are applied along the lateral

boundaries. The sample is made of the pantographic metamaterial, with 50 unit-cells in the length T .

It is subjected to a load f- uniformly distributed on a central strip of the elastic body. More precisely

f- = fe-1 for T
2 −

w
2 < x1 <

T
2 + w

2 , with w = T
10 .

Our reference displacement solution u-fs is obtained using a full-scale numerical simulation, i.e.

using a standard FEM formulation and a mesh that represent the whole microstructure accurately.
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Figure 3: Distribution of the longitudinal displacement u1 along the B–B line (Figures 1b and 2) for several ρ values.

For each full-scale simulation (markers), the first-gradient (dashed line) and strain-gradient (solid lines) homogenized

solutions are also plotted.

Full details of the finite-element simulations are given in Section 5.2. They are performed for a series

of values of the junction thinness ρ in the interval
[
10−3, 10−1].

In order to check whether a standard homogenized model based on a first-gradient continuum is

able to describe this equilibrium from the macroscopic point of view, we derive, in a closed form, the

solution of the corresponding boundary value problem. The standard homogenized stiffness tensor Cρ

will be computed in Section 3. Owing to symmetries, the homogenized displacement in Direction 2

(U2) vanishes and the horizontal displacement U1 is independent of x2. It can be expressed as follows:

U1(x1) =


∆ρ 2x1

T for 0 ≤ x1 ≤ T−w
2 ,

∆ρ
(
1− 1

Tw

(
x1 − T+w

2

)2 )
for T−w

2 ≤ x1 ≤ T+w
2 ,

∆ρ for T+w
2 ≤ x1 ≤ T,

(1)

where ∆ρ = φ fwL
2Cρ1111

is the displacement on the right side of the plate (x1 ≥ T+w
2 ) predicted by the

first-gradient homogenized model. Note that, when the junction thinness ρ decreases, the homogenized

stiffness Cρ1111 decreases and consequently the value of ∆ρ increases. Anyway, the function U1/∆ρ is

independent of it and consequently of ρ.

Figure 3 shows the profile along a horizontal line of U1/∆ρ and compares it to the horizontal

displacement u1/∆ρ obtained by the full-scale simulation and normalized with the homogenized

first-gradient displacement ∆ρ computed for each value of ρ.

It appears that the first-gradient homogenized model leads to an overestimation of the horizontal

displacement ufs
1 . The discrepancy between the homogenized displacement U1 and the full-scale
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displacement ufs
1 is visible even for rather thick junctions and becomes very significant when ρ→ 0. It

also appears that this discrepancy cannot be corrected by simply correcting the value of Cρ1111 given

by standard homogenization theory. Indeed the profiles obtained by the full-scale simulation are not

constant in the free part (x1 ≥ T+w
2 ) of the plate and are thus fundamentally different from the profile

given by (1).

The reason for the failure of the classical periodic homogenization when junctions are getting

thinner is the following: the first-gradient homogenized stiffness tensor Cρ becomes ill-conditioned

as Cρ1111 → 0 when ρ→ 0. Hence, higher-order effects, related to components of the strain gradient

become significant. Whereas classical homogenization predicts larger and larger displacement ∆ρ, the

actual displacement remains limited because the clamped boundary condition prevents the relative

motion of the triangles inside the microstructure.

Ahead of our development, we also plot in Figure 3 the macroscale displacement that we will obtain

using the equivalent homogeneous strain-gradient medium derived in Section 4. It appears clearly that

it describes in a very accurate way the equilibrium of the considered architectured material from the

macroscopic point of view.

3. Higher-order homogenization from the two-scale asymptotic expansion

In the present section, the formal two-scale asymptotic expansion procedure is briefly recalled for a

microstructure made of a homogeneous linear elastic material and voids. The geometry of the unit-cell

is fixed. The expansion is carried out up to the second order and the derivation of a strain-gradient

homogenized energy is recalled.

3.1. The two-scale asymptotic expansion

The periodic medium is defined on a 2D connected domain of typical size T obtained by the

repetition of a unit-cell of typical size t. The repetitive unit-cell is constituted of a linear elastic

material and voids. Let us work in a dimensionless framework by introducing the space variable

Y- = x-/T and the relative size of the unit-cell η = t/T . We also divide the displacement field by T

in order to work with a dimensionless field u-. We assume that the displacement is prescribed on the

external boundary ∂Ωext, whereas the boundary ∂Ωint of the voids is traction-free. The equilibrium

displacement under the action of a body force f- concentrated on the solid part of the domain satisfies

the boundary value problem div(σ) + f- = 0, σ = c : εη and ε = ∇su- on Ω,

u- = 0- on ∂Ωext and σ · n- = 0- on ∂Ωint,
(2)

where div stands for the divergence operator, ∇s is the symmetric part of the gradient operator and

n- denotes the normal to the boundary ∂Ωint of the voids.
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Notations. All developments are made in a fixed Cartesian frame endowed with an orthonormal basis(
e-1, e-2

)
. Hence, it is useful to introduce the following tensorial notations. Vectors X- are underlined

and higher-order tensors X are simply in boldface. When dealing with components, Greek indices

α, β, γ.. = 1, 2 are used and Einstein’s summation convention is followed for repeated indices. The

transpose operationX 7→XT is applied to any order tensorsX by reversing the indices order as follows:(
XT

)
αβ...ψω

= Xωψ...βα. Four symbols are defined: (·), (:), (...) and (....) for the contraction products on,

respectively, one, two, three and four indices. By convention, closest indices are successively summed

together in contraction products. For instance, contracting three times the six-order tensor X with the

third-order tensor Y writes as:
(
X ... Y

)
αβγ

= (XαβγδλµYµλδ). Finally, Kronecker symbol is denoted

δαβ (δαβ = 1 if α = β, δαβ = 0 otherwise).

Double-scale representation. As we intend to study the behavior of the structure in the homogenized

limit, that is when η becomes smaller and smaller, we parametrize Problem (2) and all associated

quantities by η. Moreover we search for a double-scale representation of these quantities of the form

u-
η(Y- ,y-), ση(Y- ,y-), εη(Y- ,y-) where y- is the microscopic space variable defined by

y1 = x1
t1
−
⌊
x1
t1

⌋
= Y1

η
−
⌊
Y1
η

⌋
and y2 =

x-2
t1
− t2
t1

⌊
x2
t2

⌋
= Y2

η
− τ

⌊
Y2
τη

⌋
. (3)

Here bxc stands for the floor of x. Note that y- belongs to the rescaled cell [0, 1]× [0, 2], more precisely

to the solid part Y of it.

The body load f-, concentrated on the solid part of the unit-cell, is assumed to vary slowly. Hence

its double-scale representation is assumed to be of the form 1
φF-(Y- ). The normalization with the

volume fraction of solid φ = |Y|
τ

ensures that F- will correspond to the body load per unit surface of

the macroscopic domain Ω.

The scale-separation assumption consists in assuming the independence of the two coordinate

variables Y- and y-. It enables us to rewrite the spatial derivation operator ∇- x under the form

∇- = ∇- Y + 1
η

∇- y. (4)

Expansion. Treating η as a perturbation parameter, functions that represent mechanical quantities are

written as formal power series of η:

u-
η(Y- ,y-) =

∞∑
k=0

ηk u-
k(Y- ,y-), εη(Y- ,y-) =

∞∑
k=−1

ηk εk(Y- ,y-), ση(Y- ,y-) =
∞∑

k=−1
ηk σk(Y- ,y-) (5)

Both these expressions as series and the expanded derivation operator (4) are incorporated in the

equations of Problem (2). Then, each equation of this system is broken down into a set of equations

where each one corresponds to the terms in ηp for a given power p. These elementary equations are

then gathered in order to form a sequence of auxiliary boundary value problems defined on the solid

part Y of the rescaled unit-cell. For each problem of order p, the main unknown is the displacement

field u-p while the field u-p−1 is considered as an input of the problem. The problems are nested and

solved successively.
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3.2. Resolution of the first auxiliary problems and resulting asymptotic series

Leading order displacement. The case of the order p = 0 yields:
∇- syu-

0 = 0 on Y,

u-
0(Y- ,y-) periodic with respect to y-.

(6)

The structure Ω that we consider is connected. Hence the displacement u-0 is a rigid-body displacement.

Owing to the periodicity condition, it is a global translation of the unit-cell:

u-
0(Y- ,y-) = U-

0(Y- ) (7)

which cannot be determined at this step.

First-order auxiliary problem. The auxiliary problem of order p = 1 is a boundary value problem for

the displacement u-1: 

divyσ0 = 0- on Y,

σ0 = c : ε0 on Y,

ε0 = E0 + ∇- syu-
1 on Y,

σ0 · n- = 0- on ∂Y,

u-
1(Y- ,y-) periodic with respect to y-,

(8)

where the macroscopic strain E0(Y- ) is defined as:

E0 = ∇- sYU-
0. (9)

The solution u-1 of this linear boundary value problem is again defined up to an undetermined

macroscopic translation, now denoted U-1. This solution depends linearly on the source term E0 and

thus can be expressed as the linear superposition u-1(Y- ,y-) = h1(y-) : E0(Y- ) +U-1(Y- ) or, in terms of

indices,

u1
α(Y- ,y-) = h1

αβγ(y-)E0
γβ(Y- ) + U1

α(Y- ). (10)

The third-order displacement localization tensor h1 that relates u-1 to E0 is uniquely defined once its

mean value is fixed by1 〈
h1
〉

= 0 (11)

and can be determined by solving elementary elasticity problems on Y. Clearly the associated strain

also depends linearly on E0 and we have

ε0(Y- ,y-) = a1(y-) : E0(Y- ). (12)

1The averaging operator is defined as 〈f〉 = 1
τ

∫
Y f(y-)dy-. Note that 〈1〉 = φ.
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where the strain localization tensor a1 is the fourth-order tensor defined by

a1
αβγδ = Isym

αβγδ + 1
2
(
∂yβh

1
αγδ + ∂yαh

1
βγδ

)
with Isym

αβγδ = 1
2 (δαγδβδ + δαδδβγ) . (13)

Finally we notice that the stress tensor is given by

σ0
(
Y- ,y-

)
= c :

(
a1
(
y-

)
: E0(Y- )

)
=
(
c : a1

(
y-

) )
: E0(Y- ). (14)

Second-order auxiliary problem. The auxiliary problem of order p = 2 reads

divyσ1 + divY σ0 + 1
φF- = 0- on Y,

σ1 = c : ε1 on Y,

ε1 = ∇- sY u-
1 + ∇- syu-

2 on Y,

σ1 · n- = 0- on ∂Y,

u-
2(Y- ,y-) periodic with respect to y-.

(15)

We remark first that periodicity conditions imply that
〈
divyσ1

〉
= 0-. Hence the mean value of the

first equation reads

divY Σ0 + F- = 0- with Σ0 =
〈
σ0
〉
. (16)

From equation (14), we deduce

Σ0 = C : E0 with C =
〈
c : a1

〉
(17)

Recalling that E0 = ∇- sYU-
0, and using Dirichlet boundary conditions, we recover the classical first-

order homogenized problem. This is a well-posed elasticity problem where the first-order homogenized

constitutive equation (17) results from the determination of the first-order strain localization tensor a1

which has been determined in the previous step. The homogenization procedure usually ends there. Let

us however study more deeply the second-order auxiliary problem which, taking into account equations

(16), (17) and (10), can be written

divyσ1 +
(
c : a1 − 1

φC
)
...K0 = 0- on Y,

σ1 = c : ε1 on Y,

ε1 = p1(y-) ...K0 +E1 + ∇- syu-
2 on Y,

σ1 · n- = 0- on ∂Y,

u-
2(Y- ,y-) periodic with respect to y-,

(18)

where E1 = ∇- sYU-
1 andK0 stand respectively for the macroscopic strain associated to the displacement

field U-1 and strain gradient associated to the displacement field U-0: K0
αβγ(Y- ) = ∂YγE

0
αβ(Y- ). The

fifth-order tensor p1 is defined by

p1
αβγδε(y-) = 1

2
(
δβγh

1
αδε(y-) + δαγh

1
βδε(y-)

)
. (19)
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The solution u-2 of Problem (18) is again determined up to a global translation, now denoted U-2(Y- ).

It depends linearly of its source terms K0 and E1. Again, solving elementary problems uniquely

determines a localization tensor h2(y-) satisfying
〈
h2
〉

= 0 and such that

u-
2(Y- ,y-) = h2(y-) ...K0(Y- ) + h1(y-) : E1(Y- ) +U-2(Y- ). (20)

We then deduce the existence of an associated strain localization tensor a2 such that

ε1(Y- ,y-) = a2(y-) ...K0(Y- ) + a1(y-) : E1(Y- ). (21)

The formal series. The induction may be pursued up to any higher order. Each auxiliary problem

yielding a higher-order macroscopic displacement U-p and new localization fields hp and ap related

to higher gradients of the macroscopic displacements U-0. Following Boutin (1996), Smyshlyaev

and Cherednichenko (2000) and others, it is convenient to introduce the series of the macroscopic

displacement:

U-(Y- ) =
∞∑
p=0

ηpU-
p(Y- ) (22)

as well as the corresponding strain E and strain-gradient K. This allows to rewrite formally the

expansion of the displacement (5) as:

u-
η(Y- ,y-) ' U-(Y- ) + η h1(y-) : E(Y- ) + η2 h2(y-) ...K(Y- ) + . . . (23)

and the expansion of the strain as:

εη(Y- ,y-) ' a1(y-) : E(Y- ) + η a2(y-) ...K(Y- ) + . . . (24)

3.3. Deriving equivalent continua from the two-scale asymptotic expansions

In this second part of the homogenization scheme, we focus on approximations of the macroscopic

energy density. The idea is to truncate the series (23) and to compute the corresponding energy. Our

aim is the second-order truncation but we first recall the results obtained for shorter truncations.

Zeroth order truncation. The truncation of u-η at order p = 0 corresponds to the approximation

u-
η(Y- ,y-) ' U-(Y- ). Using the expanded derivation operator (4), one easily gets that the associated

strain is εη ' E(Y- ) and thus uniform on the unit-cell. The corresponding strain energy average on

the unit-cell corresponds to the Voigt approximation of the homogenized strain energy:〈1
2ε

η : c : εη
〉
' 1

2E : φc : E (25)

which is known to be a very rough approximation. The reason appears clearly when comparing

approximation εη ' E(Y- ) with expansion (24) : the error due to this approximation is of order η0.
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First-order truncation. The truncation of u-η at order p = 1 corresponds to the approximation

u-
η(Y- ,y-) ' U-(Y- ) + η h1(y-) : E(Y- ). (26)

The related strain field is obtained by applying the expanded derivation operator (4) and taking into

account Definitions (13) and (19). We get

εη(y-,Y- ) ' a1(y-) : E(Y- ) + η p1(y-) ...K(Y- ). (27)

From now on, for the sake of simplicity, we assume that the unit-cell is centrosymmetric. Indeed, this

assumption implies that odd tensors like
〈
a1T : c : p1

〉
= 0 must vanish. Computing the strain energy

average on the unit-cell leads then to:〈1
2ε

η : c : εη
〉
' 1

2
[
E : C : E + η2KT ...D] ...K

]
, (28)

where C =
〈
a1T : c : a1

〉
is the first-order effective tensor already2 introduced in (17) and D] is the

sixth-order tensor defined as:

D] =
〈
p1T : c : p1

〉
. (29)

The macroscopic strain energy density (28) corresponds to a strain-gradient model. However,

comparing (27) to expansion (24) shows that the error in this approximation of the strain is of order η

and thus that the approximation of the energy density we obtain is not reliable at order η2. It can

only be confidently used at order η0 where it reads 1
2E : C : E and corresponds to effective energy

associated to the classical homogenized problem (16), (17).

Second-order truncation. At the order p = 2, the approximation of the displacement field is

u-
η(Y- ,y-) ' U-(Y- ) + η h1(y-) : E(Y- ) + η2 h2(y-) ...K(Y- ), (30)

from which we deduce the related strain field

εη(y-,Y- ) ' a1(y-) : E(Y- ) + ηa2(y-) ...K(Y- ) + η2p2(y-) ....
(
∇- YK(Y- )

)
, (31)

where p2 is the sixth order tensor defined by

p2
αβγδεζ = 1

2
(
δβγh

2
αδεζ(y-) + δαγh

2
βδεζ(y-)

)
, (32)

and ∇- YK is the second gradient of the macroscopic strain (
(
∇- YK

)
αβγδ

= (∂YδKαβγ)). The corre-

sponding approximation of the strain energy average
〈

1
2ε

η : c : εη
〉
on the unit-cell writes

1
2

[
E : C : E + η2

(
KT ... F ...K + 2E : G ...

.
(
∇- YK

))
+ η4

(
∇- YK

)T
...
.
H# ...

.
(
∇- YK

)]
, (33)

2Indeed:
〈
a1T

: c : a1
〉

=
〈(

∇-syh
1
)T

: c : a1 + c : a1
〉

=
〈
−h1T

· divy
(
c : a1

)〉
+
〈
c : a1

〉
=
〈
c : a1

〉
12



where the sixth-order stiffness tensors F , G and the eight-order stiffness tensor H# are defined by:

F =
〈
a2T : c : a2

〉
, G =

〈
a1T : c : p2

〉
and H# =

〈
p2T : c : p2

〉
. (34)

Again, odd-order tensors vanish here thanks to the centrosymmetry assumption for the unit-cell. The

form (33) of the homogenized energy involves the third-gradient of the displacement ∇- YK. At order

η2, this dependence can be removed through an integration by parts on the macroscopic domain of the

cross term E : G ...
.
(
∇- YK

)
. Ignoring boundary terms and focusing on the bulk energy, we obtain the

following average strain energy density:

1
2

[
E : C : E + η2KT ...

(
F −G−GT

)
...K + η4

(
∇- YK

)T
...
.
H ...
.
(
∇- YK

)]
. (35)

Like in the previous truncations, the highest order term in this energy is not reliable as the error

committed when approximating εη(y-,Y- ) is of order η2. Hence we can only rely on the following

approximation of the average energy density:

1
2
[
E : C : E + η2KT ...

(
F −G−GT

)
...K

]
. (36)

The sixth-order tensor:

D = F −G−GT, (37)

characterizes strain-gradient effects. Note that D may not be positive in which case the present energy

cannot be used as an elastic energy.

The higher-order convergence result from Smyshlyaev and Cherednichenko (2000). This sequence of

approximations for the averaged energy may be continued for higher-order truncation of the displacement

u-
η. They are expected to provide improved homogenized approximations when the scale separation

is not completely satisfied. Indeed Smyshlyaev and Cherednichenko (2000) proved a convergence

result showing that the use of the averaged energy obtained by truncating u-η at order p provides

an approximation of the “actual displacement” with an error of order ηp. In this result the “actual

displacement” must be understood as an average of the actual equilibrium displacement for all possible

positions of the microstructure with respect to the macroscopic domain. Indeed, the exact position

of the microstructure is generally not known. Contrary to the classical leading-order homogenized

approximation where this effect may be neglected, seeking higher-order estimates requires to remove

this influence by averaging.

However the result Smyshlyaev and Cherednichenko (2000) must be evoked with caution in our

context. Indeed it has been established under conditions which are not satisfied by the structures we

are considering. First, the authors consider only a boundary value problem with periodic boundary

conditions. This eliminates any boundary layer effect which can pollute higher-order estimates. Secondly

and more importantly, they consider only microstructures with a finite elastic contrast (thus voids and

13



rigid inclusions are forbidden). This ensures in particular that C is positive definite and bounded. This

theoretical result was investigated numerically on periodic circular inclusions by Ameen et al. (2018)

who confirmed the improved estimates when the scale separation is low and even with rather large

contrast. However, for the microstructure they considered, scale effects were only observed for η ∼ 1/3

which questions even the relevance of deriving a homogenized model and confirms the robustness of

the classical homogenization method.

Indeed, preserving contributions of order η2 in energy (36) requires that η2D is somehow comparable

to C. This implies that either D is large, either C is small, at least in some common directions.

That can be achieved only if c is large (even infinite) in some part of Y and small (or vanishing) in

some other part. One way to achieve this is to consider microstructures featuring floppy modes which

corresponds to the case where C becomes ill-conditioned. This is the case of the pantographic material

described in Section 2.1 and investigated in the following section. This case falls out the classical

homogenization theory with finite contrast and out of the framework assumed in (Smyshlyaev and

Cherednichenko, 2000).

4. Homogenization of the pantographic material

We now consider the pantographic material described in Section 2.1, parameterized by the junction

thinness ρ. The domain of the microstructure domain is changing with ρ and we numerically investigate

the case ρ→ 0.

The strain-gradient homogenization scheme described in the previous section is implemented in the

python package HO-homog (Durand and Lebée, 2020) (open source project). HO-homog is specially

designed to automate the numerical application of higher-order homogenization schemes such as the one

presented here. It is based on the library Dolfin (Logg et al., 2012) for solving the auxiliary problems

with the finite element method and for performing operations on the solutions fields u-k, εk and σk. It

also includes features for parametric modeling of 2D unit-cell geometries like the one shown in Figure 1

and generating the associated finite element meshes. For these functionalities HO-homog makes use of

Gmsh (Geuzaine and Remacle, 2009), a finite-element mesh generator. As junctions play an essential

role in the behavior of this metamaterial, we impose a significantly higher mesh density in the vicinity

of the junctions: the characteristic length of the elements varies from a/4 in the area far from any

junction to ρa/8 within small areas around each junction (Figure 1).

We solve the auxiliary problems (8) and (18) numerically and we thus obtain finite element functions

that represent the localization tensors h1,h2,a1,a2. Then, applying the formula (17), (34) and (37)

results in the numerical values of the stiffness tensors for the first-gradient equivalent medium (Cρ)

and the strain-gradient equivalent medium (Cρ and Dρ). Note that shifting the microstructure in

Direction 1 or 2 does not change the values for Cρ and Dρ: the localization tensors are the same

regardless of the shift of coordinates. Note also that considering a larger unit-cell (made of several
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minimal unit-cells) does not change the homogenized tensors either.

4.1. First-order auxiliary problem

Corrector fields. Figure 4 presents the displacement field u-E defined as:

u-
E = E · y-+ η h1(y-) : E, (38)

for a junction thinness ρ = 0.05 and for each unit strain case: E11, E22 and E12. The norm of the

corresponding local strain field,
∥∥∥a1(y-) : E

∥∥∥, is plotted on the deformed configuration. Note that h1,

like all other localization tensors, depends on ρ, even though this dependence is not recalled in our

notation.

1.0e-1

1.0e-2

1.0e+1

1.0

1.0e-3

local strain,

norm

E11 E12E22

Figure 4: Displacement and strain fields produced by each unit macroscopic strain component when ρ = 0.05. Scale

factors of the deformed shapes: 0.1 for E11 and E22, 0.07 for E12.

It appears that both macroscopic strains E11 and E12 essentially induce relative rotations of the

triangles and rhombi inside the unit-cell, while strain is concentrated at junctions. The stretch E11

corresponds to the pantographic mode and the shear E12 is also almost free thanks to rhombi which

allow relative horizontal motion between two pantograph strips (Figure 1). Hence these macroscopic

strains appear as floppy modes of the microstructure. On the contrary, the macroscopic strain E22

generates significant strains in the triangles and corresponds to a stiff mode.

When ρ→ 0, the scaling of strain and stress in the vicinity of the junctions can be more precisely

described. Indeed, the triangles reaching the junction may be treated as wedges loaded at the tip (see

Figure 5). For the stiff mode E22 triangles are loaded with concentrated forces flowing through junctions
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Figure 5: Wedge with concentrated load and couple at the tip.

because of incompatible relative motions of the triangles. This corresponds to the well-known Flamant

(1892) solution where the stress distribution inside the wedge scales as d−1 where d is the distance

to the tip (Figure 5). For the floppy modes E11 and E12 the corresponding loading of the wedge is a

concentrated couple at the tip. Similar arguments based on Michell (1899) general solution indicate

that, in this case, the stress distribution in the wedge scales as d−2.

First-order homogenized stiffness. Scaling of the stress close to junctions have a direct influence on the

total energy in the unit-cell and consequently on the homogenized stiffness. For a floppy mode, as the

stress in each branch of the triangles scales as d−2 close to all junctions, it is possible to argue that

the corresponding overall strain energy in the unit-cell scales as ρ2 in the auxiliary problem. Similar

arguments also indicate that for a stiff mode, as the stress scales as d−1, the overall strain energy scales

as 1
|log ρ| .
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Figure 6: Eigenstiffnesses of the first-order stiffness tensor

Cρ as functions of the junction thinness
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Figure 7: Angular deviation of the eigenstrains of the first-

order stiffness tensor Cρ from their limit eigenstrains when

ρ→ 0.
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This is confirmed when considering the diagonal form of Cρ :

Cρ =
3∑
p=1

Cρpε
ρ
p ⊗ε

ρ
p where ερp : ερq = δpq, (39)

introducing the eigenvalues of Cρ, (Cρ1 , C
ρ
2 , C

ρ
3 ) and the orthonormal basis (ερ1, ε

ρ
2, ε

ρ
3) of the associated

eigenvectors. In this context of elasticity, we will call Cρp eigenstiffnesses and ερp eigenstrains.

The three eigenstiffnesses Cρp are sorted in ascending order and plotted in Figure 6 as functions

of the junction thinness. It appears that two eigenstiffnesses converge to 0 at a rate of ρ2 : they

correspond to floppy modes. The last eigenstiffness Cρ3 convergence is much lower and similar to
1

|log ρ| . This is the stiff mode. The corresponding eigenstrains converge respectively toward ε0
1 = E11,

ε0
2 =
√

2E12 and ε0
3 = E22. Indeed Figure 7 presents the angular deviation sin(θρp) =

√
1− (ερp : ε0

p)2

with respect to these limits.

Note that, for ρ = 0.02, the floppy modes eigenstiffnesses are already two orders of magnitude

smaller than the stiff mode, showing the efficiency of compliant junctions. Consequently, when ρ

is reasonably small, we can define without ambiguity the vector space of floppy modes of Cρ as

span {ερ1, ε
ρ
2}. When the strain belongs to this space, the associated first-order energy is so small

that the contributions from the second-order η2D may become comparable. These contributions are

investigated in the next subsection.

4.2. Second-order auxiliary problem

Corrector fields. Figure 8 presents the total displacement around a unit-cell computed for a uni-

form macroscopic strain-gradient K. Indeed, considering a quadratic variation of the macroscopic

displacement U in the expansion (23) yields the following approximation of the displacement:

u-
K = 1

2K̃ :
(
y-⊗y-

)
+ η h1(y-) :

(
K · y-

)
+ η2 h2(y-) ...K, (40)

where K̃ is the second-gradient of the displacement corresponding to the strain-gradient K. It is easily

written in terms of K as follows3:

K̃111 = K111, K̃221 = K̃212 = K221, K̃122 = 2K122 −K221,

K̃222 = K222, K̃112 = K̃121 = K112, K̃211 = 2K211 −K112.
(41)

Second-order corrector fields may be interpreted as the way the microstructure responses to linear

variations of the macroscopic strains. This is well illustrated with the present pantographic material.

For instance, K112 corresponds clearly to a beam-like bending of the pantograph strips. Similarly, K111

reveals the incompatibility of the rotation of triangles when the floppy stretch E11 is not uniform.

The correctors associated to all strain-gradient components, except K122, feature significant defor-

mation of the solid triangles corresponding to stiff strain-gradient modes. The corrector associated

3i.e.: ∇-y∇-sy
(

1
2K̃ : y-⊗y-

)
= K
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Figure 8: Total displacement and strain field produced by each unit strain-gradient component. On the upper-right

corner, the macroscopic deformation corresponding to each strain-gradient component is represented by applying the

deformation 1
2K̃ : (y ⊗ y) to a regular grid.

to K122 corresponds to a mode which remains floppy at the second order. Indeed, recall that the

presence of rhombi allows almost zero energy relative motion in Direction 1 between pantograph strips

(Figure 1). Hence, all macroscopic displacements of the form U- = f(x2)e-1 have almost zero energy.
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Strain-gradient characteristic lengths. We compute now the second-order homogenized stiffness Dρ

defined from the two-scale asymptotic expansion in Equation (37). In order to illustrate it, we present

the six quantities defined, for p ∈ {1, 2, 3} and α ∈ {1, 2}, by

`ρp,α = η

√√√√√(ερp ⊗e-α)T
...Dρ ...

(
ερp ⊗e-α

)
Cρp

. (42)

These quantities are six intrinsic lengths of the effective strain-gradient continuum (relative to the size

T of the macroscopic domain). Each one corresponds to the response of the material to a variation,

in the direction e-α, of a strain remaining proportional to the eigenstrain ερp : any such variation

occurring over a distance of order `ρp,α (or smaller) is associated to a non-negligible elastic energy. The

strain-gradient effect is negligible at the macroscopic scale when the intrinsic length is of the order of

the relative unit-cell typical size η. It becomes important when the intrinsic length is of order 1 = η0.
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Figure 9: Intrinsic lengths of the equivalent strain-gradient

continuum. Note that, as Dρ may be negative, the lengths

may be complex : this is the case for `ρ3,2 when ρ is rather

large; then its modulus is plotted using star markers and

dotted lines.
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Figure 10: Eigenstiffnesses of D∗,ρ obtained after projec-

tion.

Figure 9 presents theses characteristic lengths expressed as multiples of η. It appears clearly that,

when junctions are becoming thin, three lengths remain of the order of the cell size or smaller whereas

the three others are real and become significantly large compared to it.

The reason why `3,1 and `3,2 remain of the order of the cell size is the following : they are related

to the stiff strain-gradient modes K221 and K222 (Figure 8) associated to the stiff strain mode ερ3. The

energy of these modes is expected to scale as 1
|log ρ| exactly like the first-order eigenstiffness Cρ3 . The

reason why `2,2 also remains of the order of the cell size is similar but with a different energy scaling :

it is related to the floppy strain-gradient mode K122 (Figure 8) associated to the floppy strain mode Cρ2 .

The energies corresponding to theses two modes share again the same scaling which is now ρ2. The
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situation is different for the other lengths `1,1, `1,2 and `2,1 : they correspond to stiff strain-gradient

modes whose energy scales as 1
|log ρ| associated to floppy strain modes whose energy scales as ρ2. It is

then not surprising that these lengths scale as 1
ρ
√
|log ρ|

.

For ρ small enough, 1
ρ
√
|log ρ|

may become comparable to 1/η, revealing strain-gradient effects which

are significant from the macroscopic point of view.

It is also important to understand why the lengths associated with floppy strain modes are real.

Indeed, in Equation (37), unsigned contributions come from Gρ and correspond to cross energies

between the first-gradient strain localization a1 and the second-gradient displacement corrector h2.

When a floppy strain mode is considered, the corresponding strain localization a1 becomes small when

ρ→ 0 and contributions from Gρ become negligible compared to those from F ρ in Equation (37).

4.3. Strain-gradient model for the pantographic material

From the behavior of the characteristic lengths as function of ρ, we conclude that, Dρ cannot

be used directly for describing the strain-gradient effective behavior of the pantographic material.

Indeed, contributions with a characteristic length which remains of the order of the cell size should

be discarded in a macroscopic model. Furthermore, Dρ may not be positive definite. In that case,

deriving a well-posed model would require some regularization by adding for instance third-gradient

terms in the homogenized energy, terms whose physical bases would have to be justified. That is why

we suggest to keep in the macroscopic effective model only the strain-gradient terms which correspond

to macroscopic intrinsic lengths.

The second-order stiffness tensor for the pantographic material. We suggest projecting Dρ on the

subspace of the strain gradients which present significant characteristic lengths, namely on the space

spanned by ερ1 ⊗e-1, ε
ρ
1 ⊗e-2, ε

ρ
2 ⊗e-1 corresponding to the lengths `ρ1,1, `

ρ
1,2 and `ρ2,1. We set

D∗ρ = P ρ ...Dρ ... P ρ, (43)

where P ρ = ερ1⊗e-1⊗e-1⊗ε
ρ
1 + ερ1⊗e-2⊗e-2⊗ε

ρ
1 + ερ2⊗e-1⊗e-1⊗ε

ρ
2. As already pointed out, this projection

ensures that D∗ρ is positive for ρ sufficiently small, in addition to removing spurious contributions

from short characteristic lengths. This is illustrated in Figure 10 which shows the three eigenstiffnesses

of D∗ρ.

Homogenized energy. From the previous developments we arrive at the following homogenized strain-

gradient energy density:

W ρ,η(U-) = 1
2
(
E : Cρ : E + η2KT ...D∗ρ ...K

)
. (44)

Next section is devoted to checking that this strain-gradient model actually describes in a very accurate

way the macroscopic behavior of the considered pantographic material.
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5. Comparison with full-scale simulations and empirical error estimates

Several numerical campaigns have been performed in order to check the accuracy of the proposed

strain-gradient model for the pantographic metamaterial.

The results of the first campaign have already been presented in Figure 3 where one can qualitatively

observe a huge difference between the accuracy provided by the proposed effective strain-gradient

model and the accuracy of the classical first-gradient model effective model. On this graph, solid

lines represent the closed-form displacement solution U-SG that corresponds to the problem where

the pantographic metamaterial is replaced by the proposed strain-gradient equivalent homogeneous

medium, with the elasticity characteristics calculated using the method presented in Sections 3 and 4.

This macroscopic approximate solution U-SG fits perfectly the results of the full-scale simulations, when

the junctions are thin (ρ ≤ 1× 10−3) as well as when they are thick (ρ = 1× 10−1), while significant

discrepancies can be noted when using the first-gradient homogeneous equivalent medium. We do not

detail here the computation of the equilibrium solution U-SG nor the way we perform the full-scale

simulation. Indeed we prefer to focus on a slightly different benchmark problem which is more suitable

for a quantitative comparison of the accuracy of the two models. The computation of the equilibrium

solution U-SG and the way we perform the full-scale simulation are totally similar in both problems.

We did not choose to present this new benchmark problem in Section 2.2 as it generates a lower

discrepancy between first-gradient and strain-gradient approximations and thus does not provide a so

glaring evidence of the superiority of the strain-gradient effective model. We focus on it now because it

is better conditioned for the full-scale solution.

5.1. Benchmark problem

The considered material is still a plate made of the pantographic metamaterial and infinite in

Direction 2. It is now clamped on the left-hand side x1 = 0 and subjected to a prescribed displacement

boundary condition u- = ude-1 on its right-hand boundary at x1 = T . There is no body force.

x1

T

u- = ude-1

t1 = ηT
s× t1 = 0.25t1s× t1 = 0

for s = 0.25:for s = 0:

Figure 11: Second benchmark elasticity problem, used for the comparison between the first-gradient model, the proposed

strain-gradient model and full-scale simulations.

Furthermore, we consider several configurations that correspond to shifts of the microstructure in

Direction 1 with respect to the domain. For each configuration, the position of the microstructure is
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measured with s, defined on Figure 11. The case s = 0.00 is the situation4 where the boundaries of the

domain coincide with the edges of the unit-cell as defined in Section 1 and shown in green in Figure 11.

Thus, the effect of three parameters are investigated: the junction thinness ρ, the scale ratio η and

the microstructure relative position s. The first study focuses on the effects of microstructure position

s, while the second focuses on the separation of scales. The influence of the junction thinness ρ is

investigated in both studies.

5.2. Reference solution by full-scale numerical simulation

A full-scale finite element simulation is performed with the geometry of the whole microstructure

explicitly meshed and using a standard displacement-based finite element formulation. This solution

serves as the reference for the following comparisons. u-fs and εfs are respectively its equilibrium

displacement field and the associated strain field. Quadratic Lagrange triangles are used for the

discretization of the displacement field. We use the Python package Dolfin (Logg et al., 2012), a

component of the FEniCS Project (Alnæs et al., 2015), for all finite-element calculations presented in

this paper. The discrete problem is solved using a direct solver (mumps). Owing to the periodicity

of the benchmark problem in Direction 2, it is enough to perform the numerical simulations on a

strip Ωfs of unit-cells that contains a single unit-cell in Direction 2 and to impose periodic boundary

conditions between top and bottom boundaries of Ωfs. The CAD modeling of Ωfs and the generation of

the associated mesh are done using Gmsh (Geuzaine and Remacle, 2009). The mesh of the strip is

generated by duplicating the mesh of one unit-cell, the same mesh as that used for the homogenization

step in Section 4. This meshing strategy has been validated by a convergence study (for η = 1/20).

5.3. Approximate solutions from homogenization

The first-gradient model and the strain-gradient homogenized energies have been computed in

Section 4. Computing the equilibrium solution corresponding to these two models is straightforward.

In a further step, we can reconstruct the microscopic-scale fluctuations by using the localization tensor

fields.

Macroscopic-scale boundary value problems. The first-gradient boundary value problem reduces to

a one-dimensional problem U-(Y- ) = (U1(Y1), U2(Y1)) with U- = 0- on the left-hand side Y1 = 0 and

U- = ud

T e-1 on the right-hand side Y1 = 1. The equilibrium displacement field U-C is simply given, for

any Y1 ∈ [0; 1], by

UC
1 (Y- ) = ud

T
Y1 and UC

2 (Y- ) = 0. (45)

Only one component of the associated strain field EC does not vanish, namely EC
11(Y- ) = ud

T .

4The particular configuration s = 0.00 was also used for the simulations presented in Section 2.2.
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The second-gradient boundary value problem also reduces to a one-dimensional problem with the

boundary conditions U- = 0-, E · e-1 = 0 for Y1 = 0 and U- = ud

T e-1, E · e-1 = 0 for Y1 = 1. A closed-form

solution U-SG can also be obtained. We get, for any Y1 ∈ [0; 1],

USG
1 (Y- ) = B

(
sinh

(
k
(
Y1 − 1

2

))
− k cosh

(
k
2

) (
Y1 − 1

2

))
+ ud

2T and USG
2 (Y- ) = 0 (46)

with k =
√

C1111
D111111

and B = ud

2kT

(
1
k sinh (k/2)− 1

2 cosh (k/2)
)−1

. The corresponding macroscopic

strain ESG and strain-gradient KSG have only one non-zero component, namely ESG
11 = ∂1U

SG
1 and

KSG
111 = ∂11U

SG
1 .

Assembling of the approximate solutions. The first-gradient model has been obtained by approximating,

for any given macroscopic field U-, the displacement field at the microscopic level by the truncated

series (26). For this model, the approximations u-C and εC of the displacement field and strain field

are thus given by:

u-
C(x-) = T

(
U-

C(Y- ) + ηh1(y-) : EC(Y- )
)

(47)

εC(x-) = a1(y-) : EC(Y- ). (48)

In a similar manner, the approximate displacement field u-SG and strain field εSG associated to the

strain-gradient model are:

u-
SG(x-) = T

(
U-

SG(Y- ) + ηh1(y-) : ESG(Y- ) + η2h2(y-) ...KSG(Y- )
)

(49)

εSG(x-) = a1(y-) : ESG(Y- ) + ηa2(y-) ...KSG(Y- ). (50)

5.4. Error measures

Finally, the quality of each approximation
(
u-

C, εC
)
or
(
u-

SG, εSG
)
is assessed by computing the

relative L2 distance from the reference solution for both displacement fields. We define5

δ(u-C) =
||u-fs − u-C||2
||u-fs||2

, δ(εC) = ||ε
fs − εC||2
||εfs||2

, δ(u-SG) =
||u-fs − u-SG||2
||u-fs||2

, δ(εSG) = ||ε
fs − εSG||2
||εfs||2

.

Note that homogenized models are often compared to adequate averages of the full-scale solution.

Here, we measure the “true” error between the reconstructed approximation and the reference solution.

5.5. Influence of the relative position of the microstructure

This first comparison campaign focuses on the influence of the microstructure relative position.

Owing to the symmetries of the benchmark problem and the unit-cell, the study range for the s

5The L2-norm is defined by:

||u-||2 =
(∫

Ω
u- · u- dΩ

) 1
2

and ||ε||2 =
(∫

Ω
εT : ε dΩ

) 1
2

.
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Figure 12: Effects of the relative position of the microstructure s on the accuracy of the first-gradient model (dashed lines)

and of the proposed strain-gradient model (solid lines), for η = 1/20. The accuracy is measured for both the approximate

displacement fields (a) and the approximate strain fields (b).

values can be narrowed to [0.0, 0.25]. Eleven values of s are considered, uniformly distributed in this

range. We also considered several junction sizes ρ ranging from 10−4 to 10−1 and, for this campaign,

the scale separation is fixed to η = 1/20. This value of η is a compromise as it corresponds to a

reasonable separation of scale while keeping the calculation cost reasonably low. The comparison

process previously described is applied for each of the corresponding triplets (ρ, η, s).

Figures 12a and 12b respectively present the errors measured for the approximate displacement

fields δ(u-X) and for the approximate strain fields δ(εX) as functions of the microstructure position

s. Both approximate solutions, resulting from the proposed strain-gradient model and from the

first-gradient model are represented. Solid lines represent the accuracy measure for u-SG and εSG while

dotted lines correspond to u-C and εC.

Figure 12a shows that the microstructure relative position s has almost no effect on the accuracy

of the approximate solution obtained using the first-gradient model: the overall error δ(u-C) is so large

(about 10−1) that the small fluctuation caused by s is not discernible. The strain-gradient model

provides a much more accurate approximate solution and a variation of the microstructure position

results in a non-negligible fluctuation of the error δ(u-SG). It appears that, for a given value of ρ, the

position s = 0.00 is the most favorable case and results in the smallest estimation error δ(u-SG) while

s = 0.10 corresponds to the most unfavorable case. Nonetheless, even for s = 0.10 the error in terms of

displacement with the strain-gradient model is one decade below the error δ(u-C) which results from

the first-gradient model. Moreover, on the considered range of junction thinness ρ, the amplitude of

the δ(u-SG) fluctuations due to s become larger when ρ decrease but remains limited, in comparison
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Figure 13: Approximation error, in terms of displacement field (left) and strain field (right), as a function of the scale

ratio η, for the first-gradient model (dotted lines) and for the proposed strain-gradient model (solid lines). The two cases

of microstructure relative position are represented: s = 0 (red lines) and s = 0.1 (blue lines)

with the error of the first-gradient model δ(u-C). The effects of ρ on the accuracy of the models will be

further explored in the following section.

Similar observations can be made on Figure 12b about the errors δ(εSG) and δ(εC) relative to the

strain field. The gap between these two accuracy measures is less pronounced and the maximum of

δ(εSG) is now reached for s = 0.20.

5.6. Influence of the scale separation

This second set of comparisons is focused on the influence of the scale separation and the junction

thinness on the accuracy of the proposed strain-gradient model. A wide range of scale ratios is thus

explored, η = 1
N for N ∈ {10; 20; 40; 50; 60} as well as 8 values of the junction thinness ρ ranging from

10−1 to 10−4. For the microstructure position, only two cases are considered in order to limit the

number of investigated (ρ, η, s) triplets. The first value s = 0.00 is retained as it has been identified as

the most favorable case in terms of accuracy of u-SG and εSG while the second value s = 0.05 represents

the case where the microstructure position is unfavorable. This second value is a compromise as it

corresponds to a rather unfavorable case for both u-SG and εSG.

Trends when η → 0. In Figure 13 the L2 errors are plotted as functions of the scale ratio η for both

the first-gradient approximate solution and the strain-gradient one. The results for s = 0.00 are shown

in shades of blue and those for s = 0.05 are shown in shades of red.

The displacement errors plotted on Figure 13a reveal a significant gap between the first-gradient
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and the strain-gradient model. Indeed, in most cases, the difference is larger than one decade and may

reach two decades for some of the investigated parameters.

More precisely, when η → 0 with rather thick junctions (ρ ≥ 3× 10−2), we observe a steady decrease

of the error of the first-gradient model δ(u-C). The rate of this decrease is η1 which corresponds to a

classical result for a fixed ρ (Jikov et al., 1994). When junctions become thinner, the decrease of δ(u-C)

is delayed and becomes visible only if η is sufficiently low revealing the influence of floppy modes on

the homogenized response.

Regarding the strain-gradient model, for s = 0.05 the error δ(u-SG) decreases steadily when η → 0

as well. The rate of decrease is similar to the one observed for the first-gradient model but with an

amplitude one decade lower. In this case, thinner junctions lead to slightly higher values of δ(u-SG) but

this does not change the rate. For s = 0.00 as well, δ(u-SG) decreases almost steadily when η → 0 and

the rate is also close to η1. Recall that the clamped boundary conditions of this benchmark problem

create boundary layers and fall out assumptions made in (Smyshlyaev and Cherednichenko, 2000) for

deriving a higher-order convergence result. Furthermore, there is a slight deviation from this trend:

a small increase occurs when both η and ρ are small and s = 0.00. Indeed, a deterioration of the

full-scale solution probably occurs when ρ → 0 and η → 0, considering the size of the mesh (more

than 1 million nodes), the significant contrast between the smallest elements which are inside the

junctions and the largest elements in the triangles and the fact that the structure is loaded in a floppy

mode. This deterioration of the reference solution is perceptible only in the case of the strain-gradient

approximate solution and for s = 0.00 because in this case the error is quite small (≤ 5× 10−4).

Focusing on the strain field, Figure 13b shows again the difference of accuracy between the two

models. Similar trends can be noted for the two errors δ(εC) and δ(εSG) even though they are less

clear than for the displacement errors. For the first-gradient model with thick junctions, the strain

error δ(εC) steadily decreases at a classical rate of η 1
2 (Jikov et al., 1994). The junction thinness has

the same effect on the first-gradient error δ(εC) and delays the emergence of the asymptotic trend.

Steady decreases are also observed for the strain error resulting from the strain-gradient model δ(εSG).

However the rate of decrease is less clear. For a thin junction, it is close to η 1
2 .

Trends when ρ→ 0. Now, our attention is turned to the effect of the junction thinness ρ. The errors

are plotted in Figure 14 as functions of this parameter for both models. The same organization is used

as for Figure 13.

When considering the first-gradient model, Figure 14a shows that the displacement error δ(u-C)

increases significantly as ρ decreases until reaching a rather high plateau (δ(u-C) ≈ 1× 10−1) beyond a

ρ-threshold that depends on η.

In contrast, with the proposed strain-gradient model, the displacement error δ(u-SG) varies only

slightly when ρ→ 0. The junction thinness has less influence on δ(u-SG) than the two other parameters,
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Figure 14: Approximation error, in terms of displacement field (left) and strain field (right), as a function of the junction

thinness ρ for both the first-gradient model reconstruction (dotted lines) and the proposed one (solid lines)

η and s. Remarkably, for s = 0, the error estimate is improved when junctions become thin whereas

for s = 0.05 the error increases moderately and remains limited for thin junctions. Focusing on the

strain field, Figure 14b shows similar patterns for the strain errors δ(εC) and δ(εSG).

This comparison campaign shows that, for this metamaterial, the accuracy of the first-gradient model

deteriorates quickly when ρ→ 0, even with a pronounced scale separation (η = 1/60). It also reveals

that the proposed strain-gradient model is robust with respect to the junction thinness. Indeed, this

model gives an approximate solution that is much more accurate than the one obtained with the

first-gradient model whatever the junction thinness is.

6. Conclusion

In this paper, an architectured metamaterial called “pantographic material” made of polygons

connected by compliant junctions was investigated. Contrary to architectured materials where junctions

are assumed to be perfect and which can thus be described by a discrete modeling, the structure we

consider is made of a single and continuous linear elastic material. This enables simple fabrication,

favoring thus a future experimental campaign. It also enables to study the effects of some modification

of the internal geometry, favoring thus a future topology optimization, for instance for generating

meta-materials featuring the strongest strain-gradient effects (Calisti et al., 2021). Contrary also to

structures based on very slender elements, which can still be described by a discrete modeling, the

structure we consider contains only very localized thin parts: the “junctions”. It is then not subject to

local buckling, a phenomenon which drastically reduces the practical use of structures based on slender

27



bars. The counterpart is the need a tool for computing the higher-order contributions in the elastic

energy when the structure cannot be described by a discrete modeling.

To that aim a homogenization scheme based on higher-order contributions from the two-scale

asymptotic expansion was suggested. When applied to the pantographic material made of compliant

junctions, two scalings of the first-gradient homogenized stiffnesses came out as function of the junction

thinness ρ, stiff modes scaling as 1
|log ρ| whereas floppy modes scaling as ρ2. This motivates the

introduction of higher order terms of the asymptotic expansion. Whereas the second-order homogenized

tensor may not be positive in general, it appeared that keeping significant contributions from the

gradient of the eigenstrains of the first-order homogenized tensor ensures the positivity and the

well-posedness of the proposed homogenized model.

The predictions from the homogenization scheme were investigated in detail and validated against

a full-scale numerical simulation. For a fixed junction thinness, convergence rates predicted by the

classical homogenization theory were retrieved. However, when junctions are becoming thinner the

convergence is delayed and the classical homogenization scheme yields irrelevant predictions. On the

contrary, the strain-gradient homogenization scheme that we propose delivers very good error estimates

for either thin or thick junctions for a boundary value problem with a clamped boundary, which is

known to challenge higher-order homogenized models.

Furthermore, we have checked that the relative position of the unit-cell does not have a significant

influence on the quality of the prediction. Our results suggest that, even when the junction thickness

tends to zero, the influence of the relative position of the microstructure on the accuracy of the proposed

strain-gradient type approximate solution remains limited. Consequently, for microstructures that lead

to significant strain-gradient effects, it seems unnecessary to muffle the influence of the microstructure

relative position with a costly operation of averaging over all its possible values in the definition of the

strain-gradient model.

Our full-scale numerical simulation has shown the limitation of such numerical simulations for

studying the behavior of microstructured materials when they lead to strain-gradient effective behaviors.

Indeed such behaviors appear only when the first-gradient stiffness tensor is almost degenerate which

needs the presence of very compliant parts inside the unit-cell. These parts must be very finely meshed.

As, on the other hand, homogenization takes sense only when the number of unit-cells is very large,

we get a huge number of degrees of freedom and a poorly conditioned system. We are thus quickly

limited both in the number of cells and in the thinness of junctions. This observation enforces the

need of a trustful macroscopic model, that is of a safe upscaling method. We have suggested here a

projection method and validated it on a benchmark problem. However we know that this method

may fail (Jakabčin and Seppecher, 2020) for some microstructures which need to be described by an

enriched continuum model. Future works should then establish sufficient hypotheses for ensuring that

our projection method provides a good approximation of the global displacement of a microstructured
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material.
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