
HAL Id: hal-03528107
https://enpc.hal.science/hal-03528107v2

Preprint submitted on 13 Oct 2023 (v2), last revised 5 Feb 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-material topology optimization of structural
load-bearing capacity using limit analysis

Leyla Mourad, Jeremy Bleyer, Romain Mesnil, Joanna Nseir, Karam Sab,
Wassim Raphael

To cite this version:
Leyla Mourad, Jeremy Bleyer, Romain Mesnil, Joanna Nseir, Karam Sab, et al.. Multi-material
topology optimization of structural load-bearing capacity using limit analysis. 2023. �hal-03528107v2�

https://enpc.hal.science/hal-03528107v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Multi-material topology optimization of structural
load-bearing capacity using limit analysis

Leyla Mourad 1,2, Jeremy Bleyer1, Romain Mesnil1, Joanna Nseir2, Karam Sab1,
and Wassim Raphael2

1
Laboratoire Navier, Ecole des Ponts ParisTech, Univ Gustave Eiffel, CNRS, France

2
Université Saint Joseph, Faculté des sciences, Mar Roukos-Dekwaneh, Lebanon

We extend the problem of finding an optimal structure with maximum load-bearing capacity to the case of

multiple materials. We first consider a reinforcement optimization case where the structure consists of a

fixed background matrix material with given strength properties and optimize the reinforcement topology

within this material. We discuss the use of various isotropic and anisotropic strength criteria to model the

reinforcing phase, including reinforcements with discrete orientations. In a second time, we investigate a

bi-material formulation where we optimize the topology of two material phases simultaneously. Various

choices for the material strength conditions are proposed and we apply this formulation to the optimization

of pure tensile and compressive phases of a single material. In all cases, two optimization variants are

proposed using concepts of convex optimization and limit analysis theory, namely maximizing the

load-bearing capacity under a fixed volume constraint or minimizing the volume under a fixed loading.

Both problems are convex and a penalization procedure is proposed. The underlying problems can be

solved using conic programming solvers. Illustrative applications demonstrate the versatility of the

proposed formulation, including the influence of the selected strength criteria, the possibility to obtain

structures with members of fixed orientation or structures with different importance granted to tensile and

compressive regions. Finally, we also draw a parallel with the generation of strut-and-tie models for the

analysis of reinforced concrete structures.

Keywords topology optimization, limit analysis, homogenization, bearing capacity, conic programming, reinforced

concrete

1 Introduction
Although topology optimization methods have become increasingly popular, many works

concentrate on compliance optimization of elastic materials. Plastic design optimization has been

much less investigated although fundamental theoretical works have dealt with both elastic and

plastic design (Prager 1974; Strang et al. 1986; Rozvany et al. 1986). Despite nonlinear constitutive

relations having been considered in the topology optimization process (Swan et al. 1997; Maute

et al. 1998; Amir and Bogomolny 2012; Wallin, Jönsson, et al. 2016; Amir 2017), the numerical

cost is very high and there are still many difficulties to be tackled when including local stress

constraints (Pedersen 1998; Duysinx et al. 1998). In contrast, plastic design of truss structures

(Dorn et al. 1964; Gilbert et al. 2003; He et al. 2015) shows less problems and is now able to tackle

large scale problems with the development of efficient linear programming solvers. Interestingly,

the extension of the concepts of plastic truss design to continuum topology optimization has

been largely ignored until recently when strength-based topology optimization of von Mises

plastic materials were proposed (Kammoun et al. 2014; Fin et al. 2018; Herfelt et al. 2018). In a

more general manner using the concepts of limit analysis, we formulated in Mourad et al. (2021)

the problem of maximizing a structure’s load-bearing capacity subject to given material strength

properties and a material volume constraint. This problem is also closely linked to the problem

of minimizing the total volume under the constraint of carrying a fixed loading as well as to

Michell’s theory of optimal trusses (Michell 1904). In particular, this approach, which relies on

convex optimization solvers, enables to treat the case of materials with different strength proper-

ties in tension and compression which are commonly encountered in civil engineering applications.
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Apart from topology optimization, interesting mechanical performances can be achieved

when mixing materials with different mechanical properties, motivating the extension of topology

optimization approaches towards the multi-material case. For instance, the density-based SIMP

methodology was extended to multiple material phases in various works (Sigmund et al. 1997;

Gibiansky et al. 2000; Guest 2009; Zuo et al. 2017) whereas others used a phase-field approach

based on Allen-Cahn or Cahn-Hillard models (Zhou et al. 2007; Tavakoli 2014; Wallin, Ivarsson,

et al. 2015) or level-set methods (Allaire et al. 2014; Liu et al. 2018). Only few works considered

multi-material topology optimization with material non-linearity such as (X. S. Zhang et al.

2018; Rostami et al. 2020; X. Zhang et al. 2020). The extension of continuous plastic-based (or

limit-analysis based) topology optimization to multi-materials, which is the main purpose of the

present work, has never been done.

As it will be illustrated later, our work also bears conceptual similarities with the so-called

strut-and-tie method frequently used for the ultimate design of reinforced concrete (RC) structures

using a truss analogy (Ritter 1899; Mörsch et al. 1909; Schlaich et al. 1987). Compressed concrete

regions are idealized as compressive struts and steel rebars as tensile ties, both of them experienc-

ing uniaxial stress states and connecting to each other at nodes which sustain multi-axial stress

states. The Strut-and-Tie (ST) method is used in common engineering practice as a hand-based

procedure to verify a RC structure bearing capacity once the ST model has been established. It is

also used, at an earlier stage of the design, to find an efficient layout of steel rebars by considering

different ST models. Optimizing for the steel rebars position is difficult to automate since it

also strongly depends on the compressive struts’ layout. Previous works proposed to identify a

ST model based on the flow of elastic stresses of the continuous structure (Marti 1980; Collins

et al. 1980) or by optimizing for the structure compliance using topology optimization concepts

(Gaynor et al. 2013; Bruggi 2009), arguing that a stiff structure exhibits the best load-deformation

behavior. Only few references such as Querin et al. (2010); Victoria Nicolás et al. (2011); Bruggi

(2016); Smarslik et al. (2019) generated ST models using topology optimization by considering

different tensile and compressive properties for steel and concrete phases. We can also mention

references based on a ground-structure layout optimization approach (Chavez 2018; X. S. Zhang

et al. 2018; Smarslik et al. 2019). Overall, the majority of such works are based on compliance

minimization.

Our contribution therefore aims at bridging the gap between multi-material topology opti-

mization, plastic or limit analysis-based topology optimization and the generation of strut-and-tie

like models using materials with different tensile and compressive strengths. Doing so, we aim at

formulating a generic framework for the optimization of the load-bearing capacity of reinforced

structures, either by considering a fixed background matrix material and optimizing for the

reinforcing phase only or by simultaneously optimizing for the topology of two different phases

(in addition to a potential void phase). As it will be seen, this second possibility will offer a

natural framework for the generation of strut-and-tie models by considering tensile-only and

compression-only phases. Following the same spirit as our previous work (Mourad et al. 2021),

our approach will be strongly based on the concepts of convex optimization, especially regarding

the formulation of isotropic and anisotropic strength conditions promoting specific features such

as uniaxial or pure tension/compression stress states. As a result, our numerical implementation

uses convex optimization solvers and solves simultaneously for the mechanical state and the

optimal density field(s), thereby avoiding the need to compute sensitivities for instance.

The present manuscript is organized as follows: Section 2 first recalls concepts and notations

of the limit analysis-based topology optimization methodology proposed in Mourad et al. (2021),

Section 3 then discusses its extension to reinforcement optimization and the choice of a strength

condition for the reinforcement phase, Section 4 presents a bimaterial formulation optimizing

two material phases in addition to a void phase and similarly discusses different possible choices

of strength criteria for both phases and Section 5 finally discusses the numerical aspects and

presents various illustrative applications of the proposed approach.
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Figure 1: Two variants of multi-material optimization. Left: reinforcement optimization where the

background "matrix" material is fixed and we optimize a single "reinforcement" phase, right: general

bi-material optimization where we optimize over two materials and a void phase

2 A review of limit analysis-based topology optimization
In this section, we recall the general concepts of limit analysis-based topology optimization

introduced by Mourad et al. (2021), see also (Kammoun et al. 2014; Herfelt et al. 2018; Fin et al.

2018) for similar formulations.

First, limit analysis aims at finding the maximum load amplification factor 𝜆 for which there

exists an internal stress field 𝝈 which can balance the loading and still comply with the material

strength criterion 𝝈 ∈ 𝐺 at every point in the domain Ω. Here, 𝐺 is a convex set containing 0

which represents the material strength properties e.g. a plastic yield criterion. According to

such a characterization, the limit load Λ+
can be found as the solution to the following convex

optimization problem:

Λ+ = max

𝜆,𝝈
𝜆

s.t. div𝝈 = 0 in Ω

𝝈 · 𝒏 = 𝜆𝑻 on 𝜕Ω𝑇

𝝈 ∈ 𝐺 in Ω

(1)

in which we neglect body forces for simplicity and look for the maximal value of the reference

surface tractions 𝑻 acting on some part 𝜕Ω𝑇 of the boundary.

2.1 A load-maximization problem
Considering a computational domain D, we proposed in Mourad et al. (2021) an extension of

the concepts of limit analysis to the determination of an optimized structure Ω ⊆ D which

would have the maximum load-bearing capacity for a given material volume fraction constraint

|Ω | ≤ 𝜂 |D|. Formulating this problem as a non-convex binary optimization problem and

considering its convexification through a continuous pseudo-density 𝜌 (𝒙) ∈ [0; 1], we define the
following load-maximization problem:

𝜆+ = max

𝜆,𝝈 ,𝜌
𝜆

s.t. div𝝈 = 0 in D
𝝈 · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈 ∈ 𝜌𝐺 in D∫
D 𝜌 dx ≤ 𝜂 |D|
0 ≤ 𝜌 ≤ 1

(LOAD-MAX)

where the main difference with Equation (1) comes from the density-dependent strength criterion

𝜌𝐺 . Clearly, when 𝜌 = 0, we have 𝝈 = 0 and when 𝜌 = 1, 𝝈 ∈ 𝐺 which correspond to the initial

material strength condition. Finally, one key property of the above problem is that it is convex

and can be solved using dedicated conic programming solvers for many usual strength criteria.
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2.2 A related volume-minimization problem
Finally, for a fixed loading level 𝜆, one can also find the structure sustaining the loading with

the minimum volume. A similar volume-minimization problem therefore reads as (Kammoun

et al. 2014; Herfelt et al. 2018):

𝜂− = min

𝝈 ,𝜌

1

|D|

∫
D
𝜌 dx

s.t. div𝝈 = 0 in D
𝝈 · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈 ∈ 𝜌𝐺 in D
0 ≤ 𝜌 ≤ 1

(VOL-MIN)

which is again a convex problem.

2.3 Choice of the material strength criterion
The choice of the material strength criterion 𝐺 will have an important impact on the optimal

design. For instance, criteria with anisotropic strength properties will induce anisotropic features

in the optimized design. Regarding isotropic materials, the optimized structure load-capacity

depends essentially upon the material uniaxial tensile (resp. compressive) strength 𝑓𝑡 (resp. 𝑓𝑐 ).

Indeed, optimized topologies usually have a truss-like layout with many members subjected to

uniaxial stress states. In Mourad et al. (2021), the so-called 𝐿1-Rankine criterion was introduced

as follows:

𝝈 ∈ 𝐺𝐿1-Rankine ⇔ 𝑔(𝜎𝐼 ) + 𝑔(𝜎𝐼 𝐼 ) ≤ 1 (2)

written here in 2D with 𝜎𝐼 , 𝜎𝐼 𝐼 being the principal stresses and where:

𝑔(𝜎) = max

{
− 𝜎

𝑓𝑐
;

𝜎

𝑓𝑡

}
(3)

It was advocated in Mourad et al. (2021) that the 𝐿1-Rankine criterion was a good choice for

promoting uniaxial stress states in the optimal solutions. This argument will be revisited in

Section 3.4.

3 Reinforcement material optimization
In this section, we investigate the situation in which we optimize a single phase with a fixed

background phase (see Figure 1-left). This situation essentially applied to the optimization of a

reinforcing phase in a composite material, the background fixed phase then corresponding to the

matrix material. We will respectively denote by𝐺m
and𝐺 r

the strength criteria of the matrix and

reinforcement bulk materials.

3.1 Reinforced material strength conditions
In general, reinforcements are present in a small volume fraction 𝜙 ≪ 1. In such a case, the

strength criterion of the composite material 𝐺comp
can be approximated by the following dilute

estimation:

𝐺comp = (1 − 𝜙)𝐺m ⊕ 𝜙𝐺 r
(4)

where ⊕ denotes the Minkowski sum between two sets
1
. As a result, the stress field 𝝈 can be

decomposed as the sum of a matrix and a reinforcement partial stress as follows:

𝝈 ∈ 𝐺comp ⇔ ∃𝝈m,𝝈 r
s.t.


𝝈 = 𝝈m + 𝝈 r

𝝈m ∈ (1 − 𝜙)𝐺m

𝝈 r ∈ 𝜙𝐺 r

(5)

1 𝐴 ⊕ 𝐵 = {𝑎 + 𝑏 s.t. 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}
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Accounting for the fact that 𝜙 ≪ 1, the above expression can even be further simplified as

follows:

𝝈 ∈ 𝐺comp ⇔ ∃𝝈m,𝝈 r
s.t.


𝝈 = 𝝈m + 𝝈 r

𝝈m ∈ 𝐺m

𝝈 r ∈ 𝐺 r,eff

(6)

where 𝐺 r,eff = 𝜙𝐺 r
. This formulation states that the composite strength condition corresponds

to a stress state which is the sum of a stress 𝝈m
satisfying the bulk matrix condition and a

contribution of the effective strength condition of the reinforcement material, the strength

property of which being that of the bulk reinforcement material scaled by the reinforcement

volume fraction.

Although the following approach of Section 3.2 can be easily considered for a strength

criterion of the form Equation (5), we will now only consider the simplified form Equation (6).

3.2 Convex problems formulation
We assume here that the matrix material is fixed and occupies the whole computational

domain D and we aim at optimizing over the reinforcement phase only. The approach of Mourad

et al. (2021) can be easily extended by considering the following density-dependent composite

strength criterion:

𝝈 ∈ 𝐺comp(𝜌) = 𝐺m ⊕ 𝜌𝐺 r,eff
(7)

⇔ ∃𝝈m,𝝈 r
s.t.


𝝈 = 𝝈m + 𝝈 r

𝝈m ∈ 𝐺m

𝝈 r ∈ 𝜌𝐺 r,eff

such that we still have 𝐺comp(𝜌 = 1) = 𝐺comp
. The main difference with the single material

optimization for which𝐺 (0) = {0}was representing void is that we now have𝐺comp(𝜌 = 0) = 𝐺m
.

As a result, the above strength criterion will interpolate for 𝜌 ∈ [0; 1] between the pure matrix

strength condition 𝐺m
and the reinforced composite criterion 𝐺comp

.

The two corresponding load-maximization Equation (LOAD-MAX) and volume minimization

Equation (VOL-MIN) problems are therefore respectively given by:

𝜆+ = max

𝜆,𝝈m,𝝈 r,𝜌
𝜆

s.t. div(𝝈m + 𝝈 r) = 0 in D
(𝝈m + 𝝈 r) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈m ∈ 𝐺m
in D

𝝈 r ∈ 𝜌𝐺 r,eff
in D∫

D 𝜌 dx ≤ 𝜂 |D|
0 ≤ 𝜌 ≤ 1

(REINF-LOAD-MAX)

and

𝜂− = min

𝝈m,𝝈 r,𝜌

1

|D|

∫
D
𝜌 dx

s.t. div(𝝈m + 𝝈 r) = 0 in D
(𝝈m + 𝝈 r) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈m ∈ 𝐺m
in D

𝝈 r ∈ 𝜌𝐺 r,eff
in D

0 ≤ 𝜌 ≤ 1

(REINF-VOL-MIN)

where the total stress 𝝈 has been replaced by the sum of the two partial stresses arising in

the definition Equation (7). As a result, both problems are very similar to the single material

5



Leyla Mourad et al. Multi-material topology optimization of load capacity

counterpart, which can be obtained in the particular case 𝝈m = 0. The numerical implementation,

including the penalty procedure, will therefore be a straightforward adaptation to that described

in Mourad et al. (2021). Note in particular that only a global equilibrium condition on the total

stress 𝝈 = 𝝈m + 𝝈 r
needs to be considered so that standard finite-element discretization can be

used to enforce this equation weakly.

Before finishing this section, let us now discuss some particular choices for 𝐺 r,eff
in the case

of uniaxial reinforcements.

3.3 The particular case of uniaxial reinforcements
The dilute estimation Equation (5) always provides an upper bound to the real homogenized

strength condition of the composite material. When considering uniaxial reinforcements aligned

along a direction 𝒆𝛼 , this upper bound can be improved. In the case of small volume fraction,

the composite homogenized strength criterion is in fact exactly given by (Buhan et al. 1991;

De Buhan et al. 2017):

𝝈 ∈ 𝐺comp ⇔ ∃𝝈m, 𝜎r
s.t.


𝝈 = 𝝈m + 𝜎r𝒆𝛼 ⊗ 𝒆𝛼

𝝈m ∈ 𝐺m

−𝑓 r,eff𝑐 ≤ 𝜎r ≤ 𝑓
r,eff

𝑡

(8)

where 𝑓
r,eff

𝑡 (resp. 𝑓
r,eff

𝑐 ) denotes the reinforcement uniaxial effective tensile (resp. compressive)

strength (per unit of transverse area). As a result, the case of uniaxial reinforcements is similar to

Equation (6) except that the effective reinforcement strength criterion 𝐺 r,eff
is now given by the

corresponding uniaxial strength condition:

𝐺 r,eff = {𝜎r𝒆𝛼 ⊗ 𝒆𝛼 s.t. − 𝑓 r,eff𝑐 ≤ 𝜎r ≤ 𝑓
r,eff

𝑡 } (9)

Finally, the homogenized strength criterion Equation (8) and Equation (9) easily generalize to

a reinforcing material made of multiple reinforcement directions by summing the corresponding

uniaxial stress contributions. For instance, an important practical case of interest is that of

orthogonal reinforcements aligned with the global 𝑥,𝑦 directions (and possibly 𝑧 in 3D). In this

case, the effective strength criterion Equation (9) for two reinforcement directions 𝒆𝑥 and 𝒆𝑦
generalizes to:

𝐺 r,eff = {𝜎r,𝑥𝒆𝑥 ⊗ 𝒆𝑥 + 𝜎r,𝑦𝒆𝑦 ⊗ 𝒆𝑦 (10)

s.t. − 𝑓 r,eff𝑐 ≤ 𝜎r,𝑥 , 𝜎r,𝑦 ≤ 𝑓
r,eff

𝑡 }

3.4 The 𝐿1-Rankine criterion for isotropically distributed reinforcements
Similarly to the concepts of the homogenization method in topology optimization, our ultimate

goal is to find an optimal microstructure for the reinforcing phase at each material point. To do so,

instead of considering that the reinforcing material is made of a fixed distribution of predefined

orientations, we can consider a reinforcing material consisting of uniaxial reinforcements but

with locally unknown orientation a priori, with the goal that the topology optimization process

would naturally select the locally optimal orientation. In Mourad et al. (2021), the use of a

𝐿1-Rankine was proposed in order to promote uniaxial stress fields. Let us now revisit this argu-

ment and exhibit the link with a material made of isotropically distributed uniaxial reinforcements.

Let us indeed consider that the reinforcing material is made of a distribution of uniaxial

reinforcements belonging to a certain family A of orientations 𝛼 and of similar effective

tensile/compressive strengths 𝑓
r,eff

𝑡 , 𝑓
r,eff

𝑐 . In order to enforce that only one orientation is active at

a given material point, we can write the following strength condition:

∃𝜎r,𝛼 , 𝜁𝛼 s.t.



𝝈 r =
∑︁
𝛼∈A

𝜁𝛼𝜎
r,𝛼𝒆𝛼 ⊗ 𝒆𝛼

−𝑓 r,eff𝑐 ≤ 𝜎r,𝛼 ≤ 𝑓
r,eff

𝑡 ∀𝛼 ∈ A
𝜁𝛼 ∈ {0; 1} ∀𝛼 ∈ A∑︁
𝛼∈A

𝜁𝛼 = 1

(11)
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where we introduced the binary variables 𝜁𝛼 which describe the activation or not of a specific

orientation, the last constraint enforcing that only one such orientation can be active.

Clearly, criterion Equation (11) is non-convex due to the binary constraint on the 𝜁𝛼 variable

which will result in the corresponding topology optimization problem being extremely difficult to

solve. To alleviate this issue and follow the same kind of convex optimization methodology of our

approach, a natural idea is to convexify 𝐺 r,eff
by relaxing the binary constraint. We therefore

consider the following convexified formulation:

𝝈 r ∈ 𝐺 r,eff ⇔ ∃𝜎r,𝛼 , 𝜁𝛼

s.t.



𝝈 r =
∑︁
𝛼∈A

𝜁𝛼𝜎
r,𝛼𝒆𝛼 ⊗ 𝒆𝛼

−𝑓 r,eff𝑐 ≤ 𝜎r,𝛼 ≤ 𝑓
r,eff

𝑡 ∀𝛼 ∈ A
0 ≤ 𝜁𝛼 ≤ 1 ∀𝛼 ∈ A∑︁
𝛼∈A

𝜁𝛼 = 1

(12)

which we recognize as the definition of the convex hull of the individual uniaxial strength
conditions 𝐺𝛼 = {𝜎r,𝛼𝒆𝛼 ⊗ 𝒆𝛼 s.t. − 𝑓

r,eff

𝑐 ≤ 𝜎r,𝛼 ≤ 𝑓
r,eff

𝑡 } i.e.

𝐺 r,eff = conv
𝛼∈A

{𝐺𝛼 } (13)

which is indeed the tightest convexification of the union of all the 𝐺𝛼
. Finally, in the case where

A spans all the possible directions in space, we can easily show that 𝐺 r,eff
is in fact equal to the

𝐿1-Rankine criterion with tensile (resp. compressive) strength 𝑓
r,eff

𝑡 (resp. 𝑓
r,eff

𝑐 ) introduced in

Mourad et al. (2021), see Appendix A.1 for the proof. This result justifies that the 𝐿1-Rankine is

the tightest convex criterion promoting uniaxial stress states in an isotropic fashion.

In the case of orthogonal reinforcements where 𝛼 can only be aligned with either the 𝑥 or 𝑦

directions, the above convexified formulation Equation (12) reads:

𝝈 r ∈ 𝐺 r,eff ⇔ ∃𝜎r,𝑥 , 𝜎r,𝑦, 𝜁𝑥 , 𝜁𝑦

s.t.


𝝈 r = 𝜁𝑥𝜎

r,𝑥𝒆𝑥 ⊗ 𝒆𝑥 + 𝜁𝑦𝜎
r,𝑦𝒆𝑦 ⊗ 𝒆𝑦

−𝑓 r,eff𝑐 ≤ 𝜎r,𝑥 , 𝜎r,𝑦 ≤ 𝑓
r,eff

𝑡

0 ≤ 𝜁𝑥 , 𝜁𝑦 ≤ 1

𝜁𝑥 + 𝜁𝑦 = 1

(14)

Interestingly, the above criterion corresponds exactly to the 𝐿1-Rankine criterion intersected

with the plane 𝜎r

𝑥𝑦 = 0.

The main interest of the above construction in the case of a fixed family of discrete orientations

A = {𝛼1, . . . , 𝛼𝑁 } is that the resulting strength condition will be anisotropic with larger strength

in the corresponding directions. We therefore expect the strength-based topology optimization

procedure to naturally result in designs locally oriented in one of these directions.

By way of illustration, Figure 2 displays the uniaxial tensile strength in direction 𝒆𝜃 =

cos𝜃𝒆𝑥 + sin𝜃𝒆𝑦 for a material consisting of such a family of discrete orientations. As expected,

when the reinforcement material is made of only two reinforcement directions, the material

possesses no shear strength so that the uniaxial strength is always zero except if 𝜃 is perfectly

aligned with one of the two directions. For more than two directions, the material possesses a

shear strength and, therefore, a non-zero tensile strength for any 𝜃 . Again, we observe that the

uniaxial strength is equal to 𝑓𝑡 when the loading direction is aligned with one of the reinforcement

direction and is less than 𝑓𝑡 in-between. The resulting material therefore possesses anisotropic

strength properties. In the limit of an isotropic continuous distribution of reinforcement direction,

the uniaxial strength becomes a constant equal to 𝑓𝑡 since the resulting material strength

properties are equivalent to an isotropic 𝐿1-Rankine strength criterion.

7
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Figure 2: Anisotropic uniaxial tensile strength for a material reinforced by a family of reinforcements of

discrete orientations

4 Bi-material optimization

In this section, we investigate the concurrent optimization of multiple materials in addition to

a void phase (see Figure 1-right). For simplicity, we restrict here to the case of two materials only,

although the proposed procedure can be easily generalized to 𝑛 different materials. We denote

the two materials by their phase index 𝑖 = 1, 2 whereas void is associated with 𝑖 = 0. We aim at

enforcing that a given point 𝒙 belongs to either phase 1, phase 2 or to the void. In terms of

strength conditions, we would therefore have 𝝈 ∈ 𝐺1
, 𝝈 ∈ 𝐺2

or 𝝈 = 0 which can be written as

follows:

∃𝝈̃0

, 𝝈̃1

, 𝝈̃2

, 𝜁0, 𝜁1, 𝜁2 s.t.



𝝈 = 𝜁0𝝈̃
0 + 𝜁1𝝈̃

1 + 𝜁2𝝈̃
2

𝝈̃0

= 0

𝝈̃1 ∈ 𝐺1

𝝈̃2 ∈ 𝐺2

𝜁0 + 𝜁1 + 𝜁2 = 1

𝜁0, 𝜁1, 𝜁2 ∈ {0, 1}

(15)

where the binary variables 𝜁𝑖 indicate the membership to the corresponding phase, the constraint∑
𝜁𝑖 = 1 enforcing that one and only one of the 𝜁𝑖 = 1 while the others are zero.

Obviously, due to the binary constraints, the above strength condition is not convex which

will result in the corresponding topology optimization problem being extremely difficult to solve.

To alleviate this issue and following the same ideas as in Section 3.4, we convexify the above

condition with its tightest convex relaxation. To do so, we allow each 𝜁𝑖 to take continuous

values inside [0; 1] instead of being binary. To make a clear distinction, we will replace each 𝜁𝑖
with 𝜌𝑖 , interpreting these variables as the pseudo-density fields of topology optimization. Hence,

8
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we consider:

∃𝝈̃1

, 𝝈̃2

, 𝜌0, 𝜌1, 𝜌2 s.t.



𝝈 = 𝜌1𝝈̃
1 + 𝜌2𝝈̃

2

𝝈̃1 ∈ 𝐺1

𝝈̃2 ∈ 𝐺2

𝜌0 + 𝜌1 + 𝜌2 = 1

𝜌0, 𝜌1, 𝜌2 ∈ [0; 1]

(16)

⇐⇒ ∃𝝈̃1

, 𝝈̃2

, 𝜌1, 𝜌2 s.t.



𝝈 = 𝜌1𝝈̃
1 + 𝜌2𝝈̃

2

𝝈̃1 ∈ 𝐺1

𝝈̃2 ∈ 𝐺2

𝜌1 + 𝜌2 ≤ 1

𝜌1, 𝜌2 ∈ [0; 1]

(17)

where we removed the void density 𝜌0.

This motivates the introduction of the following density-dependent strength condition

𝐺 (𝜌1, 𝜌2):

𝝈 ∈ 𝐺 (𝜌1, 𝜌2) ⇔ ∃𝝈1,𝝈2
s.t.


𝝈 = 𝝈1 + 𝝈2

𝝈1 ∈ 𝜌1𝐺
1

𝝈2 ∈ 𝜌2𝐺
2

(18)

in which we made the change of variable 𝝈 𝑖 = 𝜌𝑖 𝝈̃
𝑖
.

In particular, if both 𝜌1(𝒙) = 𝜌2(𝒙) = 0 at a given point 𝒙 , we have 𝝈 (𝒙) = 0 i.e. 𝒙 is in a

void phase. If 𝜌1(𝒙) = 1, then 𝜌2(𝒙) = 0 and 𝝈 (𝒙) ∈ 𝐺1
i.e. 𝒙 belongs to material 1 and vice

versa. Note that it is possible to find states where 𝜌1(𝒙) ≠ 0 and 𝜌2(𝒙) ≠ 0 which results in 𝒙
belonging to a fictitious material averaging the strength properties of both phases.

Finally, in the case where 𝐺1 = 𝐺2 = 𝐺 , we have 𝐺 (𝜌1, 𝜌2) = (𝜌1 + 𝜌2)𝐺 = 𝜌𝐺 and we

recover the single material formulation of Mourad et al. (2021).

4.1 Convex problem formulation

The two corresponding load-maximization Equation (LOAD-MAX) and volume minimization

Equation (VOL-MIN) problems are therefore respectively given by:

𝜆+ = max

𝜆,𝝈1,𝝈2,𝜌1,𝜌2

𝜆

s.t. div(𝝈1 + 𝝈2) = 0 in D
(𝝈1 + 𝝈2) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈1 ∈ 𝜌1𝐺
1

in D
𝝈2 ∈ 𝜌2𝐺

2
in D∫

D 𝑐𝜔 (𝜌1, 𝜌2) dx ≤ 𝜂 |D|
0 ≤ 𝜌1 ≤ 1

0 ≤ 𝜌2 ≤ 1

𝜌1 + 𝜌2 ≤ 1

(BIMAT-LOAD-MAX)

9
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Figure 3: Splitting of a nominal strength criterion 𝐺 (in black) into a purely compressive part 𝐺−
(in blue)

and a purely tensile part 𝐺+
(in red) and the corresponding convex hull conv{𝐺+,𝐺−} (in green). Left: a

Rankine strength criterion, right: a 𝐿1-Rankine strength criterion in the plane of principal stresses

and

𝜂− = min

𝝈1,𝝈2,𝜌1,𝜌2

1

|D|

∫
D
𝑐𝜔 (𝜌1, 𝜌2) dx

s.t. div(𝝈1 + 𝝈2) = 0 in D
(𝝈1 + 𝝈2) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈1 ∈ 𝜌1𝐺
1

in D
𝝈2 ∈ 𝜌2𝐺

2
in D

0 ≤ 𝜌1 ≤ 1

0 ≤ 𝜌2 ≤ 1

𝜌1 + 𝜌2 ≤ 1

(BIMAT-VOL-MIN)

where we introduced 𝑐𝜔 (𝜌1, 𝜌2) = 2𝜔𝜌1 + 2(1 − 𝜔)𝜌2 which is a weighted-average cost function

measuring the amount of both materials. As it will be seen later, the introduction of the weighting

factor 𝜔 ∈ [0; 1] gives us increased flexibility in obtaining various optimal design depending on

the cost associated with the presence of material 1 over material 2. Note that the above choice

gives 𝑐1/2(𝜌1, 𝜌2) = 𝜌1 + 𝜌2 = 𝜌 .

4.2 No-tension and no-compression materials
An important case of application of the previous bi-material formulation is concerned with

the optimization of a no-tension and a no-compression phase. Practically, this could correspond

to two different materials respectively possessing negligible tensile strength (e.g. concrete, rocks,

masonry, etc.) and negligible compressive strength (e.g. thin membrane which would buckle

under compression). Another possibility is to consider a single material for which we would like

to distinguish members in tension from members in compression in the optimization process, for

example in order to assign a different cost between the tensile and compressive "phase".

As regards this last point of view for a single material of nominal strength properties 𝐺 ,

one could define the no-tension strength criterion 𝐺1 = 𝐺− = 𝐺 ∩ 𝑆− and the no-compression

strength criterion 𝐺2 = 𝐺+ = 𝐺 ∩ 𝑆+ where:

𝑆± = {𝝈 s.t. ± 𝝈 ⪰ 0} (19)

represents the cone of symmetric positive/negative stress tensors. In this case, since 𝐺± ⊂ 𝐺 and

𝐺 is convex, we have that conv{𝐺+,𝐺−} ⊆ 𝐺 . Again, this formulation will tend to promote stress

states either in pure tension or in pure compression. Figure 3 illustrates this construction in the

case of a Rankine and 𝐿1-Rankine criterion. Note that we have that conv{𝐺+,𝐺−} = 𝐺𝐿1-Rankine

in this latter case.

Finally, as already discussed, the use of a 𝐿1-Rankine strength criterion will even further

promote uniaxial stress states. If the original material is isotropic and possesses a characteristic

10
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tensile strength 𝑓𝑡 and compressive strength 𝑓𝑐 , a natural modeling strategy for obtaining

truss-like designs when distinguishing the optimization of tensile and compressive members is

therefore to consider:

𝐺1 = 𝐺𝐿1-Rankine(𝑓𝑐 ,0)
(20)

𝐺2 = 𝐺𝐿1-Rankine(0,𝑓𝑡 )
(21)

where𝐺𝐿1-Rankine(𝑓𝑐 ,𝑓𝑡 )
denotes the isotropic 𝐿1-Rankine strength criterion of compressive (resp.

tensile) strength 𝑓𝑐 (resp. 𝑓𝑡 ).

Finally, the above choice can also be adapted to the situations for which members are

constrained to have fixed potential orientations by using criteria of the form Equation (12) instead

of the isotropic 𝐿1-Rankine criterion.

5 Illustrative applications
5.1 Numerical implementation and penalization procedure

Similarly to Mourad et al. (2021), the corresponding discrete optimization problems are

formulated using the fenics_optim package (Bleyer 2020a; Bleyer 2020b) which enables

to couple the FEniCS finite-element software package (Alnæs et al. 2015; Logg et al. 2012)

with the Mosek conic optimization solver (MOSEK ApS 2018). The equilibrium constraint is

enforced weakly through the virtual work principle using a continuous P2-Lagrange interpolation

for virtual displacement fields. The pseudo density fields are discretized using a continuous

P1-Lagrange interpolation, see Mourad et al. (2021) for more details. Mesh dependency issues

are removed by adding a slope-control constraint (Petersson et al. 1998) for ∥∇𝜌𝑖 ∥2 ≤ 1/ℓ for
all density fields. Finally, we also extend the continuation procedure penalizing intermediate

densities proposed in Mourad et al. (2021) to the present case. More precisely, each convex

strength constraint of the form 𝝈 𝑖 = 𝜌𝑖𝐺
𝑖
is replaced by a penalized power-law (non-convex)

constraint 𝝈 𝑖 = (𝜌𝑖)𝑝𝐺𝑖
following ideas of the SIMP method (Bendsøe et al. 2004). At each

iteration of the penalization procedure, the power-law is linearized around the current density

estimate 𝜌𝑖,𝑛 and the exponent is progressively increased from 1 to a maximum value 𝑝max > 1,

see again Mourad et al. (2021) for more details.

5.2 Numerical examples objectives
In the following, we will investigate three different examples which will have the common

goal of assessing the versatility of the proposed methodology. Each of them will analyze some

specific features which can be considered at the modeling stage, namely:

• MBB beam example:

– Analyze the "reinforcement optimization" formulation and assess the influence of the

reinforcement strength criterion choice (in terms of overall shape or anisotropy) on

the resulting design;

– Analyze the "bi-material optimization" formulation and assess the influence of the

strength criterion of one of the phases on the resulting design;

– Assess the corresponding formulation in which one phase only sustains tension and

the other phase only compression;

– Assess the corresponding formulation where the tensile phase is subjected to a

prescribed anisotropy in terms of reinforcement directions and compare its efficiency

against an isotropic distribution of reinforcements.

• Bridge example:

– Analyze the influence of asymmetric tensile and compressive strengths on the

resulting design;

– Compare the obtained design with a topology optimization involving a single material

(with asymmetric strength properties);

– Assess the influence of the cost function factor 𝜔 used to weight the cost of one

phase with respect to another.

• Deep beam example:

11
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Figure 4: A MBB beam example

– Consider the design of widely studied reinforced concrete structure with an opening

and compare the result against a strut-and-tie model used in practice;

– Consider a variation in which the reinforcement phase can only be located in

orthogonal directions;

– Compare the designs obtained with the reinforcement and bi-material formulations.

5.3 MBB beam
We first consider a MBB beam example (Figure 4) of length 𝑙 = 36 and height ℎ = 6 with

simple supports on the left and roller supports on the right, a vertical force of reference intensity

𝑃 = 1 is applied at the top. In the following, only one half of the model will be represented,

taking symmetry into account. Both supports and force are distributed over a small distance

𝑠 = 0.5 to mitigate stress concentrations. The mesh consists of approximately 40,000 elements.

5.3.1 Reinforcement optimization
We first consider the case of a fixed matrix material of strength condition 𝐺m

being given

by a Rankine criterion of compressive strength 𝑓 m𝑐 = 1 and tensile strength 𝑓 m𝑡 = 0.05. The

reinforced material effective strength criterion 𝐺 r,eff
will either be:

• a plane stress von Mises criterion with uniaxial tension/compression effective strengths

𝑓
r,eff

𝑐 = 𝑓
r,eff

𝑡 = 1

• a 𝐿1-Rankine criterion with the same uniaxial strengths

• a "no-compression" 𝐿1-Rankine criterion with 𝑓
r,eff

𝑐 = 0, 𝑓
r,eff

𝑡 = 1

• an orthotropic 𝐿1-Rankine criterion with 𝑓
r,eff

𝑡𝑥 = 𝑓
r,eff

𝑡𝑦 = 1 and 𝑓
r,eff

𝑐𝑥 = 𝑓
r,eff

𝑐𝑦 = 0

We consider the reinforcement load-maximization problem Equation (REINF-LOAD-MAX) with
an imposed volume fraction 𝜂 = 0.2.

Figure 5 displays the obtained optimized reinforcement density in black along with the

principal compressive stress field in the matrix phase in blue. Owing to the fact that the matrix

phase has a low tensile strength, reinforcements are primarily located on the bottom tensile face

of the beam. The amount of reinforcement increases from the support to the beam mid-span

where the bending moment is maximum. The choice of the reinforcement phase strength criterion

mainly influences small details in the layout such as the precise location of the reinforcements.

The use of a von Mises criterion (Figure 5(a)) for the reinforcement phase tends to favor biaxial

stress states in the reinforcement region whereas the use of a 𝐿1-Rankine criterion (Figure 5(b))

effectively promotes uniaxial stress states. Inclined reinforcements are also obtained to provide

anchoring between the reinforcement tensile stress and the diffuse matrix compressive stresses.

Moreover, when the reinforcement material possesses a non-zero compressive strength, we

obtain a small amount of reinforcement on the top face at mid-span, thereby reinforcing the beam

bending capacity. This region disappears in the case of a zero compressive strength (Figure 5(c)).

Finally, when considering an orthotropic 𝐿1-Rankine in Figure 5(d), we obtain a 90
◦
-bend as

commonly encountered in reinforced-concrete structures.

5.3.2 Bi-material optimization
We now investigate the bimaterial load-maximization problem Equation (BIMAT-LOAD-MAX)

with again 𝜂 = 0.2 and 𝜔 = 1/2.
As in Section 5.3.1, phase 1 corresponds to a Rankine criterion with 𝑓𝑐 = 1, 𝑓𝑡 = 0.05 and
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(a) plane-stress von Mises (b) 𝐿1-Rankine

(c) no-compression 𝐿1-Rankine (d) orthotropic 𝐿1-Rankine

Figure 5: Reinforcement optimization of the MBB example for various reinforcement strength criteria: in

black, reinforcement optimized density; in blue, principal compressive stress in the matrix phase.

phase 2 with either a plane stress von Mises or a 𝐿1-Rankine criterion of strengths 𝑓𝑐 = 𝑓𝑡 = 1.

Note that we voluntarily used similar compressive strengths for both phases. Figure 6 represents

the optimized two phase densities in both cases. We can see that phase 1, with low tensile

strength, is mostly used where it is the most efficient i.e. in the top part of the structure subjected

to compression. The second phase is used mainly in tensile regions, except for the loading region

in Figure 6(a). This can be explained by the fact that this region is essentially under a biaxial

compressive state, a stress state for which the von Mises criterion is larger than the Rankine

criterion of phase 1. Let us also remark that the use of a 𝐿1-Rankine criterion seems to yield a

simpler design than that obtained with the von Mises material which can probably be attributed

to the former promoting more efficiently uniaxial states.

Moreover, we can also observe in Figure 6 a transition between phase 1 and phase 2 materials

along the inclined struts in compression on the right of the structure. This can be explained by

the fact that we used the same uniaxial compressive strength 𝑓𝑐 for both phases. Both of them are

therefore equally optimal for uniaxial compression. The precise location of the transition between

both phases is probably dictated by the initial distribution of the phase density in the initial stages

of the penalization procedure. In such stages, phase 1 material is essentially located on the top

part of the beam and phase 2 on the bottom part. The penalization process being a continuation

procedure, it will naturally converge to a uniaxial stress state corresponding to the phase which

was active initially. Note that the use of a phase 1 material with a lower compressive strength, e.g.

𝑓𝑐 = 0.9 would have resulted in a design involving only phase 2 material, since phase 1 would

have been strictly weaker and, therefore, less efficient than phase 2. In this case, the formulation

becomes equivalent to a single-material formulation. To conclude, this examples illustrates the

efficiency of the convex relaxation procedure with respect to binary constraints. Indeed, since

binary constraints are relaxed to continuous constraints and that both materials exhibit exactly

the same strength properties in compression, we could have expected that both phases will be

continuously mixed throughout the domain. However, this is not what we observe. Instead, the

continuation penalization procedure succeeds in driving the design towards an almost binary

distribution, non-binary values for 𝜌1 and 𝜌2 being only observed in a small transition region of

order ℓ .

5.3.3 Splitting between tension and compression
We now investigate the formulation discussed in Section 4.2 where phase 1 (resp. phase

2) corresponds to a pure compression (resp. pure tension) phase of strength 𝑓𝑐 (resp. 𝑓𝑡 ). In

practice, we use a 𝐿1-Rankine strength criterion for both phases with a small residual tensile

(resp. compression) strength in phase 1 (resp. phase 2) to avoid numerical instabilities. Figure 7

represents the corresponding optimized densities for both phases and various imposed volume

fractions 𝜂. Comparing for instance Figure 7(c) with Figure 6(b), we can see that both final

designs are very similar but with a different repartition between both phases. In the present
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(a) plane-stress von Mises (b) 𝐿1-Rankine

Figure 6: Bi-material load-maximization of the MBB example: in blue, phase 1 density; in red, phase 2

density

(a) 𝜂 = 0.05 (b) 𝜂 = 0.1

(c) 𝜂 = 0.2 (d) 𝜂 = 0.3

Figure 7: Bi-material load-maximization of the MBB example with tension/compression splitting

(𝑓𝑐 = 𝑓𝑡 = 1) and various maximum volume fraction 𝜂

tension/compression splitting formulation Equation (21), each truss member belongs to a single

phase, depending on its state of tension and compression whereas, in the previous formulation,

some compression members could involve the phase 2 material or even both materials as already

discussed.

5.3.4 Anisotropic strength properties for the tensile phase
We finish this example by considering again a tension/compression splitting formulation,

except that the tensile phase (phase 2) now enjoys anisotropic strength properties of the form

Equation (12) with here 𝑓
r, eff

𝑐 = 0 and 𝑓
r, eff

𝑡 = 1. We recall that if the set of allowed orientations

A spans all directions, then the corresponding strength criterion is equivalent to a 𝐿1-Rankine

strength criterion so that we recover the results of Figure 7. In Figure 8, we report the results

obtained when considering a tensile phase with allowed orientations of 𝛼 = 0
◦
, 𝛼 ∈ {0◦;±30◦},

𝛼 ∈ {0◦;±45◦} or 𝛼 ∈ {0◦; 90◦}. As expected, if tensile members can be aligned horizontally

only (Figure 8(a)), the most efficient design is obtained with tensile members located at the

bottom of the beam and with inclined compressive struts transmitting the load to the supports.

Interestingly, we obtain two individual tensile members in this case. When we further allow for

inclined directions along ±30◦ or ±45◦, we obtain, in addition to a horizontal tensile member,

secondary inclined members to which additional compressive struts can be connected. Note

that the case 𝛼 ∈ {0◦;±45◦} (Figure 8(c)) is quite close to the isotropic case obtained with the

𝐿1-Rankine criterion in Figure 7(c). Finally, the case with 𝛼 ∈ {0◦; 90◦} (Figure 8(d)) indeed
produces tensile members aligned either horizontally or vertically. Interestingly, despite the fact

that tensile orientations are constrained, one still has freedom in the length and location of those

members which enables to reach a design where compressive struts can more or less follow the
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(a) Orientations along 0◦ (b) Orientations along 0◦ and ±30◦

(c) Orientations along 0◦ and ±45◦ (d) Orientations along 0◦ and 90
◦

Figure 8: Bi-material load-maximization (𝜂 = 0.2) of the MBB example with discrete orientations for the

tensile phase
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Figure 9: Evolution of the load-bearing capacity during the penalization procedure for the MBB example

with discrete tensile orientations

same paths as in the isotropic case. Also note that the convexified formulation Equation (12)

authorizes in theory a superposition of the different orientations at a given point. Clearly, this is

not observed since each tensile members is in a pure uniaxial stress state corresponding to a

single well-defined orientation. It is only at points corresponding to junctions between tensile

and/or compressive members that different orientations may coexist.

Figure 9 compares the corresponding load-bearing capacity of the previous discrete orientation

designs with that of the isotropic case. As expected, the isotropic case is the most efficient in

terms of load-bearing capacity, both at the beginning and at the end of the penalization procedure.

The case with only horizontal tensile members is the less efficient whereas the case with 45
◦

shows only slightly lower bearing capacity than the isotropic case which can be explained by the

fact that the corresponding design was already quite close to that of the isotropic case.

5.4 Bridge example
We now turn to a bridge-like problem as described in Figure 10. On this example, we

investigate the influence of asymmetric tensile/compressive strengths. We again use load-

maximization formulations with 𝜂 = 0.2 for the imposed volume fraction and 𝜔 = 1/2. In
particular, Figure 11, Figure 12 and Figure 13 compare the obtained optimized design when using

either a bi-material or a single material formulation in the cases where 𝑓𝑐 = 𝑓𝑡 = 1, 𝑓𝑐 = 1, 𝑓𝑡 = 10

and 𝑓𝑐 = 10, 𝑓𝑡 = 1 respectively. As expected, we observe relatively similar designs from the two

formulations in terms of general layout of members in tension and compression. Nevertheless,

small differences can be observed, especially on Figure 12. Such differences can be attributed to

the fact that the bi-material formulation treats differently the behavior of connections between
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5

1 0.5

Figure 10: A bridge structure with a central uniformly distributed loading 𝑻 = −𝒆𝑦 . Fixed supports are

distributed over regions of length 0.1 at both extremities.

(a) bi-material

(b) single material

Figure 11: Symmetric strengths 𝑓𝑐 = 𝑓𝑡 = 1

tension and compression members compared to the single material formulation. One can in

particular observe that such connections have a larger spatial extension in the bi-material

case. Indeed, in locations where both tension and compression phases coexist, the bi-material

formulation allows for reduced strength properties compared to the single material phase. For

instance, if 𝜌1 = 𝜌2, then at most 𝜌1 = 𝜌2 = 0.5 such that the effective tension and compression

strengths are here 𝑓𝑐/2 and 𝑓𝑡/2, that is half of that of the single material formulation which can

reach full capacity. This modeling aspect reflects the fact that anchoring two different materials

usually has a detrimental effect on the local strength compared to a single material possessing

both tensile and compressive strengths.

Although, the single material formulation of Mourad et al. (2021) enables to obtain similar

design as the bimaterial formulation, the latter has the advantage of offering additional modeling

choices by using a different factor in the combined volume measure of both phases through the

factor𝜔 . For instance, Figure 14 represents the evolution of the obtained design when varying this

weighting coefficient. We can see that when 𝜔 < 0.5, tensile (phase 2) material costs more than

compression (phase 1) material. The number of tensile members therefore tends to decrease with

decreasing 𝜔 . It must be noted that, although compressive members seem slightly thicker, the

number of such members do not necessarily increase with decreasing tensile material since they

still need to be connected with tensile members to be supported. Conversely, when 𝜔 increases

above the value 0.5, tensile members cost less than compression members and can therefore

be utilized more extensively. Figure 15 represents the evolution of the structure load-bearing

(a) bi-material

(b) single material

Figure 12: Asymmetric strengths 𝑓𝑐 = 1, 𝑓𝑡 = 10
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(a) bi-material

(b) single material

Figure 13: Asymmetric strengths 𝑓𝑐 = 10, 𝑓𝑡 = 1

(a) 𝜔 = 0.10

(b) 𝜔 = 0.25

(c) 𝜔 = 0.50

(d) 𝜔 = 0.75

(e) 𝜔 = 0.90

Figure 14: Bridge example with varying density-cost parameter 𝜔 in the case 𝑓𝑐 = 𝑓𝑡 = 1
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Figure 15: Evolution of the load-factor during the penalization procedure for various cost parameters

Figure 16: Deep beam problem (25 mm thick) investigated in (Muttoni et al. 2015)

capacity as a function of the penalization procedure iterations for the considered values of 𝜔 .

Interestingly, the initial value corresponding to the convex problem Equation (BIMAT-LOAD-MAX)
does not strongly depend on the density cost parameter 𝜔 . However, during the penalization

procedure, the choice of 𝜔 leads to different optimized designs, some of which performing better

than other in terms of bearing capacity. In particular, the case 𝜔 = 0.9 yields a more efficient

structure which may be explained by the fact that more tensile material can be considered since it

costs less in terms of weighted volume than compressive material.

5.5 Deep beam example
We now finish with a deep beam example classically considered when dealing with the design

of massive reinforced concrete structures, see Figure 16. Such structures offer great challenges to

engineers when aiming at proposing an efficient reinforcement steel layout. Many solutions are

possible in practice, depending on the priority given to the simplicity of the design (number of

members, orientations, etc.) or to its optimality in terms of steel consumption for instance. In this

section, we show how our methodology can easily address both concerns.

With the proposed methodology we consider a total design load 𝑄 = 2 MN and formulate a

bimaterial volume minimization problem. The first phase, representing concrete is modeled with

a 𝐿1-Rankine criterion with 𝑓𝑐 = 40 MPa and 𝑓𝑡 = 0.1 MPa, the second phase, representing steel

rebar reinforcements, is modeled with a 𝐿1-Rankine criterion with (almost) no compressive

strength and an effective tensile strength 𝑓𝑡 = 𝜒 𝑓𝑦 = 40 MPa where 𝑓𝑦 = 400 MPa is the steel

tensile strength and 𝜒 = 0.1 a strength reduction factor accounting for the fact that, in practice,

steel rebars only occupy a small fraction (10% at maximum in the present case) of the total beam

thickness. Both phases have identical volume cost (𝜔 = 0.5) and we use ℓ = 0.15.
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(a) Optimized design from the bimaterial volume

minimization

(b) Strut-and-tie model with inclined reinforcements

based on elastic stress fields, taken from (Muttoni et al.

2015)

Figure 17: Comparison of the proposed methodology with strut-and-tie models with inclined reinforce-

ments

Figure 17(a) represents the obtained design for both phases. We can clearly see multiple

compressive struts aiming at the beam supports, equilibrated by a bottom horizontal tensile

reinforcement and a more complex curved reinforcement above the beam opening. Clearly

the obtained design is quite similar to strut-and-tie models proposed in (Muttoni et al. 2015)

based on elastic stress fields, see Figure 17(b). The global structural behavior in terms of strut

and tie location is quite similar between both models. There are however some noticeable

differences: since the ST model of Figure 17(b) is based on the interpretation of elastic stress fields,

the two main compressive struts exhibit a characteristic "bottle" shape corresponding to the

diffusion of elastic stress fields between singular points corresponding to point loads and supports.

Such a diffusion induces the presence of small secondary transverse reinforcements which help

preventing cracking of concrete in tension. Such features are typical of elastic computations and

are therefore absent from limit-analysis based computation which yield very straight compressive

struts with constant cross-section. Similarly, we can note that the "array" of struts emerging from

the point load is much wider in the ST model than what is obtained with our procedure, for

similar reasons.

As pointed out above, such a complex rebar layout might not be practical for on-site placing

for instance. Engineers therefore aim at obtaining simpler solutions, although being less optimal,

which might be easier to implement in practice. A typical simplifying choice in the design of

reinforced concrete structures is to resort to orthogonal reinforcement layout. To achieve this, we

simply modify the isotropic strength criterion of the tensile phase with an orthotropic criterion

with admissible reinforcement orientations of 0
◦
or 90

◦
. The corresponding result is represented

in Figure 18(a) which indeed results in steel rebars being either placed horizontally or vertically.

Again, the obtained design is compared with a ST model including only horizontal or vertical

reinforcements in Figure 18(b). We can again notice the striking similarity between both models

with some differences in terms of steel rebar lengths for instance.

Similarly, the reinforcement optimization formulation where the concrete is not optimized

has also been considered on the same example. Results are reported on Figure 19 for both the

𝐿1-Rankine and orthotropic 𝐿1-Rankine criterion for the reinforcement phase. Clearly, this

formulation provides reinforcement layouts qualitatively similar to the bi-material case. We can

notice that the amount of reinforcement is however much less than in Figure 17(a) and Figure 18(a)

since, in the present case, concrete strength can be mobilized in the whole computational domain,

thereby requiring less reinforcement to sustain the same load. However, the concrete stress

field is still well localized and compressive concrete struts can be observed. This observation is

interesting since the reinforcement optimization formulation involves only a single density
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(a) Optimized design from the bimaterial volume

minimization with orthotropic reinforcement criterion

(b) Strut-and-tie model with orthogonal reinforcements,

taken from (Muttoni et al. 2015)

Figure 18: Comparison of the proposed methodology with strut-and-tie models with orthogonal

reinforcements

(a) 𝐿1-Rankine criterion (b) orthotropic 𝐿1-Rankine criterion

Figure 19: Reinforcement optimization of the deep beam example: in black, reinforcement optimized

density; in blue, principal compressive stress in the matrix phase
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variable and is therefore much less computationally intensive than the bi-material formulation.

6 Conclusions, discussion and future work
This work proposed an extension of limit analysis-based topology optimization problems to

the case of multiple materials. In particular, the structural load-bearing capacity can be maximized

under a material cost constraint. Alternatively, the total material cost function can be minimized

for a given imposed loading. Following similar numerical techniques (penalization procedure,

filtering) as a previous contribution dedicated to a single material (Mourad et al. 2021), the main

contribution of the present work is related to the way composite materials are represented.

We first proposed a reinforcement formulation, in which we aim at optimizing only a

reinforcement phase (e.g. steel rebars, fibers, etc.) embedded in a fixed background matrix

material (e.g. concrete, soil, resin, etc.). The chosen strength criterion for the reinforcement

phase attempts at promoting uniaxial stress states. Reinforcements can be either isotropically

distributed (using the 𝐿1-Rankine criterion) or with fixed preferential orientation directions

(anisotropic criterion Equation (12)).

Second, we proposed a formulation in which two distinct material phases are simultaneously

optimized, each of them possessing its own distinct strength criterion. The latter can either be an

isotropic one or an anisotropic one such as Equation (12). Each phase can also represent either

two intrinsically distinct materials or represent instead a fictitious phase with a specific stress

state, e.g. pure tension and pure compression as in Section 4.2. The introduction of a material

cost function 𝑐𝜔 (𝜌1, 𝜌2) also enables to consider a different cost for each phase through the

weighting coefficient 𝜔 . All these possibilities make the proposed formulation extremely versatile

in terms of modeling capabilities.

The question remains which of the reinforcement or bimaterial formulation is more appro-

priate. Obviously, there is no definitive answer as it depends on the targeted application and

the potential need for exploring different topologies. Let us first say that the reinforcement

formulation can be seen as a particular case of the bimaterial formulation in which one of

the phase pseudo-density is fixed to a value of 1 and where the constraint 𝜌1 + 𝜌2 ≤ 1 is

ignored. The bimaterial formulation is, in this respect, more general but is also much more

computationally demanding as two phases must be optimized instead of one. Second, considering

a fixed background phase occupying the whole domain produces much more diffuse matrix stress

fields in some instances (see Figure 5). For some applications such as the strut-and-tie method for

reinforced concrete structures, it might be more interesting to have a clear and simplified stress

field in the concrete phase, despite the fact that concrete still occupies the whole structure. In

such cases, the bi-material formulation seems particularly attractive. Finally, the latter approach

also offers a richer way of exploring various topologies through the choice of the phase criteria or

the weighting cost factor.

As regards future works, the possibility of generating strut-and-tie models with the proposed

formulation seems very promising. It remains to be checked that the obtained models qualitatively

agree with engineering practice on a wider range of examples. One should also check that the

corresponding internal forces also quantitatively agree with calculations based on Eurocode

design norms. Finally, as the proposed bi-material formulation is computationally demanding, its

extension to 3D would require developing dedicated numerical strategies in order to reduce its

computational cost.
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Replication of results
The Python code for implementing the topology optimization is part of the fenics_optim

Python package (v2.0) (Bleyer 2020a), itself relying on the FEniCS finite-element software library
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https://fenicsproject.org/ and the Mosek conic optimization solver https://www.mosek.com/.
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A Appendices
A.1 Proof that the 𝐿1-Rankine criterion is the convex hull of isotropically

distributed uniaxial strengths
Let us consider an infinite distribution of uniaxial reinforcements indexed by 𝛼 with tensile and

compressive strengths 𝑓𝑡 and 𝑓𝑐 (independent of 𝛼 ). Let us denote by𝐺
𝛼 = {𝜎𝛼𝒆𝛼 ⊗ 𝒆𝛼 s.t. − 𝑓𝑐 ≤

𝜎𝛼 ≤ 𝑓𝑡 } the uniaxial strength criterion of a given family of reinforcement. We show that:

𝐺𝐿1-Rankine = conv
𝛼

{𝐺𝛼 } (22)

where𝐺𝐿1-Rankine
is the 𝐿1-Rankine criterion defined in Equation (2) which can also be equivalently

written as:

𝝈 ∈ 𝐺𝐿1-Rankine ⇔


𝜎𝐼 + 𝜎𝐼 𝐼 ≤ 𝑓𝑡

−𝜎𝐼 − 𝜎𝐼 𝐼 ≤ 𝑓𝑐

𝜎𝐼/𝑓𝑡 − 𝜎𝐼 𝐼/𝑓𝑐 ≤ 1

−𝜎𝐼/𝑓𝑐 + 𝜎𝐼 𝐼/𝑓𝑡 ≤ 1

(23)

Note that although everything is written in a 2D setting, the following proof also holds in 3D.

Proof. Let us first show that 𝐺𝐿1-Rankine ⊆ conv𝛼 {𝐺𝛼 }. For any given stress tensor, we have

𝝈 = 𝜎𝐼 𝒆𝐼 ⊗ 𝒆𝐼 +𝜎𝐼 𝐼 𝒆𝐼 𝐼 ⊗ 𝒆𝐼 𝐼 . Then there exist two families of reinforcement 𝛼𝐼 and 𝛼𝐼 𝐼 of respective

orientation 𝒆𝐼 and 𝒆𝐼 𝐼 . Moreover, assuming that 𝝈 ∈ 𝐺𝐿1-Rankine
and introducing 𝜁𝐼 = 𝑔(𝜎𝐼 ) and

𝜁𝐼 𝐼 = 𝑔(𝜎𝐼 𝐼 ), we have:

−𝑓𝑐 ≤ 𝜎𝐼

𝜁𝐼
≤ 𝑓𝑡 (24)

−𝑓𝑐 ≤ 𝜎𝐼 𝐼

𝜁𝐼 𝐼
≤ 𝑓𝑡 (25)

and 𝜁𝐼 + 𝜁𝐼 𝐼 ≤ 1. As a result, 𝝈 can indeed be written as Equation (12) with 𝜎r,𝛼𝐼 = 𝜎𝐼/𝜁𝐼 and
𝜎r,𝛼𝐼 𝐼 = 𝜎𝐼 𝐼/𝜁𝐼 𝐼 so that 𝐺𝐿1-Rankine ⊆ conv𝛼 {𝐺𝛼 }.

Now let us show that conv𝛼 {𝐺𝛼 } ⊆ 𝐺𝐿1-Rankine
. Let 𝝈 given by Equation (12). Let 𝒆𝐼

and 𝒆𝐼 𝐼 be the principal stress directions of this stress state and introduce 𝜃𝛼 such that 𝒆𝛼 =

cos𝜃𝛼𝒆𝐼 + sin𝜃𝛼𝒆𝐼 𝐼 for any 𝛼 . Then:

𝜎𝐼 =
∑︁
𝛼

𝜁𝛼 cos
2 𝜃𝛼𝜎

r,𝛼
(26)

𝜎𝐼 𝐼 =
∑︁
𝛼

𝜁𝛼 sin
2 𝜃𝛼𝜎

r,𝛼
(27)

Since 𝜁𝛼 ≥ 0 and

∑
𝛼 𝜁𝛼 = 1, we have:
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𝜎𝐼 + 𝜎𝐼 𝐼 =
∑︁
𝛼

𝜁𝛼𝜎
r,𝛼

≤ 𝑓𝑡

∑︁
𝛼

𝜁𝛼 = 𝑓𝑡

−𝜎𝐼 − 𝜎𝐼 𝐼 =
∑︁
𝛼

𝜁𝛼 (−𝜎r,𝛼 )

≤ 𝑓𝑐

∑︁
𝛼

𝜁𝛼 = 𝑓𝑐

𝜎𝐼/𝑓𝑡 − 𝜎𝐼 𝐼/𝑓𝑐 =
∑︁
𝛼

𝜁𝛼 (cos2 𝜃𝛼𝜎r,𝛼/𝑓𝑡 − sin
2 𝜃𝛼𝜎

r,𝛼/𝑓𝑐)

≤
∑︁
𝛼

𝜁𝛼 = 1

𝜎𝐼/𝑓𝑡 − 𝜎𝐼 𝐼/𝑓𝑐 =
∑︁
𝛼

𝜁𝛼 (− cos
2 𝜃𝛼𝜎

r,𝛼/𝑓𝑐 + sin
2 𝜃𝛼𝜎

r,𝛼/𝑓𝑡 )

≤
∑︁
𝛼

𝜁𝛼 = 1

So that 𝝈 ∈ 𝐺𝐿1-Rankine
. □

Finally, let us note that in the case where the consider family of reinforcement is discrete

𝛼 ∈ {𝛼1, . . . , 𝛼𝑁 }, we only have that conv𝛼 {𝐺𝛼 } ⊆ 𝐺𝐿1-Rankine
.
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