
HAL Id: hal-03424055
https://enpc.hal.science/hal-03424055

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blunt extension of discrete universal multifractal
cascades: development and application to downscaling

Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer

To cite this version:
Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer. Blunt extension of discrete universal multi-
fractal cascades: development and application to downscaling. Hydrological Sciences Journal, 2020,
65 (7), pp.1204-1220. �10.1080/02626667.2020.1736297�. �hal-03424055�

https://enpc.hal.science/hal-03424055
https://hal.archives-ouvertes.fr


 

 

Blunt extension of discrete universal multifractal cascades: 

development and application to downscaling 

Auguste Gires a*, Ioulia Tchiguirinskaia a and Daniel Schertzer a 

a Hydrologie Météorologie et Complexité, Ecole des Ponts ParisTech, Champs-sur-

Marne, France  

Abstract Scale issues are ubiquitous in the geosciences. Because of their 

simplicity and intuitiveness, and despite strong limitations, notably its non-

stationarity features, discrete random multiplicative cascade processes are very 

often used to address these scale issues. A novel approach based on the 

parsimonious framework of universal multifractals (UM) is introduced to tackle 

this issue while preserving the simple structure of discrete cascades. It basically 

consists in smoothing at each cascade step the random multiplicative increments 

with the help of a geometric interpolation over a moving window. The window 

size enables us to introduce non-conservativeness in the simulated fields. It is 

established theoretically, and numerically confirmed, that the simulated fields 

also exhibit a multifractal behaviour with expected features. It is shown that such 

an approach remains valid over a limited range of UM parameters. Finally, we 

test downscaling of rainfall fields with the help of this blunt discrete cascade 

process and discuss challenges for future developments.  

Keywords multifractals;  discrete random multiplicative cascades; downscaling; 

rainfall  

1 Introduction 

Scale issues are ubiquitous in the geosciences and particularly in the atmospheric 

sciences, both theoretically and practically. Indeed, they are intrinsically related to the 

need to better understand the underlying processes and notably the consequences of 

scale invariance of the Navier-Stokes equations. This has led to the emergence of 

cascade approaches (Kolmogorov, 1941) to model turbulence. Since turbulence is 

considered to generate and drive spatio-temporal variability in the atmosphere and 



 

 

notably clouds, such scale invariant features are also expected to be transferred to the 

unknown equations governing other fields such as rainfall (Schertzer and Lovejoy, 

1987; Hubert, 2001). They are also required from a practical point of view with very 

common issues such as how to address the spatio-temporal gap of the observation scales 

of two measuring devices that need to be compared, or how to downscale a field from 

an available coarse resolution to a needed higher resolution.  

In such processes, an average intensity over a large-scale structure is iteratively 

distributed in space and time to smaller-scale structures. Schertzer and Lovejoy (1987) 

argued on the necessity to go beyond additive processes as well as beyond discrete (in 

scale) cascades to respect the nonlinearity, continuous translation and scale invariances 

of the generating equations. They therefore introduced continuous (in scale) cascades. 

For the pedagogical (although unphysical) example of discrete cascades, a structure is 

divided into 𝜆1
𝑑 sub-structures where d is the dimension of the embedding space (d = 1 

in 1D and d = 2 in 2D). Usually  𝜆1 = 2 i.e. time steps are simply divided in 2, and 

pixels in 4. The intensity affected to a sub-structure is the intensity of the parent 

structure multiplied by a random increment. Then, the process is iteratively repeated on 

each of the sub-structures. The process is scale invariant in the sense that the way 

structures are divided into sub-structures and the probability distribution of the random 

multiplicative increments are the same at each cascade step. More details are provided 

in Section 2. Such scale invariance is usually valid only on a limited range of scales that 

should be determined through data analysis. 

Discrete random multiplicative cascades have been extensively used to model 

rainfall. For example, they have been used in a spatio-temporal context with log-normal 

distributions for the increments and in combination with a -model to improve 

representation of zeros (Gupta and Waymire, 1993; Over and Gupta, 1996). Olsson 



 

 

(1998) developed an approach in which zeros are introduced within a micro-canonical 

cascade process in a way that is tailored to the simulated intensity. Micro-canonical 

means that intensity is preserved exactly through each cascade step and not only on 

average, as is a canonical cascade, which enables one to introduce more variability. 

Gires et al. (2013) also developed a model to account better for the zeros of rainfall by 

adding the possibility of the process to be set to zero at each cascade step if the intensity 

is not great enough. Menabde and Sivapalan (2000) used bounded discrete cascades 

with Levy-stable distributions. Gaume et al. (2007) used a canonical log-Poisson model 

and a micro-canonical model with uniform distribution of the increments’ distribution 

for hydrological purposes. Licznar et al. (2011) carried out an extensive comparison of 

six models, mainly relying on log-normal distribution and with numerous parameters 

(up to 11). Müller and Haberlandt (2018) developed an approach in which the 

distribution implemented varies according to the cascade step. Rupp et al. (2012) 

explored the use of log-normal models to simulate rainfall spatial variability. 

Such a seemingly simple and intuitive process enables one to parsimoniously 

(and partly) reproduce complex patterns exhibiting extreme variability and intermittence 

over wide range of spatio-temporal scales. This is the reason for their ‘success’, despite 

their strong, aforementioned limitations. A visual drawback of these limitations is the 

existence of sharp transitions between areas/periods of the generated fields, notably 

unrealistic square structures in 2D. Some of the authors cited above have acknowledged 

these limitations in their discussions but did not attempt to deal with them. 

In this paper, we present an innovative way to lessen some limitations of 

discrete random multiplicative cascades and to develop a rather straightforward 

downscaling application. We basically simply suggest to interpolate at each cascade 



 

 

step the random multiplicative increments and hence avoid the sharp transitions within 

the generated fields. 

The paper is organized as follows. First we present the framework of discrete 

cascades and universal multifractals which we will use (see Schertzer and 

Tchiguirinskaia, 2018, for a recent review, as well as extensions to  – continuous in 

scale –  mulitfractals operating on vector fields), along with a description of the 

limitations of discrete cascades (Section 2). Then, the approach introduced herein to 

improve discrete cascades is progressively presented and validated in Section 4. Finally, 

the suggested framework is applied to downscaling rainfall time series and maps with 

implementation and validation (Section 5).  

 

2 Universal multifractals (UM) discrete cascade and position of the problem 

2.1 UM discrete cascades 

Let us consider a field 𝐵𝜆  at a resolution 𝜆 defined as the ratio between the outer scale 

L and the observation scale l (𝜆 = 𝐿 𝑙⁄ ). In practice, a field is usually measured at a 

maximum resolution (𝜆max) and up-scaled from it at lower resolutions by averaging 

over adjacent times steps or pixels. Such a process does not enable us to retrieve the 

exact values of the increments used for generating a field (see below), and the interested 

reader is referred to Schertzer and Lovejoy (1987) for complete discussion of the 

difference between what is denoted in the literature a bare (obtained during the 

generation) and dressed (obtained after up-scaling from the maximum resolution) fields. 

For multifractal fields, the moment of order q of the field is a power law related to the 

resolution:  

〈𝐵𝜆
𝑞〉 ≈ 𝜆𝐾(𝑞)           (1) 



 

 

where 𝐾(𝑞) is the scaling moment function that fully characterizes the variability across 

scales of the field. In the specific framework of UM (Schertzer and Lovejoy, 1987; 

1997), towards which multiplicative cascades processes converge, 𝐾(𝑞) for 

conservative fields is defined with the help of only two parameters with physical 

interpretation:  

 𝐶1, the mean intermittency co-dimension, which measures the clustering of the 

(average) intensity at smaller and smaller scales. 𝐶1 = 0 for a homogeneous 

field; 

 𝛼, the multifractality index (0 ≤ 𝛼 ≤ 2), which measures the clustering 

variability with regards to the intensity level. 

For UM, we have: 

𝐾(𝑞) =
𝐶1

𝛼−1
(𝑞𝛼 − 𝑞) (2) 

A multifractal analysis consists in checking that these features are indeed 

observed. The quality of the scaling can be assessed with the help of trace moment 

(TM) analysis which basically consists in plotting in Eq. (1) log-log. Straight lines 

should be retrieved and the slope gives 𝐾(𝑞). The coefficient of determination 𝑟2 for 

𝑞 = 1.5 is used in this paper as an indicator of the quality of the scaling. The double 

trace moment (DTM) technique is tailored for UM fields and enables robust estimation 

of UM parameters (Lavallée et al., 1993). DTM was used herein for this purpose. 

In the previous case, the average intensity is conserved across scales and the 

field is said to be conservative. In general, for multiplicative processes, conservation 

refers to the fact that a given statistic – usually the mean – is strictly independent of 

scale. Fields which do not exhibit such features are said to be non-conservative and an 



 

 

additional parameter called the non-conservation parameter and denoted H needs to be 

introduced, where 𝐻 = 0 for conservative fields; it can be either positive or negative. 

More physically, greater values H correspond to stronger correlations within the studied 

field. H is typically between 0 and 1 for geophysical fields. 

In such a framework, a non-conservative field (𝐵𝜆
′), can be decomposed as 

follows: 

𝐵𝜆
′ ≈ 𝐵𝜆 𝜆−𝐻  (3) 

where 𝐵𝜆  is a conservative field and the portion corresponding to the variations of the 

average field has been separated. In such a case the slope  of the spectra 𝐸(𝑘) (where k 

is the wave number): 

𝐸(𝑘) ≈ 𝑘−𝛽   (4) 

is related to H as follows:  

𝛽 = 1 + 2𝐻 − 𝐾(2)  (5) 

The value of H is actually estimated with the help of this equation after carrying out a 

spectral analysis, which also gives an indication of the quality of the scaling (Lavallée et 

al. 1993). 

It is possible to generate UM fields with the help of discrete multiplicative 

cascades as described in the introduction. The process is illustrated with three steps in 

Fig. 1. We start with a large-scale structure, with a given intensity 𝐵0. After n steps, the 

resolution is 𝜆1
𝑛 = 𝜆𝑛, and a value 𝐵𝑛,𝑖 (i ranging from 1 to 2𝑛) of the field is the 

product of the increments associated with all its successive parent structures:  

𝐵𝑛,𝑖 = 𝐵0 ∏ (𝑏𝑠)𝑛
𝑠=1  (6) 



 

 

where 𝑏𝑠 is a realization of the random variable b defining the increments. For UM the 

random variable of increment b is given by: 

𝑏 =
exp[(

𝐶1𝑙𝑛𝜆1
|𝛼−1|

)
1/𝛼

𝐿(𝛼)]

𝜆1

𝐶1
𝛼−1

  (7) 

where 𝐿(𝛼) is an extremal Lévy-stable random variable of index 𝛼. This is generated 

with the help of the procedure given by Chambers et al. (1976), and has the following 

property:  

〈exp [𝑞𝐿(𝛼)]〉 = exp[𝑞𝛼] (8) 

Combining Eqs. (7) and (8), we find: 

〈𝑏𝑞〉 =
〈exp[𝑞(

𝐶1ln𝜆1
|𝛼−1|

)
1/𝛼

𝐿(𝛼)]〉

𝜆1

𝑞
𝐶1

𝛼−1

= 𝜆1

𝐶1
𝛼−1

(𝑞𝛼−𝑞)
 (9) 

Finally, given that the increments 𝑏𝑠 in Eq. (6) are independent and identically 

distributed, and keeping in mind 𝜆1
𝑛 = 𝜆𝑛, we can demonstrate that the field simulated is 

indeed a UM one:  

〈𝐵𝑛,𝑖
𝑞 〉 = 𝐵0

𝑞〈𝑏𝑞〉𝑛 = 𝜆𝑛

𝐶1
𝛼−1

(𝑞𝛼−𝑞)
  (10) 

2.2 The issue of non-stationarity 

Universal multifractal discrete cascades follow equations (1) and (2). However, they are 

not stationary in the sense that the correlation between two points does not only depend 

on the lag between them.  

In order to illustrate this issue, let us consider three time steps – 𝐵3,3, 𝐵3,4 and 

𝐵3,5 – of the three step cascade process displayed in eq. (1). We aim to compute the two 



 

 

correlations 〈𝐵3,3
𝑞 𝐵3,4

𝑞 〉 and 〈𝐵3,4
𝑞 𝐵3,5

𝑞 〉, where q is a moment order (the standard 

correlation is retrieved for𝑞 = 1). The symbol 〈 〉 refers to the estimation of the mean 

taken over numerous independent realizations of the process, which then yields an 

estimate of the expected value of the process. Following Eq. (6), these time steps can be 

written as:  

𝐵3,3 = 𝐵0,1𝑏1,1𝑏2,2𝑏3,3

𝐵3,4 = 𝐵0,1𝑏1,1𝑏2,2𝑏3,4

𝐵3,5 = 𝐵0,1𝑏1,2𝑏2,3𝑏3,5

 (11) 

From Eq. (11), it is possible to quickly deduce that 𝐵3,3 and 𝐵3,4 share two 

increments (one at level 𝑛 = 1 which is 𝑏1,1, one at level 𝑛 = 2 which is 𝑏2,2 and none 

at level 𝑛 = 3), while 𝐵3,4 and 𝐵3,5 share none. This has some consequences when the 

correlations are computed. Indeed, we obtain: 

〈𝐵3,3
𝑞 𝐵3,4

𝑞 〉 

〈𝐵3,4
𝑞 𝐵3,5

𝑞 〉

=
=

〈𝐵0,0
2𝑞𝑏1,1

2𝑞 𝑏2,2
2𝑞 𝑏3,3

𝑞 𝑏3,4
𝑞 〉

〈𝐵0,0
2𝑞𝑏1,1

𝑞 𝑏2,2
𝑞 𝑏3,4

𝑞 𝑏1,2
𝑞 𝑏2,3

𝑞 𝑏3,5
𝑞 〉

=
=

𝐵0,0
2𝑞〈𝑏2𝑞〉2〈𝑏〉2𝑞

𝐵0,0
2𝑞〈𝑏〉6𝑞

 (12) 

from which it is clear to see that they are not equal in the general case. This simple 

example illustrates why discrete cascades are not stationary. Such features are also 

observed on more developed cascades and not considering adjacent time steps. This is 

studied in Fig. 2. More precisely 10 000 samples of an 8-step discrete cascade with 𝛼 =

1.6 and 𝐶1 = 0.2 are generated (hence, time series of length 256 are obtained) and the 

quantities 〈𝐵8,𝑗
𝑞 𝐵8,𝑗+𝑡

𝑞 〉 are studied for various j and t. Figure 2 displays, for 𝑞 = 0.5, 

〈𝐵8,𝑗
𝑞 𝐵8,𝑗+𝑡

𝑞 〉 as a function of t for 𝑗 = 1, 𝑗 = 64 (just before one-quarter of the series, 

𝑗 = 65 (just after one-quarter of the series), 𝑗 = 128 (just before the middle of the 

series), and 𝑗 = 129 (just after the middle of the series). The range of possible values 

for t will not be the same, which is why the curves are all shifted on Fig. 2. For 



 

 

example, for 𝑗 = 1 we have 𝑡 ⊂ [0, … ,255], while for 𝑗 = 128 we have 𝑡 ⊂

[−127, … ,128]. The strongly asymmetric behaviour with a transition for 𝑡 = 0 is 

visible for 𝑗 = 128 and 𝑗 = 129 with standard discrete cascade simulations (Fig. 2(a)). 

It is also the case, to a smaller extent, for 𝑗 = 64 and 𝑗 = 65, which was expected since 

these two time steps share one more increment together (𝑏1,1). Such asymmetry 

illustrates well the strong limitations of discrete cascades due to their non-stationarity. 

Similar features are obtained with 2D fields, and it is actually the phenomenon that 

causes the sharp unrealistic square structures obtained on such fields (see Fig. 10 for an 

illustration).  

 

3 Presentation of blunt discrete UM cascades 

The aim in this section is to introduce a new model for multiplicative cascades based on 

a modification of standard UM discrete cascades and characterize its mathematical 

behaviour. As a consequence, it will be introduced starting from the standard well 

known process. The underlying concept is actually rather straightforward and easy.  

It can be summarized in three successive steps: (a) present increments at the 

final resolution; (b) perform a geometrical average with a moving window to replace the 

increments at each cascade steps with interpolated ones; and (c) add an additional 

renormalization to preserve the ensemble average mean. The process is summarized in 

the figure at the end of Section 3.4. 

3.1 Changing the presentation of discrete cascades 

To help the reader understand the approach introduced in this paper, the process of 

standard discrete cascades is presented in a slightly different way (Fig. 1). It is only a 



 

 

question of presentation, i.e. the process and its mathematical properties remain the 

same. Let us consider a cascade process with N steps containing hence 𝑙0 = 2𝑁 time 

steps. 

The first step consists in introducing the final resolution of the field at all levels 

of the cascade process. After n steps, we have a series of 2𝑛 increments (= 𝑙0/𝑙𝑛) 

affected to time steps of length 𝑙𝑛 (first row in Fig. 3). This time series can be replaced 

by an equivalent one with time steps of size 𝑙𝑁. This is done by simply concatenating 2𝑛 

successive ‘blocks’ made of 𝑙𝑛 repetition of 𝑏𝑛,𝑖 (second row in Fig. 3). Hence, for 

cascade step n, the increments will now be seen as a time series with 𝑙0 elements, 

keeping in mind that each value is repeated 𝑙𝑛 times. For standard discrete cascades, the 

final value of the field will then simply be expressed as the product of all the increments 

of the corresponding time step. In terms of notation, in the following we use index i to 

refer to the index in the usual presentation, meaning it is in the range [1, … , 2𝑛], and j to 

refer to the index at the maximum resolution in the new presentation, meaning it is in 

the range [1, … , 2𝑁 or 2𝑁+2]. For pedagogical purposes, the process is fully described 

for a three-step cascade in Fig. 4. 

The second step consists in representing the increments with the help of their 

corresponding singularity 𝛾𝑏𝑖
 (𝑏𝑖 = 𝜆1

𝛾𝑏𝑖 ). Re-writing Eq. (6) yields for a value of the 

field 𝐵𝑛,𝑖:  

𝐵𝑛,𝑖 = 𝐵0𝜆1

∑ 𝛾𝑏𝑠
𝑛
𝑠=1

= 𝐵0𝜆𝑛

(∑ 𝛾𝑏𝑠
𝑛
𝑠=1 )/𝑛

= 𝐵0𝜆𝑛
𝛾𝑛,𝑖

 

The singularity 𝛾𝑛,𝑖 affected by 𝐵𝑛,𝑖 simply appears as the average of the 

singularities 𝛾𝑏𝑠
 associated with the successive cascade steps. 

 



 

 

3.2 A linear interpolation of the singularities 

As previously pointed out, the ‘odd’ behaviour of standard discrete cascades comes 

from the sharp transitions between the increments at each cascade level. To remove 

them, we suggest to introduce the final resolution at cascade level n, and to replace the 

increments 𝑏𝑛,𝑗 by increments 𝑎′𝑛,𝑗 consisting of a weighted geometric interpolation of 

the adjacent 𝑏𝑛,𝑗 over a moving window of size 𝑠𝑛 (discussed below) and centred on it 

(see illustration in Fig. 3). The moving window moves time steps by overlapping with 

itself. The weights affected by each element of the moving window are denoted 𝑐𝑘 

with 𝑘 ⊂ [1, … , 𝑠𝑛]. Obviously, we have ∑ 𝑐𝑘
𝑠𝑛
𝑘=1 = 1. Hence, 𝑎′𝑛,𝑗 is defined as with 

the help of the following equation:  

𝑎′𝑛,𝑗 = ∏ 𝑏
𝑛,𝑗−

𝑠𝑛−1

2
+𝑘

𝑐𝑘𝑠𝑛
𝑘=1  (14) 

The operation is equivalent to performing a linear interpolation on the 

singularities: 

𝛾𝑎′𝑛,𝑗
= ∑ 𝑐𝑘𝛾𝑏

𝑛,𝑗−
𝑠𝑛−1

2
+𝑘

𝑠𝑛
𝑘=1   (15) 

It means that the process introduced here simply consists in densifying the 

singularities at a given cascade level in order to blunt this field and hence remove the 

sharp transitions between them.  

The length 𝑠𝑛 at a given cascade level n of the moving window should be 

defined carefully in order to remain in a scale invariant framework. Let us introduce an 

additional parameter h, which corresponds to the number of adjacent 'true increments' 

(i.e. in the process B) that will influence the new ones. This h is scale invariant and 

equal for each cascade level. Hence, to account for the fact that small scales are 



 

 

introduced in the new process, the length of the moving window will double each time a 

'parent' cascade step is considered to maintain the same h. In practice, this yields 𝑠𝑛 =

1 + floor(ℎ  2𝑁−1−𝑛); ℎ = 0 corresponds to the sharp case of standard cascades; ℎ = 1 

is the more natural scale of influence of adjacent increments, and yields a window 

length basically equal to 𝑙𝑛. Greater values of ℎ will increase the correlations within the 

cascade process. As a consequence, this will increase the value of the 𝐻 parameter for 

the simulated field. This strong relation is the reason why a lowercase letter ℎ was used.  

Obviously the moving window as discussed cannot be implemented on the edges 

of the series since the adjacent increment(s) is (are) unknown. It means that to be fully 

consistent one should simulate a longer series and only use a portion in the middle (the 

size of this portion depends on the choice of ℎ). For example with ℎ = 1, if one wants 

to generate a time series with this process, one will have to generate a series of twice the 

size and consider only the middle portion. In practice, on the edge a smaller window 

with again uniform weights is used.  

This new process is denoted A' in the following. Note that A' is a temporary 

notation for the complete blunt process A that is introduced in this paper in which a 

renormalization will be added. 

In this paper, the weights 𝑐𝑘 affected to each element of the moving window are 

uniform, leading to 𝑐𝑘 = 1/𝑠𝑛. Other more complex choices could be tested in the 

future and the formalism will anyway be written in a general way not assuming specific 

values. An interesting property of the uniform case is explained below.    

For pedagogical purpose, a blunt cascade process A' with three steps and ℎ = 1 

is fully described in Fig. 5. The position of the moving window over which the 

increments are interpolated is represented at each cascade level for first element where 

it has its full length. This means that, for the previous elements, it is not possible to 



 

 

compute the geometric interpolation, which is why they are not represented. For the 

other elements, this moving window is simply shifted to be centred on it. Let us study 

again the three values 𝐴′3,3, 𝐴′3,4 and 𝐴′3,5 for the process 𝐴′, as was done for the 

process B. We have:  

𝐴′3,3 = 𝐴′0,0𝑏1,1
4/5𝑏1,2

1/5𝑏2,1
1/3𝑏2,2

2/3𝑏3,3

𝐴′3,4 = 𝐴′0,0𝑏1,1
3/5𝑏1,2

2/5𝑏2,2
2/3𝑏2,3

1/3𝑏3,4

𝐴′3,5 = 𝐴′0,0𝑏1,1
2/5𝑏1,2

3/5𝑏2,2
1/3𝑏2,3

2/3𝑏3,5

  (16) 

Following a similar reasoning as for B, it appears that 𝐴′3,3 and 𝐴′3,4 ‘share’ a 

power 22/15 of increments (4/5 at cascade level 𝑛 = 1 with 3/5 of 𝑏1,1 and 1/5 of 𝑏1,2; 

2/3 at cascade level 𝑛 = 1 with 2/3 of 𝑏1,2; and 0 at cascade level 𝑛 = 3). 𝐴′3,4 and 𝐴′3,5 

‘share’ the same 22/15 power of increments but with a different distribution within each 

cascade level (4/5 at cascade level 𝑛 = 1 with 2/5 of 𝑏1,1 and 2/5 of 𝑏1,2; 2/3 at cascade 

level 𝑛 = 2 with 1/3 of 𝑏2,2 and 1/3 of 𝑏2,3; and 0 at cascade level 𝑛 = 3). Actually, the 

power of ‘shared’ increments between two consecutive time steps at a given level 

cascade is constant and equal to 
𝑙𝑛

𝑙𝑛+1
. Since two consecutive time steps ‘share’ the same 

powers of increments at each cascade level, it is also true for the final value of the field 

made of the products of these increments. 

 

3.3 Scaling behaviour of the process A' 

The first step is to compute〈𝑎′𝑛,𝑗
𝑞 〉. This is a little tricky because, at a given level, the 

moving window over which the geometrical average is performed covers the portions of 

successive elements corresponding to various actual increments i of the standard 

process B (for example 3 in Fig. 3). Hence, let us introduce the quantity 𝑆𝑛,𝑘(𝛼, ℎ) =



 

 

∑ (∑ 𝑐𝑙𝑙 in portion of increment )
𝛼

increments 𝑖 . n refers to the cascade level, while k refers to 

the fact that the moving window does not start always on the same position within a 

portion of an increment. In general, k actually changes for each element 𝑎′𝑛,𝑗, and has 

values ranging from 1 to 𝑠𝑛. 

Following the definition given in Eq. (14), it is then possible to obtain:  

〈𝑎′𝑛,𝑗
𝑞 〉 = ∏

〈exp[𝑞(
𝐶1ln𝜆1

|𝛼−1|
)

1/𝛼
𝐿(𝛼) ∑ 𝑐𝑙𝑙 in portion of increment ]〉

𝜆1

𝑞
𝐶1

𝛼−1
∑ 𝑐𝑙𝑙 in portion of increment

𝑖ncrements 𝑖

= 𝜆1

𝐶1
𝛼−1

(𝑆𝑛,𝑘(𝛼,ℎ)𝑞𝛼−𝑞)

= 𝜆1

𝐶1𝑆𝑛,𝑘(𝛼,ℎ)

𝛼−1
(𝑞𝛼−𝑞)+(

𝐶1𝑆𝑛,𝑘(𝛼,ℎ)

𝛼−1
−1)𝑞

 (17) 

In equation (17), 𝑆𝑛,𝑘(𝛼, ℎ) depends on both the cascade level n and k. At a given 

cascade level, all the possible values of k are represented and the quantity of interest 

when studying the average behaviour will actually be the average over all the possible 

values, i.e. 𝑆𝑛
1(𝛼, ℎ) = (∑ 𝑆𝑛,𝑘(𝛼, ℎ)𝑠𝑛

𝑘=1 )/𝑠𝑛. The exponent 1 refers to the dimension of 

the embedding space which is equal to one for the time series studied here. This is 

plotted in Fig. 6(a) for 𝛼 = 1.6 and ℎ = 1. It appears that when the number of cascade 

steps n increases, 𝑆𝑛
1(𝛼, ℎ) tends to converge toward an asymptotic limit, denoted 

𝑆1(𝛼, ℎ) hereafter. 

This is reached after few (typically 3–4) cascade steps. Similar rapid 

convergence is noticed with other values of 𝛼 and h. Figure 6(b) displays 𝑆1(𝛼, ℎ) 

versus 𝛼 for ℎ = 1. It is a decreasing function with values greater than 1 for 𝛼 < 1 and 

smaller than one for 𝛼 > 1. Similar results are found for other values of h. Figure 6(c) 

displays 𝑆1(𝛼, ℎ) versus h for 𝛼 = 1.6. Note that it is a decreasing function for 𝛼 > 1 

while it is an increasing one for 𝛼 < 1. 



 

 

By considering an average over the different values of k and this asymptotic 

limit, it is possible to re-write Eq. (9) as: 

〈𝑎′𝑛,𝑗
𝑞 〉 = 𝜆1

𝐶1𝑆1(𝛼,ℎ)

𝛼−1
(𝑞𝛼−𝑞)+(

𝐶1𝑆1(𝛼,ℎ)

𝛼−1
−1)𝑞

  (18) 

 

3.4 Final version and theoretical expectations 

As it can be seen in eq. (18), with the current definition, the mean of the field with the 

process A' is not conserved through scales. Hence, in the final process A, we suggest to 

use increments 𝑎𝑛,𝑗 which are simply the increments 𝑎′𝑛,𝑗 renormalized with 

𝜆1

𝐶1𝑆1(𝛼,ℎ)

𝛼−1
−1

to ensure this conservation on average. This enables us to preserve the 

conservation on average despite the smoothing effect of the ‘blunting’. Taking into 

account this re-normalization which removes the last term in Eq. (18), it is possible to 

write the scaling moment function 𝐾blunt(𝑞) of the process A as:  

𝐾blunt(𝑞) =
𝐶1𝑆1(𝛼,ℎ)

𝛼−1
(𝑞𝛼 − 𝑞) = 𝑆1(𝛼, ℎ)𝐾(𝑞) (19) 

which yields simple relations between the UM parameters of the blunt process and the 

ones from the standard process:  

αblunt = 𝛼

𝐶1,blunt = 𝑆1(𝛼, ℎ)𝐶1
 (20) 

Finally, one can notice in Fig. 6(a) that, although the convergence of 𝑆𝑛
1(𝛼, ℎ) 

toward 𝑆1(𝛼, ℎ) for increasing values of n is rapid, it is not immediate for small values 

of n (and correspondingly 𝑙𝑛). This means that for high resolution, i.e. the last cascade 

steps, the scaling behaviour will be altered. In order to study and limit this unwanted 

bias, we tested three approaches: (a) doing nothing, i.e. developing the full process up to 



 

 

the final resolution; (b) simulating the field with two more cascade steps than needed 

and then averaging over sequences of four consecutive time steps to recover the desired 

resolution; and (c) stopping the process two cascade steps before but still performing the 

geometric interpolation of the increments at the final resolution. 

The spectra (Eq. (4)) obtained with the three approaches are displayed in Fig. 7. 

1000 samples of size 256 simulated with 𝛼 = 1.6, 𝐶1 = 0.2 and ℎ = 1 are used as input 

into the analysis. With the first approach, there is a flattening of the spectra for small 

scales (Fig. 7(a)). The scaling behaviour is strongly altered with the third approach 

(Fig. 7(c)), while it is very good with the second one (Fig. 7(b)). Hence, it was decided 

to keep this second approach in the following. One could argue that since 𝑆𝑛
1(𝛼, ℎ) does 

not reach its final value 𝑆1(𝛼, ℎ) before 4–5 steps, we should perform 4 or 5 additional 

cascade steps and then average back to the desired resolution. This would result in too 

great a computation time, especially in 2D. Since the scaling behaviour was found to be 

very good with only two additional steps, it was chosen not to perform more. Similar 

results are found with other values of 𝛼, 𝐶1 and h. 

Finally, the whole process of blunt discrete UM cascades is summarized in 

Fig. 8.  

 

3.5 Extension to 2D fields 

The blunt cascade process was introduced in 1D (for time series) and its extension is 

rather straightforward in 2D (for maps). The process in 2D is obtained by simply 

implementing the moving window successively on each lines and then rows of the 2D 

field. In a similar way as in 1D, we find a 𝑆2(𝛼, ℎ) which is the equivalent of 𝑆1(𝛼, ℎ) 

and it also corresponds to an asymptotic limit reached after few cascade steps as 



 

 

displayed in Fig. 6(a). This value should be used in the renormalization of the a'. 

𝑆2(𝛼, ℎ) is simply 𝑆1(𝛼, ℎ) raised to the power 2, which is why this notation was 

chosen:  

𝑆2(𝛼, ℎ) = [𝑆1 (𝛼, ℎ)]2 (21) 

Same patterns as in 1D for the dependence of 𝑆2(𝛼, ℎ) with regards to 𝛼 and h 

are found and shown in Fig. 6(b) and (c). 

 

4 Results 

4.1Examples of simulations 

Figure 9 and Fig. 10 display the generation process in 1D and 2D, respectively, for 

simulations with 𝛼 = 1.6, 𝐶1 = 0.2 and ℎ = 1. The final length of the time series in 1D 

is 256 time steps and the final size of the map in 2D is 64  64. Note that in 1D the full 

increment fields are shown and not only the middle portion as in 2D, which is actually 

the one used in the field generation because of the side effects previously mentioned. 

The progressive, cascade step by cascade step, addition of variability to the field is 

visible and highlights the whole interest of cascade processes. The effect of the blunting 

is also visible, notably in 2D. Indeed, the sharp unrealistic structures of the standard 

field are replaced by blunted ones. With greater values of h, the smoothing of the 

increments fields would even be more pronounced.  

Finally, let us mention an issue that is found with small values of 𝛼. Figure 11 

shows the fields obtained with the standard process and the corresponding blunt one 

with ℎ = 1. With such parameters, some extremely small values of increments are 

generated (in dark blue on the right panel). They are so small that when used in a 



 

 

geometric average, they make the outcome close to zero as well. This results in 

increasing the size their influence. Such effect explains the dark blue boxes on the field 

obtained with the blunt cascades (left panel). This is actually a visual characterization of 

the fact that for 𝛼 < 1 the 𝐶1 is increased by the blunting (𝑆𝑑(𝛼, ℎ)>1). This effect is 

more pronounced with increasing values of h. Such square structures found for small 

values of 𝛼 are a limitation of the innovative blunt process, which means it should 

preferably be used for field with 𝛼 > 1 as is the case for rainfall. 

 

4.2 Back to the stationarity 

One of the goals of the singularities’ blunting introduced in this paper, was to address 

the fact that the stationarity features are poorly represented in fields simulated with the 

standard cascade process B. Hence, as it was done for this process, the quantity〈𝐴𝑗
𝑞𝐴𝑗+𝑡

𝑞 〉 

obtained with series of size 256 was studied for various t and j. The same curves as the 

ones that were studied for B in Fig. 2(a) are plotted in Fig. 2(b) for a blunt process A 

with ℎ = 1. The asymmetry was removed as required. The curves for various j are not 

exactly equal. The reason behind the small remaining differences can be understood 

from Eq. (16). Indeed, despite the fact that the ‘powers of increment shared’ between 

two time steps do not depend on their position within the series but only on the lag 

between them (discussion in Section 3.2), their precise distribution according to 

increments within each cascade level differs. As a consequence, when correlations are 

studied, the averages will be slightly different. Nevertheless, the stationarity of the blunt 

cascade process has been strongly improved with regards to the standard process. As it 

was expected, similar results are obtained when increasing the values of h with stronger 

correlations. This is illustrated in Fig. 2(c), which displays the same curves but for ℎ =



 

 

4. 

4.3 Multifractal analysis of simulated fields 

In this section, we test the validity of Eq. (20), which relates UM parameters input in the 

simulations to the expected ones in the blunt cascade process. The results are first 

discussed for ℎ = 1. Other values of ℎ are addressed at the end of this section. The 1D 

case, i.e. time series, is discussed first. All the possible combinations of UM parameters 

for 𝛼 ⊂ [0.2,0.4,0.6,1,1.2,1.4,1.6,1.8] and 𝐶1 ⊂ [0.1,0.2,0.3,0.4,0.5] are tested. For 

each of the 40 sets of UM parameters, a full UM analysis is carried out on 1000 

realizations of length 256. Figure 12 displays the outcome of such an analysis for 𝛼 =

1.6, 𝐶1 = 0.2 and ℎ = 1. It appears that the scaling behaviour is excellent, with 

coefficients of determination 𝑟2 of the linear regression in the trace moment analysis all 

greater than 0.99 (Fig. 12(a)). This confirms the outcome of the spectral analysis, which 

was already displayed in Fig. 7(b). The DTM curves used for the determination of 𝛼 

and 𝐶1 (Fig. 12(b)) also exhibit the expected shape, enabling a robust estimation of the 

parameters. For this example, we find 𝛼 = 1.62 and 𝐶1 = 0.14. Such consistent scaling 

behaviour is retrieved for all other sets of UM parameters with 𝑟2 always greater than 

0.99. It should be mentioned the the same excellent scaling behaviour was also found in 

the simulations with the standard cascade process.  

The UM parameters estimated on numerical simulations are compared with the 

ones input in the simulations in Fig. 13 for both a standard UM discrete cascade process 

(left column) and a blunt UM discrete cascade process (right column). In the first row, 

𝛼 for the simulations vs. 𝛼input  is plotted. For the standard cascade process, all the 

points are along the bisector as expected. For the blunt cascade, the expected behaviour 

is retrieved for 𝛼 > 1  and there is a slight overestimation for smaller values. 𝐶1 is 



 

 

plotted against 𝛼input on the second row with points for the empirical estimations, and a 

solid line for the expected behaviour according to Eq. (20). For great values of 𝛼 (>1) 

and small values of 𝐶1 (<0.3–0.4), the expected behaviour is observed, which confirms 

the validity of the calculations that led to Eq. (20). For smaller values of 𝛼 and greater 

values of 𝐶1, some discrepancies appear. The overestimation of 𝐶1 is related to the 

‘spread’ of the very small values in the geometric interpolation that was previously 

discussed and generates greater values of 𝐶1. It should be noted that a shift is also 

observed for great values of 𝐶1 with the standard cascades (Fig. 13(c)). With regard to 

H, the re-normalization of the increments 𝑎𝑛,𝑗 enables us to basically keep the same 

small values of H, with only a slight increase of roughly 0.05 being noted.  

The same analyses were carried out in 2D, except with 100 samples and not 

1000 samples to limit computation time. The sample size is 64  64. Figure 14 displays 

the main comparison plots. Only the plots with the UM parameters for the blunt process 

(again with ℎ = 1) are shown, the others are similar to the ones obtained in 1D. The 

relation for 𝛼 remains true for 𝛼 > 1 and 𝐶1 < 0.3–04. With regard to 𝐶1, the same 

discrepancies as in the 1D case are noted, but in a less pronounced way.  

Finally, the outcome of the analysis when considering h > 1 should be discussed. 

The main results in 1D are shown in Fig. 15, which displays an indication of the scaling 

(𝑟2 in the TM analysis for 𝑞 = 1.5), and the UM parameters 𝛼, 𝐶1 and H, all as a 

function of h for simulations with 𝛼 = 1.6 and 𝐶1 = 0.2 as inputs. As before, 1000 

series of length 256 are used. To limit the influence of the edge effects getting worse 

with increasing values of h, series of length 1024 were simulated and only a 256 portion 

in the middle analysed. First, it appears that the quality of the scaling slightly decreases 

with increasing values of h (Fig. 15(a)). This is actually not surprising since increasing 

values of h yield also greater values of H (Fig. 15(b)), and that the TM analysis which is 



 

 

used here assumes that the studied field is conservative. This is no longer the case when 

large values of h are used. With regard to 𝐶1 (Fig. 15(d)), the estimated value on the 

simulations decreases with h and behaves as expected according to Eq. (20); 𝛼 remains 

constant as expected as well.  

In summary, the analysis carried out on numerical simulations illustrated by Figs 

13, 14 and 15 shows that the theoretical expectations of Eq. (20) are retrieved over the 

range of UM parameters 𝛼 > 1, 𝐶1< 0.3–04 for ℎ < 7, which are the ones most relevant 

for rainfall. 

Before continuing, let us say a few words about the issue of zeros in the 

simulated fields and their relation to the topic of the intermittency of rainfall process, 

understood here as the study of the alternation of dry and rainy time steps / areas. Zeros 

is indeed a key feature of rainfall that is not directly simulated with the model 

introduced here, which will only be able to simulate (potential extremely) small values. 

By interpolating the increments at each resolution, it will tend to decrease the 

intermittency. Nevertheless, since it is a geometric interpolation that is carried out, the 

near-zero values will have a tendency to spread. In order to check this issue, simulated 

series have been normalized and ‘thresholded’ (i.e. all values smaller than 0.3 are 

artificially set to zero) in order to mimic the limit of detection of any measuring device. 

For simulations with 𝛼 = 1.6 and 𝐶1 = 0.2, a fractal dimension of 0.85 is found for ℎ =

0 and of 0.88 for ℎ = 1. This suggest that the blunting of the increments tends to reduce 

the simulated intermittency. Anyway, the issue of the simulation of the zeros in rainfall 

fields remains an open question (see Gires et al., 2013). Further developments of this 

model will be needed to properly account for them. As a consequence, only applications 

focusing on rainfall events will be considered in this paper, since during such a period, 

the issue of the zeros has much less influence.  



 

 

5 Application of blunt cascades for downscaling rainfall fields 

5.1 Overall concepts 

The aim of this section is to present how blunt discrete cascades can easily be used to 

address downscaling, which is a very common issue encountered with geophysical 

fields. Downscaling has often been addressed with the help of multifractal cascades 

(Biaou et al., 2003; Deidda, 2000; Gires et al., 2014; Ferraris et al., 2003; Olsson et al. 

2001; Rebora et al., 2006). In this paper, we suggest to use blunt cascades to keep using 

the convenient discrete cascades while removing the sharp unrealistic transitions in 

simulated fields. 

The basic assumption underlying the presented applications is that the studied 

fields are generated with the help of blunt discrete cascade process of known UM 

parameters 𝛼 and 𝐶1. This assumption can actually be checked on the available data 

through a multifractal analysis, which also enables us to estimate the characteristic 

parameters. The methodology for downscaling is rather straightforward in the 

convenient framework of discrete cascades, which are intrinsically a downscaling 

model, and it simply consists in generating the additional steps to increase the 

resolution. Basically, all the missing underlying increments of the standard process (the 

𝑏𝑛,𝑖 using the notation of this paper) are stochastically generated. From them, the 𝑎𝑛,𝑗 

and ultimately the field is derived. This is summarized in Fig. 16 and consists, more 

precisely, in four steps: 

Step 1. Estimation of the UM parameters. This is done by performing a multifractal 

analysis on the available data. Such estimation is done at coarse resolution, and it is 

assumed that they remain valid for higher resolutions (or smaller scales), i.e. that 

there is no scaling break. It should be noted that following Eq. 20, the parameters 



 

 

actually input in the simulation will be 𝛼 and 𝐶1/𝑆𝑑(𝛼, ℎ) to retrieve the correct one 

𝛼 and 𝐶1 once the blunting has been implemented. 

Step 2. Estimating the starting point of the cascade process. The only tricky point in 

the process is to compute the product of the blunt increments 𝑎𝑛,𝑗 for the ‘known’ 

portion of the cascade. This corresponds to the outcome of the cascade process at 

the initial resolution (the black rectangle in Fig. 16). This corresponds to ‘inserting’ 

the available data in the cascade process. This is done by performing a linear 

interpolation of the initial low resolution field at the maximum resolution used in the 

cascade process. In practice, it is a ‘blunting’ of the data with ℎ = 1. By the way, 

this can be considered as a simplistic way of downscaling a field.  

Step 3. Stochastically simulating the missing increments. The missing increments at 

the higher resolutions (in red on Fig. 16) are stochastically drawn. It should be noted 

that two steps more than needed with regard to the desired final resolution are 

implemented. 

Step 4. Generating the fields at the desired resolution. The increments at the higher 

resolutions are then blunt and multiplied to the initial data at low resolution (point 

(2)). It is the same process as in the simulation of a field (Section 4.1) except that, 

instead of using the blunt increments for the coarse resolution, the initial data is 

used. 

The fact that the missing unknown increments are stochastically generated in the 

downscaling process means that not only a single deterministic result but an ensemble 

of realistic realizations will be obtained. More precisely, the outcome of the process is 

not a deterministic value but an empirical probability distribution. In order to quantify 

the variability within the simulated ensemble of high resolution fields, quantiles (10, 50 

and 90 %) are computed. 



 

 

In Sections 5.2 and 5.3, this methodology is implemented in 1D and 2D, 

respectively, which enables us to both highlight its advantages and discuss its current 

limitations to establish a road map for future developments. In 2D, the results are 

compared with the ones that would be obtained with standard discrete cascades for 

illustrative purposes. In general, no comparison is carried out with the other techniques 

available in the literature. This would be beyond the scope of this paper, which is about 

presenting an innovative blunt discrete cascade process and proof of concepts through 

downscaling applications. Proper comparison with other methodologies should 

definitely be carried out in future investigations. 

 

5.2 Implementation in 1D 

5.2.1 Data 

An OTT Parsivel2 disdrometer (Battaglia et al., 2010; OTT, 2014) located on the roof of 

the Carnot building of the Ecole des Ponts ParisTech campus near Paris, was used to 

collect the rainfall data manipulated in this sub-section. This device is actually part of 

the TARANIS observatory of the Fresnel Platform of École des Ponts ParisTech1. 

Interested readers are referred to Gires et al. (2018) for more details on the device 

functioning and measurement campaigns. The climate of the area is temperate, with a 

mean annual rainfall of roughly 640 mm2 rather homogeneously distributed throughout 

the year. In this paper, the data collected between 15 January 2018 and 9 December 

2018 is used with 1-min time steps. More precisely, 61 rainy periods of duration 256 

                                                 

1 https://hmco.enpc.fr/portfolio-archive/fresnel-platform/ 

2 Source http://www.meteofrance.com/climat 

https://hmco.enpc.fr/portfolio-archive/fresnel-platform/


 

 

min are extracted corresponding to a total rainfall amount of 229 mm. 

A multifractal analysis was carried out on average on these series and the scaling 

behaviour is found to be excellent (with TM analysis 𝑟2 > 0.99) with 𝛼 = 1.92, 𝐶1 =

0.13 and 𝐻 = 0.36. Such values are usual for rainfall fields during a rainfall event. This 

analysis was carried out on the fluctuations of the field, as recommended in Lavallée et 

al. (1993). 

5.2.2 Results and discussion 

The output of the downscaling process in 1D is shown in Fig. 17. First, illustrations 

with a 256 min rainfall period that occurred on 29 April 2018 are displayed on the upper 

line for a downscaling from 8 min to 1 min (Fig. 17(a)) and from 64 min to 1 min 

(Fig.17(b)). The data is first aggregated to 8 min (or 64 min) which corresponds to the 

step functions in dash blue in the figures. This raw initial data is then interpolated at the 

highest resolution (using the same process as for the blunting with ℎ = 1). It is this 

series (solid blue) that are then used as a starting point in the downscaling process. UM 

parameters of this specific series (𝛼 = 1.77, 𝐶1 = 0.14) are used and ℎ = 6.  

One thousand realizations of the downscaled field are then generated. The light 

red shadow area corresponds to the 5–95% quantile interval computed for each time 

step. A single realization of downscaled fields is plotted in solid red. In both cases, the 

actual data is located within the expectations and each individual realization exhibit 

visually a behaviour that is similar to the observed series.   

Such visual interpretation is confirmed through a more quantitative analysis, in 

which all the 61 rainfall periods studied in this paper are first up-scaled (to 8 min or 64 

min) and then downscaled, using for each their own UM parameters 𝛼 and 𝐶1 and the 

same ℎ = 6. 



 

 

First, a multifractal analysis of the obtained downscaled series was carried out 

and showed that the downscaled series exhibited excellent scaling behaviour 

furthermore very similar to the one of the measured data at the highest resolution, which 

was a requirement. For instance for the downscaling from 8 min to 1 min, we find 𝑟2 

equal to 0.99 (for 𝑞 = 1.5 in the TM analysis), 𝛼 = 1.81, 𝐶1 = 0.17, and 𝐻 = 0.32. For 

the downscaling from 64 min to 1 min, we find 𝑟2 equal to 0.99 as well and 𝛼 = 1.94, 

𝐶1 = 0.16, and 𝐻 = 0.32. Similar values are found for other realizations of the whole 

downscaling process. Then, the distribution of the observed values is studied by 

counting the number of value found within singularity bins. The singularity 𝛾 is 

obtained from the rain rate by using the relation 𝑅 = 𝜆𝛾. Twenty bins are used, and the 

obtained distribution are displayed in Fig. 17(c) (downscaling from 8 min to 1 min) and 

Fig. 17(d) (downscaling from 8 min to 1 min). The downscaling process enables to 

retrieve properly the observed distribution, notably for the greatest singularities. This 

means the ‘blunt’ cascade process enable to properly reproduce the extremes. It should 

nevertheless be mentioned that there is slight over-representation of the small 

singularities and under-representation of middle singularities in the downscaling 

process. 

The distribution of the initial data (interpolation of the up-scaled observed data 

at 8 min and 64 min) was plotted for illustrative purposes to highlight the need not to 

limit the analysis to the distribution of values of the final field. Indeed, despite an 

obvious large under-representation of the number of great singularities, and over-

representation of middle singularities, they overall look correct. But the scaling 

behaviour for these fields is very poor meaning they are not realistic. For example for 

64 to 1 min case, 𝑟2 found is equal to 0.72, and 𝛼 = 0.45, 𝐶1 = 0.08, which is very far 

from the estimates retrieved on the actual data. 



 

 

As long as there is no scaling break, downscaling between other resolutions, i.e. 

for example from daily to hourly rainfall, could be implemented with this methodology. 

If the scaling behaviour exhibits a break, then various sets of UM parameters should be 

used according to the cascade level. 

5.3 Implementation in 2D 

5.3.1 Data 

Rainfall maps used in this paper were obtained from a X-band radar operated by Ecole 

des Ponts ParisTech on its campus (see Paz et al. 2018 for more details on the device 

and hydrological applications). The resolution of the data provided by the radar is 250 

m  250 m. Two time steps (08:32 and 09:06 UTC) corresponding to the accumulation 

over 3 min and 40 s of an event that occurred on 16 September 2015 are used. They 

were chosen because they exhibit different visual patterns. 

A portion of 128  128 pixels is selected for the analysis. This radar data is 

shown in Fig. 18(a) for the first time step (08:32 UTC) and in Fig. 19(a) for the second 

one (09:06 UTC). A good scaling behaviour on the range of scales [250 m to 2 km] was 

found for both time steps. Multifractal analysis yields 𝛼 = 1.65, 𝐶1 = 0.072 and 𝐻 =

0.43 for the first time step (08:32 UTC). 𝛼 = 2.0, 𝐶1 = 0.033 and 𝐻 = 0.34 are 

retrieved for the second time step (09:06 UTC). 

Before implementing the downscaling process, the data resolution is degraded to 

pixels of size 2 km  2 km by simply averaging over adjacent 8  8 pixels. This low-

resolution field is used as initial data and denoted this way. This is displayed in Fig. 

18(b) and Fig. 19(b). The downscaling process is used to generate fields at the 

resolution of 250 m  250 m; i.e. three disaggregation steps are needed to decrease by a 

ratio of 8 the pixel size (note that in practice two more steps will be implemented for the 



 

 

practical reasons previously mentioned). The initial data interpolated at the highest 

resolution is displayed in panel Fig. 18(c) and Fig. 19(c) for each time steps.  

5.3.2 Results and discussion 

Let us first discuss the results obtained on the 08:32 UTC time step (Fig. 18). Figure 

18(d) displays a realization of downscaled field obtained with the help of a standard B 

process. The unrealistic sharp squares are visible and too great values are also obtained 

with regards to the original radar data. Figure 18(e) and (f) displays two different 

realizations for the blunt process A with ℎ = 6. As expected, the square structures have 

been removed, and the visual aspect of this simulated downscaled fields are much more 

satisfactory. In addition, the small-scale values within heavy areas which are visible in 

the standard case are mostly removed in the blunt case. Quantitatively, as in 1D, the 

expected multifractal behaviour is retrieved. One can note that, for the realization in 

Fig. 18(e), the rainy area in the northwest is well represented, while it is not in the 

realization of Fig. 18(f). Both realizations simulate a ‘potential’ version of heavy 

rainfall area in the middle. 

Figure 18(g), (h) and (i) displays, respectively, the 10, 50 and 90% quantile 

obtained for each pixel with the help of 100 realizations of downscaled blunt rainfall 

fields. As expected, the 50% quantile map yields a map very similar to the initial data 

put at the maximum resolution (Fig. 18(c)), while the other two maps provide a 

quantification of the uncertainty associated with the downscaling process. It should be 

mentioned that, in this case, the heavy spot in the south is underestimated with the blunt 

process. The small square structures visible on the sides (notably on Fig. 18(i)) are 

simply due to the fact that the increments that would be needed to implement the 

blunting of the side increments are not simulated. This could be solved very easily in 



 

 

practice by simulating a larger area and only taking the middle portion. This was not 

done here for computational time reasons. 

Figure 19 shows the same information as Fig. 18, but for the other time step 

(09:06 UTC). Given that the estimated value of H was lower for this time step, a value 

of h equal to 4 was used instead of h = 6 in the previous simulations. The outcome 

basically confirms the comments made on the previous time step. It addition, Fig. 19(e) 

and (f) illustrates that the blunt process is notably able to generate field with a realistic 

aspect for intermediate intensities.   

6 Conclusion 

In this paper, we introduced a novel approach to lessen one of the main limitations of 

the discrete random multiplicative cascades, which is their lack of stationarity. The 

developed process basically consists in interpolating at each cascade steps the random 

multiplicative increments at a higher resolution than the desired final one. The 

interpolation is performed geometrically on the multiplicative increments or 

equivalently linearly on their corresponding singularity. It is established theoretically, 

and numerically confirmed, that the simulated fields would also exhibit a multifractal 

behaviour with an unchanged multifractality index 𝛼 and with a mean intermittency 

codimension 𝐶1 changed to 𝐶1𝑆𝑑(𝛼, ℎ). 𝑆𝑑(𝛼, ℎ) can easily be computed and depends 

on 𝛼, the embedding dimension d of the field, and a parameter h corresponding to the 

number of multiplicative increments at a given cascade level that are influencing the 

blunt ones. It is shown that such an approach remains only valid over a limited range of 

UM parameters due to strong deviations noted for small 𝛼 (<1) and large 𝐶1 (>0.3–0.4). 

This limits the potential applications. 



 

 

The methodology to use blunt discrete cascade processes to address downscaling 

is presented. It is then applied in 1D with disdrometer data and in 2D with radar data 

coming from the Paris area. This enables to confirm the validity of the suggested 

process and discuss the current limitations. Given that the model was shown to behave 

well over a given range of UM parameters, it should be able to adapt to other types of 

climate. Further investigations with other types of climate would be needed to confirm 

this. 

This newly developed process opens the path for future developments both 

theoretical and practical:  

(a) to improve how the zeros of the rainfall fields are added (see Gires et al., 

2013, for a complete discussion on the topic);  

(b) to extend it to the space–time process. Following the approach of Biaou et al. 

(2003) tested in Gires et al. (2014), who introduced a simple anisotropy 

exponent between space and time, it seems feasible apart from 

computational limitations that will have to be addressed;  

(c) to introduce advection and spatial anisotropy in the simulated fields notably 

to enable nowcasting applications, which the pproach developed by Seed et 

al. (2003) and Niemi et al. (2014) could be helpful. 
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Figure and captions 

 



 

 

Figure 1. Illustration of a standard discrete multiplicative cascade process with three 

steps. 𝐵𝑛,𝑖 are the values of the field after n steps and 𝑏𝑛,𝑖are the increments. 

 

Figure 2.⟨𝐵8,𝑗
𝑞 𝐵8,𝑗+𝑡

𝑞 ⟩ as a function of t for 𝑞 = 0.5 and various j on 256 time step series 

simulated with 𝛼 = 1.6 and 𝐶1 = 0.2. (a) Standard cascade, (b) blunt cascade with ℎ =

1, and (c) blunt cascade with ℎ = 4. 

 



 

 

 

Figure 3. Explanation on how the increments 𝑎′𝑛,𝑗 of the blunt cascade process A' are 

obtained with the help of a geometric interpolation from the 𝑏𝑛,𝑖 of the standard cascade 

process B. 

 

 

Figure 4. Illustration of a three-step standard discrete cascade process B with the change 

of representation. 



 

 

 

 

Figure 5. Illustration of a three-step blunt discrete cascade process A' with ℎ = 1. 

 

 

Figure 6. (a) 𝑆𝑛
1(𝛼, ℎ) versus 𝑙𝑛 for 𝛼 = 1.6 and ℎ = 1 in 1D and 2D. (b) 𝑆𝑑(𝛼, ℎ) 

versus 𝛼 for ℎ = 1 in 1D and 2D. (c) 𝑆𝑑(𝛼, ℎ) versus ℎ for 𝛼 = 1.6 in 1D and 2D. 

 



 

 

 

Figure 7. Spectral analysis of the field generated with the three approaches tested to 

finish the blunt discrete cascade process. Simulations with 𝛼 = 1.6, 𝐶1 = 0.2 and ℎ = 1 

are used. 

 

 

 

 

 

 

Figure 8. Schematic description of the generation of a blunt multiplicative cascade 

process A from a standard one B. 



 

 

 

Figure 9. Illustration in 1D of the simulation of a field with the help of a standard 

cascade process B and the corresponding blunt one A. The first five cascades steps are 

shown, as well as the final fields of length 256 time steps. Values of 𝛼 = 1.6, 𝐶1 = 0.2 

and ℎ = 1 are used. 



 

 

 

Figure 10. Illustration in 2D of the simulation of a field with the help of a standard 

cascade process B and the corresponding blunt one A. The first five cascades steps are 

shown, as well as the final fields of size 64  64 pixels. Values of 𝛼 = 1.6, 𝐶1 = 0.2 

and ℎ = 1 are used. 

 



 

 

 

Figure 11. Example of output in 2D of simulations with 𝛼 = 1.6, 𝐶1 = 0.1 and ℎ = 1. 

 

 

Figure 12. Multifractal analysis of 1000 realizations of the blunt cascade process A for 

𝛼 = 1.6, 𝐶1 = 0.2 and ℎ = 1. (a) Trace moment analysis (Eq. (1)) and (b) double trace 

moment analysis. 

 

 

 



 

 

 

Figure 13. Comparison for time series (1000 1D realizations of length 256) of UM 

parameters estimated on numerical simulations for both standard UM discrete cascade 

process (left) and blunt UM discrete cascade process with ℎ = 1 (right) with regard to 

parameters input to the simulations 

 



 

 

Figure 14. As in Fig. 13, comparison for maps (100 2D realizations of size 64  64) of 

UM parameters estimated on numerical simulations for blunt UM discrete cascade 

process with regard to parameters input to the simulation. A value of ℎ = 1 was used. 

 

Figure 15. Plots of the UM parameters 𝛼, 𝐶1 and H along with an indication of the 

scaling quality (𝑟2 of the linear regression in the TM analysis for 𝑞 = 1.5), as a function 

of h input in the numerical simulations. Values of 𝛼 = 1.6 and 𝐶1 = 0.2 are used as 

inputs in the simulations. 1000 1D realizations of size 256 are used. 

 



 

 

 

Figure 16. Schematic presentation in 1D of the downscaling procedure that is 

implemented in this paper.  

 



 

 

 

Figure 17. Downscaling in 1D. (a) Output of the downscaling process from 8-min time 

steps to 1-min time steps for a 256-min rainfall period that occurred on 29 April 2018. 

1000 realizations of the downscaled series are generated and the light red area 

corresponds to the 5–95% quantile interval. (b) As for (a), but for a downscaling from 

64 min to 1 min. (c) Distribution of values according to bins of singularities  for the 

downscaling process from 8-min time steps to 1-min steps. (d) As in (c), but for the 

downscaling process from 8-min time steps to 1-min steps. 



 

 

 

Figure 18. Illustration of the downscaling process for the time step 2015-09-16 08:32 

(UTC). Unit is mm h-1. 

 

 



 

 

 

Figure 19. Illustration of the downscaling process for the time step 2015-09-16 09:06 

(UTC). Unit is mm h-1. 

 

 


