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Abstract 33 

Previous works related to the application of the multifractal theory for analyzing the grain size 34 

distribution (GSD), showed the potential of this approach to deal with this complex issue. 35 

However, absence of the practical application of this kind of statistical analysis raised some 36 

doubts among the soil scientists. Compared to the experimental dry sieving method, which is 37 

based on mass representations of different grain sizes, the approach presented in this work 38 

relies on the analysis of grain densities (density indicators) scanned by means of X-ray CT 39 

(Computed Tomography). By reducing the resolution of the scanned soil image(s), the 40 

cumulative representation of solid particles equal to or larger than the actual discretization 41 

element can be determined, and described analytically by means of the universal multifractals 42 

(UM).  43 

For validation of the new UM approach, the X-ray CT results of three different soils were 44 

used: the volcanic substrate covering Green Wave (a green roof of Champs-sur-Marne in 45 

France), and two horizons of the soil collected from the low land mountain area of Sierra de 46 

Guadarrama in Spain. Comparison between the proposed UM model and the experimental 47 

data of these three materials confirms that the GSD can be reasonably well predicted from the 48 

scanned images of soils covering wide range of grain sizes. The UM model, unlike the fractal-49 

based models, accounts for fractal dimension that depends on grain size, and hence, based on 50 

the preliminary results presented in this work, it could be rather useful in case of multi-modal 51 

soils whose GSD curves are described with multiple fractal dimensions.    52 

 53 
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1. Introduction 56 

The grain size distribution (GSD) is one of the fundamental properties of granular soils that, 57 

besides the influence on mechanical characteristics, also affects the packing arrangement of 58 

grains (Nolan & Kavanagh, 1993; He et al., 1999 among the others), and hence the 59 

distribution of pores that further impacts the hydraulic properties of the porous medium (Segal 60 

et al., 2009). Most often the GSD curve is experimentally determined based on the mass 61 

fractions of different grain sizes extracted either by using sieves of different void sizes, for 62 

grains larger than 80 microns (dry sieving method - AFNOR, 1996), or by means of 63 

sedimentation test (AFNOR, 1992; Beuselinck et al., 1998) for finer particles. The alternative 64 

approach proposed to measure GSD is a laser diffraction method (Miller & Schaetzl, 2012).   65 

Detailed overview of different approaches used for describing the complexity of GSD curves 66 

can be found in Ghanbarian & Hunt (2017). One of them is the self-similarity principle which 67 

is included in fractal-based models and which assumes occurrence of the same pattern of the 68 

soil structure at all scales. According to Ghanbarian-Alavijeh et al. (2011), the three-phase 69 

PSF (pore-solid-fractal) approach (Perrier et al., 1999; Bird et al., 2000) is the most consistent 70 

and with the strongest physical-basis among the fractal-based approaches. Besides pores and 71 

grains, it assumes one additional “fictive” type of soil elements – fractals - that are 72 

successively broken at smaller scales in a self-similar way, leading finally to the structure 73 

consisting of fractal-distributed pore and grain sizes. Thus, the GSD can be represented by 74 

means of a power (fractal) law, where the fractal coefficient is included in the exponent. 75 

However, unlike assumed in the PSF model, grain densities are non-homogeneous, which also 76 

contributes to the complexity of distribution of different mass fractions that often cannot be 77 

described with a single fractal dimension (Bittelli et al., 1999). 78 



Multifractal formalism, that takes into account different fractal coefficients for different 79 

threshold values, was also used for analyzing the complexity of GSD. Grout et al. (1998) and 80 

Posadas et al. (2001) used Renyi dimensions, one of the multifractal parameters, to 81 

characterize the heterogeneous distribution of different mass fractions. Besides this type of 82 

multifractal analysis, the singularity spectra analysis is also applied for analyzing the dry soil 83 

volume-size distribution obtained by using a laser distraction method (Martín & Montero, 84 

2002). Recently, Torre et al. (2016) used a X-ray CT, a non-destructive technique for 85 

obtaining a three-dimensional grey-scale image of a porous material (Hseih, 2003; Banhart, 86 

2008) in order to compare the three-dimensional structural complexity of spatial arrangement 87 

of grains and pores, with that of differently oriented two-dimensional planes. The multifractal 88 

analysis has also proved to be convenient in this case. Even though the multifractal theory 89 

brings great potential for understanding the complexity of GSD (Ghanbarian & Hunt, 2017), 90 

up to date this kind of analysis has not found practical application.  91 

This work is focused on development of a new physically-based GSD model founded on the 92 

Universal Multifractal (UM) framework (Schertzer & Lovejoy, 1987; Schertzer & Lovejoy, 93 

1997). Based on a grey-scale soil image scanned by means of X-ray CT, it is possible to 94 

recognize solid particles of different sizes by progressively decreasing the resolution of the 95 

image while keeping the fixed value of the threshold. Change of the representation of solid 96 

particles with the resolution of the image can be directly linked with the grain size 97 

distribution, and described analytically in a mathematically-elegant way by means of the UM 98 

framework. Compared to work of Lai & Chen (2018), where a sophisticated machine learning 99 

tool was used for particle recognition, this approach is much simpler and more convenient for 100 

practical application.  101 

The UM framework in combination with X-ray CT imaging was firstly validated for some 102 

artificial volcanic substrate (Stanić et al., 2019; Stanić et al., 2020) used for covering green 103 



roof named Green Wave (Versini et al., 2018; Versini et al., 2020). Results of the model, 104 

whose parameters are directly determined from scanned images, were first compared with the 105 

experimental data obtained by means of the standard dry sieving method (AFNOR, 1996) and 106 

sedimentation test (AFNOR, 1992). Furthermore, the UM model was tested on scanned 107 

images of two horizons of an intact soil sample collected from the low land mountain area of 108 

Sierra de Guadarrama (Schmid et al. 2016) called La Herreria. In this case, results of the 109 

model were compared with measured percentages of sand, silt and clay particles, since 110 

detailed GSD curves are lacking. Finally, for published experimental GSD data of the GW 111 

substrate and Walla Walla soil (Bittelli et al., 1999), the UM model was compared with the 112 

fractal-based PSF model.          113 

2. Methodology 114 

The GSD model proposed in this work is based on the recognition of solid particles of 115 

different sizes from the scanned soil image, by changing the resolution of the image. This can 116 

be described analytically through the application of the Universal Multifractals (UM) 117 

framework (Schertzer & Lovejoy, 1987; Schertzer & Lovejoy, 1997) which is briefly 118 

described below. Note that two-dimensional scanned soil images (Euclidian dimension E = 2), 119 

extracted from the three-dimensional one (E = 3), were analyzed in this work in order to 120 

simplify the methodology presented. However, this simplified approach (E = 2) is credible 121 

only under certain conditions that are described later in the text, while otherwise the same 122 

methodology should be applied for E = 3.    123 

2.1. Universal Multifractal (UM) theoretical framework 124 

In Figure 1 is presented a renormalized two-dimensional soil density indicator field ρind(λ) at 125 

various resolutions λ, which is, due to the better visualization, presented in a three-126 



dimensional form. Here, � = ��(�) is equal to the ratio between the size of the image L [L] and 127 

the size of a single pixel l(λ) [L], representing the number of pixels along an edge of the 128 

image. Values of ρind(λ) = ρ(λ) / ρbulk are presented as histogram at each λ, where ρbulk is the 129 

constant bulk density of the dry material [M/L3] (ρind = 1 is a renormalized ρbulk). Clearly, 130 

ρind(λ) values mitigate as λ decreases by merging pixels in groups by λ1
2, where λ1 is an 131 

integer value equal 2 (check dashed gridlines in Figure 1E). By averaging ρind(λ) values of 132 

each group, attenuated ρind(λ) field is obtained with λ1 times smaller λ and λ1 times larger 133 

pixel size l(λ).   134 

By means of UM (Schertzer & Lovejoy, 1987; Schertzer & Lovejoy, 1997) it is possible to 135 

compute, at different λ, the probability that ρind(λ) exceeds ��, a renormalized threshold value 136 

that changes with λ (a transparent color platform in Figure 1). Threshold value is expressed 137 

through the fixed dimensionless singularity γ [-], and therefore it decreases together with λ 138 

(see Figure 1a to Figure 1f) until it reaches unit value at λ = 1. For a certain value of γ (= 139 

0.211 in Figure 1), the previously mentioned probability of exceeding can be computed as:   140 

	
��
�(�) ≥ ��� = �(����(�) � ��)�� ≈ ���(�)              (1)  141 

�(�) = � ! �"#$% +  $'$% ;     )* = !1 −  $'� , ) ≠ 1             (2) 142 

where /(��
�(�)  ≥  ��) is the number of ρind(λ) values that are equal to or higher than ��, 143 

while c(γ) is the co-dimension function that, besides γ, depends on two parameters, C1 and α. 144 

Note that in Equation (1) an approximate equal sign is used because term 
�(����(�) � ��)��  is 145 

computed by counting /(��
�(�)  ≥  ��) at different � (discrete form), while ���(�) is related 146 

to the UM analytical form.  147 



Parameters C1 and α fully characterize ρind field, where C1 describes the sparseness of the 148 

mean value of the field while α describes the change of sparseness for values around the 149 

mean. As explained in Schertzer & Lovejoy (1987), C1 takes values between 0 (mean value is 150 

ubiquitous - homogeneous field) and E (mean value is too sparse to be observed), while α 151 

takes values between 0 (no occurrence of extremes – fractal field) and 2 (maximal occurrence 152 

of extremes – log-normal field). Equation (1) is presented in Figure 2a for C1 = 2.23x10-2 and 153 

α = 1.67, values that characterize ρind(λ) field in Figure 1, and different γ values (including γ = 154 

0.211) corresponding to various dashed lines. 155 

2.2. Adaptation of the UM framework – New GSD model 156 

In this work, the presented up-scaling procedure is used for recognizing solid particles of 157 

different sizes from the obtained ρind(λ) field. Compared to the previous explanation, where a 158 

resolution dependent threshold �� was accounted for, here is used a fixed threshold value 159 

�0,1�
�
�  (solid platform in Figure 1) related to the renormalized minimal grain density 
�0,1�
�
� >160 

1�. Therefore, ��
� ≥ �3,456567  values indicate the total area of the image covered with solid 161 

particles (grains). As shown in Figure 1, this area reduces when up-scaling, mostly by getting 162 

rid of isolated ��
�(�) ≥ �3,456567  values that are surrounded by those lower than �0,1�
�
� . On the 163 

contrary, larger continuous zones covered by ��
�(�) ≥ �3,456567  values resist longer to the up-164 

scaling process, indicating the presence of a large grain on that location (central zone in 165 

Figure 1). Therefore, the total area covered with ��
�(�) ≥ �3,456567  values at certain λ indicates 166 

a cumulative representation of solid particles of diameter equal to or larger than the size of a 167 

single pixel l(λ) = L / λ: 168 

	
��
�(�) ≥ �3,456567 � = �!����(�) � �8,9����� '��                    (3) 169 



In order to transform Equation (3) into the distribution function P (d ≥ l(λ)), it is necessary to 170 

renormalize it with respect to the initial representation of solid particles met at λn ≤ λup. 171 

Therefore, P (d < l(λ)) = 1 - P (d ≥ l(λ)) can be expressed as: 172 

	(7 < ;(�)) = 1 − <!����(�)��3,456567 '<!����(��)��3,456567 ' = 1 − �!����(�) � �8,9����� '�
����(��) � �8,9����� � !��� '=               (4) 173 

The analogy between Equation (4) and the dry sieving method is explained in the Appendix. 174 

Equation (3), and hence Equation (4), can be described analytically through the UM 175 

framework if expressing �0,1�
�
� , which is independent on λ, through λ: 176 

�0,1�
�
� = �3,456�>?;@ = ��(�)                  (5) 177 

where �0,1�
 is the minimal grain density [M/L3], and �(�) differs from a fixed � used in 178 

Equations (1) and (2), since it changes with λ in order to maintain fixed value of �0,1�
�
� : 179 

�(�) = �
!�3,456567 ' �
(�)                   (6) 180 

Finally, by introducing Equation (6), instead of �, into Equation (2), it is possible to express 181 

Equation (3) analytically: 182 

	
��
�(�) ≥ �3,456567 � ≈ ���
�(�)� = ��"#A
BC�!�3,456567 ' C�(D)E#F%  G #FH

I
F%

                     (7) 183 

Equation (7) is presented in Figure 2b with solid line which is also fully characterized by 184 

means of parameters C1 and α. Value of �(�) = �  corresponds to the upper resolution limit 185 

�JK = 
�0,1�
�
� � /"# (see Equation 6) for which, due to the fact that �(�(�) = � ) = �  (see 186 

Equation 2), 	
��
�(�) ≥ �3,456567 � reaches its maximal value equal to 
�0,1�
�
� �� 
. On the 187 



contrary, the lower resolution limit ��MN = 
�0,1�
�
� � /�8 can be also computed from Equation 188 

(6) for �(�) = �0, which is known as the most probable singularity:  189 

�0 = � )* O! ="#' /$% −  $P                 (8) 190 

Note that Equation (8) is derived from Equation (2) given that c(�0) = E.  191 

Finally, having on mind that l(λ) = dg, and thus λ = L / dg, the analytical GSD function can be 192 

derived by introducing Equation (7) into (4): 193 

 	
7 < 7Q� = 1 − R S�TU
VE#

A
WWB

C�!�3,456567 ' C�
S �T⁄ �E#F%  Y #F
H
ZZI

F%

O S�T,9��P
VE#

A
WWW
B C�!�3,456567 ' C�!S �T,9��[ 'E#F%  Y #F

H
ZZZ
I

F%                 (9) 194 

where dg,min = l(λn) = L / λn is the minimal grain diameter [L] equal to the size of a pixel at λn. 195 

From Equation (9) the probability density function can be derived as the first derivative of 196 

	
7 ≥ 7Q� = 1 − 	
7 < 7Q� with respect to ln(L/dg), providing the following expression: 197 

\
7 = 7Q� = −� R ��TU R ��T,9��U�O S�T,9��P ]1 − C�!�3,456567 'E##F  �
R S�TU G C�!�3,456567 'E#F%
^ _��R S�TU  �
R S�TU

    (10) 198 

where � R ��TU = � O �
!�3,456567 ' �

� �T⁄ �"#$%  +   $P$%
 is the co-dimension, while ` − � R ��TU describes the 199 

change of fractal dimension with dg. The approach proposed here would face certain issues 200 

mostly related to the way pixels are grouped. Therefore, it is possible to have λ1
2 neighbor 201 

pixels that belong to a grain of larger size, but since they are distributed in different groups 202 

there is a “good” chance that this larger grain will not be recognized after the aggregation. On 203 



the contrary, those pixels can signify separated grains, but if they are aggregated as a part of 204 

the same group of λ1
2 pixels, they will be recognized as a part of the larger grain. 205 

Nevertheless, these special cases do not influence the proposed algorithm significantly if 206 

applied on the sufficiently large λ.   207 

2.2.1. Determination of the model parameters 208 

Parameters of the proposed model (Equation 9) are: dg,min, �0,1�
�
� , α and C1. The first two are 209 

physical parameters whose values are either estimated based on the type of material (dg,min), or 210 

calculated based on the experimentally determined values of �aJ�b and �0,1�
 (see Equation 211 

5), while the last two (α and C1) are statistical parameters determined by analyzing the scaling 212 

behavior of ρind
 field. This can be done by means of Trace Moment (TM) technique (Schertzer 213 

& Lovejoy, 1987) which assumes that the scaling of the average statistical moments of order 214 

p 〈
��
�(�)�K〉 can be described through the moment scaling function K(p):  215 

〈
��
�(�)�K〉 ≈ �e(K)                          (11) 216 

f(\) = "#$� (\$ − \);     ) ≠ 1              (12) 217 

where K(p) is described through parameters C1 and α (for more details see Schertzer & 218 

Lovejoy, 1987). Note that c(γ) and K(p) functions are linked by Legendre transform (Frisch & 219 

Parisi, 1985), meaning that for each γ there is a corresponding p (i.e. for γ = C1 and γ = γ s the 220 

corresponding values are p = 1 and p = ps, respectively). 221 

To determine values of α and C1 for a certain ρind(λ) field, the field is firstly up-scaled as 222 

previously described, and all ρind(λ) values are raised on a power p at each λ. The average 223 

value of such a modified field 〈
��
�(�)�K〉 is computed at each λ, and the procedure is 224 

repeated for variety of p ≥ 0 values. After plotting ;gh
〈
��
�(�)�K〉� against ;gh(�), 225 



different linear regressions depending on p value are formed.  Their slopes are related to K(p) 226 

values that form the moment scaling function. Based on Equation (12), the first derivative of 227 

the obtained K(p) function at p = 1 is equal to � = �e(K)�K |Kj  (calculated numerically), while 228 

the ratio between the second and the first derivative at p = 1 is ) =  "#
�ke(K)�Kk |Kj . 229 

2.2.2. Influence of the model parameters  230 

To better understand the influence of the four parameters on the model behavior, Equation (9) 231 

has been tested on different values of each parameter, as illustrated in Figure 3. For all cases 232 

presented in Figure 3, value of L = 100 mm is kept constant while changing values of the four 233 

model parameters.  234 

The impact of C1 on the GSD is illustrated in Figure 3a by increasing (dash-dotted line) / 235 

decreasing (dashed line) its initial value (solid line) by 50 % while preserving values of the 236 

three remaining parameters. Similarly, in Figure 3b value of α is changed by 50 % in both 237 

ways. Figure 3a shows that parameter C1 mostly affects the break onto the finer particles and 238 

the shape of that part of the curve in a way that smaller C1 secures higher contribution of fine 239 

grains (dashed line), while the case is opposite for higher C1 (dash-dotted line). On the 240 

contrary, the change of parameter α (Figure 3b) is less affecting the representation of small 241 

grains, but it is mainly responsible for the slope of the central part of the GSD curve, where 242 

smaller α provides steeper curve. Thus, in case of granular soils higher α and smaller C1 243 

values describe well-graded, while smaller α and higher C1 describe more uniformly graded 244 

materials. Indeed, well-graded materials usually have lower total porosity due to the better 245 

spatial packing of grains, meaning the lower representation of zeros in ρind field that causes 246 

stronger variability of the field (higher α) and lower intermittency of its mean value (lower 247 

C1).  248 



The impacts of �0,1�
�
�  and dg,min on the GSD curve are also tested by varying one of the 249 

parameters while maintaining the rest. As illustrated in Figure 3c, the higher �0,1�
�
�  (more 250 

strict threshold value), the higher values of P (d < dg) (Equation 9), and vice versa. Unlike the 251 

three other parameters, dg,min dictates the total range of scales (L / dg,min) by affecting mostly 252 

the distribution of small grains (tail of the GSD) - see Figure 3d. 253 

3. Soil sampling and Image acquisition   254 

In this section are given information about soil sampling and image acquisition for three 255 

different materials: Green Wave substrate and Horizons A and A20 of La Herreria soil. 256 

3.1. Green Wave substrate 257 

Green Wave substrate is an artificial coarse material (VulkaTec Riebensahm GmbH 2016) 258 

with 4 % of organic matter, used for covering green roofs. Due to its volcanic nature (values 259 

of grain and dry bulk densities are 2.35 Mg/m3 and 1.42 Mg/m3, respectively), this material 260 

does not create a significant load on the roof construction which is the reason it has been used 261 

in case of Green Wave (Versini et al., 2018; Versini et al., 2020), a wavy shape green roof 262 

located next to Ecole des Ponts ParisTech in Champs-sur-Marne, France. The substrate 263 

contains 50 % of grains larger than 1.6 mm, with 10 % of particles between 10 and 20 mm in 264 

the coarse range, and 13 % of fine particles smaller than 80 μm. Distribution of grains larger 265 

than 80 μm was determined by means of the dry sieving method (AFNOR, 1996), while the 266 

sedimentation test (AFNOR, 1992) was used for finer particles. The curvature and uniformity 267 

coefficients are Cc = (D30)2/(D60×D10) = 1.95 and Cu = D60/D10 = 55, respectively, and hence 268 

this substrate is regarded as well graded according to the ASTM D2487-06 (2006) standard.    269 

The sample of the GW substrate (10 cm diameter and 15 cm height) was prepared by mixing 270 

and pouring up the material into the plexiglass cylinder (compacted to in situ value of ρbulk = 271 



1.42 Mg/m3), simulating the way substrate is placed on the roof to avoid segregation of fine 272 

particles at the bottom. Tomographic scans were conducted with a RX Solutions Ultratom 273 

microtomograph, including a Hamamatsu L10801 X-ray source and a Paxscan Varian 2520V 274 

flat panel detector (1920 x 1560 pix2, pixel size 127 μm). X-ray source tension and current 275 

were respectively 200kV and 280μA. The detector was set at 4 fps, each projection resulting 276 

of an average over 25 projections, giving a total number of 4320 averaged projections. The 277 

sample being a long cylinder, stack mode was used and set to three turns. The reconstructed 278 

3D image is finally represented by 1785x1785x3072 voxels with the edge length of 53.7 μm. 279 

3.2. La Herreria soil (Horizons A and A20) 280 

Two intact samples (60 mm diameter and 100 mm height) of La Herreria soil were collected 281 

in the low land mountain area of Sierra de Guadarrama in Spain (Schmid et al. 2016)., which 282 

is a highly degraded type of site because of the livestock keeping. One soil sample was 283 

extracted from the top 18 cm layer (Horizon A), being the result of biological alteration with 284 

roots resulting in fertile soil. This layer is moderately acid, with 2.5% of organic matter, 0.8% 285 

of Fe2O3, sandy texture (65% sand, 25% silt, 10% clay) and bulk density of 1.6 Mg/m3. The 286 

second soil sample was extracted from 18-40 cm depth (Horizon A20), also presenting an acid 287 

character (pH = 6) with 0.5% of organic matter, 0.7% of Fe2O3, 55%, 30% and 15% of sand, 288 

silt and clay particles, respectively, and bulk density of 1.7 Mg/m3.  289 

X-ray CT scanning was performed using a Phoenix v | tome | x m 240 kV system (GE Sensing 290 

& Inspection Technologies GmbH, Wunstorf, Germany) at the Hounsfield Facility, University 291 

of Nottingham, UK. The scanner consisted of a 240kV microfocus X-ray tube fitted with a 292 

tungsten reflection target and a DXR 250 digital detector array with 200 μm pixel size (GE 293 

Sensing & Inspection Technologies GmbH, Wunstorf, Germany). A maximum X-ray energy 294 

of 140kV and 200 μA was used to scan the soil core. A total of 2400 projection images were 295 



acquired over a 360° rotation. Each projection was the average of six images acquired with a 296 

detector exposure time of 200 ms and the resulting isotropic voxel edge length was 32 μm. 297 

The 3D image of the soil samples used in this work is represented by 676×676×300 voxels. 298 

4. Results and Discussion   299 

The approach presented in this work is firstly validated on soil images of the GW substrate, 300 

and the experimental GSD data of the same material. Then, it is applied on two horizons of La 301 

Herreria soil, but in this case only measured percentages of sand, silt and clay particles were 302 

compared with model results because detailed GSD data are lacking. Finally, the comparison 303 

with the fractal-based PSF model (Perrier et al., 1999; Bird et al., 2000) is presented.  304 

4.1. Obtaining lmno field by means of X-ray CT 305 

The ρind field is transformed from a grey-scale image carrying the information about different 306 

intensities of grey color - bright shades of grey represent high, and dark shades low density 307 

zones. Since grey-level intensities (GL) can be linked with density ρ by means of the linear 308 

regression (Taina et al., 2008), a linear correlation between ρind [-] and original grey-level 309 

(GL) is obtained by: 310 

- subtracting the GL0 threshold value from the original GL values.  311 

- setting to zero all GL values lower than GL0. 312 

- renormalizing the modified GL field.   313 

��
� = pqr > qrs ,           t��t�u〈t��t�u〉qr ≤ qrs,                       0                           (13) 314 

where notation < > indicates the mean value. GL0 is adjusted based on the locations of pores 315 

that can be reliably identified on the image. By using Fiji (https://fiji.sc/), an open source 316 



Java-based image processing package, it was possible to estimate the value of GL0 for all three 317 

materials.  318 

In Figure 4 are presented eight horizontal ρind fields of the GW substrate extracted from the 319 

full-three dimensional scanned image. The resolution of the presented planes is 1024x1024 320 

pixels (λn = 210), and they are equally distant in vertical direction (1.6 cm between two 321 

consecutive images). In Figure 5A are presented four horizontal ρind fields of La Herreria soil 322 

– Horizon A, while in Figure 5B are presented horizontal fields of Horizon A20 (all images 323 

are 512x512 pixels - λn = 29). 324 

4.2. UM model vs. Experimental data 325 

The two-dimensional fields can be analyzed instead of the full-three dimensional one only if 326 

the statistical isotropy within the soil specimen is secured, which is the case here (explained 327 

further in the text). Note that �0,1�
�
�  and dg,min are physical properties of the particular material 328 

and they are considered as unique for the whole sample (and every two-dimensional slice 329 

within it), while α and C1 are statistical parameters determined for every horizontal plane 330 

individually.  331 

4.2.1. UM model parameters 332 

In case of the GW substrate, value of �0,1�
�
�  is computed as �0,1�
�
� = �8,9���xyCz = {.{ .}{ = 1.55, 333 

where ρs,min and ρbulk are experimentally determined, while in case of La Herreria soils �0,1�
�
�  334 

values are adjusted to fit measured percentages of sand, silt and clay particles (explained later 335 

in the text) because the corresponding ρs,min values are missing (only ρbulk values are given). 336 

Clearly, due to its physical basis, value of �0,1�
�
�  should not change significantly regardless of 337 



the soil type (adjusted values are �0,1�
�
� = 1.73 and 1.54 for Horizon A and A20, 338 

respectively).  339 

Value of dg,min depends on the range of scales that is analyzed. If focusing on the range of 340 

scales covered by the scanned image, dg,min corresponds to the pixel size at λn (= 1024 and 512 341 

for GW substrate and La Herreria soils, respectively), and thus it is equal to dg,min = L / λn ≈ 60 342 

/ 1024 ≈ 50 μm in case of the GW substrate, and dg,min = 16 / 512 ≈ 32 μm for La Herreria 343 

soils. For the full-range of scales, dg,min represents the minimal grain size that needs to be 344 

approximately estimated if not measured. For the GW substrate, dg,min = 1 μm is adopted 345 

based on the GW experimental data, while lower values of dg,min = 0.1 μm and 0.05 μm are 346 

adopted for Horizons A and A20 of La Herreria soil, respectively, having on mind significant 347 

percentages of clay particles in both cases (10% and 15%, respectively). 348 

Finally, the UM parameters are determined by performing TM analysis on every ρind(λ) field 349 

presented in Figure 4 and Figure 5. In Figure 6 is presented ;gh
〈
��
�(�) �K〉� versus ;gh(�) 350 

for four different p values (0.2, 1.5, 2 and 3) and eight horizontal ρind(λ) fields of the GW 351 

substrate presented in Figure 4. In all cases, scaling of ;gh
〈
��
�(�) �K〉� (different symbols) 352 

can be reasonably well interpreted with linear regressions. This is also the case with La 353 

Herreria soils whose moment scaling behavior is illustrated in Figure 7A for Horizon A, and 354 

in Figure 7B for Horizon A20. The same kind of analysis is applied on the eight vertically 355 

oriented fields (λn = 210) of the GW substrate (equal horizontal distance between the two 356 

consecutive images). The quality of scaling is slightly better for vertical planes, but they are 357 

not presented in the Figure. Vertical planes for La Herreria soils were not analyzed since the 358 

maximal resolution of the vertically oriented image is 256x256 pixels (λn = 28), which is 359 

regarded as insufficient. 360 



Based on the slopes of the obtained linear regressions, in Figure 8 are presented K(p) 361 

functions for all analyzed horizontal planes (different solid lines) of three different soils, 362 

together with K(p) functions related to the vertical planes of the GW substrate (dashed lines in 363 

Figure 8A). Since vertical and horizontal K(p) functions are overlapping in case of the GW 364 

substrate, indicating similar values of α and C1 (see Table 1), it is reasonable to assume the 365 

statistical isotropy within the GW specimen. Even though vertical images are not analyzed, 366 

the same assumption is adopted for two remaining soils, having on mind the obtained 367 

horizontal K(p) functions are rather similar (values of α and C1 are presented in Table 2).   368 

Low values of C1 (order of magnitude 10-2) obtained for all three soils indicate the narrow 369 

range of ρind values, meaning that ρ cannot be significantly larger than ρbulk (should be the case 370 

regardless of the soil type). Also, higher α values (closer to 2) point out more significant 371 

fluctuations of ρ around ρbulk, indicating the presence of different grain sizes with different 372 

densities.  373 

4.2.2. Comparison with Experimental data 374 

After determining values of the four model parameters, Equation (9) is firstly tested on the 375 

ρind
 field of the Hor. plane 4 of the GW substrate (see Figure 4). Since focusing on the range 376 

of scales covered by the image, dg,min = 50 μm is used. Figure 9a-top illustrates comparison 377 

between Equation (9) (UM model - solid line), Equation (4) (connected dots) that uses the 378 

counted number of ��
�(�)  ≥  �0,1�
�
�  values at different λ, and the truncated experimental 379 

GSD data of the GW substrate (triangles). In Figure 9a-bottom are compared probability 380 

density functions coming from the UM model (Equation 10 – solid lines) and measurements 381 

(triangles). Good agreement between different analytical curves and truncated experimental 382 

data that consider only dg ≥ 50 μm is obtained.  383 



In Figure 9b-top is presented comparison between the same truncated experimental data 384 

(triangles) and Equation (9) applied on every ρind field of Figure 4 (different solid lines), while 385 

in Figure 9b-bottom are illustrated the corresponding probability density functions (Equation 386 

10).  387 

Finally, in Figure 9c-top and Figure 9c-bottom the full range experimental data (squares) are 388 

compared with Equations (9) and (10), respectively, by using the same parameter values as in 389 

Figure 9b, with only difference that dg,min = 1 μm is adopted. The agreement between the 390 

Equation (9) / Equation (10) and both truncated and full-range experimental data is considered 391 

as satisfactory. The obtained family of curves creates reasonably narrow confidential zone 392 

around experimental points, verifying that way the analytical model proposed. 393 

In Figure 10 is presented the same kind of analysis as in Figure 9, but for Horizons A and A20 394 

of La Herreria soil. In Figure 10a and b are illustrated results obtained from ρind fields of 395 

Figure 5a (Horizon A) and Figure 5b (Horizon A20), respectively, where dg,min = 32 μm is 396 

adopted, while in Figure 10c are compared full-range results for Horizon A (solid lines) and 397 

Horizon A20 (dashed lines) using dg,min = 0.1 μm and dg,min = 0.05 μm, respectively. As 398 

mentioned earlier in the text, values of �0,1�
�
�  (1.73 and 1.54 for Horizons A and A20, 399 

respectively) are adjusted so that the average percentages of sand, silt and clay particles, 400 

computed based on the model results from Figure 10c, fit well with measured values. For 401 

Horizon A, the average computed values of sand, silt and clay particles are 64%, 27% and 8% 402 

(about 1% of particles > 2 mm), respectively, while for Horizon A20 those values are 54%, 403 

32% and 14%, respectively. The results obtained with a model are rather close to 404 

measurements, confirming the UM model is valid. 405 

The proposed UM approach was successfully evaluated on soils that cover wide range of 406 

grain sizes with significant percentages of both coarse and fine particles. To see limitations of 407 



the model, it was additionally tested on a material with a rather uniform GSD curve, the 408 

Hostun sand HN31 extracted in the Drôme region in France (Bruchone et al, 2013). This sand 409 

is made of about 98% of quartz (grain densities are uniform), and it covers rather narrow 410 

spectrum of grain sizes (0.2 ÷ 0.8 mm). Preliminary results showed the proposed approach is 411 

not applicable on such material, having on mind the scaling of statistical moments in log-log 412 

scale significantly deviates from linear regression, and hence parameters α and C1 cannot be 413 

determined.      414 

4.3. UM model vs. PSF model 415 

The PSF approach, a three-phase fractal-based GSD model firstly introduced by Perrier et al. 416 

(1999), is also used for interpreting the experimental GSD curve of the GW substrate. 417 

According to this model, the GSD can be described using the following expression (Bird et al. 418 

2000): 419 

	
7 < 7Q� = R �T�T,9��U����,���                        (14) 420 

where Df,PSF is the fractal coefficient [-] whose optimal value can be determined from the 421 

slope of the best fitting linear regression in logarithmic scale that goes through the 422 

experimental GSD data and reaches 100 % at dg,max. By adopting dg,max = 18 mm in case of the 423 

GW substrate, the optimal value of Df,PSF = 2.57 is obtained (dashed line in Figure 8a).  424 

To better illustrate the difference between the PSF (Equation 14) and the UM model 425 

(Equation 9), probability functions are presented in a log-log scale (Figure 11a). For the same 426 

values of L, dg,min and �0,1�
�
�  as in Figure 9c, the best agreement between Equation (9) and 427 

measurements is obtained for α = 1.60 and C1 = 2.25x10-2. These values are rather close to 428 

those describing the horizontal plane 4 of the GW substrate (see Table 1), confirming the 429 

physical basis of the proposed approach.   430 



To test whether the UM model can be used for soils with multi-modal GSD curves that are 431 

described with multiple fractal dimensions, Equation (9) is compared with experimental data 432 

of Walla Walla (WW) soil, described in Bittelli et al. (1999) by means of three different 433 

fractal dimensions related to distributions of sandy, silty and clayey particles. According to 434 

the U.S. soil taxonomy, this soil is Typic Haploxeroll with 8.3% of sand, 78.4% of silt and 435 

13.3% of clay. Due to the lack of scanned soil images and other relevant information, the UM 436 

model parameters could not be determined as explained earlier in the text, but only roughly 437 

estimated / adjusted. Figure 11b shows that for �0,1�
�
� = 1.72, α = 1.05, C1 = 4.5x10-2, and L / 438 

dg,min = 1 mm / 1x10-4 mm (from the graph), Equation (9) provides rather good agreement 439 

with WW experimental points. Since the relevant information are missing, these results 440 

should be taken with a grain of salt and understood only as a test if the model is capable of 441 

interpreting multi-modal GSD curves. 442 

      443 

Compared to Equation (14) which considers the fixed fractal dimension Df,PSF, Equation (9) 444 

takes into account the fractal dimension that changes with dg (the co-dimension function). 445 

Therefore, for the UM approach it is quite important to know the total range of scales 446 

investigated (L / dg,min). Even though the PSF model (Equation 14) is more convenient for 447 

practical application, since it uses only two parameters that can be determined quite easily, the 448 

UM model proposed in this work (Equations 9 and 10) shows better agreement with 449 

experimental GSDs for soils with wide spectrum of grain sizes whose distribution cannot be 450 

accurately described with a simple fractal (power) law. 451 

5. Conclusion  452 

This work shows that the up-scaling approach presented can be used for predicting the GSD 453 

of a certain material based on its scanned micro-structure which represents a density indicator 454 



field. By reducing the resolution of the scanned image, density indicator values above the 455 

fixed threshold are treated at each resolution as a cumulative representation of solid particles 456 

of diameter equal to or larger than the corresponding pixel size. The quantity of values above 457 

the threshold at different resolutions can be analytically described by means of the Universal 458 

Multifractals (UM), leading to the new multifractal-based GSD model. The model uses four 459 

parameters, where two of them are physical (the minimal grain diameter and the ratio between 460 

the minimal grain density and dry bulk density), while the other two are statistical UM 461 

parameters that characterize the spatial heterogeneity of the soil density field.  462 

An innovative approach proposed in this work was tested on three different materials 463 

containing significant percentages of both coarse and fine particles: an unconventional 464 

volcanic granular material used for covering green roofs, and two horizons of La Herreria soil 465 

collected from the low land mountain area of Sierra de Guadarrama in Spain. By performing 466 

the Trace Moment analysis on two-dimensional scanned soil images (density indicator field) 467 

of different materials, the statistical parameters (C1 and α) were determined and families of 468 

analytical GSD curves were obtained for each material, showing a good agreement with 469 

experimental data. Additionally, the UM approach was tested on Houston quartz sand and 470 

results showed that such a uniform GSD cannot be reliably estimated by means of the 471 

presented methodology. In all cases, the analysis was applied on two-dimensional images to 472 

save computational time and memory, which is legit if the statistical isotropy within the 473 

specimen is secured.   474 

Results showed the values of C1 are the same order of magnitude for different soils (10-2) 475 

because density of an individual grain cannot be significantly larger than the dry bulk density, 476 

regardless of the soil type. Also, it was proved that lower C1 and higher α are related to GSD 477 

curves that change gradually with respect to grain sizes, while lower α and higher C1 are 478 



related to the steeper GSD curve in its central part and stronger curvature close to the break 479 

onto the finer particles.  480 

Finally, the proposed four parameters UM model was compared with the fractal-based two 481 

parameters PSF model, showing better agreement with the Green Wave experimental data. Its 482 

advantage was additionally emphasized by showing excellent agreement with multi-modal 483 

GSD curve of Walla Walla soil that is described in the literature by means of three different 484 

fractal dimensions related to sandy, silty and clayey particles. 485 

 486 

Appendix: Analogy between the up-scaling approach and the dry sieving 487 

method 488 

The analogy between Equation (4) (the up-scaling approach) and the dry sieving method can 489 

be derived under the following assumptions:  490 

1. Three-dimensional space is considered (E = 3) since the dry sieving method is based on 491 

the grain masses.  492 

2. All grains have the same shape and density ρs.  493 

3. A discrete number of sieves is used, and hence the size of voids on each sieve follows the 494 

size of voxels l(λn-i) at different λn-i, where i = [0 ÷ n].  495 

The total mass of the specimen (Mtotal) is placed on the cascade of sieves arranged in a 496 

descending order (the largest void size is on the top, while the smallest one is on the bottom). 497 

If all grains are distributed on the corresponding sieves i = [0 ÷ n], it can be assumed that 498 

those staying on a certain sieve have diameter equal to the size of sieve voids. Therefore, the 499 

following can be written for i = 0:  500 

�(7 ≥ ;(�
)) = ��M��� = ���0 ∑ /Q(�
��);(�
��)�
�js                     (A1) 501 



where CV is the volume shape coefficient [-] (for cube CV = 1, for sphere CV = π / 6), 502 

/Q(�
��) is the number of grains [-] that stay on the sieve of void size ;(�
��) [L] ( j = 0 ÷ n). 503 

Since grains that stay on the sieve ;(�
) are assumed to have identical diameters, ;(�
)� can 504 

be pulled outside the sum, and the following is obtained:  505 

�(7 ≥ ;(�
)) = ���0;(�
)� ∑ /Q(�
��) !�(��V�)�(��) '�
�js                      (A2) 506 

/Q�J1(�
) ≈ �� ∑ /Q(�
��) !�(��V�)�(��) '�
�js                       (A3) 507 

where /Q�J1(�
) is the cumulative number of grains equal to or larger than 7Q,1�
 = ;(�
). 508 

Following Equation (A2), the cumulative mass of all grains equal to or larger than ;(�
��) can 509 

be expressed as the following:  510 

�(7 ≥ ;(�
��)) = ���0;(�
��)� ∑ /Q(�
��) !�(��V�)�(��V�)'�
�j�                   (A4) 511 

/Q�J1(�
��) ≈ �� ∑ /Q(�
��) !�(��V�)�(��V�)'�
�j�                      (A5) 512 

By introducing Equation (A3) into (A2) and Equation (A5) into (A4), and having on mind 513 

that 7Q = ;(�
��), the GSD can be expressed as: 514 

	
7 < 7Q� = 1 − �(���(��V�))�(���(��))                             (A6) 515 

	
7 < 7Q� = 1 − �T�y9(��V�)�T�y9(��) !�(��V�)�(��) '�
                         (A7)             516 

Note that /Q�J1(�
��) and /Q�J1(�
) correspond to /
��
�(�)  ≥  �0,1�
�
� � and 517 

/
��
�(�
)  ≥  �0,1�
�
� � in Equation (4), respectively, while 
�(��V�)�(��) = ����V�. Therefore, 518 

Equation (A7) is identical to Equation (4) for E = 3, just in a discrete form. 519 
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 643 

Figure 1. Change of the two-dimensional ρind(λ) field with λ at: (A) λ = 128; (B) λ = 64; (C) λ 644 

= 32; (D) λ = 16; (E) λ = 8; (F) λ = 4. A turquoise color platform signifies a fixed threshold 645 

�0,1�
�
� = 1.55, while the one with transparent color signifies a resolution dependent threshold 646 

λγ (γ = 0.211) 647 
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 655 

Figure 2. A) Equation (1) (dashed lines) calculated for: C1 = 2.23x10-2, α = 1.67 (values that 656 

characterize ρind(λ) field in Figure 1) and different values of γ (including γ = 0.211); B) 657 

Equation (5) (solid line) calculated for the same values of C1 and α and the fixed value of 658 

�0,1�
�
� = 1.55.  659 
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 671 

Figure 3. Behavior of the proposed GSD model when changing values of: a) C1; b) α; c) 672 

�0,1�
�
� ; d) dg,min. Initial parameter values (solid line in each graph) are C1 = 1.85x10-2, α = 1.3, 673 

�0,1�
�
� = 1.55 and dg,min = 1x10-3 mm 674 
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 678 

Figure 4. Eight two-dimensional horizontal ρind fields (1024 x 1024 pixels), extracted from 679 

the original three-dimensional grey scale image, that are equally distant along the specimen 680 

height 681 
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 698 

Figure 5. (A) Four equally distant horizontal ρind fields (512 x 512 pixels) of Horizon A of La 699 

Herreria soil, extracted from the original three-dimensional grey scale image; (B) same as in 700 

(A) just for Horizon A20 701 
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 718 

Figure 6. Scaling of statistical moments of eight horizontal ρind(λ) fields of the GW substrate 719 

presented in Figure 4 720 
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 735 

Figure 7. (A) Scaling of statistical moments of four horizontal ρind(λ) fields of La Herreria soil 736 

(Horizon A) presented in Figure 5a; (B) same as in (A) just for Horizon A20 (fields presented 737 

in Figure 5b) 738 
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 758 

Figure 8. Moment scaling functions K(p) obtained by applying TM technique on: (A) eight 759 

horizontal fields from Figure 4 (different solid lines), and eight vertically oriented fields 760 

(dashed lines); (B) four horizontal fields from Figure 5a; (C) four horizontal fields from 761 

Figure 5b762 
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 778 

Figure 9. Comparison between: A-top) Equation (9) applied on the GW Hor. plane 4 – solid 779 

line (L = 60 mm, �0,1�
�
� = 1.55, dg,min = 50 μm, C1 = 2.23x10-2, α = 1.67), Equation (4) 780 

applied on the same field – connected dots (�0,1�
�
� = 1.55, λn = 1024), and truncated 781 

experimental GSD data (dg ≥ 50 μm) - triangles; A-bottom) Equation (10) computed with the 782 

same parameter values as in A-top, and truncated experimental GSD data (triangles); B-top) 783 

Equation (9) applied on eight ��
�(�) fields from Figure 4 – solid lines (L, �0,1�
�
�  and dg,min 784 

identical as in A, α and C1 presented in Table 1), and truncated experimental GSD data 785 

(triangles); B-bottom) Same as in A-bottom just for all fields from Figure 4; C-top) Same as 786 

in B-top just for dg,min = 1 μm (solid lines), and full-range experimental GSD data (dg ≥ 1 μm) 787 

– squares; C-bottom) Same as in B-bottom just for dg,min = 1 μm (solid lines), and full-range 788 

experimental GSD data (dg ≥ 1 μm) – squares 789 
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 796 

Figure 10. Comparison between: (A) Equation (9) applied on four Horizon A fields from 797 

Figure 5A (L = 16 mm, �0,1�
�
� = 1.73, dg,min = 32 μm, α and C1 from Table 2), and Equation 798 

(4) (box-counting method) applied on same fields (λn = 512 ≈ L/ dg,min); (B) Same as in (A) 799 

just for Horizon A20 (�0,1�
�
� = 1.54); (C) Equation (9) applied on four fields from Figure 5A 800 

(parameters same as in (A), only dg,min = 0.1 μm – solid lines) and on four fields from Figure 801 

5B (parameters same as in (A), only dg,min = 0.05 μm – dashed lines)  802 
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 808 

Figure 11. (A) Comparison between the experimental GSD data of the GW substrate (squares) 809 

and Equations (9) (solid lines) and (14) (dashed lines) computed with the adjusted parameter 810 

values that fit the measurements (C1 = 2.25x10-2 and α = 1.60 for UM model, and Df,PSF = 811 

2.57 for PSF model); (B) same as in (A) just for Walla Walla soil taken from Bittelli et al. 812 

(1999) – L = 1 mm, dg,min = 1x10-4 mm, �0,1�
�
� = 1.72, α = 1.05, C1 = 4.5x10-2 (PSF model is 813 

not illustrated since it clearly deviates from the measurements) 814 
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Table 1. Determined UM parameters for eight ρind(λ) fields of the GW substrate presented in 831 

Figure 4 832 

Horizontal plane 

 1 2 3 4 5 6 7 8 

C1 9.34E-03 9.93E-03 1.64E-02 2.23E-02 1.66E-02 2.72E-02 1.45E-02 1.93E-02 
α 1.93 1.96 1.83 1.67 1.80 1.61 1.85 1.66 

Vertical plane 

 1 2 3 4 5 6 7 8 

C1 2.66-02 2.21E-02 1.74E-02 1.72E-02 1.67E-02 1.63E-02 2.06E-02 2.37E-02 
α 1.56 1.72 1.75 1.75 1.76 1.82 1.78 1.60 
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Table 2. Determined UM parameters for eight ρind(λ) fields of La Herreria soil (Horizons A 858 

and A20) presented in Figure 5 859 

Horizon A 

 1 2 3 4 

C1 3.36E-02 3.55E-02 3.03E-02 2.60E-02 
α 1.15 1.25 1.30 1.37 

Horizon A20 

 1 2 3 4 

C1 1.62-02 1.63E-02 1.73E-02 1.62E-02 
α 1.46 1.40 1.48 1.44 
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