
HAL Id: hal-03348209
https://enpc.hal.science/hal-03348209

Submitted on 17 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistent derivation of stress-based generalized models
in elastodynamics: application to layerwise plate models

Paul Bouteiller, Jeremy Bleyer, Karam Sab

To cite this version:
Paul Bouteiller, Jeremy Bleyer, Karam Sab. Consistent derivation of stress-based generalized models in
elastodynamics: application to layerwise plate models. International Journal of Solids and Structures,
2022, �10.1016/j.ijsolstr.2021.111077�. �hal-03348209�

https://enpc.hal.science/hal-03348209
https://hal.archives-ouvertes.fr


Consistent derivation of stress-based generalized models in

elastodynamics: application to layerwise plate models

Paul Bouteillera, Jeremy Bleyera,∗, Karam Saba

aLaboratoire Navier, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-vallée, France

Abstract

The derivation of some class of generalized mechanical models relies on a specific stress

expansion without any a priori assumption on the corresponding kinematics. In such sit-

uations, their extension to a dynamic setting is not easy, especially when deriving the cor-

responding generalized inertias since the kinematics is unknown. This paper shows how

consistent generalized inertias can be obtained through the use of a complementary energy

principle in elastodynamics. The methodology is then applied to extend a stress-based lay-

erwise plate model in the dynamic setting. This approach is finally validated through modal

analysis of various anisotropic composite laminates.

Keywords: generalized continuum, stress-based model, elastodynamics, variational

principle, multilayered plates, layerwise plate model

1. Introduction

Many generalized mechanical models often rely on a specific Ansatz on the local 3D

displacement field to yield a generalized continuum formulation e.g. beam or plate models

or even Cosserat or strain-gradient continuum models obtained from the up-scaling of a

heterogeneous Cauchy continuum at the microscopic level. In such situations, extension to
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dynamics can be straightforward since the same Ansatz can be used for the velocity field,

yielding a direct formulation of the generalized inertial terms.

However, other generalized mechanical models may also be built based on a specific

Ansatz of the local 3D stress field instead of the displacement field. One can mention

for instance the bending gradient theory for laminated plates [1–4], its more general version

called generalized Reissner [5, 6], stress-gradient continua [7, 8]. In such cases, the expression

of the local 3D displacement is generally unknown. The generalized model equations are

then obtained by injecting the stress expansion into the complementary energy principle and

the local equilibrium equations. The corresponding generalized degrees of freedom are then

obtained by duality with respect to the model generalized equilibrium equations.

A question therefore arises when extending this procedure to a dynamic setting. How

one must compute the generalized inertias associated with the generalized velocities from

the local density distribution of the underlying material ? In some instances, the model

generalized degrees of freedom may have a simple physical interpretation, allowing for a

simple definition of the generalized inertias but this may not always be the case as it will

be seen later. One therefore needs a systematic procedure to obtain a consistent definition

of the elastodynamic version of such stress-based models.

As regards plate models for laminates, a huge amount of literature has been devoted to

displacement-based approaches including more-or-less refined kinematics through the plate

thickness. For instance, one can mention third-order shear deformation theory [9–11], higher-

order shear deformation theories [12, 13], Murakami’s zig-zag functions [14], Reddy’s layer-

wise model [15], etc. A unified presentation can be found in [16]. As already mentioned,

the extension of such displacement-based models to a dynamic setting generally poses no

specific difficulty. However, other works advocated the use of stress-based layerwise plate

models for an accurate description of stress fields through the plate thickness, the first one

being Reissner’s derivation for homogeneous isotropic plates [17]. Pagano [18], employing

the Hellinger-Reissner mixed variational formulation, proposed a stress-based local layerwise

model assuming a polynomial expansion of the stress per layer. Suffering from a certain op-

erational heaviness, simplified models inspired by Pagano’s work have been proposed e.g.
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the M4-2n+1 model [19, 20] or the more-refined ”M4-5n” model [19, 21–23], later renamed

LS1 to reflect that this Layerwise model is Stress-based with a first (1) order expansion of

the membrane stress. Later, the SCLS1 model [24] built upon the ideas of the LS1 model

to provide a rigorous statically compatible construction from the local 3D stress field, again

assuming an affine expression of the membrane stress per layer.

For such models, there is no direct hypothesis on the 3D displacement form with respect

to the thickness variable. It is therefore not clear how to extend such models in a dynamic

setting. In [25], the extension of the LS1 model to dynamics has been somehow postulated

from the classical Reissner-Mindlin inertias due to the simple mechanical interpretation of

the LS1 model generalized displacements.

In this work, we propose to rely on a stress-based variational principle in elastodynamics,

as initially proposed by Toupin [26, 27] and assume an appropriate hypothesis on the local

3D momentum field (rather than the displacement). Variational principles in elastodynamics

will first be briefly reviewed in section 2. The proposed methodology will be described in

section 3, including a first illustrative example on a simple shear-lag model (section 3.1). It

will then be applied on the SCLS1 laywerwise plate model in section 4. Validation will be

performed in section 5 on modal analysis of laminated plates. Section 6 will conclude this

work.

2. A brief review of variational principles in elastodynamics

We ignore body forces for simplicity and consider an elastic strain potential ψ(ε) and its

associated dual stress potential ψ∗(σ). Displacements u = 0 are fixed on some part ∂Ωu of

the boundary and traction boundary conditions σ ·n = t are assumed on the remaining part

∂ΩT . Introducing the stress impulse T (t) = T (t0) +
∫ t
t0
σ(u)du, Toupin’s complementary

elastodynamic principle states [27, 28] that the following functional is stationary:

A[T ] =

∫ t1

t0

∫
Ω

(
ψ∗(Ṫ )− 1

2ρ
‖ divT ‖2

)
dΩ dt (1)
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for all T such that Ṫ · n = t on ∂ΩT .

An equivalent two-field principle can be obtained by introducing the momentum density

p as an independent unknown, i.e. p = divT . The complementary elastodynamic principle

is therefore equivalent to the following functional stationarity:

A[σ,p] =

∫ t1

t0

∫
Ω

(
ψ∗(σ)− 1

2ρ
‖p‖2

)
dΩ dt (2a)

for all σ,p such that:

divσ = ṗ on Ω (2b)

σ · n = t on ∂ΩT (2c)

Note that this principle is the dual of Hamilton’s elastodynamics principle [29] which in-

volves the displacement u and velocity v fields and expresses the stationarity of the following

functional:

H[u,v] =

∫ t1

t0

∫
Ω

(
1

2
ρ‖v‖2 − ψ(∇su)

)
dΩ dt +

∫ t1

t0

Wext(u)dt (3)

such that v = u̇, u = 0 on ∂Ωu and where Wext denotes the work of external loads.

Finally, note also that (2a) can be transformed to a three-field principle by relaxing the

equilibrium equation (2b) using an additional Lagrange multiplier which can be interpreted

as the displacement u. This mixed formulation is the dynamic counterpart of the static

Hellinger-Reissner principle, allowing to choose independent discretizations of the stress,

momentum and displacement fields.

3. Derivation of elastodynamics stress-based models

3.1. Illustration on the shear lag model

The shear lag model is often used to model the stress redistribution occurring from the

interaction between two bonded elastic layers under longitudinal traction. Let us consider

the bi-material of Figure 1 in plane-stress state in the (x1, x2) plane consisting of one central
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Figure 1: Geometry of the bi-material and shear-lag assumptions

core of thickness e2 surrounded by two symmetric skins of thickness e1/2. Each material

(skins and core) is isotropic elastic with Young modulus Ei and shear modulus µi for i = 1, 2.

For the sake of illustration, let us assume that the material density in both layers is described

by a generic function ρ(x2). We consider a rectangular region Ω = ω × [−e/2; e/2] where

e = e1 + e2.

The shear-lag model can be obtained by assuming the following form for the local 2D

stress-field σ(x1, x2) (see again Figure 1):

σ11(x1, x2) =

σ1(x1) for |x2| > e2/2

σ2(x1) for |x2| < e2/2

(4a)

σ12(x1, x2) =


2τx2

e2

for |x2| < e2/2

(±e− 2x2)
τ

e1

for ± x2 ≥ e2/2

(4b)

σ22(x1, x2) = 0 (4c)

The dynamic equation in the longitudinal direction can be written as:

ṗ(x1, x2) =


σ′1(x1)− 2τ(x1)

e1

for |x2| > e2/2

σ′2(x1) +
2τ(x1)

e2

for |x2| < e2/2

(5)

A consistent use of the variational principle (2a) therefore requires to choose a piecewise-
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constant momentum with respect to x2:

p(x1, x2) =

p1(x1) for |x2| > e2/2

p2(x1) for |x2| < e2/2

(6)

yielding the following generalized dynamic equations for x1 ∈ ω:

ṗ1(x1) = σ′1(x1)− 2τ(x1)

e1

(7a)

ṗ2(x1) = σ′2(x1) +
2τ(x1)

e2

(7b)

Injecting expansions (4) and (6) into (2a) yields the following functional:

A[σ1, σ2, τ, p1, p2] =

∫ t1

t0

∫
ω

2∑
i=1

(
ei

2Ei
σ2
i +

ei
6µi

τ 2 − ei
〈

1

2ρ

〉
i

p2
i

)
dx1dt (8)

which must be stationary for all σi, τ, pi satisfying (7) and where 〈?〉1 (resp. 〈?〉2) denotes

the average value over layer 1 (resp. 2).

Introducing λi as the Lagrange multipliers associated with (7), the optimality conditions

with respect to σi and τ respectively yield:

ei
σi
Ei
− λ′i = 0 i = 1, 2 (9a)(

e1

3µ1

+
e2

3µ2

)
τ + 2

(
λ2

e2

− λ1

e1

)
= 0 (9b)

whereas the optimality condition with respect to pi yields:

− ei
〈

1

ρ

〉
i

pi + λ̇i = 0 (9c)

Defining ui = λi/ei, this quantity can be interpreted as the generalized displacement of

layer i with the following generalized constitutive laws and momentum/velocity relation:

σi = Eiu
′
i (10a)

τ = κ(u1 − u2) (10b)

pi =

〈
1

ρ

〉−1

i

u̇i (10c)
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where κ =
6

e1

µ1

+
e2

µ2

is a shear interaction stiffness between both layers.

We can remark that this approach yields mi = 1/ 〈1/ρ〉i as the generalized inertia asso-

ciated with the motion of layer i.

3.2. General methodology

We restrict here to the case of deriving a generalized continuum from a 3D continuum

by dimension reduction along the x3-coordinate, as it will be the case for the layerwise plate

models investigated subsequently. For this purpose, we introduce Ω = ω×I where ω is the

plate reference plane and I the thickness interval along x3. The methodology can however

be directly extended to other situations such as the derivation of generalized beam models

(reduction along x2, x3) for instance.

We assume that the local 3D stress σ(x) can be expressed linearly as a function of a

vector of generalized stresses Σ(x1, x2) via some expansion along the x3-direction. We further

assume that this expansion leads to the following expression for the 3D stress divergence:

σij,j(x) =
∑
k

(L
(k)
i Σ(x1, x2))f

(k)
i (x3) ∀i (11)

where L
(k)
i are some differential operator with respect to (x1, x2) and f

(k)
i some shape func-

tions of the x3 variable forming an independent basis.

In static conditions, the local 3D equilibrium would translate into the following general-

ized equilibrium equations:

L
(k)
i Σ(x1, x2) = 0 ∀i, k, ∀(x1, x2) ∈ ω (12)

As in the shear lag example, the Lagrange multipliers U
(k)
i (x1, x2) associated with these

equations can be interpreted as the generalized displacements of the model. They can be

related to the local 3D displacements as follows:

U
(k)
i (x1, x2) =

∫
I
ui(x)f

(k)
i (x3)dx3 (13)

Again, in stress-based models only an average relation between local and generalized dis-

placements are known, not a full expansion.
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Following the same approach as in the previous section, we propose the extension to

a dynamic setting by assuming a similar expansion as (11) for the momentum field p(x),

namely:

pi(x) =
∑
k

P
(k)
i (x1, x2)f

(k)
i (x3) ∀i (14)

The generalized dynamic equations are therefore:

L
(k)
i Σ(x1, x2) = Ṗ

(k)

i (x1, x2) ∀i, k, ∀(x1, x2) ∈ ω (15)

and are strictly equivalent to the statisfaction of the local 3D dynamic equation.

Injecting the momentum expansion into (2a) yields:

A[Σ,P ] =

∫ t1

t0

∫
ω

(
Ψ∗(Σ)− 1

2
P

(k)
i

∫
I

1

ρ
f

(k)
i f

(j)
i dx3P

(j)
i

)
dωdt (16)

=

∫ t1

t0

∫
ω

(
Ψ∗(Σ)− 1

2
PDP

)
dωdt (17)

where Ψ∗(Σ) =
∫
I ψ
∗(σ)dx3 is the generalized stress energy density obtained from the local

3D stress expansion and in which we expressed the kinetic quadratic term in a condensed

form involving the vector of generalized momenta P and a symmetric positive definite matrix

D. The elements of this matrix involve the computation of the products of the f
(k)
i shape

functions with the inverse density over I.

Finally, let us recall that the stationarity conditions of A are constrained by the gener-

alized dynamic equations (15), which we rewrite in the following condensed form:

LΣ = Ṗ (18)

The optimality conditions with respect to P therefore yield:

U̇ = DP (19)

linking the generalized momentum vector with the generalized velocity. The system gener-

alized mass matrix is therefore given by D−1.
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4. Illustration on the Statically compatible layerwise model (SCLS1)

To overcome the inaccurate estimations of local response near free-edges of equivalent

single-layer theories, a collection of layerwise models including interlaminar stresses as un-

known generalized forces have been developed in previous works [21, 22, 30]. In such works,

the laminated plate can be seen as a superposition of Reissner-Mindlin-like plates coupled

with each other through interlaminar forces. In the present paper, we consider a recent

statically compatible version including first-order membrane stresses, called SCLS1, which

ensures an accurate estimation of the shear stress and respect the free edge boundary con-

ditions [24]. This stress-based model is derived from the Cauchy continuum 3D model by

a single hypothesis: a polynomial (affine in the present case) expansion of the membrane

stress per layer. The model construction is then obtained when enforcing the local 3D bal-

ance equations. In particular, the generalized kinematics are obtained by dualisation of the

so-obtained generalized equilibrium equations. In particular, it makes no assumption what-

soever with respect to the underlying 3D kinematics. Therefore, there is no clear expression

of the model inertial forces with respect to its generalized velocities. We will therefore apply

the above described method to derive the generalized momentum-velocity relation.

(a) Description of the 3D laminated plate (b) SCLS1-equivalent description of the 3D laminated plate

Figure 2: Description of the laminated plate

4.1. Problem description and notations

We consider a multilayered plate, made of n perfectly bonded layers, occupying the three-

dimensional domain Ω = ω × ]h−1 ;h+
n [ where ω denotes the plate middle surface (Figure 2).
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Each layer is made of an orthotropic elastic material of compliance tensor Si. Let us fix the

following notations:

• The lateral face is decomposed into two parts (respectively noted ∂ΩT and ∂ΩD) where

Neumann and Dirichlet boundaries conditions are applied.

• The plate is loaded on the upper ω+ and lower ω− surface with a force distribution

T+ = (T+
k ) and T− = (T−k ) respectively. Body forces are neglected.

• In the following, x1 and x2 refer to the in-plane coordinates while the x3 coordinate

refers to the out-of-plane component.

• The superscript i and j, j + 1 designate respectively the layer i and the interface

between the layer j and j + 1. By extension the superscript 0, 1 designates the lower

face ω− and the superscript n, n + 1 the upper face ω+. Unless otherwise stated

i ∈ J1;nK, j ∈ J1;n− 1K and k ∈ J0;nK.

• h−i , h+
i and hi are, respectively, the bottom, top and mid-plane x3-coordinate of layer

i. Its thickness is ei = h+
i − h−i and h+

j = h−j+1 ∀j ∈ [[1;n− 1]]. By convention we also

set h+
0 = h−1 and h+

n = h−n+1.

• Greek subscripts α, β, γ, δ designate the in-plane components and take their values in

J1; 2K. Latin subscripts i, j, k, l denote general components and take their values J1; 3K.

• Einstein’s summation convention is used.

4.2. Stress field of the SCLS1 model

The key idea of the SCLS1 model is to discretize the layered composite into a stack of

plates in which the in-plane component σαβ is a piecewise linear function. Originally derived

in quasi-static conditions, we will retain the same hypothesis for the dynamic case. More

precisely, we postulate that in each layer i, i.e. for (x1, x2) ∈ ω, x3 ∈ [h−i , h
+
i ], the membrane

stress field is written:

σi,3Dαβ (x1, x2, x3) = N i
αβ(x1, x2)

P i
0(x3)

ei
+M i

αβ(x1, x2)
12P i

1(x3)

ei2
(20)
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where we make use of the polynomial basis P i
k(x3) := Lk

(
x3 − h̄i
ei

)
built from Legendre

polynomials:

L0(y) = 1 ; L1(y) = y ; L2(y) = −6y2 +
1

2
; L3(x3) = −2y3 +

3

10
y (21)

Satisfaction of the local 3D balance equilibrium equations yields that σi,3Dα3 must be

quadratic in x3, whereas σi,3D33 must be cubic in x3. Taking into account traction continuity

of σi,3Dα3 and σi,3D33 at the interfaces, it can be easily established that such stress fields have

the following expressions in layer i:

σi,3Dα3 (x1, x2, x3) = Qi
α(x1, x2)

P i
0(x3)

ei
+
[(
τ i,i+1
α − τ i−1,i

α

)
(x1, x2)

]
P i

1(x3)

+

[
Qi
α −

ei

2

(
τ i,i+1
α + τ i−1,i

α

)
(x1, x2)

]
P i

2(x3)

ei

(22)

σi,3D33 (x1, x2, x3) =

[(
1

2
(νi,i+1 + νi−1,i) +

ei

12
(πi,+ − πi,−)

)
(x1, x2)

]
P i

0(x3)

+

[(
ei

10
(πi,+ + πi,−) +

6

5
(νi,i+1 − νi−1,i)

)
(x1, x2)

]
P i

1(x3)

+

[(
ei

12
(πi,+ − πi,−

)
(x1, x2)

]
P i

2(x3)

+

[(
ei

2
(πi,+ + πi,−) + (νi,i+1 − νi−1,i)

)
(x1, x2)

]
P i

3(x3)

(23)

where the in-plane fields appearing in (20), (22), (23) enjoy the following simple physical

interpretations:

• N i is the in-plane membrane force tensor in layer i

N i
αβ =

∫ h+i

h−i

σi,3Dαβ (x1, x2, x3)dx3 (24)

• M i is the corresponding bending moment tensor

M i
αβ =

∫ h+i

h−i

(x3 − h̄i)σi,3Dαβ (x1, x2, x3)dx3 (25)

• Qi is the resultant shear force vector

Qi
α =

∫ h+i

h−i

σi,3Dα3 (x1, x2, x3)dx3 (26)
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• τ i,i+1 is the interlaminar shear stress at interface i, i+ 1

σi,3Dα3 (x1, x2, h
+
i ) = σi+1,3D

α3 (x1, x2, h
−
i+1) = τ i,i+1

α (x1, x2) (27)

• νi,i+1 is the interlaminar normal stress at interface i, i+ 1

σi,3D33 (x1, x2, h
+
i ) = σi+1,3D

33 (x1, x2, h
−
i+1) = νi,i+1(x1, x2) (28)

As seen later, the generalized stress π is related to the divergence of the interlaminar

shear stress.

Finally, the traction boundary conditions on the top/bottom surfaces are given by:

τ 0,1
α = −T−α , ν0,1 = −T−3 (29)

τn,n+1
α = T+

α , νn,n+1 = T+
3

The generalized displacements are obtained by dualization of the model generalized bal-

ance equations. They can be related to weighted-averages of the three-dimensional displace-

ment (see Appendix A.1).

4.3. Dynamic formulation of the model

Inserting the stress field expression (20)–(23) in the 3D equations of motion yields:

ṗα(x1, x2, x3) = [N i
αβ,β + (τ i,i+1

α − τ i−1,i
α )]

P i
0(x3)

ei
(30)

+ [M i
αβ,β −Qi

α +
ei

2
(τ i,i+1
α + τ i−1,i

α )]
12P i

1(x3)

ei2

ṗ3(x1, x2, x3) = [Qi
α,α + (νi,i+1 − νi−1,i)]

[
P i

0(x3)

ei
+
P i

2(x3)

ei

]
+ [τ i,i+1

α,α − πi,+]

[
P i

1(x3)− P i
2(x3)

2

]
− [τ i−1,i

α,α − πi,−]

[
P i

1(x3) +
P i

2(x3)

2

]
(31)

where it can be seen that the stress divergence can be written in the form of (11).
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As a result, we postulate a piecewise linear (resp quadratic) interpolation of the in-plane

(resp out-of-plane) momentum density in each layer:

ṗiα(x1, x2, x3) = ṙi,0α (x1, x2)
P i

0(x3)

ei
+ ṙi,1α (x1, x2)

12P i
1(x3)

ei2
(32)

ṗi3(x1, x2, x3) = ṙi,03 (x1, x2)

[
P i

0(x3)

ei
+
P i

2(x3)

ei

]
+ ṙi,+3 (x1, x2)

[
P i

1(x3)− P i
2(x3)

2

]
(33)

− ṙi,−3 (x1, x2)

[
P i

1(x3) +
P i

2(x3)

2

]
In the static case [24], the equilibrium required that the generalized stress π be continuous

at the interfaces so that there was no need to distinguish πi,+, πi+1,−. In the dynamic setting,

this continuity is no longer assured and, strictly speaking, we should keep both unknowns.

However, to be consistent with the static case, we will assume ṙi,+3 = ṙi+1,−
3 = ṙi,i+1

3 , ṙi,i+1
3

now represent the momentum of the interface i, i+1. Such assumption ensure the continuity

of π when passing through the interface and we note πi,+ = πi+1,− = πi,i+1. Substituting

(32)–(33) into (30) and writing the same system for the i − 1th layer, we obtain 6n + 1

equations of motion:

N i
αβ,β + τ i,i+1

α − τ i−1,i
α = ṙi,0α (34a)

M i
αβ,β −Qi

α +
ei

2
(τ i,i+1
α + τ i−1,i

α ) = ṙi,1α (34b)

Qi
α,α + νi,i+1 − νi−1,i = ṙi,03 (34c)

τ k,k+1
α,α − πk,k+1 = ṙk,k+1

3 (34d)

which correspond to the condensed form LΣ = Ṗ introduced in (18). Let us recall that the

generalized stress Σ also has to fulfill the traction boundary conditions (29).

4.4. Variational formulation

Injecting the stress and momentum expansions, into the variational principle (2a) yields:

A[Σ,P ,U ] =

∫ t1

t0

∫
ω

(
Ψ∗(Σ)− 1

2
PDP − (LΣ− Ṗ )U

)
dωdt (35)

where the generalized displacement Lagrange multiplier U associated with the equation of

motion as been included. The explicit expression of Ψ∗ and D is detailed in (A.2).
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? The optimality condition of the above functional with respect to the generalized dis-

placement U leads to the dynamic equilibrium equations (34a)–(34d).

? The optimality condition with respect to the generalized stress Σ leads to the gener-

alized stress-strain constitutive laws (see [24] and Appendix A.2).

? The optimality condition with respect to the generalized momentum P leads to the

generalized momentum-velocity relation:

U̇ = D−1P (36)

4.5. Special case of single-layer

In this section, we consider a homogeneous plate consisting of a single anisotropic layer.

The equations of the problem are obtained by particularizing the SCLS1 equations for n = 1:

the dynamic equilibrium equations become:

Nαβ,β + T+
α − T−α = ṙ0

α (37a)

Mαβ,β −Qα +
e

2
(T+

α + T−α ) = ṙ1
α (37b)

Qα,α + T+
3 − T−3 = ṙ0

3 (37c)

T+
α,α − π+ = ṙ+

3 (37d)

T−α,α − π− = ṙ−3 (37e)

The first three equations are reduced in static (zero impulse) to the classical Reissner Mindlin

plate equations. The stress field satisfies the Neumann-boundary conditions on the upper

and lower faces of the plate. Under these assumptions (35) yield:

A[Σ,P ,U ] =

∫ t2

t1

∫
ω

[
w∗3D(N ,M ,Q, π+, π−)−

∫ e
2

− e
2

1

2ρ
p · pdx3

]
dω dt

+

∫ t2

t1

∫
ω

[(
Nαβ,β + T+

α − T−α − ṙ0
α

)
Uα +

(
Mαβ,β −Qα +

e

2
(T+

α + T−α )− ṙ1
α

)
Φα

]
dωdt

+

∫ t2

t1

∫
ω

[(
Qα,α + T+

3 − T−3 − ṙ0
3

)
U3

]
dωdt

+

∫ t2

t1

∫
ω

[(
T+
α,α − π+ − ṙ+

3

)
V 1,2 +

(
T−α,α − π− − ṙ−3

)
V 0,1

]
dωdt

(38)
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with:

Uα =
1

e

∫ e
2

− e
2

uα(x1, x2, x3, t)dx3 Φα =

∫ e
2

e
2

12z

e2
uα(x1, x2, x3)dx3

U3 =

∫ e
2

e
2

(
1

e
+
P2(x3)

e

)
u3(x1, x2, x3)dx3 W± =

∫ e
2

e
2

(
P1(z)± P2(z)

2

)
u3(x1, x2, x3, t)dx3

(39)

? The optimality of (38) with respect to the generalized stress gives the generalized

constitutive laws linking Σ with the generalized deformation related to (39), see (A.13).

? The optimality with respect to the momentum density gives the generalized velocities-

momentum density relation:

U̇α

Φ̇α

U̇3

V̇ 1,2

V̇ 0,1


=



1
ρe

0 0 0 0

12
ρe3

0 0 0

6
5ρe
− 1

10ρ
− 1

10ρ

2e
15ρ

− e
30ρ

SYM 2e
15ρ





r0
α

r1
α

r0
3

r+
3

r−3


(40)

First, it can be observed that the in-plane inertia and angular inertia (related to U̇α and

Φ̇α respectively) are given by the classical values ρe and ρe3/12. However, the out-of-plane

inertia is more complex since the SCLS1 model with one layer includes the additional degrees

of freedom W± in addition to U3. After inversion of the corresponding block, we obtain:
r0

3

r+
3

r−3

 =


ρe ρ ρ

ρ 9ρ
e

3ρ
e

ρ 3ρ
e

9ρ
e



U̇3

V̇ 1,2

V̇ 0,1

 (41)

We can note that the standard out-of-plane inertia ρe of a Reissner-Mindlin plate [25, 31]

is recovered when zeroing the additional degrees of freedom V j,j+1 = 0.

5. Modal analysis of anisotropic multi-layered plates

The strength of layerwise models lies in their ability to simulate highly anisotropic layered

composites for a wide range of aspect ratios and stacking sequence. Their extension to the
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dynamic setting is here an additional step that we will validate by modal analysis tests on

anisotropic plates. We are going to restrict ourselves to problems in which the boundaries

are clamped. A 20×20 quadrilateral quadratic mesh is used to performs our simulations, see

[24] for more details on the finite-element implementation. In the following, we will report

the eigenfrequencies relative deviation (ωref −ωFEM)/ωref× from a given reference solution.

5.1. (0, 90) square plate laminate

This example investigates the first 8 non-dimensional eigenfrequencies ω∗ = ωa2
√
ρ/(ETh2)

of a clamped square plate of side a with an asymmetric (0, 90) stacking sequence of total

thickness h. Our results will be compared to those found in [32] and a complete three-

dimensional model performed with Abaqus [33]. Figure 3 represents the deviation from the

reference 3D solution for three different aspect ratios a/h. The corresponding tabulated

results are given in Table A.2. We observe that the obtained results are better than those of

[32] which relies on a conventional Galerkin approach and the first order shear deformation

theory of Mindlin (FSDT).

5.2. (0, 90)s rectangular plate laminate

Similarly, a rectangular plate of sides a × b and a symmetric (0, 90)s = (0, 90, 90, 0)

stacking sequence is investigated. Results are again compared with a reference 3D FE

solution and the results obtained in [34] using a p-Ritz method with the FSDT, see table

A.3 for the tabulated results. Figure 4 again shows that the SCLS1 is much more accurate

than the model from [34] for all mode numbers and aspect ratios.

5.3. (θ,−θ)n square plate laminate

Finally, a clamped square plate with a (θ,−θ)n lamination is now investigated for various

orientations θ ∈ {0, 15, 30, 45} and n = 1 or n = 5. Results are compared against those

found in [32] and [35]. Figure 5 again shows the efficiency of the SCLS1 model compared

to these references for all situations, except for the 10 layer case with θ = ±45◦ where it is

slightly less accurate.
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Figure 3: Relative error compared to the three-dimensional model of the frequency parameter ω∗ =

ωa2
√
ρ/(ETh2) for a clamped asymmetric plate (0, 90). The material properties used for the calculation

are EL/ET = 25, G12 = G13 = 0.5ET , G23 = 0.2ET , ν12 = 0.25. EL/ET = 25, G12 = G13 = 0.5ET ,

G23 = 0.2ET , ν12 = 0.25.
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(b) a/h = 5

Figure 4: Relative error with respect to the three-dimensional model of the frequency parameter ω̄ =

(ωb2/π2)
√

(ρh/D0) (D0 = ETh
3

12(1−ν21ν12) ) for a symmetric (0, 90)s laminate.

Overall, these three different comparisons show extremely convincing results since errors

are less than 2% across the entire range of studies. This confirms the validity of our approach

to determine the relevant inertia to be attributed to each of the SCLS1 model generalized
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Figure 5: Relative error with respect to the three-dimensional model of the frequency parameter ω̄ =

ωa2
√
ρ/E1h2 for a (θ,−θ)n laminated square plate; a/h = 20, E1/E2 = 40, G12 = G13 = G23 = 0.5E2,

ν12 = 0.25.

displacements.

5.4. Sandwich plate

Figure 6: Geometry of the sandwich plate example, dashed lines represent the subdivision of a material

layer into several ”mathematical” layers

The aim of this section is to highlight the three-dimensional modeling capabilities of the

SCLS1 model. For this purpose, we consider a square thick sandwich plate made of a flexible

isotropic foam core, framed by two much stiffer isotropic steel skins (see Figure 6). We retain

material [36] and geometric parameters [37] corresponding to a classical steel-polyurethane
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sandwich panel (see Table 1).

Material parameters Eskin = 210× 103 MPa Ecore = 9.7 MPa νskin = νcore = 0.33

ρskin = 7.8× 103 kg/m3 ρcore = 64.2 kg/m3

Geometric parameters a = 250 mm eskin = 2.41 mm ecore = 54.1 mm

Table 1: Geometrical and material parameters for the sandwich plate example
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Figure 7: Relative error with respect to the three-dimensional model of the first 8 eigenfrequencies of the

sandwich plate example

Inspecting the first 8 eigenmodes reveals that eigenmodes number 4, 5, 6 and 8 correspond

to three-dimensional pinching and swelling modes which are perfectly captured by our model.

Deformed configurations of the steel skins are represented in Figure 8.

The SCLS1 model can be viewed as an out-of-plane discretization of the three-dimensional

continuum model when representing material layers by one or more ”mathematical” layers

(see Figure 6). It can be shown that the SCLS1 results converge towards the 3D solution

when refining this layerwise discretization. This convergence is illustrated in Figure 7 where

each ply (skins and core) is discretized by n = 1, 2 or 3 mathematical layers. A geometrical

progression of the sub-layers thickness has been used to ensure a fast convergence as in [30].

It can be observed that using only one mathematical layer, although giving satisfying results
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Figure 8: Representation of the 4, 5, 8th mode

(relative error of 5%), is not sufficient to ensure convergence even with an in-plane mesh

refinement. This is most likely due to the strong stress variations inside the layers which are

not well captured using only one mathematical layer. On the other hand, when increasing

the number of mathematical layers, the stress field is better represented and the eigenfre-

quencies converge towards the 3D reference solution, as already previously mentioned in a

quasi-static setting [24, 30].

5.5. (45,−45, 45,−45) skew laminate plate

We will conclude with a much more demanding modal analysis test. This example

investigates the first 8 non-dimensional eigenfrequencies ω∗ = ωa2
√
ρ/(ETh2) of a clamped

rectangular plate with an asymmetric (45,−45, 45,−45) stacking sequence. The plate is

skewed in its plane by an angle ψ. This configuration is visualized in Figure 9. Our

results will be compared to those detailed in [38], the latter using the ”B-spline Rayleigh-

Ritz method (RRM)” and a Reissner Mindlin plate model (FOST). We will also mention
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Figure 9: Geometry of the skew plate, in our numerical study θ = 45◦, ψ ∈ {0◦, 15◦, 30◦, 45◦}
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(b) ψ = 15◦
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(c) ψ = 30◦
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Figure 10: Relative error with respect to the three-dimensional model of the frequency parameter λ =

ωa2
√
ρ/E2h2 for a skew laminate plate (45/ − 45/45/ − 45); a/h = 10, E1/E2 = 40, G12 = 0.6E2, G13 =

G23 = 0.5E2, ν12 = ν13 = ν23 = 0.25

the results from a Higher Order Shear Theory (HOST) plate model found in [39]. Once

again the comparison is visually illustrated on the Figure 10, while the numerical results

are recorded in Table A.6. This much more complex test strongly discriminates the coarser

approach of [38] based on a first-order deformation theory. On the other hand, the HOST

enriched model provides results of the same quality as our layerwise models.
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6. Conclusion

A general methodology to determine generalized inertias for models relying on a spe-

cific stress expansion has been presented. This principle has been used to identify non

trivial generalized inertias of a stress-based layerwise model called SCLS1. Free vibration

analysis of arbitrarily laminated plates used to assess our approach. Numerical simulations

show a very good agreement with respect to reference solutions in a wide range of aspect

ratios/anisotropic behaviors. The particular case of a single-layer was also investigated,

the theoretical result differs from the usual Reissner-Mindlin kinematic approaches. The

illustration of the SCLS1 model efficiency has been further illustrated on a sandwich plate

example and the occurrence of pinching/swelling modes.

A natural extension of this work concerns its application to other stress-based general-

ized continuum models e.g. bending gradient or stress gradient models. Besides, for the

sake of consistency, we adopted a pure stress-based approach in which local 3D equations

of motion are satisfied exactly, yielding their generalized counterpart. However, a similar

methodology can be applied in the case when such 3D equations of motion are satisfied only

in a weak sense, yielding a mixed approach in which specific expansions are assumed for both

stress and displacements. Finally, as regards the use of the SCLS1 model for the dynamic

analysis of multi-layered plates, it appears that the obtained mass matrix is not diagonal,

especially after inverting matrix D obtained from the proposed approach. Efficient dynamic

computations (especially in the case of explicit time discretization schemes) often rely on

the use of lumped mass matrices. For the present layerwise plate model, mass lumping

must therefore be performed with respect to the generalized degrees of freedom to obtain

a diagonal generalized mass matrix. However, there exist different mass lumping strategies

which should be investigated in depth on such complex generalized continuum models.
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Appendix A. Details of the SCLS1 model

We refer to [24] for even more details on the construction of the SCLS1 model.

Appendix A.1. Generalized displacement

The generalized displacements of the SCLS1 model associated with each generalized

equation of motion can be related to the 3D displacement u as follows:

U i
α(x1, x2, t) =

∫ h+i

h−i

P i
0(x3)

ei
uα(x1, x2, x3, t)dx3

Φi
α(x1, x2, t) =

∫ h+i

h−i

12P i
1(x3)

ei2
uα(x1, x2, x3, t)dx3

U i
3(x1, x2, t) =

∫ h+i

h−i

(
P i

0(x3)

ei
+
P i

2(x3)

ei

)
u3(x1, x2, x3, t)dx3

V j,j+1(x1, x2, t) = W j
−(x1, x2, t)−W j+1

+ (x1, x2, t)

V n,n+1(x1, x2, t) = W n
−(x1, x2, t) V 0,1(x1, x2, t) = −W 1

+(x1, x2, t)

where W i
±(x1, x2, t) =

∫ h+i

h−i

(
P i

1(x3)± P i
2(x3)

2

)
u3(x1, x2, x3, t)dx3

(A.1)

where U i
α (resp U i

3) correspond to the mean in-plane (resp out-of-plane) displacement of layer

i. Φi
α is the rotation of layer i. These generalized displacements are those of a Reissner-

Mindlin kinematics. V j,j+1 is an additional out-of-plane degree of freedom related with the

equation of motion involving πj,j+1 and τ j,j+1
α,α at the different interfaces.

Appendix A.2. Constitutive laws

Inserting the expression of the SCLS1 stress field and momentum density in (2a) and

taking into account the generalized balance equations using their corresponding Lagrange

23



multipliers (generalized displacements (A.1)), the objective function becomes:

ASCLS1 =

∫ t2

t1

∫
ω

[
n∑
i=1

∫ h+i

h−i

1

2
σi3D : Si : σi3Ddx3 −

1

2ρi
pi · pidx3

]
dω dt

+

∫ t2

t1

∫
ω

[
n∑
i=1

(N i
αβ,β + τ i,i+1

α − τ i−1,i
α − ṙi,0α )U i

α

]
dω dt

+

∫ t2

t1

∫
ω

[
n∑
i=1

(Qi
α,α + νi,i+1 − νi−1,i − ṙi,03 )U i

3

]
dω dt

+

∫ t2

t1

∫
ω

[
n∑
i=1

(M i
αβ,β −Qi

α +
ei

2
(τ i,i+1
α + τ i−1,i

α )− ṙi,1α )Φi
α

]
dω dt

+

∫ t2

t1

∫
ω

[
n∑
k=0

[τ k,k+1
α,α − πk,k+1 − ṙk,k+1

3 ]V k,k+1

]
dω dt

(A.2)

which gives after integration by part:

ASCLS1 =

∫ t2

t1

∫
ω

[
w∗3D −

n∑
i=1

∫
ω

N i : εi +M i : χi +Qi · γi dω −
n∑
i=1

∫ h+i

h−i

1

2ρi
pi · pidx3

]
dω dt

+

∫ t2

t1

∫
ω

[
n−1∑
j=1

τ j,j+1 ·Dj,j+1
τ + νi,i+1Dj,j+1

ν +
n∑
k=0

πk,k+1λk,k+1

]
dω dt

+

∫ t2

t1

∫
ω

[
n∑
i=1

ri,0α U̇
i
α + ri,03 U̇ i

3 + ri,1αΦ̇i
α + rk,k+1

3 V̇ k,k+1

]
dω dt

+

∫ t2

t1

∫
ω

T+
α (Un

α +
en

2
Φn
α − V n,n+1

,α )− T+
3 U

n
3 + T−α (−U1

α +
e1

2
Φ1
α − V 0,1

,α )− T−3 U1
3 dω dt

(A.3)

where w∗3D =
∑n

i=1

∫ h+i
h−i

1
2
σi3D : Si : σi3Ddx3. The optimality of functional (A.2) with respect

to the generalized stresses yields the generalized constitutive laws which can be found in

[24]. Here, we only provide the constitutive laws related to the π0,1 and πn,n+1 generalized

stresses which were not present in the initial quasi-static model:

λ0,1 =
∂w∗3D
∂π0,1

=
1

105
(e1)3S1

3333π
0,1 − 1

140
(e1)3S1

3333π
1,2 − 11

210
(e1)2S1

3333ν
0,1

− 13

420
(e1)2S1

3333ν
1,2 − 1

12
e1S1

αβ33N
1
αβ +

1

10
S1
αβ33M

1
αβ

λn,n+1 =
∂w∗3D
∂πn,n+1

= − 1

140
(en)3Sn3333π

n−1,n +
1

105
(en)3Sn3333π

n,n+1 +
13

420
(en)2Sn3333ν

n−1,n

+
11

210
(en)2Sn3333ν

n,n+1 +
1

12
enSnαβ33N

n
αβ +

1

10
Snαβ33M

n
αβ

(A.4)
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Appendix A.3. Momentum density-generalized displacement relation

The integral of the momentum density for layer i is given by:∫ h+i

h−i

pi · pidx3 =

∫ h+i

h−i

(
ri,0α

P i
0(x3)

ei
+ ri,1α

12P i
1(x3)

ei2

)2

dx3

+

∫ h+i

h−i

(
ri,03

[
P i

0(x3)

ei
+
P i

2(x3)

ei
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Inserting (A.5) in (A.3), the optimality condition with respect to the momentum density

yields:

U̇ = DR ⇔ MU̇ = R where D =

 Du,φ DU3,r
i,i+1
3

DV,ri,03
DV

 (A.6)

with:
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n
2 , V

0,1, . . . , V n,n+1} (A.7)

R> = {r1,0
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3 , r1,1

1 , r1,1
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Du,φ =
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Appendix A.4. Constitutive laws for the single-layer plate
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Appendix A.5. Tabulated results of modal analysis on laminated plates

Complete results of the investigated examples are available in Tables A.2, A.3, A.4, A.5.

a/h Source Mode sequence number

1 2 3 4 5 6 7 8

10 3D 15.587 27.289 27.289 35.730 42.569 42.744 48.803 48.803

Shi et al. [32] 15.517 27.050 27.050 35.320 42.087 42.249 48.128 48.128

SCLS1 15.544 27.153 27.153 35.538 42.262 42.435 48.467 48.467

20 3D 18.812 36.196 36.196 48.548 61.243 61.459 70.120 70.120

Shi et al. [32] 18.905 36.276 36.276 48.566 61.363 61.584 70.119 70.119

SCLS1 18.802 36.153 36.153 48.481 61.115 61.332 69.980 69.980

100 3D 20.406 41.979 41.979 57.485 77.278 77.452 88.484 88.484

Shi et al. [32] 20.888 43.048 43.048 58.955 79.129 79.308 90.624 90.624

SCLS1 20.418 41.997 41.997 57.509 77.317 78.392 88.527 88.527

Table A.2: Frequency parameters ω∗ = ωa2
√
ρ/(ETh2) for asymmetric cross-ply square plate 0/90. Material

properties used in the calculation are EL/ET = 25, G12 = G13 = 0.5ET , G23 = 0.2ET , ν12 = 0.25.
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b/h Source 1 2 3 4 5 6 7 8

0.001 Liew [34] 5.105 10.527 10.583 14.324 19.567 19.701 22.148 22.237

SCLS1 5.107 10.528 10.588 14.329 19.572 19.715 22.155 22.250

0.100 3D 4.049 6.591 7.905 9.550 10.021 12.236 13.138 13.812

Liew [34] 4.141 6.617 8.354 9.895 9.967 12.443 13.659 14.120

SCLS1 4.045 6.579 7.894 9.534 10.000 12.209 13.112 13.769

0.200 3D 2.908 4.211 5.417 5.975 6.255 7.576 7.880 8.572

Liew [34] 3.045 4.248 5.792 5.905 6.535 7.688 7.729 9.176

SCLS1 2.900 4.193 5.397 5.941 6.230 7.539 7.824 8.539

Table A.3: Frequency parameters λ = (ωb2/π2)
√

(ρh/D0) for a clamped rectangular plate with a/b = 2 and

a symmetric (0, 90)s layup. Reference 3D solution for the very thin case b/h are not given.

Layup Source Lamination angle θ

0◦ 15◦ 30◦ 45◦

(θ,−θ) 3D 4.737 3.743 3.347 3.253

Soldatos and Messina [35] 4.779 3.805 3.463 3.395

Shi et al. [32] 4.721 3.751 3.433 3.375

SCLS1 4.722 3.740 3.361 3.281

(θ,−θ)5 3D 4.737 4.770 4.905 5.036

Soldatos and Messina [35] 4.779 4.814 4.952 5.036

Shi et al. [32] 4.721 4.776 4.932 5.025

SCLS1 4.736 4.777 4.949 5.077

Table A.4: Frequency parameters ω̄ = ωa2
√
ρ/E1h2 ω∗ = ωa2

√
ρ/(ETh2) for an asymmetric (θ,−θ)n

square plate; a/h = 20, E1/E2 = 40, G12 = G13 = G23 = 0.5E2, ν12 = 0.25
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Source Mode sequence number:

1 2 3 4 5 6 7 8

3D 12.673 24.078 24.078 27.255 32.635 32.635 34.478 40.166

SCLS1 n = 1 13.341 25.347 25.347 28.737 34.344 34.344 36.295 42.253

SCLS1 n = 2 12.866 24.445 24.445 27.653 33.119 33.119 35.005 40.771

SCLS1 n = 3 12.755 24.235 24.235 27.380 32.808 32.808 34.704 40.398

Table A.5: 8 first eigenfrequencies ω/2π of the sandwich plate
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Skew Modèle Mode

angle ψ 1 2 3 4 5 6 7 8

0 3D 2.115 3.549 3.549 4.787 5.228 5.291 6.275 6.275

FOST [38], [39] 2.296 3.892 3.892 5.304 5.745 5.820 6.965 6.965

HOST [39] 2.212 3.734 3.734 5.062 5.513 5.581 6.647 6.647

SCLS1 2.199 3.695 3.695 5.004 5.439 5.508 6.555 6.555

15 3D 2.205 3.517 3.839 4.764 5.412 5.646 6.057 6.652

FOST[39] 2.401 3.856 4.217 5.264 5.949 6.227 6.714 7.363

HOST [39] 2.31 3.7 4.044 5.032 5.709 5.965 6.413 7.043

SCLS1 2.299 3.667 4.005 4.977 5.644 5.895 6.333 6.951

30 3D 2.506 3.754 4.467 4.933 6.021 6.137 6.591 7.289

FOST [38], [39] 2.742 4.122 4.913 5.44 6.618 6.784 7.275 8.043

HOST [39] 2.633 3.955 4.713 5.211 6.358 6.495 6.976 7.718

SCLS1 2.614 3.916 4.659 5.15 6.280 6.411 6.883 7.608

45 3D 3.132 4.385 5.526 5.682 6.684 7.305 7.794 8.479

FOST [38], [39] 3.443 4.822 6.085 6.241 7.372 8.024 8.623 9.332

HOST [39] 3.302 4.629 5.842 6.004 7.079 7.727 8.273 8.987

SCLS1 3.269 4.576 5.766 5.925 6.978 7.620 8.140 8.843

Table A.6: Frequency parameters ω̄ = ωa2
√
ρ/E1h2 of a clamped rectangular plate with an asymmetric

(45,−45, 45,−45) stacking sequence; a/h = 10, E1/E2 = 40, G12 = 0.6E2, G13 = G23 = 0.5E2, ν12 = ν13 =

ν23 = 0.25
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