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Inter-laboratory mass spectrometry 
dataset based on passive sampling 
of drinking water for non-target 
analysis
Bastian Schulze et al.#

Non-target analysis (NTA) employing high-resolution mass spectrometry is a commonly 
applied approach for the detection of novel chemicals of emerging concern in complex 
environmental samples. NTA typically results in large and information-rich datasets 
that require computer aided (ideally automated) strategies for their processing and 
interpretation. Such strategies do however raise the challenge of reproducibility between and 
within different processing workflows. An effective strategy to mitigate such problems is the 
implementation of inter-laboratory studies (ILS) with the aim to evaluate different workflows 
and agree on harmonized/standardized quality control procedures. Here we present the data 
generated during such an ILS. This study was organized through the Norman Network and 
included 21 participants from 11 countries. A set of samples based on the passive sampling 
of drinking water pre and post treatment was shipped to all the participating laboratories for 
analysis, using one pre-defined method and one locally (i.e. in-house) developed method. The 
data generated represents a valuable resource (i.e. benchmark) for future developments of 
algorithms and workflows for NTA experiments.

Background & Summary
Non-target analysis (NTA) using high-resolution mass spectrometry (HRMS) is the most comprehensive 
approach for the screening and discovery of organic compounds/chemicals of emerging concern (CECs) in com-
plex environmental samples1–7. This strategy is a bottom up approach with minimum a priori assumptions and/or 
knowledge regarding the samples and the CECs5,8–10. The recent surge in the number of newly identified CECs in 
different environmental compartments is a testimonial to the power of this technology11–13.

The main drawback of NTA is its complexity. Long and laborious processes increase the likelihood of false 
positive and false negative results, and the resulting data is difficult to interpret and can suffer from poor repro-
ducibility1,7,8,14–18. Additionally, the wide variety of chemicals with different physico-chemical properties and var-
iable concentration ranges make NTA an extremely challenging task4,19.

Several sophisticated algorithms and workflows have been developed in the past decade to tackle the complex-
ity of NTA data3,5,20–23. Each of these approaches attempted to address one or more steps in the process, from noise 
removal, over peak picking to identification and finally communication of the confidence level of the identified 
CECs. While these algorithms have shown increasing success, there still remain some challenges with NTA and 
the underlying assumptions. Accordingly, recent studies have highlighted that further improvements are needed 
to be able to generate reproducible results8,15,24,25.

International collaborative efforts, such as raw data sharing (e.g. FAIR Principles26,27), novel CEC shar-
ing (e.g. NormaNews28), community based spectral libraries (e.g. MassBank EU29 and MoNA), and former 
inter-laboratory studies (ILSs) have shown great potential in highlighting these shortfalls. Such work is crucial 
to steer future research and ensure success9,12,13,21,28. An example of such effort was the NTA collaborative trial 
organized by Norman Network9,10, which promoted a clear reporting strategy of the confidence levels in the iden-
tified CECs in complex samples within the environmental chemistry field9,10.

#A full list of authors and their affiliations appears at the end of the paper. 
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In this study, we present the data collected during an international collaborative ILS organized through the 
Norman Network. This study aimed at assessing the uncertainty in the identified compounds caused by different 
NTA workflows and spectral databases. We used a passive sampling (PS) strategy to sample river water at a drink-
ing water intake, and post treatment for the production of drinking water. This will enable us to sample substances 
(i) present in river water at the drinking water intake, (ii) present in drinking water, as well identify those (iii) 
removed during treatment and (iv) generated during drinking water treatment.

PS enables to pre-concentrate chemicals from a complex matrix while leaving behind a significant proportion 
of unwanted matrix affecting the performance of the analysis, therefore allowing to sample chemicals often found 
at trace-levels in water and in the environment30,31. PS devices accumulate chemicals through diffusion over time 
when deployed in water (Table 1). When uptake kinetics are known and understood, it is possible to relate the 
amount of a chemical accumulated in a sampler to its time-averaged concentration in water for the period of 
deployment through a sampling rate, an equivalent volume of water extracted by the sampler per unit of time. 
This allows the collection of a more representative sample than when using spot sampling.

All participants in this ILS were given the same “ready for injection” samples consisting of the two surface 
water and two drinking water PS extracts. They were requested to analyze these PS extracts using one pre-defined 
method for liquid chromatography (LC) and mass spectrometry (MS), Table 2. Participants were also required 
to analyze the samples via their “in-house” methods. The participants were allowed the freedom to use any data 
processing strategy for the identification of CECs in those samples (details are provided in section Experimental 
Design).

This dataset includes the raw data from 21 different laboratories (Fig. 1), using different reversed-phase LC 
(RPLC) columns and instrumentations (Tables 3 and 4, respectively), chromatographic gradients, and MS acqui-
sitions. This dataset provides the means to assess the impact of method transfer, chromatographic conditions, and 
data processing workflows on the results of NTA approaches. Additionally, this dataset may, potentially, be used 
as a benchmark for future development of algorithms for NTA workflows.

Methods
Experimental design.  The participants were given a set of samples and were asked to perform a complete 
NTA/extended suspect screening workflow (i.e. RPLC coupled with HRMS) using two different experimental 
approaches. A harmonized approach, hereafter referred to as pre-defined method (details are provided in the 
section “pre-defined method”) and an individually developed in-house method. Finally, the participants were 
requested to provide: the raw data (i.e. vendor format), the converted files (mzMXL format), the raw feature list 
associated with each sample, the top 50 identified features including the level of confidence in the identifications, 
based on the Schymanski scale9.

The experimental design (Fig. 2) allows the systematic assessment of the impact of the method transfer, chro-
matography approach, and data acquisition on the explored chemical space. Furthermore, it enables the evalu-
ation of the impact of different data processing strategies on the identified features and the level of confidence 
associated to the identifications according to the tiered levels proposed by Schymanski et al.9,10.

Sample set.  A sample set including six vials was shipped to all 21 participants of this ILS. The vials consisted 
of four extracts from passive samplers (PS), one procedural blank, and a mixture of internal standards (IS) for the 
retention time modeling developed by the University of Athens (Table 1)32.

Vial number Matrix type Sampler Exposure time Estimated sampled water volume Code

Vial 1 PS extract – River water 2 days 4.8 L S2 2

Vial 2 PS extract – River water 4 days 8.7 L S2 4

Vial 3 PS extract – drinking water 2 days 4 L S1 2

Vial 4 PS extract – drinking water 4 days 7.4 L S1 4

Vial 5 Procedural blank (field blank) — B

Vial 6 RTI mixture standard — RTI

Table 1.  Overview of samples provided to participants.

Time % A % B

0 87 13

0.5 87 13

10.0 50 50

10.75 5 95

12.25 5 95

12.5 87 13

15.0 87 13

Table 2.  Gradient programme for the pre-defined method using a 150 mm × 2.1 mm column with 1.8 μm 
particles, with a flowrate of 0.4 ml/min.

https://doi.org/10.1038/s41597-021-01002-w


3Scientific Data |           (2021) 8:223  | https://doi.org/10.1038/s41597-021-01002-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 1  Map depicting the distribution of participating laboratories in the international ILS. The size of the 
bubble represents the number of participating labs in each country and the two organizing institutes of the ILS 
are represented by the red location markers. All laboratories providing data are located in Europe (a) except for 
one which is located in Australia (b).

Manufacturer Model pre-defined method Model “In-house” method

Waters

Acquity (UPLC) BEH C18 (4) Acquity (UPLC) BEH C18 (4)

Acquity UPLC HSS C18 (2)

Acquity HSS-T3 C18 Acquity HSS-T3 C18

Xselect HSS C18 Xselect HSS C18

Xbridge C18 Xbridge C18

Cortecs C18 Cortecs C18

HSS T3 C18 HSS T3 C18

Atlantis C18

Agilent

Zorbax Eclipse Plus C18 Zorbax Eclipse Plus C18

Zorbax SB AQ Zorbax SB AQ

Zorbax Eclipse XDB C18 Zorbax Eclipse XDB C18

ThermoScientific Hypersil BDS C18 Acclaim RSLC 120 C18 (2)

Acclaim PepMap RSLC 100 C18

Phenomenex

Kinetex XB-C18

Luna C18 (3)

Luna C18

Kinetex Biphenyl

Kinetex EVO C18

Restek
Raptor C18

ACE UltraCore 2.5 SuperPhenylHexyl

Table 3.  Columns used for the pre-defined method and the in-house method, as indicated by the participant; 
the number of participants using the same column is indicated in brackets.
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To generate the samples, integrative sampling at both the input and the output of a drinking water treatment 
plant (i.e. the source river water and drinking water, respectively) was carried out in June 2019 using Horizon 
Atlantic® HLB-L disks (47 mm diameter) with exposure times of 2 and 4 days. A detailed description of the sam-
pling and sample preparation is given in supporting information (SI).

HLB disks were chosen as the receiving phase as the HLB sorbent has been shown to be suitable for the 
sampling of a variety of substances with different physicochemical properties, including compounds with low 
logD/Kow or ionized at river/drinking water pH33,34. However, limitations exist, particularly in the very low logD 
range.

In order to increase the sampling rate of the chemicals into the PS, the samplers were placed in a “dynamic” 
PS device (DPS), consisting of an electrically driven large volume water pumping device coupled to a PS exposure 
cell35. A total of 26 discs were exposed to treated drinking water and the same number to source water.

The exposed HLB disks, once in the lab, were kept in the freezer at −20 °C until extraction. The frozen 
disks were then freeze-dried for 48 hours to remove any water residues. The dried disks were spiked with six 
isotope-labeled ISs (i.e. Caffeine-13C3, Nicotine-D4, Cotinine-D3, Simazine-D10, Carbamazepine-D10, and 
Diuron-D6) prior to extraction. The spiking level was set at 50 ng/mL of each IS in the final extract, assuming a 
100% recovery.

For the extraction, we used a previously tested wide-scope approach, which consisted of three consecutive 
extractions of the PS with 200 mL of acetone for 24 hr. The final extracts, then, were solvent exchange to methanol, 
following the US EPA method 357036. The extracts of 13 different PS were pooled together to obtain homogene-
ous samples/extracts that were shipped to the participants. We also included a procedural blank, which consisted 
of the pooled extracts of seven PS brought to the field without being exposed to water.

In order to estimate the approximate volume of water sampled by the HLB disk PS, 0.5 mm thick silicone 
sheets made of AlteSil™ (Altec, UK) with the exposed surface area of 200 cm2 were co-deployed in the DPS next 
to the HLB disks. Prior to exposure, the silicone sheets were spiked with 14 performance reference compounds 
(PRCs)35. The loss of PRCs from silicone during exposure was applied to calculate the mass transfer coefficient 
(MTC) of PRCs through the water boundary layer (WBL). The estimated volumes of water extracted by HLB 
disks are based on the assumption of the same WBL-controlled MTC in silicone and HLB disks, by the approach 
shown by Vrana et al.35 and were 190 and 346 L for the river exposures for 2 and 4 days, 160 and 295 L for the 
drinking water exposures.

Considering the 40 times dilution used to prepare individual vials for distribution to participating labora-
tories, vials 1 to 4 contained equivalent volumes of water sampled by the HLB discs of 4.8, 8.7, 4.0 ad 7.4 L, 

Manufacturer Model

Thermo Fisher Scientific

QExactive HF (2)

QExactive Focus (2)

QExactive (2)

Orbitrap Lumos Fusion

Orbitrap Velos

Waters

Xevo G2-S QTOF (3)

Xevo G2 QTOF

Xevo G2-XS QTOF

Vion IMS Q-TOF

Bruker

Maxis Impact

Maxis Plus

Compact

Sciex

TripleTOF 5600+

TripleTOF 6600

X500R

Agilent QTOF 6550

Table 4.  Manufacturers and models of MS instruments used by the participants. The number of participants 
using the same model of MS instruments is indicated in brackets.

Fig. 2  The experimental design of the ILS.
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respectively (Table 1). This can be applied to substances accumulated linearly over the exposure time by the HLB 
discs under boundary-layer controlled uptake. This is not necessarily applicable to all substances and samples.

Pre-defined method.  The pre-defined method consisted of two components, namely: 1) LC separation 
and 2) mass spectrometric data acquisition. The participants were given detailed instructions on how to set up 
the exact conditions on their instruments. Additionally, the participants were given access to a set of tools (e.g. 
method transfer and column chemistry assessment - https://find.waters.com/ColumnCoach/existingcolumn/
column) to find the closest conditions to the instructions in the pre-defined method37.

	 1)	 Separation: the mobile phase consisted of 5 mM aqueous ammonium formate adjusted to pH 3 (A) and 
acetonitrile (ACN) containing 0.1% formic acid (B) used in a 15 min gradient elution (Table 2). The flow 
was given at 0.4 ml/min for a 150 mm × 2.1 mm × 1.8 μm C18 (Acquity UPLC BEH C18). The injection vol-
ume for this method was set to 5 µL. The pre-defined method was a wide scope generic method for analysis 
of pharmaceuticals and pesticides in environmental samples16,38.

	 2)	 Data acquisition: the participants were requested to run their samples in a data-independent acquisition 
mode. The mass range was set between 50 and 900 Da. For the quadrupole-time-of-flight (QTOF) instru-
ments the sampling rate was limited to 2 Hz while for Orbitrap instruments the participants were advised 
to run their samples with maximum of 60,000 resolution. For the SWATH experiments, the number of 
windows was limited to 10. The method required acquisition in positive-polarity mode using an electros-
pray-ionization source. For the pseudo MS2 spectra, the participants were asked to perform their experi-
ments either using a collision energy of 10–45 eV as a ramp or an average collision energy of 30–40 eV.

It should be noted that the observed diversity in the pre-defined method may or may not translate into the 
same level of diversity in the explored chemical space. In fact this can only be assessed by systematic re-processing 
of the data using open source/access workflows, which will be the subject of future studies by the consortium.

Variations in the pre-defined method.  Twenty out of the 21 participants, depending on the availability 
of instrumentations in their labs, implemented some changes in the pre-defined method, employing the provided 
tools by the organizers.

Four out of 21 participants opted for reconstitution of the extracts into ACN/water 50/50, ACN/water 14/86, 
methanol/water 10/90 or methanol, prior to the separation. One participant mixed the sample with mobile phase 
A (see above) at a 1:1 volume ratio.

As for the injection volumes, 16 participants followed the instructions in the pre-defined method (i.e. 5 µL) 
while three participants opted for 10 µL injection volume. One of the participants performed a large volume 
injection of 200 µL.

All participants used C18 columns for both the pre-defined and in-house methods. 14 out of 21 participants 
used the 0.4 mL/min flow rate suggested by the pre-defined method while six participants used different flow rates 
between 0.21 and 0.3 mL/min and one of 1 mL/min. Additionally, it should be noted that not all the participants 
employed the same column for both pre-defined and in-house methods (Table 3).

In terms of mass spectrometers, 8 Thermo Fisher Scientific, 6 Waters, 3 Bruker, 3 Sciex and 1 Agilent instru-
ments were used for the data acquisition. All eight Thermo Fisher Scientific instruments were Orbitraps, while 
all other instruments relied on the time-of-flight (TOF) principle (Table 4). All the participants were asked to 
perform the analysis via data independent acquision (DIA). This acquisition mode of accurate-mass full-scan 
spectra under different collision induced dissociation conditions within a single injection is known under differ-
ent names depending on the manufacturer: MSE in the case of Waters, broadband collision-induced dissociation 
(bbCID) in the case of Bruker, or all-ions MS/MS in the case of Agilent. Likewise for Q-Orbitrap instruments 
from Thermo, this type of acquisition is also possible, and known as All Ion Fragmentation (AIF) or variable 
Data-Independent Analysis (vDIA). An alternative DIA was Sequential Window Acquisition of All Theoretical 
Mass Spectra (SWATH-MS), which maily performed via AB Sciex instruments.

For the acquisition mode and collision energies, all participants followed the instructions provided. As for 
the mass range, 17 used the range defined in the pre-defined method whereas four participants used 75–950, 
100–900, or 77–1000 Da.

In-house method.  The participants were also asked to analyze the extracts using an in-house method. Six 
out of 21 participants decided to reconstitute the sample in new solvent, five of which in methanol/water (4.8%, 
10%, 20%, 50% and 100% methanol) and one in ACN/water 1/99. Injection volumes, in this case, ranged from 
2 μL to 1000 μL, with 16 institutes using 5 μL, similar to the pre-defined method, and two using 10 μL.

Commonly applied flow rates ranged from 0.2 mL/min to 0.5 ml/min with the median at 0.375 mL/min while 
there were two cases with 1 mL/min and 0.0002 mL/min (nano LC). Two participants used flow gradients (0.2–
0.48 ml/min and 0.3–0.4 ml/min).

As for column chemistries, we observed a greater diversity in the used columns when compared to the 
pre-defined method. More specialized columns were used for the in-house method. However, some participants 
used the same column for both methods (Table 3). The used mobile phases, varied mostly in the concentration of 
additives: water with ammonium acetate or formate (up to 10 mM) and formic acid (up to 0.1%) for mobile phase 
A and methanol or ACN, pure or with the same additives, for mobile phase B. All participants used gradients for 
elution, mostly running between 20 and 30 minutes.

The starting masses for the scan range ranged from 30 Da to 100 Da with a median of 60 Da, while the end of 
the scan range was between 800 and 1300 Da with the median at 925 Da. Collision energies were the same as the 
ones used for the pre-defined method except for slight changes (experimental details are provided in Record 3).

https://doi.org/10.1038/s41597-021-01002-w
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Data conversion.  The participants were asked to convert the datasets to mzXML39 format prior to sub-
mission using either the vendor provided tools or MSConvert implemented via ProteoWizard40. All the users 
employed the MSConvert 32− or 64-bit. Additionally, a minimum absolute intensity of 50 counts was applied to 
all mzXML files as the intensity threshold, in order to reduce the size of the converted data.

Data Records
This ILS resulted in three different data records – i.e. mzXML files related to the pre-defined method, mzXML 
files related to the in-house method, and the experimental conditions in XLSX format.

Record 1.  includes the mzXML files for both the samples related to the river water and drinking water with 
exposure times of 2 and 4 days analyzed via the pre-defined method. This record includes 157 mzXML files41,42.

Record 2.  includes the mzXML files for both the samples related to the river water and drinking water with 
exposure times of 2 and 4 days analyzed via the own method. This record includes 134 mzXML files42,43.

Record 3.  consists of an excel file that includes the details of participants and the experimental condi-
tions associated with each mzXML file, including the software packages used for the data acquisition and 
pre-processing44.

Record GNPS.  additionally, all the mzXML files from records 1 and 2 are also available for download or 
analysis via GNPS42.

Technical Validation
We used the detection of IS, their mass accuracy, retention factor (i.e. run-time normalized retention time), and 
their intensity to assess the quality of the generated data by the participants. The extracted ion chromatograms 
(XIC) of the IS were generated using a mass window of ±0.01 Da. The peak of each IS was identified as the max-
imum signal in the selected XIC. Cases where we were not able to identify the IS signal as the most prominent 
signal, were considered as not detected. The measured mass (i.e. the median mass of three scans around apex), 
retention time, and intensity of apex were recorded for quality assurance of the data.

For 98% of datasets, the participants were able to detect all six IS, independently from the method used (i.e. 
pre-defined versus in-house). For two cases analyzed via the pre-defined method only three out of six ISs were detected 
while this was the case only for one chromatogram via own method, respectively. Higher detection frequencies were 
obtained for the in-house method than for the pre-defined method for all IS (Fig. 3). Diuron-D6 had the lowest 
detection frequency of 92% for pre-defined method whereas nicotine-D4 was the IS with the lowest detection fre-
quency of 96% via the in-house method (Fig. 4). Diuron-D6 was the latest eluting IS with pre-defined method whereas 
nicotine-D4 was the IS with the smallest retention time for both methods (Figs. 5 and 6).

When looking at the mass error of IS, for both methods, a median of ±12 ppm was observed (Figs. 5 and 6). 
Overall, the mass errors were distributed between −7 mDa and +10 mDa, for both methods. We did not observe 
a statistically significant correlation between the retention time, m/z value and the measured mass error.

50 100 150 200 250 300
Analysis

Caffeine-3C13

Carbamazepine-D10

Cotinine-D3

Diuron-D6

Nicotine-D4

Simazine-D10

Fig. 3  The detection overview for all six ISs for both pre-defined (dark gray) and in-house (light purple) 
methods. The white boxes are non-detected ISs.
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As for the intensities of the IS a median intensity of 106 was measured across the datasets and the methods. 
The variance in the intensities of around five orders of magnitude appeared to be independent from the method 
used for the analysis.

Usage Notes
Often, when developing new tools for NTA, they are restricted to a limited number of datasets usually generated 
in one laboratory. These datasets rarely represent the actual diversity in potential future datasets that should be 
processed using these tools. In this data descriptor, we present a dataset which covers a wide range of instruments 
and instrumental/analysis conditions. Additionally, the dataset in this study provides three different levels of 
chemical complexity (i.e. the number of potential chemical constituents) in blank, drinking water, and river 
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Fig. 5  Variance observed in (a) the intensity in log scale, (b) the mass error (mDa), and (c) the retention factor 
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each detected IS by the total analysis time.
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of each IS recorded via in-house method. The retention factor was obtained by dividing the retention time for 
each detected IS by the total analysis time.
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water, respectively. Such a dataset can be used for the assessment of the impact of method transfer on the explored 
chemical space of the samples as well as the quality of the generated spectra. The records made available with this 
data descriptor constitute a valuable resource for the future development of NTA algorithms and workflows, for 
example by providing a collection of successfully identified compounds and retention time indices obtained over 
a wide range of instruments and analytical conditions. Altogether, these can be used by individual laboratories for 
evaluation of their own practices.

When using this data, the records 1 and 2 have the following name structure: InstituteID_(nr)_pd.mzXML for 
the pre-defined method and InstituteID_(nr)_own.mzXML for the in-house method. These files can be opened 
with almost any open source software for MS data.

Code availability
The script for the extraction of the IS signal and the plots in this data descriptor is available in this repository: 
https://bitbucket.org/Denice_van_Herwerden/ils-validation/src/main/.
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