
HAL Id: hal-03323460
https://enpc.hal.science/hal-03323460v1

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Functional Spiking Neural Network of Ultra Compact
Neurons

Pablo Stoliar, Olivier Schneegans, Marcelo Rozenberg

To cite this version:
Pablo Stoliar, Olivier Schneegans, Marcelo Rozenberg. A Functional Spiking Neural Network of Ultra
Compact Neurons. Frontiers in Neuroscience, 2021, 15, �10.3389/fnins.2021.635098�. �hal-03323460�

https://enpc.hal.science/hal-03323460v1
https://hal.archives-ouvertes.fr


fnins-15-635098 February 20, 2021 Time: 20:3 # 1

ORIGINAL RESEARCH
published: 25 February 2021

doi: 10.3389/fnins.2021.635098

Edited by:
Paolo Milani,

University of Milan, Italy

Reviewed by:
Anup Das,

Drexel University, United States
Matteo Mirigliano,

University of Milan, Italy

*Correspondence:
Marcelo J. Rozenberg

marcelo.rozenberg@universite-paris-
saclay.fr

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 29 November 2020
Accepted: 22 January 2021

Published: 25 February 2021

Citation:
Stoliar P, Schneegans O and

Rozenberg MJ (2021) A Functional
Spiking Neural Network of Ultra

Compact Neurons.
Front. Neurosci. 15:635098.

doi: 10.3389/fnins.2021.635098

A Functional Spiking Neural Network
of Ultra Compact Neurons
Pablo Stoliar1†, Olivier Schneegans2† and Marcelo J. Rozenberg3*†

1 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 2 Université Paris-Saclay,
Sorbonne Université, CentraleSupélec, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, Gif-sur-Yvette,
France, 3 Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France

We demonstrate that recently introduced ultra-compact neurons (UCN) with a minimal
number of components can be interconnected to implement a functional spiking
neural network. For concreteness we focus on the Jeffress model, which is a classic
neuro-computational model proposed in the 40’s to explain the sound directionality
detection by animals and humans. In addition, we introduce a long-axon neuron,
whose architecture is inspired by the Hodgkin-Huxley axon delay-line and where
the UCNs implement the nodes of Ranvier. We then interconnect two of those
neurons to an output layer of UCNs, which detect coincidences between spikes
propagating down the long-axons. This functional spiking neural neuron circuit with
biological relevance is built from identical UCN blocks, which are simple enough
to be made with off-the-shelf electronic components. Our work realizes a new,
accessible and affordable physical model platform, where neuroscientists can construct
arbitrary mid-size spiking neuronal networks in a lego-block like fashion that work in
continuous time. This should enable them to address in a novel experimental manner
fundamental questions about the nature of the neural code and to test predictions
from mathematical models and algorithms of basic neurobiology research. The present
work aims at opening a new experimental field of basic research in Spiking Neural
Networks to a potentially large community, which is at the crossroads of neurobiology,
dynamical systems, theoretical neuroscience, condensed matter physics, neuromorphic
engineering, artificial intelligence, and complex systems.

Keywords: spiking neural networks, neuron models, leaky-integrated-and-fire, artificial intelligence,
neuromorphic electronic circuits, neuromorphic computers, Jeffress model

INTRODUCTION

The basic understanding of the dynamical behavior of Spiking Neural Networks (SNN) in
Neuroscience is the focus of intense research. There are many relevant and pressing questions that
are coming into focus, for instance, breaking the neural code what is the nature of the neural code?
how information is encoded and transmitted with spikes from one part of the brain to another?
how does that depend on network topology? are brain networks close to a critical or a chaotic
state? what is the robustness of networks to chaos? how neurons may synchronize to form waves?
how dynamical memories are realized and sustained? and many others (Korn and Faure, 2003;
Rabinovich et al., 2006). These issues are being studied either by in vivo and in vitro experiments in
neurobiology (Reyes, 2003; Yin et al., 2018), or theoretically by means of numerical simulations of
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mathematical models of neural networks (Izhikevich and
Edelman, 2008; Stimberg et al., 2019). In the first case, the
neurobiological experiments are technically challenging and,
evidently, one cannot systematically modify the neural networks.
In the second, the results on mathematical modeling may always
be questioned, as a peculiar result that may depend on the
assumptions made. For instance, it may be hard to assess if
the relative ubiquity of chaotic behavior (Korn and Faure, 2003;
Rudolph and Destexhe, 2007; Nobukawa et al., 2018) is of
biological relevance. Moreover, in a well-known study, Izhikevich
and Edelman (2008) observed the surprising result that the
suppression of a single neuron out of an ensemble of a thousand
spiking neurons may change the state of the entire network.

In order to better position our current work with respect to
other approaches, we should also briefly describe the current
efforts on applied research in Neuromorphic Computational
Electronic Engineering for artificial intelligence (AI). That field
can be roughly divided in two big areas. One aims to implement
dedicated computer processors, which are optimized to run
algorithms based on mathematical models of neurons. Examples
of those digital neuron chips TrueNorth, Loihi, SpiNNaker, etc
(Furber, 2016; Thakur et al., 2018). These systems are multi-
core chips with neuromorphic architecture, that is, they have
vast numbers of relatively small memory and processing units,
which are densely interconnected. We may also include in this
category the recent implementations using Field Programmable
Gate Arrays (FPGA), which are making fast progress (Yang
et al., 2015, 2018, 2019, 2020). On the other hand, a qualitatively
different electronic engineering approach is aimed to design
CMOS VLSI circuits, called silicon neurons, which implement the
neuron models directly in hardware (Indiveri et al., 2011). Those
neurons can then be interconnected off-chip to form networks
by means, for instance, of the address event representation
(AER) (Liu et al., 2015). In this approach, no actual spikes
are transmitted between neurons, but it is the information of
a firing event which is sent using the AER protocol between
neuron addresses. One prominent example of a CMOS VLSI
system is the BrainScaleS chip, which implement AdEx neurons
(Schemmel et al., 2010) and further examples are discussed in
Furber (2016); Thakur et al. (2018). In those approaches, the
goal is to implement extremely large numbers of neurons (and
synapses) to achieve the computing capacity of a brain. Some
of their most significant challenges are to achieve low power
dissipation and miniaturization. To reduce the power, one may
work with transistors in the subthreshold regime (Mahowald
and Douglas, 1991; Benjamin et al., 2014), however, additional
issues arise in that case, such as device variability (Indiveri et al.,
2011). Regarding the neuron circuit miniaturization, reducing
its physical dimensions remains a challenge due to the relative
large size of the capacitor that is required to represent the voltage
of the membrane.

The limitations of silicon neurons may be potentially
overcome by exploiting the neuromorphic functionalities of
quantum materials (del Valle et al., 2018). For instance, phase
change materials (Tuma et al., 2016), which accumulate phase
instead of charge. Another notable example are the Mott
insulators, whose memristive properties permit the firing of an

electric spike when they are driven across the insulator to metal
transition (Janod et al., 2016). Despite intense activity, this field
of research is emerging and currently proposed devices are still
individual single neurons (Stoliar et al., 2017; Yi et al., 2018).
The main challenges ahead are to achieve a reliable control
of the materials and the understanding of their fundamental
physical behavior (del Valle et al., 2019), before actual circuits
may be implemented.

In the context of the approaches that deal with SNN systems
that we described above, our present methodology shares features
of many but is qualitatively different to all of them. The main
goal of the present work is to bring to the research community a
novel way to build and study SNNs of unprecedented simplicity,
which opens a new way to do experimental work in basic
neuroscience. We propose a methodology to build general neural
circuits of a priori arbitrary topology, where spiking neurons
are in direct interaction and are interconnected as lego-like
blocks. To illustrate this point, we shall adopt a classic model of
neuroscience: the Jeffress model of binaural detection of sound
directionality (Jeffress, 1948).

Our methodology is built around a recently introduced
electronic neuron circuit, the ultra-compact neuron (UCN)
(Rozenberg et al., 2019). This UCN, like Mott neurons exploits a
memristive behavior, however, in contrast to those it is not based
on a quantum material but on a conventional electronics device,
the thyristor. So in this regard, the UCN may be considered a
silicon neuron model. The silicon neurons vary in their degree
of circuit complexity, for instance realizations of the AdEx model
may require tens of transistors (Indiveri et al., 2011). The UCN,
in contrast, counts with a small number of components so
it can be considered a compact neuron model, following the
terminology introduced by Indiveri et al. (2011). Moreover, the
UCN can be termed ultra-compact as it requires a minimal
number of components. In fact, to realize a basic circuit of a
leaky-integrate-and-fire (LIF) neuron model, the UCN requires,
like most other silicon neurons, a capacitor to integrate charge,
and a resistor to mimic the leaky feature. However, the novelty
of the UCN is that the fire functionality can be realized by a
single silicon controlled rectifier (SCR or thyristor), which is
a conventional electronic device introduced in 1956. The key
insight is to realize that the I-V characteristics of the SCR display
memristive features analogous to that of Mott materials, which
enable the neuromorphic electric spiking behavior. However, the
SCR present the advantage that they are available off-the-shelf to
implement artificial neurons (Rozenberg et al., 2019), avoiding
the need to deal with the complexities of Mott quantum material
fabrication and control. We should also mention that the UCN
is not restricted to the LIF model as it can be easily extended
to realize a large variety of biologically relevant spiking neuron
models (Stoliar et al., 2020).

We should make clear that the present UCN based electronic
circuit methodology is not aimed at competing with engineering
implementations for AI, therefore, speed, dissipation, and
physical size is not our immediate concern. Here, we explicitly
demonstrate that one can make a crucial step up and go
from the level of a single UCN spiking, to a functional
and biologically relevant circuit of more than ten neurons.
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One qualitative difference with respect to neurocomputing
engineering implementations is that the UCN network operates
in real continuous time, with time scales in principle compatible
with those of biological systems. The aim of our work is a
proof-of-concept for a novel, flexible, and affordable platform
to construct spiking neural networks. This methodology can
be further scaled up to hundreds or possibly thousands of
neurons, which can be implemented with low-cost printed
circuits boards (PCB). This order of magnitude in the number
of neurons is sufficient to study questions of basic neuroscience,
such as those that we mentioned in the beginning. In other
words, we aim at opening a new experimental field of
basic research in Spiking Neural Networks to a potentially
large community, which is at the crossroads of neurobiology,
dynamical systems, theoretical neuroscience, condensed matter
physics, neuromorphic engineering, artificial intelligence, and
complex systems.

The paper is organized as follows: We shall first describe
the basic features of the UCN circuit and of the Jeffress model
SNN. We shall then show how UCN blocks can be used to
implement the network, proceeding in two steps: Firstly, we shall
construct a novel long-axon neuron, which will serve as the delay-
line of the Jeffress model. Secondly, we shall combine two such
long-axon neurons with a layer of output neurons that detect
the coincidence of spikes propagating along the delay lines. We
shall then demonstrate the neuro-computational functionality of
sound directionality detection. Finally, we discuss the prospects
of adopting the UCN as a general and easy to implement spiking
neuron lego-like block for experimental electronic neuroscience
and neuro-engineering.

MODEL AND METHODS

The Ultra Compact Neuron Circuit
The UCN circuit can display electric spiking behavior analogous
to a biological neuron and constitutes the basic building block of
our methodology. In (Rozenberg et al., 2019) we demonstrated
a key feature of UCN, namely, that one (upstream) UCN
block can be directly connected to a second (downstream)
UCN block, and that the spiking behavior in the former can
elicit spiking behavior in the latter. In the present work we
go beyond, and show that arbitrary functional circuits can be
implemented, rather straightforwardly, using the UCNs as a
lego-like constructive blocks without any need to use of AER
protocols. Our approach should be viewed as a novel, simple and
flexible experimental platform for neuroscience research in SNN,
alternative and complementary to numerical simulations, in vivo
and in vitro biological studies, and electronic engineering for
artificial intelligence applications. We shall next briefly describe
the basic behavior of the UCN, for the sake of completeness.
Further details can be found in Rozenberg et al. (2019), Stoliar
et al. (2020).

In Figure 1, we show the electronic circuit of the UCN
(Rozenberg et al., 2019). The UCN is a minimal physical
implementation of a leaky-integrate-and-fire model that
generates action potentials. This model is minimal since the key

part of the circuit, which generates the action potentials, only
requires three basic elements (see orange region in Figure 1A).
Similar to most silicon neuron implementations (Indiveri et al.,
2011), it has a membrane capacitor (C) for the integrate function,
a resistor (R1 + R2) for the leaky function. However, in contrast
to conventional CMOS implementations, the fire function is
realized by a SCR. The fire function is most easily understood by
noting that the SCR, which is a pnpn device, can be considered as
a diode with a threshold (see Figure 1B). Thus, it is normally off
with a large resistance RHI , bigger than leak resistors (R1 + R2)
so that when current inputs the neuron, the capacitor gets
(leaky) charged, with time constant τ = (R1 + R2)C. The fire
occurs when the SCR suddenly commutes to the low resistance
value RLO. This happens when the SCR gate voltage reaches the
threshold value Vth, which is a parameter of the SCR. Thus, the
fire event can be easily tuned with the resistive voltage divider,
such that the condition Vth = Vc R2/(R1 + R2) is met. Or in
other words, this condition sets the critical value that Vc needs
to reach so that a spike is generated. At this point the resistance
of the SCR collapses, as its pn diode-like junctions become
forward polarized. Since the SCR resistance becomes much
smaller than the leak pair (R1 + R2), the membrane capacitor
rapidly discharges through it, producing a spike of voltage, or
action potential, on the small resistor R3. The time-scale for the
duration of the spike is ∼ (R3 + RLO)C. The action potential
terminates when the current spike decreases beneath a value
Ihold, which is another parameter of the SCR. Thus, we see that
this hysteresis in the resistance, or memristive property, of the
SCR is the key feature behind the simplicity of the UCN.

Finally the action potential spike needs to be strengthened so
it can drive a downstream UCN connected to its output. This is
simply achieved by a transistor and a voltage source. The green
region in Figure 1A depicts the synaptic connections or dendritic
inputs of the neuron. For the Jeffress model implementation
we shall only need either one or two inputs (see Figure 1C).
In the Supplementary Material we also provide further details
on the circuit implementation of the UCN units, along with
the list of off-the-shelf electronic components. Importantly for
the sake of adopting the UCN units as a physical platform for
arbitrary SNNs, we also present simulations on their fan-in/fan-
out performance.

The Jeffress Model for Detection of
Sound Directionality
We shall consider the Jeffress model (Jeffress, 1948) as a
prototypical SNN with a biological functional to show how such
a system can be implemented with the UCN blocks that we just
described. It is interesting to mention that this model was also
the focus of the pioneering work in neuromorphic engineering
by Lazzaro and Mead (1989), though more than 30 years
ago and following a qualitatively different implementation
based on CMOS. Subsequent work along those lines was
done by Bhadkamkar and Fowler (1993) who developed a
CMOS chip with about 50 thousand transistors working in
the subthreshold regime (Bhadkamkar, 1994). These lines of
work are and illustration of the electronic engineering approach
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FIGURE 1 | (A) Electronic circuit of the UCN unit. The input (green) is shown for the case of two dendrites. In orange we depict the section of the circuit where the
action potentials are generated (see text for description). (B) Schematic I-V characteristics of the SCR and electronic symbol of the component. Note the hysteretic
behavior similar to that observed in VO2 Mott neurons (del Valle et al., 2018). (C) Symbol of the artificial neuron for the case of a one-input (top) and two-input
(bottom) UCN, which are used as lego-like building blocks (the list of the electronic components is provided in the Supplementary Material).

FIGURE 2 | (A) The sound is incident with an angle α on the azimuthal plane that is transduced into an interaural time difference (ITD) for the excitation of the left and
right ears auditory system. (B) The system generates spikes at the L and R input neurons that propagate down their respective long axons (delay lines). The ITD is
mapped onto the position of output neurons that detect the coincidence of spikes propagating down the long axons. Two spikes arriving in coincidence to the green
neuron when α = 0 and ITD = 0.

and the challenges that subthreshold systems may present, as
described before.

The Jeffress model was introduced in 1948 to describe the
brain’s neural system for detection of sound directionality on
the azimuthal plane (Jeffress, 1948). It makes a mapping of
sound angle to neuronal space location. This is achieved by
exploiting the time difference of the arrival of sound to the
ear, and translating that difference into neuronal location by
means of long-axon neurons that act as homogeneously graded
delay lines. Neurons, which receive inputs from these graded
axonal lines, act as coincidence detectors which fire when
spikes simultaneously arrive from the two sides (Konishi, 1993).
Remarkably, the relevance of the Jeffress model has survived
the ongoing revolution in experimental neuroscience (Joris
et al., 1998; Burger et al., 2011; Cariani, 2011). Moreover, it
has received some striking validations of its most basic aspects
through the neuronal mapping of the auditory system of birds
(Young and Rubel, 1983).

In Figure 2 we show a schematic diagram of the Jeffress model
of binaural detection of sound direction. The sound is assumed
to originate along the azimuthal direction, thus depending on
the incidence angle the sound-wave front will arrive with an
interaural time difference (ITD) to the ears (Figure 2A). The

front arrival at the left (L) and right (R) auditory systems
provokes the excitation of the respective input neurons. These
neurons send spikes that propagate down their long-axons,
similarly as a signal down a delay-line (Figure 2B). An layer of
output neurons detects the (time) coincidence of the propagating
spikes. Thus they provide a neurocomputation or transduction
of the incidence angle into an electric signal encoded by the
excitation of the output neuron array.

As one can see from the diagram of Figure 2B, the
Jeffress model has two type of neurons: the input neurons are
characterized by a long axon and the output neurons have two
dendritic inputs to detect simultaneous spikes (i.e., coincidences)
occurring a two given points on the L and R axons.

The Long-Axon Neuron
To implement the long-axon neuron circuit it is useful to recall
that the celebrated Hodgkin-Huxley (HH) model was introduced
to precisely describe the propagation of an action potential
along the axon of a neuron (Hodgkin and Huxley, 1952). It
was formulated as a set of differential equations of classic cable
theory. The parameters of the equation are the voltage-gated
conductance and capacitances per unit length. The non-linear
dependence of the ion channels conductance with the membrane
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FIGURE 3 | Top: Schematic long-axon neuron. Bottom: Implementation of a
long-axon neuron by a uni-dimensional network of UCN units. S0 is the
soma + axon-hillock, S1, S2, . . . are axon segments. The list of components
of the UCN blocks are provided in the Supplementary Material.

potential leads to the local action potential generation in a given
segment of the axon. The propagation of the signal follows from
the fact that one action potential spike at one axon segment
induces a successive spike in the neighboring segment. The
propagation is initiated in the axon hillock of the cell soma,
which is the location where the soma connects to the axon.
In this manner, the spike signal travels down the axon at
a constant speed.

Since in each segment an action potential is generated, we may
use one UCN to describe each segment, and then build the axon
simply by means of a chain of UCNs. The key feature is that the
parameters of each UCN have to be chosen such that a single
spike of a given segment is sufficient to reliably elicit a spike in
the subsequent neighboring segment (Rozenberg et al., 2019).

From the previous discussion, we may now introduce a
long-axon neuron model that emulates the mechanism of spike
propagation described before. The model is schematically shown
in Figure 3. It has an initial UCN unit that represents the soma-
plus-axon-hillock (S0), followed by a succession of UCN units
that represent the segments of the long axon (S1, S2, S3,. . .). As
in the HH model of a neuron axon, each one of those blocks
generates an action potential and induce a subsequent one on the
neighboring downstream segment. Thus, the long-axon neuron
is built as a one dimensional chain of spiking UCN units. For
simplicity, we adopt all the UCN blocks to be identical and set
to fire with just one single incoming pulse. However, it would be
easy to adapt the first “soma” block S0 to fire a spike upon any
other input signal of our choice.

The Jeffress Model SNN Circuit
We can now use the long-axon neurons to implement the
neural network of the Jeffress model that we show in Figure 4.
We adopt one long-axon neuron to represent the left ear
input and another one for the right ear input. In the former
the spikes propagate from left to right and in the latter in
opposite direction. In addition, we need to interconnect the
long axons of these input neurons with an array of output
neurons that detect the coincidences. We implement the output
array also using UCN units, as shown in Figure 4. In this
case the UCN blocks are tuned to fire upon arrival of two
overlapping input signals, i.e., to detect coincidences of pulses

at their two dendritic inputs. The three output neurons depicted
in the diagram of Figure 4 are labeled “left,” “center,” and
“right” as they encode for sound signals incoming from those
respective sectors.

The scheme of the circuit can be easily scaled up to increase
the system’s resolving power of the azimuthal angle. In the
Supplementary Material we provide an explicit realization
scaling up the number of UCNs in a long-axon neuron by means
of a realistic numerical simulation. However, in the following we
shall restrict ourselves to implement a small network where the
behavior of each neuron can be individually traced.

In principle, a transducer, such as the cochlea in humans,
converts the incoming sound-wave front into input excitations
to the network. The interaural time difference of the wave front
results in a time delay between the spikes generated by L0 and
R0. These two “soma + axon-hillock” neurons may, in principle,
be setup to fire upon any desired excitation threshold, such as
depending on the intensity level, frequency, etc. Here, again for
the sake of simplicity, we set them to fire upon arrival of a single
above-threshold voltage pulse.

Finally, we may also mention that from a SNN architecture
point of view, the Jeffress model is neither a simple feed-forward
nor a recurrent NN. This can be appreciated in Figure 4C, where
we show the network architecture as layers. We can observe that
unlike feed-forward networks there is communication within a
given layer (the middle one), and also unlike recurrent networks,
there are no connections going backward.

RESULTS

We now turn to describe the behavior of our neuromorphic
model. We begin with the long-axon neuron. In Figure 5 we show
the experimental data of the spike propagation along the axon.
We observe that a spike travels down the axon as each pulse at a
given segment unit induces a subsequent pulse at its downstream
neighbor. For the chosen values of the circuit components (see
Supplementary Material) the pulse moves along the axon at a
constant rate of approximately 0.045 segment/µs. This rate may
be further increased by decreasing the capacitance of the UCN.

We may now present the experimental data for the full Jeffress
model implementation. This is shown in Figure 6, where we
show two examples of the system’s behavior upon arrival of an
input to the left and to right ears, with a given ITD. We shall
begin with the case of no delay between arrivals, i.e., ITD = 0.
This is shown in the Figure 6A. We can observe that the action
potentials propagate through each long-axon neuron in opposite
directions and at the same speed (first and second panels from
the top). Indeed, they arrive to the last segment of each long-axon
at about the same time 80 µs. The small differences between the
timings and propagations between the two long-axon neurons is
due to the small variability among electronic components, which
is specified by the maker. An important point to make here is that
the representation of time in SNNs is a non-trivial task (Liu et al.,
2015). It usually requires off-chip communication and an AER
protocol. In contrast, our circuit implementation is operating
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FIGURE 4 | (A) Schematic neuron network of the Jeffress model. (B) Corresponding spiking neural network implemented with UCN blocks. (C) SNN architecture.
The Jeffress model is neither a simple feed-forward nor a recurrent neural network due to the intra-layer connections. Also notice if the hidden layers were redefined,
there would be connections toward the output layer that need to skip layers.

FIGURE 5 | Left panels: Measured action potential spike signal propagating
along a 7-segment long-axon neuron (top right panel). The top left panel
VC0 has the voltage on the membrane capacitor C (see Figure 4). The signals
S0 to S7 correspond to the action potential spike voltage measured on the
resistor R3 at the exit of the SCR (see Figure 4). The corresponding panels on
the right have the output of the respective neurons. The logic “0” corresponds
to a physical voltage value of 5 V, and the “1” to 0 V.

directly in real continuous-time. Moreover, the time-scales of our
model are compatible with biological neuron networks ones.

As shown in the diagram of Figure 4, we see that the detection
of coincidences is conducted between the UCN pairs L3-R1, L2-
R2, and L1-R3. From the data in Figure 6A we can see that
the “crossing” of the propagating spikes is, as expected, between
the second segment of each long axon, namely, the pair L2-R2.
The traces of the membrane potentials of the output neurons
is shown in the third panel from the top of Figure 6A. We see

that the corresponding “center” neuron senses the arrival of the
pulses in coincidence and consequently increases its potential
that overcomes the threshold of ∼ 2 V and fires. The fire event of
the output neuron OC that signals the detection of sound from
the central quadrant can be seen in the bottom panels of the
Figure 6A. We see a strong spike in the trace of OC, however,
another smaller one can also be observed for OR. These latter one
can be considered a residual effect that are rather natural to this
system’s bio-mimetic neural architecture. We will come back to
this point later on.

In the panels of Figure 6B we show the case of a finite delay
arriving to the L and R ear input neurons. As can be seen in the
top panels, the approximate delay is of 40 µs, arriving earlier at
the “left” ear L0, which indicates that the sound would have come
from the left sector.

From the propagation of the spikes depicted in these panels,
we observe that coincidence is occurring between UCN pair L3-
R1, which is detected by the output neuron OL. In this case, the
third panel shows the membrane potential of “center” and “right,”
and we see that they detect the passing of spikes through the
long-axons but not in coincidence. Hence their voltage initially
increases and then starts to leak. By the time the second pulse
is detected, although the VC has not yet fully relaxed, the new
increase is not enough to reach the threshold. The VC fall just
short of overcoming the 2 V value. Thus, the sole coincidence is
detected by the “left” output neuron OL, as can be seen in from
its firing event in the bottom panel of the Figure 6B.

Comparing the input spikes and the output fire, we may notice
the existence of a small delay, which is indicated in the traces of
the output neurons OC in Figure 6A and of OL in Figure 6B
with small arrows. The delay is of a few microseconds and is
simply due to the time it takes for the output neuron to integrate
the coincident input signals at its dendrites and fire, namely, to
perform its neurocomputation.

In Figure 7 we finally show the systematic behavior of the
output as a function of the time difference between the arrival
of pulses to the left and right “ears” (L0 and R0) or ITD. We
observe and approximately left-right symmetric behavior of the
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FIGURE 6 | Neurocomputation of ITD. Left panels (A) ITD = 0 µs and right panels (B) ITD = 40 µs. Top four rows show the traces of the propagation of the spikes
along the right-ear delay line, from R0 to R3, measured at the respective unit outputs. The next four lines show the respective signals for the spikes propagating in
the left-ear delay line, in opposite direction. The mid panel show the membrane voltage VC for the three output neurons. As expected for the symmetric case of
ITD = 0 µs (α = 0), we observe the build-up of the potential of the central neuron OC (blue). When this membrane potential overcomes the threshold it sets off an
output spike as can be seen in the trace of the output neurons in the last three rows, where we indicated an additional delay by the small arrows. The right hand
panels have the respective traces for the case of a finite ITD = 40 µs, where we observe that the coincidence was detected by the OL neuron (green).

FIGURE 7 | Systematic variation of the signals of the three output neurons of
the model as a function of the incoming time delay of ITD. The result of the
system’s neurocomputation is coded in terms of pulse width, which is also the
intensity of the spike generated by the output neurons. Note (Figure 6A) that
the pulse width indicates the degree of overlap or coincidence of the
propagating spikes. The delay 1t is defined as the time difference between
the pulses at L0 and R0. A positive 1t corresponds to a pulse generated on
the right side. For simplicity, the pulses were generated with a pulse generator.

three output neurons with respect to the arrival delay. The
output is computed and coded in terms of the pulse width of
the output signal, as was indicated before in the case of the

central sound incidence, or ITD = 0, shown in Figure 6A.
From this type of coding we observe that similarly as in
biological systems, there is a continuum of detection and we
adopt the strongest signal (winner takes all) as the result of the
neurocomputation.

As it can also be seen in Figure 7, the resolution of the time
difference of our system is about 40 µs, which corresponds an
azimuthal angular of about 4◦, assuming an ear-to-ear distance
of 0.2 m and 343 m/s for the speed of sound (Glackin et al.,
2010; see Supplementary Material). In our present simple
implementation, the angular resolution depends on the time it
takes for a spike to propagate along two subsequent Ranvier
nodes of the long-axon neuron (see Figure 5 and Supplementary
Material). This timescale depends on the specific values of the
UCN parameters. For instance, a bigger capacitor would require
more time to get charged up to the fire threshold value, thus
would increase the time it takes the spike to travel down the long
axon. Hence this would decrease the angular resolution of the
system (see Supplementary Material). Conversely, the resolution
can be systematically improved by performing faster integration,
which can be achieved using smaller capacitors for the membrane
potential. Therefore the resolution depends on the specific values
of the circuit components of the UCN blocks of the long-axon
neuron (Rozenberg et al., 2019). Note, however, that given a delay
resolution, the maximal angle that the model may detect depends
on the number of Ranvier nodes implemented in the long-axon.
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In the Supplementary Material we provide details on how to
implement a large sound detection angle.

Finally, from the data of Figure 7 we may also notice that the
symmetry of the response is affected by a small off-set shift of
about 10 µs. This is simply due to the fact that the SCRs, as all
electronic components, have a small dispersion, or tolerance, in
their production. This feature can be easily corrected by a feed-
back loop of the output, which may tune one of the resistors at the
gate of the SCR that sets the firing threshold. This correction can
be cast in terms of a supervised learning of the auditory system,
where a correction pulse generated by the “wrong” output may
tune the value of a memristor at the gate of the SCR. Details of
that procedure are described in the Supplementary Material.

DISCUSSION

We have shown how a functional spiking neural network
of biological relevance and be constructed using the recently
introduced ultra-compact neurons as building lego-like blocks.
The specific neuronal network is the Jeffress model of the
auditory system of animals and humans, which remains a central
paradigm in the field more than 70 years after its original
proposal. This model was also adopted by Lazzaro and Mead
(1989) in their pioneering work to demonstrate the concept
of neurocomputing.

To implement the Jeffress model, we have first introduced
a novel long-axon neuron, which we motivated by analogy
with the Hodgkin-Huxley model for axon propagation of
action potentials. Our long axon-neurons were built as a
chain of UCN units, where the initial one plays the role
of a soma + axon-hillock. The spikes then propagate along
a chain of UCN segments forming a transmission line of
action potentials, analogous to the nodes of Ranvier of
biological axons. Two of such long-axon units constitute the
input neurons that run antiparallel to each other. They are
interconnected via an output layer of two-dendritic inputs
neurons, which are also implemented by UCN blocks. The result
of the neuro-computation is coded by the spike intensity of
the output neurons.

The present work is a concrete demonstration of how the
UCN is a simple and versatile (Hodgkin and Huxley, 1952)
building block that allows to construct bio-inspired spiking
neural networks. This simplicity allows the UCN networks to
be readily made from off-the-shelf electronic components. We
should emphasize the important feature that the UCN is a
physical model of a spiking artificial neuron that does not include
unphysical features such a hard voltage reset nor an abstract
spike signal. Those artificial characteristics are indeed present in

the integrate and fire mathematical models and are a source of
concern for the stability of the dynamics (Korn and Faure, 2003;
Nobukawa et al., 2018).

One may envision that neuroscientists may exploit the
simplicity and convenience of the present scheme in multiple
manners. For instance, they may begin to build physical SNN of
UCNs to address under a new light open issues, such as the nature
of the neural code in feed-forward and recurrent neural networks.
So far, the study of these important questions has essentially been
restricted to numerical simulations of schematic mathematical
models and algorithms.

The present work introduces a novel experimental platform
for the systematic construction and study of the dynamical
behavior of SNN. This platform is simple, versatile and affordable,
so it may open a new avenue of research in experimental
neurobiology at a large and exciting interdisciplinary crossroad.
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