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Abstract

Shear-locking is a classical issue in displacement-based finite-element ap-
proaches for thick plates and shells. It is even more important when con-
sidering kinematic limit analysis approaches which attempt at producing an
upper bound estimate of the structure collapse load. Previous locking-free
finite-element discretizations for thick plates either rely on mixed approaches
or approximate strain compatibility relations which inevitably loose the up-
per bound status of the solution or on discontinuous interpolations which are
difficult to implement and have a much higher computational cost. In this
contribution, we investigate the use of a simple element with a continuous
quadratic displacement and a piecewise linear rotation with continuity at
the element mid-edges only. We show that this element can either produce
strict upper-bound estimates taking into account the contribution of rotation
jumps or a pseudo-upper bound when neglecting this contribution. Although
the upper bound status is lost a priori in this case, numerical evidence in-
dicate that limit loads usually converge from above and have a very good
accuracy. Finally, we also use this element for shell problems and discuss
in particular the formulation of strength criteria for thick shells. Illustrative
applications show that the proposed element is free from any shear locking
and produces very accurate limit load estimates for plate as well as shell
problems.
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1. Introduction

Limit analysis [24] (or yield design theory [44, 45] in a more general frame-
work) is a direct approach enabling to compute the ultimate load of a struc-
ture under the sole requirements of equilibrium on one hand and strength
conditions on the other hand. The satisfaction of these two conditions is at
the basis of the so-called lower bound static approach. The upper bound
kinematic approach is the corresponding dual formulation when writing the
virtual work principle for any potential collapse mechanism. The material
strength criterion is a convex set in the stress space and is represented through
its support function in terms of the strain rate associated with some collapse
mechanism.

Numerical resolution of limit analysis problems usually rely on the finite-
element method [2, 34, 42]. The corresponding discrete problem is however
cast into a convex maximization (for the lower bound approach) or minimiza-
tion problem (for the upper bound approach). State-of-the-art methods for
solving the corresponding optimization problems are interior-point solvers for
conic programming [26, 41]. The use of such techniques require the material
strength conditions to be written using conic constraints [5, 13, 35]. Fortu-
nately, most common strength criteria can be formulated in such a manner,
see for instance [11] for the specific case of shells. Finally, we can also men-
tion strain-driven approaches using a path-following strategy and standard
closest-point return mappings which can be interpreted as proximal opti-
mization procedures [21, 22].

As regards discretization strategies, the lower bound static approach re-
lies on equilibrium-based finite-elements [27, 47]. The upper bound kine-
matic approach can be used either with standard continuous displacement-
based interpolations or discontinuous interpolations [28, 36–38, 48]. Despite
a higher computational cost compared to equivalent continuous interpola-
tions, discontinuous interpolations provide more accurate limit load estimates
[28, 37, 42, 48].

Discretizations for the upper-bound limit analysis of plates in bending
are more challenging. Indeed, it is known that C1-continuity is required
for classical analysis of thin plates which is hard to enforce using simple
finite-elements [16, 30]. Rotation discontinuities must therefore be accounted
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for to use simpler elements achieving only C0-continuity for the deflection
[9, 12, 25]. Similarly for thick plates, C1-continuity is relaxed but the use of
continuous interpolations for the deflection and rotation will inevitably lead
to shear-locking in the thin plate limit [14]. Different techniques can be pro-
posed to alleviate shear-locking including selective reduced integration [51],
mixed formulation/hybrid elements [17, 23, 32], enhanced assumed strain
[46], discrete shear gap elements [29], etc. For all these method, the upper
bound status is inevitably lost and their implementation is not always easy.
In [14], it is shown that fully discontinuous interpolations are naturally free
from any shear-locking and preserve the upper bound status by accounting
for the discontinuities contribution.

As regards shells, problems are similar with the additional issue of mem-
brane locking and the absence of drilling rotation stiffness in most formu-
lations. Works considering limit analysis problems with shell models have
been mainly analytical for simple cases with only scarce works devoted to
numerical aspects for generic shells [4, 11, 13, 39, 49].

The manuscript is organized as follows: section 2 describes the proposed
finite-element discretization in the case of thick plates, section 3 is devoted
to its application to shell structures, illustrative applications are considered
in section 4 and section 5 concludes this work.

The numerical implementations of the present work have been performed
by following the automated limit analysis formulation framework described
in [13]. This framework is based on the fenics optim package [8], see also
[7], which relies on the FEniCS finite-element software package [1, 33] and
the Mosek conic programming solver [40].

Notations. Vectors are denoted with lower case bold symbols and 2nd-rank
tensors with upper case bold symbols. sym(?) = (?+ ?T)/2 is the symmetry
operator, ∇s? = sym(∇?) denotes the symmetrized gradient operator and

u
s
⊗ v = sym(u ⊗ v) the symmetrized outer product. [[?]] the discontinuity

of a field across some discontinuity line of unit normal n. u× v denotes the
cross product between two 3D vectors. We also extend the notation to the
cross-product between a vector and a 2nd-rank tensor as follows: u ×A =
u× (Aijei ⊗ ej) = Aij(u× ei)⊗ ej, and similarly for A× u.
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2. A new upper bound discretization for thick plates

2.1. Upper bound kinematic limit analysis of thick plates

Let us recall the upper bound kinematic formulation of limit analysis for
thick plates, the notation will essentially follow that of [13]. Ω denotes the
plate mid-surface, lying in the (ex, ey) plane with ez being the plate trans-
verse direction. Strength conditions for thick plates involve both the bending

moment tensor M =

[
Mxx Mxy

Mxy Myy

]
and the shear force vector Q = (Qx, Qy).

In [10, 14], different choices of thick plate criteria are discussed, especially
regarding the bending/shear interaction. We will denote by G such a generic
thick plate strength criterion i.e. (M ,Q) ∈ G.

The kinematic formulation relies on a Reissner-Mindlin kinematics involv-
ing an out-of-plane deflection w and an in-plane rotation vector θ = (θx, θy).
Let us consider a distributed vertical loading of reference intensity f(x). We
aim at computing the corresponding limit load λ+f(x) where λ+ denotes the
ultimate load factor associated with the structure collapse. Following [14],
the upper-bound limit analysis problem can be written as:

λ+ ≤ λk = inf
w,θ

∫
Ω

πG(∇sβ,∇w − β) dx +

∫
Γ

ΠG([[β]], [[w]];n) dS

s.t.

∫
Ω

fw dx = 1
(1)

where β = ez × θ and where the following support functions have been
introduced:

πG(χ,γ) = sup
(M ,Q)∈G

{M : χ+Q : γ} (2)

ΠG([[β]], [[w]];n) = sup
(M ,Q)∈G

{(M · n) · [[β]] + (Q · n)[[w]]} (3)

where χ = ∇sβ is the curvature and γ = ∇w−β the shear strain. In (1), the
last term of the objective involves the contribution of potential discontinuities
of the rotation [[β]] and of the deflection [[w]] to the upper-bound collapse load
estimate λk. Taking into account such discontinuities contributions preserves
the upper-bound status of the computed limit load estimate. In this regard,
a finite-element discretization in limit analysis can consider discontinuous
interpolations for the deflection and the rotation field.
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As previously mentioned, considering a continuous interpolation for both
w and θ will result in shear-locking in the thin plate limit, except if specific
procedures are undertaken which inevitably destroy the upper bound status
of the computed estimate. Shear-locking can be simply alleviated by con-
sidering a discontinuous interpolation for both variables as in [14] where w
is assumed to be piecewise quadratic and θ piecewise linear. In this case,
both the curvature and the shear strain are piecewise linear. As discussed
in [13, 36], the first term in (1) objective can be computed by excess using
a numerical quadrature with three integration points located at the element
vertices (the so-called vertex scheme). A specific approximation of the in-
tegral should be used to also approximate by excess the second term of (1)
due to the quadratic variation of [[w]] along each finite-element edge, see for
instance [37]. However, it must be noted that such contributions are usually
quite small, especially with mesh refinement, and vanish in the thin plate
limit. The impact on the upper bound status is usually quite negligible.

2.2. The proposed element

In order to reduce the computational cost associated with the use of fully
discontinuous interpolations, we consider now the following choice:

• w is assumed to be continuous and quadratic (6-node triangle)

• θ is assumed to be linear on each element with continuity ensured only
at the mid-edges of each element. This interpolation is known as the
Crouzeix-Raviart element in the mathematical community where it has
first been introduced in [20] as a non-conforming discretization for the
stationary Stokes problem.

The proposed choice has already been considered by [15] for a non-linear shell
model. Interestingly, this element did not deserve much attention in the lit-
erature despite its good performance, see for instance [6] for its use with
elastic thick plates1. Its main advantage is that this element is naturally
free from any-shear locking without resorting to any stabilizing techniques
such as reduced integration, mixed methods or assumed strains. Note that
Crouzeix-Raviart elements have already been used in Reissner-Mindlin plate

1https://comet-fenics.readthedocs.io/en/latest/demo/reissner_mindlin_

crouzeix_raviart/reissner_mindlin_CR.html
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models such as in [3] but on the deflection field rather than the rotation.

With the present choice, curvature and shear strain are still piecewise
linear, the deflection jump is zero and the rotation jump [[β]] is linear over
each edge (it is null at the edge midpoint). As a result, the contribution of
rotation discontinuities can now be approximated by excess with two integra-
tion points located at the edge vertices. The resulting discrete formulation
of (1) is therefore given by:

λ+ ≤ λUB = min
U

∑
e∈elements

Ae
3

3∑
i=1

πG(χi,γi) +
∑

j∈edges

`j
2

2∑
i′=1

ΠG([[β]]i′ , 0;nj)

s.t. F TU = 1
(4)

where U (resp. F ) is the global vector of degrees of freedom (resp. nodal
forces), Ae the area of a current element e, χi (resp. γi) the value of the
curvature (resp. shear strain) at vertex i of this element, `j (resp. nj) the
length (the normal) of a current edge j, [[β]]i′ the value of the rotation jump
at node i′ of the current edge. We denote by λUB the corresponding limit
load estimate, highlighting the fact that it yields a rigorous upper bound.

Numerical resolution of the discrete convex minimization problem (4)
will be performed using conic programming solvers. We refer to [13] for more
details on the implementation of the conic reformulation of (4) and [11, 14]
for a discussion on the conic representation of thick plates and thin shells
strength criteria and associated support functions.

2.3. A pseudo-upper bound variant

The above formulation (4) still involves the contribution of rotation dis-
continuities. In the following, we will also consider an even simpler variant
which simply ignores this contribution. It can be viewed as a variant of (4)
in which only one (instead of two) integration point located at the edge mid-
side is used, since we have in this case [[β]]mid-side = 0. The corresponding
formulation is therefore:

λ+ ≈ λpUB = min
U

∑
e∈elements

Ae
3

3∑
i=1

πG(χi,γi)

s.t. F TU = 1

(5)

where we denote by λpUB the corresponding limit load estimate, highlighting
the fact that it is only an approximation (a pseudo-upper bound) and not a
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strict upper bound.

However, one can hope that the minimizer Um of (5) will not be far from
that of (4). Since Um is still a candidate for the minimization of (4), we can
reconstruct, a posteriori, a true upper bound by simply adding the missing
contribution:

λUB2 = λpUB +
∑

j∈edges

`j
2

2∑
i′=1

ΠG([[βm]]i′ , 0;nj) (6)

where βm is the rotation corresponding to the already computed minimizer
Um. Obviously, we have that λUB ≤ λUB2 and there is no guarantee that
this second upper bound will be of good quality.

3. Extension to shells

We now consider the case of shells using a formulation similar to that
of [15] except that it will be simplified to the case of infinitesimal transfor-
mations. The shell initial reference configuration consists of piecewise flat
portions and ξ in R3 will denote an initial point on this surface (note that we
do not discuss here the geometrical discretization error induced by approach-
ing the shell curved surface by an assembly of planar facets). (e1, e2, e3) will
be a reference local frame with e3 the normal to the shell surface, this frame
being orthonormal and piecewise constant. A material point X in the shell
reference configuration will then be given by:

X(ξ, ζ) = ξ + ζe3 with ζ ∈ [−h/2;h/2] (7)

The shell kinematics will be described by its mid-surface displacement
u and the infinitesimal rotation vector θ of its director. The new normal
director is a3 = R(θ)e3 = e3+θ×e3 withR the infinitesimal rotation matrix
associated with θ. Neglecting any thickness change in the shell kinematics,
the material point x in the deformed configuration associated with X will
then be given by:

x = ξ + u(ξ) + ζa3 = ξ + u(ξ) + ζ(e3 + θ(ξ)× e3) (8)

Differentiating with respect to X, we get:

dx = dξ +∇u · dξ + ζ(∇θ · dξ)× e3 + dζ(e3 + θ × e3) (9)

= dX +∇u · dξ − ζ(e3 ×∇θ) · dξ − dζ(e3 × θ) + h.o.t.
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where we retained only up to first order terms in u,θ. The 3D deformation
gradient is then given by:

F =
dx

dX
= I + ∇∼ u− ζe3 ×∇∼ θ − (e3 × θ)⊗ e3 (10)

where we introduced the in-plane gradient (i.e. the gradient with respect to
the shell local tangent plane (e1, e2)) as follows ∇∼ v = ∂1v ⊗ e1 + ∂2v ⊗ e2.
More generally, we will use the following notation v∼ = v1e1 + v2e2 to denote
the in-plane part of v.

The linearized strain tensor is then given by:

ε = sym
(
∇∼ u− ζe3 ×∇∼ θ − (e3 × θ)⊗ e3

)
+ ε(ζ)e3 ⊗ e3 (11)

where we added an incompatible out-of-plane strain ε(ζ) which will enable
to enforce a plane-stress constraint. The 3D strain can be split into its in-
plane components ε∼∼

, out-of-plane shear components γ = 2ε∼3
and out-of-plane

transverse components ε33:

ε
≈

= sym
(
∇∼ u∼ − ζe3 ×∇∼ θ

)
= ε− ζχ (12)

γ = ∇∼ u3 − e3 × θ (13)

ε33 = ε(ζ) (14)

where ε = sym(∇∼ u∼) is the membrane strain and χ = sym(e3 ×∇∼ θ) the
bending curvature. We see that we recover the definition of the curvature
and shear strain of the Reissner-Mindlin plate model.

The internal work of deformation density per shell unit surface is then
given by:

wdef =

∫ h/2

−h/2
σ : εdζ (15)

=

(∫ h/2

−h/2
σ
≈
dζ

)
: ε+

(∫ h/2

−h/2
(−ζσ

≈
)dζ

)
: χ

+

(∫ h/2

−h/2
σ∼3
dζ

)
· γ +

∫ h/2

−h/2
σ33ε(ζ)dζ

= N : ε+M : χ+Q · γ +

∫ h/2

−h/2
σ33ε(ζ)dζ
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where N is the shell membrane tensor, M the bending moment tensor and
Q the shear force vector appearing in duality with ε,χ,γ respectively. The
out-of-plane stress σ33 appears in duality with the out-of-plane strain ε(ζ).
The latter is in fact a purely local variable which can be optimized indepen-
dently in the upper-bound kinematic approach. This minimization over ε(ζ)
will result in implicitly enforcing a plane stress condition σ33 = 0.

3.1. Shell strength criterion and associated support function

The support function associated with the shell strength criterion can be
defined from the local support function of the underlying constitutive mate-
rial in plane stress condition as follows:

πshell(ε,χ,γ) = sup
(N ,M ,Q)∈Gshell

{N : ε+M : χ+Q · γ} (16)

=

∫ h/2

−h/2
sup

σ∈G3D,σ33=0
{σ : ε}dζ (17)

=

∫ h/2

−h/2
inf
ε(ζ)

π3D(ε)dζ (18)

Deriving a closed-form expression of πshell is difficult in general. A possible
approach is to use a numerical quadrature rule to approximate (18) using the
same ideas as in [11]. This approach might however be computationally heavy
since it would involve the support function of 3D strength criteria.

In the following, we propose an alternative approximate formulation which
might be more simple to implement and easy to compute since it will involve
the support function of the corresponding thin shell which involve only a
2D strength criterion, see [11]. Since support functions are positively homo-
geneous, they satisfy the triangle inequality. An approximation to (18) is
therefore obtained as follows:

inf
ε(ζ)

π3D(ε) = inf
ε(ζ)

π3D

(
ε
≈

+ γ
s
⊗ e3 + ε(ζ)e3 ⊗ e3

)
(19)

≤ inf
ε(ζ)

π3D

(
ε
≈

+ ε(ζ)e3 ⊗ e3

)
+ π3D(γ

s
⊗ e3) (20)

where the first term can be interpreted as the support function of the pure
2D plane-stress criterion associated with G3D and the second as the support
function of the corresponding pure out-of-plane shear criterion. Both support
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functions will be respectively denoted by π2D ps(ε≈) and πshear(γ). Injecting
(20) into (18) yields:

πshell(ε,χ,γ) ≤ πthin shell(ε,χ) + hπshear(γ) (21)

where πthin shell(ε,χ) =

∫ h/2

−h/2
π2D ps(ε− ζχ)dζ (22)

Equation (21) therefore shows that any thick shell support function can
be approximated by excess by the sum of a thin shell support function and a
pure shear support function. Using classical duality arguments, this upper-
bound approximation corresponds to a thick shell strength criterion which
neglects any membrane/bending interaction with shearing effects, i.e.:

(N ,M ,Q) ∈ Gshell (no interact) ⇔

{
(N ,M ) ∈ Gthin shell

Q ∈ hGshear

(23)

where Gthin shell (resp. Gshear) is the thin shell (resp. pure shear) strength
criterion whose support function is πthin shell (resp. πshear). This construction
generalizes the notion of the no-interaction bending-shear criterion of [10, 14].
Again, regarding the thin shell criterion, any criterion such as those discussed
in [11] can be chosen.

Finally, let us point out that a more general approximation of πshell could
also be considered by generalizing (21) using a p−norm:

πshell(ε,χ,γ) ≈ ((πthin shell(ε,χ))p + (hπshear(γ))p)1/p (24)

where the upper-bound status no longer holds, except for p = 1 for which we
recover (21). Note that for p = 2, we recover an elliptic-like interaction akin
to [10] in the case of plates.

3.2. Drilling rotation stabilization

A classical problem in shell models involving 6 degrees of freedom (3D
rotation) is the absence of any constraint on the drilling rotation θ3 = θ · e3.
However, this degree of freedom is necessary to tackle non-smooth junctions
between planar shell facets which have a different normal vector. In our
implementation, we propose to add an additional resisting work related to
the drilling strain $, as commonly done for elastic shells for which a drilling
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stiffness is added. The driling strain is obtained from the skew symmetric
in-plane component of the transformation gradient:

$ =
1

2
(a1 · F · e2 − e2 · F T · a1) (25)

=
1

2
(e1 · F r · e2 − e2 · (F r)T · e1) (26)

where F r = RTF is the back-rotated transformation gradient. Introducing
Θ the skew symmetric matrix associated with θ, we have:

F r = R(−θ)F = (I −Θ)F = F −Θ + h.o.t. (27)

where we retained again up to first order terms in u,θ. The in-plane part of
F r is F

≈
r = I

≈
+∇∼ u∼−ζe3×∇∼ θ−Θ

≈
. Computing now e1 ·F≈

r ·e2−e2 ·(F≈
r)T ·e1,

we see that the drilling strain is affine over the plate thickness. To simplify the
formulation, numerical evidence seems to indicate that it is enough to neglect
the linear contribution, this amounts to considering an average drilling strain
over the shell thickness:

$ ≈ $(ζ = 0) =
1

2
(u1,2 − u2,1) + θ3 (28)

If σ0 denotes a typical value of the material strength (e.g. a tensile
strength), we propose to stabilize the drilling rotation by modifying the shell
support function as follows:

πshell (stab)(ε,χ,γ, $) = πshell(ε,χ,γ) + σ0h|$| (29)

3.3. Numerical implementation
The numerical implementation is exactly the same as for thick plates.

We assume a continuous quadratic interpolation for u and a piecewise-linear
interpolation for θ with continuity ensured only at the mid-edges of each
element. Although we could also formulate a true upper-bound element as
in section 2.2, the subsequent numerical examples only consider the pseudo-
upper bound formulation for the sake of simplicity. In the case when no shear
interaction is considered (21) for a von Mises material with tensile strength
σ0, the discrete upper-bound limit analysis for shells reads as follows:

λpUB = min
U

∑
e∈elements

Ae
3

3∑
i=1

(
πthin shell(εi,χi) +

σ0h√
3
‖γi‖2 + σ0h|$i|

)
s.t. F TU = 1

(30)
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(a) h/L = 10−1

λk ≈ 27.02
(b) h/L = 10−2

λk ≈ 37.58
(c) h/L = 10−3

λk ≈ 62.26

Figure 1: Vertical deflection for the continuous discretization (simple supports)

with notations similar to (4).

4. Illustrative applications

4.1. Square plate problem

A classical benchmark for thick plate limit analysis is the square plate
problem of side L made of a von Mises material and subject to a dis-
tributed loading of uniform intensity f . For simplicity, we will assume
no shear-bending interaction. The limit load factor λ+ = f+L2/M0 where
M0 = σ0h

2/4 is known to be λ+ ≈ 25.02 for simple supports and λ+ ≈ 44.19
for clamped supports in the thin plate limit [10].

First, let us show visually that the proposed element is free from any
shear-locking in the thin plate limit. Figures 1 and 2 represent the vertical
deflection isovalues for a continuous discretization and for the present dis-
cretization respectively. The mesh is deliberately oriented along a preferential
diagonal, since a symmetric criss-crossed mesh is known to be insensitive to
shear-locking even if the retained discretization locks in general. As already
pointed out in [14], continuous interpolations (quadratic for w and linear for
θ) exhibit a strong locking behaviour in the thin plate limit with a clear
mesh-orientation dependent solution and an increasing limit load estimate.
On the contrary, the present implementation is insensitive to the mesh layout
and yields a converging limit load estimate, slightly larger than the reference
solution due to the coarse discretization.
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(a) h/L = 10−1

λk ≈ 25.46
(b) h/L = 10−2

λk ≈ 25.47
(c) h/L = 10−3

λk ≈ 25.47

Figure 2: Vertical deflection for the proposed discretization (simple supports)

More quantitatively, mesh convergence with respect to the number of
degrees of freedom is represented in Figure 3. An unstructured mesh has
been used for a thickness ratio h/L = 0.01. Results have been presented
for the pseudo-upper bound estimate λpUB of (5), the corresponding post-
processed upper-bound λUB2 of (6), the true upper-bound λUB of (4) as well
as the upper-bound obtained with fully discontinuous elements λDG of [14].

One can first observe that the pseudo-upper bound is of extremely good
quality and seems to converge from above. It is even more accurate than
the fully discontinuous interpolation which has a much richer interpolation.
The true upper-bound λUB is also of good quality and becomes competitive
compared to λDG when increasing the problem size. The reconstructed upper-
bound is, as expected moderately larger than λUB.

The previous results have been presented against the total number of me-
chanical degrees of freedom w and θ. However, even with similar number
of dofs, formulations including discontinuity terms are slightly harder to op-
timize due to the presence of additional auxiliary variables and, sometimes,
a larger number of iterations required for convergence. Thus, the previous
results are even more favourable for the proposed discretization when con-
sidering the total computing time.

4.2. L-plate problem

We revisit the L-plate problem already investigated in previous references
[10, 14, 29] with uniformly distributed loading f and simple supports on two
opposite sides (see Figure 4a). For this computation, we used the ellipsoid
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(a) simple supports
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(b) clamped supports

Figure 3: Mesh convergence with respect to the number of degrees of freedom

criterion of bending/shear interaction as described in [10, 14]. Computations
have again been compared against a fully discontinuous element (λDG) and
the lower-bound equilibrium element (λLB) presented in [10].

The evolution of the computed ultimate load λ+ = f+L2/M0 as a function
of the plate slenderness ratio L/h has been represented in Figure 4b. Clearly,
the present true upper bound element performs very well for all slenderness
ratios. On the contrary, the a posteriori reconstructed upper bound λUB2

does not yield satisfying results in the present case. This may be attributed
to the fact that discontinuities in the solution are much more important in
this example, both in the bending and in the shear-dominated regimes, than
for the previous square plate example. However, as before, the pseudo-upper
bound λpUB is again of very good quality, even better than λUB. We can
remark that for moderately thick plates, the computed estimate is slightly
lower than the lower bound of [10].

4.3. Collapse of a cylindrical thin shell

To validate the implementation for shells, the problem of a cylindrical
shell of length 2L, radius R and thickness h = 0.01R, clamped at both ex-
tremities and loaded by a self-weight uniform vertical loading f = −qez is
considered (see Figure 5a and [11]). The shape of the collapse mechanism
varies depending on the cylinder slenderness 2L/R. For sufficiently long
cylinders, the computed limit load q+ is well described by the one obtained

when representing the cylinder as a 1D beam q+
beam = 32

π
σ0h

(
R

2L

)2

. To
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(a) Mesh and boundary conditions

100 101 102

Slenderness ratio L/h

3

4

5

6

7

8

L
im

it
lo

ad
[f
L

2
/M

0
]

λpUB
λUB2
λUB
λDG
λLB

(b) Normalized collapse load λ+ = f+L2/M0 as a function
of the plate slenderness: lower-bound results λLB correspond
to those of [10]

Figure 4: L-plate problem under uniform loading

compare our results with those of [11], we also used the numerical quadra-
ture approach to compute πthin shell(ε,χ) in the thickness direction using 5
integration points.

Results are represented in Figure 5b and show that the computed pseudo-
upper bound is very close to the true upper bound of [11] using the same
mesh. We also verified that increasing the amplitude of the drilling rotation
stabilization term in (30) did not influence the results.

4.4. Sequential limit analysis on a sphere-cap shell

Finally, we consider a sequential limit analysis problem in which the struc-
ture geometry is updated step-by-step using the collapse mechanism obtained
from the solution of the upper-bound approach. This heuristic method has
been first proposed in [50] to assess the post-collapse of structures in a sim-
plified manner. We also refer to [31] for a recent and thorough discussion on
its range of applicability. Some applications of sequential limit analysis on
shell structures can also be found in [18, 19, 43].

A spherical cap shell of radius R, thickness h and opening angle α is
subjected to a uniformly distributed external radial pressure p and is simply
supported on its boundary (see Figure 6a). For numerical applications, we
chose R = 10 m, h = 0.1 m and α = 32◦. In the sequential limit analysis
process, we monitor the evolution of the limit load as a function of the shell
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(b) Limit load as a function of the shell slenderness:
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Figure 5: A cylindrical thin shell problem

downwards vertical displacement of its apex. We renormalize the obtained
collapse mechanism to apply a uniform displacement increment of 1 cm.
Results have been represented on Figure 6b where it can first be noted that
initially, the limit load is equal to the theoretical value of p+ = 2σ0h/R (see
[11]). The limit load then rapidly decreases when updating the geometry with
the computed mechanism, a strong drop can be observed which corresponds
to the transition towards a configuration with an inverted curvature near the
shell central region. The evolution of the shell geometry during the sequential
limit analysis procedure has been represented in Figure 6c.

5. Conclusions

In this contribution, we investigated the use of a new discretization strat-
egy for the limit analysis of Reissner-Mindlin plates. The use of a contin-
uous P 2 Lagrange discretization for the deflection and of a non-conforming
Crouzeix-Raviart element (linear with continuity at mid-edges only) for the
rotation avoids any shear-locking issue in the thin plate limit. The proposed
choice has several advantages:

• it avoids the need of cumbersome techniques to resolve the shear-locking
issue which usually destroy the upper bound status of the result;

• it is simpler to implement and results in less degrees of freedom than
fully discontinuous approaches;
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Figure 6: Sequential limit analysis on a sphere-cap shell
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• a simple pseudo-upper bound can be obtained by neglecting the con-
tribution of rotation discontinuities;

• numerical examples show that this estimate is particularly accurate
and tend to converge from above.

Finally, we also extend the proposed element to the case of thick shells.
In this respect, we discussed the formulation of strength criteria for thick
shells, which has never been previously done to our knowledge. The pro-
posed implementation for shells also remains simple, one must only include a
drilling rotation penalty to account for this supplementary degree of freedom
compared to the case of plates.

Future works might involve extending this discretization strategy to mul-
tilayered plates or shells with proper accounting of interfacial effects between
successive layers. Taking into account geometry changes is obviously ex-
tremely important for such structures. Although sequential limit analysis
might be a simple approach as illustrated previously, its range of application
is still debatable and should deserve more extensive work for applications on
shell structures.
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convergence result for the upper bound limit analysis of plates. ESAIM:
Mathematical Modelling and Numerical Analysis 50, 215–235.

[13] Bleyer, J., Hassen, G., 2021. Automated formulation and res-
olution of limit analysis problems. Computers & Structures
243, 106341. URL: http://www.sciencedirect.com/science/

article/pii/S0045794920301449, doi:https://doi.org/10.1016/j.
compstruc.2020.106341.

[14] Bleyer, J., Le, C.V., de Buhan, P., 2015. Locking-free discontinuous
finite elements for the upper bound yield design of thick plates. Inter-
national Journal for Numerical Methods in Engineering 103, 894–913.

19

http://dx.doi.org/10.5281/zenodo.1287832
https://doi.org/10.1145/3393881
http://dx.doi.org/10.1145/3393881
https://doi.org/10.5281/zenodo.3778848
http://dx.doi.org/10.5281/zenodo.3778848
http://dx.doi.org/10.5281/zenodo.3778848
http://www.sciencedirect.com/science/article/pii/S0045794920301449
http://www.sciencedirect.com/science/article/pii/S0045794920301449
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2020.106341
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2020.106341


[15] Campello, E., Pimenta, P., Wriggers, P., 2003. A triangular finite shell
element based on a fully nonlinear shell formulation. Computational
Mechanics 31, 505–518.

[16] Capsoni, A., Corradi, L., 1999. Limit analysis of plates- a finite element
formulation. Structural Engineering and Mechanics 8, 325–341.

[17] Casciaro, R., Cascini, L., 1982. A mixed formulation and mixed finite
elements for limit analysis. International Journal for Numerical Methods
in Engineering 18, 211–243.

[18] Corradi, L., Panzeri, N., 2003. Post-collapse analysis of plates and shells
based on a rigid–plastic version of the tric element. Computer methods
in applied mechanics and engineering 192, 3747–3775.

[19] Corradi, L., Panzeri, N., 2004. A triangular finite element for sequential
limit analysis of shells. Advances in Engineering software 35, 633–643.

[20] Crouzeix, M., Raviart, P.A., 1973. Conforming and nonconforming
finite element methods for solving the stationary stokes equations i.
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
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