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Abstract

This paper is concerned with the prediction of the propagation of flexural waves in anisotropic

laminated plates with relatively high slenderness ratios by means of refined plate models.

The study is conducted using the Bending-Gradient theory which is considered as an exten-

sion of the Reissner-Mindlin theory to multilayered plates. Two projections of the Bending-

Gradient model on Reissner-Mindlin models are also explored. The relevance of the proposed

models is tested by comparing them to well-known plate theories and to reference results

obtained using the finite element method.

Keywords: Wave propagation, Dispersion curve, Flexural mode, Laminated plates,

Three-dimensional elasticity, Bending-Gradient theory, Reissner-Mindlin model, Spectral

Finite Element Method

1. Introduction

Owing to their lightweight and advanced high strength, composite plates are widely

used in the civil, marine, aerospace and automotive industries. Due to their anisotropic and

heterogeneous nature, the accurate prediction of their structural behavior is a challenging

problem that has stimulated considerable research interest. Several plate theories have been

proposed in the literature. The most well-known and simplest are the Kirchhoff-Love theory

(or Classical Plate Theory) for thin plates (Kirchhoff, 1850a,b, Love, 1888) and the Reissner-

Mindlin theory (or First Order Shear Deformation Theory) for thin to moderately thick

Preprint submitted to Elsevier September 16, 2019



plates (Reissner, 1945, Mindlin, 1951). The Kirchhoff-Love and the Reissner-Mindlin models

provide very satisfactory results when the constitutive material is homogeneous (Ciarlet

and Destuynder, 1979, G. Ciarlet, 1990, 1997). However, the extension of these models to

heterogeneous plates leads to discontinuous out of plane shear distributions and incorrect

estimation of the deflection compared to exact solutions (Yang et al., 1966, M. Whitney and

J. Pagano, 1970). Limitations of the Kirchhoff-Love and Reissner-Mindlin models induced

the development of higher order models in order to capturing correctly the effects of out of

plane shear deformations (M. Whitney, 1972, Reddy, 1989, Noor and Malik, 2000, Carrera,

2002).

In the light of the ideas presented by Reissner, Lebée and Sab (2011) have recently derived

a new model, known as the Bending-Gradient theory, dedicated to thick and anisotropic

plates. Here, the classical Reissner-Mindlin out-of-plane shear forces are replaced by the

generalized shear force related to the first gradient of the bending moment. Furthermore,

six rotations are introduced instead of two. This is why the Bending-Gradient theory is

considered as an extension of the Reissner-Mindlin theory to laminated plates. The reader

is referred to Sab and Lebée (2015) for thorough details. It was demonstrated that the

Bending-Gradient model cannot be reduced to a Reissner-Mindlin model unless the con-

stitutive material of the plate is homogeneous (Lebée and Sab, 2011). For this reason,

these authors searched for an approximation of the Bending-Gradient model by a suitable

Reissner-Mindlin model (Lebée and Sab, 2015). Several projections of the Bending-Gradient

model were discussed and their relevance was tested (Sab and Lebée, 2015). Comparisons

with the Reissner-Mindlin theory and the full three-dimensional exact solutions (Pagano,

1969, 1970) showed that the Bending-Gradient theory gives good prediction of deflection,

shear stress distributions and in-plane displacement distributions in any material configura-

tion. Originally designed for laminated plates, the Bending-Gradient theory was extended

to in-plane periodic plates, sandwich panels (Lebée and Sab, 2012a,b), space frames (Lebée

and Sab, 2013) and applied to cross laminated timber panels (Perret et al., 2016).

In recent papers, the Bending-Gradient theory was justified through asymptotic expan-

sions (Lebée and Sab, 2013) as well as variational methods and a series of existence and
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uniqueness theorems were formulated and proved (Bejjani et al., 2018). Having mathemati-

cally justified this theory, the central aim of this work is to test its validity regarding plane

wave propagation in symmetrical anisotropic heterogeneous plates. Since plane waves prop-

agate in unbounded elastic continua, the plate is considered to be infinite in the direction of

wave propagation, away from boundary conditions and loadings. While the classical plate

theory agrees well with the analytical solutions when the wavelength λ is very large with

respect to the thickness h, our results show that it becomes invalid when the thickness-

wavelength (h/λ) ratio is greater than 0.05 approximately. In this paper, we go further in

the approximation and focus on wavelengths that are about two times the laminate thickness

(h/λ = 0.5). It is expected that the Bending-Gradient theory will fail to give acceptable re-

sults beyond this limit. In fact, modelling a plate as a two-dimensional domain and ignoring

the contributions in the transverse direction is not valid when the wavelength is about or

less than the plate thickness. In what follows, we seek to relate the wave number and the

angular frequency for the sake of predicting dispersion curves of flexural waves, i.e waves

whose displacements are perpendicular to the direction of propagation.

Analytical solutions for the wave propagation problem in composite materials are difficult

to determine. One of the most used methods to solve such problems is the Finite Element

Analysis. Different methodologies have been developed over the years, the foremost being

the Semi-Analytical Finite Element method (SAFE) Kausel (1986), Datta et al. (1988).

Recently, Gravenkamp et al. (2012) presented a formulation of the wave propagation problem

based on the Scaled Boundary Finite Element Method (SBFEM). Mention may also be

made of Renno et al. (2013), who described the Wave Finite Element (WFE) approach

which besides being simple in application, provides accurate results at low computational

cost. In order to verify the relevance of the Bending-Gradient model and its projections on

Reissner-Mindlin models, a comparative study between our results and those obtained by

the finite element analysis of the three-dimensional problem detailed in Margerit (2018) is

conducted.

The paper proceeds as follows. In Section 2, we introduce tensor notations and alge-

braic manipulations that are used throughout this paper. Section 3 concisely provides the
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main definitions and equations of the Bending-Gradient model for anisotropic heteroge-

neous plates. The particular case of homogeneous plates is also discussed and projections

of the Bending-Gradient theory on a Reissner-Mindlin plate theory are presented. Section

4 is concerned with the derivation and the implementation of the plane waves dispersion

curves either in 3D or from a plate model. Finally, in Section 5, we verify the accuracy

of the proposed method by comparing results from the classical plate theory (CPT), the

first order shear deformation theory (FOSDT), the Bending-Gradient theory (BG) and the

proposed projections (SSP and SCP) to results computed using the finite element method.

Conclusions are given in Section 6.

2. Notations

In this paper, we use Greek indices for 2D tensors (α, β, γ..= 1, 2) and Latin indices

for 3D tensors (i, j, k..= 1, 2, 3). For example, (Xαβ) represents the 2D tensor while (Xij)

denotes a 3D tensor . Index notation also provides another advantage: the number of indices

indicates the order of the tensor. For example, (Xij) denotes a second-rank tensor whereas

(Xijkl) denotes a fourth-rank tensor. To simplify expressions including tensors, we shall

make use of the Einstein summation convention according to which all indices appearing

twice within an expression are to be summed.

The identity for 2D vectors is (δαβ) where δαβ is Kronecker symbol (δαβ = 1 if α = β,

δαβ = 0 otherwise). The identity for 2D symmetric second order tensors is iαβγδ where iαβγδ =

1
2

(δαγδβδ + δαδδβγ). The reader might easily check that iαβγδiδγηθ = iαβηθ, iαβγδiδγβθ = 3/2δαθ

and iαβγδiδγβα = 3.

The gradient of a scalar field X writes (X,β) while the gradient of a vector or a higher-

order tensor fields writes (Xαβ,γ), for instance. The divergence of a vector field or a second

order tensor field is noted (Xα,α) and (Xαβ,β), respectively.

Finally, the integration through the thickness is noted 〈•〉:
∫ h

2

−h
2

f(x3)dx3 = 〈f〉.
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3. The Bending-Gradient Model for the equilibrium of thick plates

3.1. The 3D plate configuration

The physical space is endowed with an orthonormal reference frame (O, e 1, e 2, e 3) where

O is the origin and e i is the base vector in direction i ∈ {1, 2, 3}. We consider a linear elastic

plate occupying the 3D domain V = S ×
]
−h

2
, h
2

[
, where S ⊂ R2 is the middle surface of

the plate and h its thickness. The boundary of the domain, denoted by ∂V , is decomposed

intro three parts (Figure 1):

∂V = ∂Vlat ∪ ∂V +
3 ∪ ∂V −3 ,

with ∂Vlat = ∂S ×
]
−h

2
,
h

2

[
and ∂V ±3 = S ×

{
±h

2

}
,

(1)

where ∂S is the boundary of S.

Focusing only on out-of-plane loadings, the plate is subjected to forces per unit surface

on ∂V ±3 of the form:

(T1, T2, T3)
± (x1, x2) =

(
0, 0,

1

2
p (x1, x2)

)
, (2)

where p is a given function on S.

We suppose that the constitutive material is invariant with respect to translations in

C∼∼(x3): even

V
T-
+

T-
−

∂V+3
S ∂V−3

∂S

e-3

e-2

e-1

h

L

∂Vlat

Figure 1: The 3D configuration
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the (x1, x2) plane. Therefore, the fourth-rank 3D elasticity stiffness tensor (Cijkl) does not

depend on (x1, x2). The plate is assumed to be symmetric with respect to its mid-plane S,

hence Cijkl is an even function of x3:

Cijkl (x3) = Cijkl (−x3) . (3)

This is the so-called mirror symmetry. Furthermore, we have that:

C3αβγ = Cα333 = 0. (4)

In this case, the constitutive material is said to be monoclinic.

To make the presentation self-contained, we now briefly recall the main definitions of

the kinematic and static fields of the Bending-Gradient theory as well as the governing

equations established by Lebée and Sab (2011). For more details concerning the Bending-

Gradient theory, the reader is referred to Lebée and Sab (2011), Lebée and Sab (2011), Lebée

and Sab (2015), Lebée and Sab (2015), Sab and Lebée (2015) and Bejjani et al. (2018).

3.2. The Bending-Gradient equations

The Bending-Gradient generalized displacements are (U3,Φαβγ) where U3 is the out-of-

plane displacement of the plate (or deflection) and (Φαβγ) is the generalized rotation tensor

with Φαβγ = Φβαγ.

The Bending-Gradient generalized strains, which derive from (U3,Φαβγ) are (χαβ,Γαβγ).

(χαβ) is the curvature second-order tensor with χαβ = χβα, and (Γαβγ) is the generalized

shear strain verifying Γαβγ = Γβαγ. The generalized strains are obtained through the follow-

ing compatibility conditions on S:{
χαβ = Φαβγ,γ, (5a)

Γαβγ = Φαβγ + iαβγδU3,δ. (5b)

The Bending-Gradient generalized strains (χαβ,Γαβγ) constitute the dual of the Bending-

Gradient generalized stresses (Mαβ, Rαβγ). The second-order tensor (Mαβ) is the conven-

tional bending moment tensor (Mαβ = Mβα) related to the 3D local stress (σij) by:

Mαβ = 〈x3σαβ〉 . (6)
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The third-order tensor (Rαβγ) represents the generalized shear force which complies with

the following symmetry: Rαβγ = Rβαγ. The Bending-Gradient constitutive equations write

as: {
χαβ = dαβγδMδγ, (7a)

Γαβγ = hαβγδεζRζεδ, (7b)

where (dαβγδ) and (hαβγδεζ) represent compliance tensors which are explicitly expressed in

terms of the elastic components through the thickness of the plate (Sab and Lebée, 2015).

dαβγδ designates the classical bending compliance fourth-order tensor, inverse of the bending

stiffness fourth-order tensor Dαβγδ. Both tensors are positive definite and symmetric.

The generalized shear compliance tensor hαβγδεζ is symmetric and positive but it is definite

only its image Imh whose dimension is between two and six, depending on the elastic

properties of the plate. More details about the subspace Imh are given in Appendix A. The

generalized shear stiffness tensor (Hαβγδεζ) is the Moore-Penrose pseudo inverse of (hαβγδεζ).

The Bending-Gradient equilibrium equations are given by:{
Rαβγ − P S

αβγδεζMζε,δ = 0, (8a)

iαβγδRδγβ,α + p = 0. (8b)

where P S
αβγδεζ designates the orthogonal projection operator onto Imh.

We note that, regardless of the positive definiteness of the shear compliance tensor (hαβγδεζ),

one can derive the conventional shear force Qα = 〈σα3〉 from Rαβγ by:

Qα = Rαββ. (9)

Hence, equation (8)b can be restated as:

Qα,α + p = 0. (10)

3.3. Homogeneous plates

It was shown in Lebée and Sab (2015), Lebée and Sab (2015), Sab and Lebée (2015) that

the Bending-Gradient theory cannot be reduced to a Reissner-Mindlin theory in general.
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However, when the plate under consideration is homogeneous, the two theories coincide. In

this case, the generalized shear tensor (hαβγδεζ) can be expressed as:

hαβγδεζ = iαβγηf
R

ηθiθδεζ , (11)

where (fR
ηθ) is a positive definite symmetric second-order tensor called the Reissner-Mindlin

shear compliance tensor. Furthermore, in this case, the generalized rotation tensor (Φαβγ)

is of the form:

Φαβγ = iαβγδϕδ, (12)

where (ϕδ) is a 2D vector representing rotations. The generalized shear force (Rαβγ) can be

as well expressed as:

Rαβγ =
2

3
iαβηθMθγ,γ.

It follows that equations (8) become:{
Qα −Mαβ,β = 0, (13a)

Qα,α + p = 0, (13b)

which constitute the well-known Reissner-Mindlin equilibrium equations.

3.4. Projection of the Bending-Gradient plate model

As previously mentioned, the Bending-Gradient theory is considered as an extension of

the Reissner-Mindlin theory to laminated plates. It is hence interesting to try to approximate

the Bending-Gradient model through an appropriate Reissner-Mindlin’s model. In this

section, we present two means to project the Bending-Gradient model on a Reissner-Mindlin

model: the shear compliance projection (SCP) and the shear stiffness projection (SSP).

These projections are discussed in full-detail in (Sab and Lebée, 2015).

3.4.1. The Shear Compliance Projection (SCP)

Consider a Bending-Gradient model with shear compliance tensor (hαβγδεζ) and let (f RM
αβ )

denote the corresponding Reissner-Mindlin compliance. The first approach consists in con-
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sidering the following projection of (hαβγδεζ):
f RM

11 =
4

9
(h111111 + h122221 + 2h111221) ,

f RM

12 = f RM

21 =
4

9
(h111121 + h111222 + h121221 + h222221) ,

f RM

22 =
4

9
(h222222 + h121121 + 2h121222) .

(14)

This projection is equivalent to assuming Rαβγ = 2
3
iαβγηQη in the expression of the Bending-

Gradient shear stress energy density (Sab and Lebée, 2015).

In the framework of this projection, an evaluation of the distance between the Bending-

Gradient plate model and the Reissner-Mindlin model was suggested (Lebée and Sab (2011),

Lebée and Sab (2011)). Indeed, when the plate is homogeneous, the distance between the

two models is equal to zero.

3.4.2. The Shear Stiffness Projection (SSP)

We now study the Shear Stiffness Projection which consists in supposing that the Reissner-

Mindlin’s shear stiffness tensor (F RM
αβ ) associated to the Bending-Gradient shear stiffness

tensor (Hαβγδεζ) is of the form:
F RM

11 = H111111 +H122221 + 2H111221,

F RM

12 = F RM

21 = H111121 +H111222 +H121221 +H222221,

F RM

22 = H222222 +H121121 + 2H121222.

(15)

Using this projection is equivalent to assuming that the generalized rotation is of the form

Φαβγ = iαβγδϕδ in the expression of the Bending-Gradient shear strain energy density (Sab

and Lebée, 2015), where (ϕδ) is a Reissner-Mindlin rotation vector.

It should be strongly emphasized that, unless for homogeneous plates, the shear stiffness

projection and the shear compliance projection lead to different approximations. Hence,

(F RM
αβ ) is not the inverse of (f RM

αβ ) in the general case (Sab and Lebée, 2015).

3.5. Kelvin Notations

Expressing the Bending-Gradient equations involves tensors with up to six indices which

can be somehow cumbersome. This is why we introduce in this section Kelvin notation
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which allows us to express any order tensor in the form of a matrix. Contractions products

are hence turned into conventional matrix products. In the following, brackets [•] are used to

denote that a tensor is considered in a matrix form. Thus, [•] is a linear operator reallocating

tensor components. For example, the bending moment (Mαβ) and the curvature tensor (χαβ)

can be expressed as:

[M ] =


M11

M22

√
2M12

 , [χ] =


χ11

χ22

√
2χ12

 . (16)

The fourth-order tensor (Dαβγδ) is obtained through:

[D] =
〈
x23 [Cσ]

〉
, (17)

where Cσ
αβγδ = Cαβγδ −

Cαβ33Cγδ33
C3333

corresponds to the plane stress stiffness. [D] and [Cσ]

take the following matrix form:

[D] =


D1111 D2211

√
2D1211

D2211 D2222

√
2D1222

√
2D1211

√
2D1222 2D1212

 . (18)

The constitutive equation Mαβ = Dαβγδ : χδγ becomes a vector-matrix product:

[M ] = [D] · [χ] . (19)

Shear static unknowns are reallocated in a vector form as:

[R] =



R111

R221

√
2R121

R112

R222

√
2R122


, [Γ] =



Γ111

Γ221

√
2Γ121

Γ112

Γ222

√
2Γ122


, [Φ] =



Φ111

Φ221

√
2Φ121

Φ112

Φ222

√
2Φ122


. (20)

The third-order tensor (iαβγδU3,δ) is expressed in Kelvin notation by:

[i · ∇U3] = U3,1 [J 1] + U3,2 [J 2] , (21)
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where

[J 1]T =

[
1, 0, 0, 0, 0,

1√
2

]
, [J 2]T =

[
0, 0,

1√
2
, 0, 0, 1

]
. (22)

The Bending-Gradient shear compliance and stiffness tensors (hαβγδεζ) and (Hαβγδεζ) are

turned into a 6× 6-matrix:

[h] =



h111111 h111122
√

2h111121 h111211 h111222
√

2h111221

h221111 h221122
√

2h221121 h221211 h221222
√

2h221221
√

2h121111
√

2h121122 2h121121
√

2h121211
√

2h121222 2h121221

h112111 h112122
√

2h112121 h112211 h112222
√

2h112221

h222111 h222122
√

2h222121 h222211 h222222
√

2h222221
√

2h122111
√

2h122122 2h122121
√

2h122211
√

2h122222 2h122221


. (23)

Note that we use the same letter for tensor and matrix components. However, two indices

represent matrix components whereas six indices designate tensor components. For instance,

h221121 is the tensor component of (hαβγδεζ) whereas h23 =
√

2h221121 is the matrix component

of [h].

As already indicated, the shear compliance tensor hαβγδεζ is not always invertible. A new

feature of our work is the reduction method, presented and detailed thereafter, in order to

calculate the shear stiffness tensor.

3.6. The reduction method

The reduction method consists in introducing the constraint (Φαβγ) ∈ Imh when the

dimension of Imh is strictly lower than six (see Appendix A). The first step consists in

computing the pseudo inverse (Hαβγδεζ) through the Singular Value decomposition (SVD).

Accordingly, the real-valued compliance matrix [h] is factored into:

[h] = [N ] . [a] . [N ]T , (24)
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where [a] is a 6× 6 diagonal matrix:

[a] =



a1 0 0 0 0 0

0 a2 0 0 0 0

0 0 a3 0 0 0

0 0 0 a4 0 0

0 0 0 0 a5 0

0 0 0 0 0 a6


, (25)

and [N ] is an orthogonal 6× 6 matrix with [N ]T = [N ]−1, where [N ]T denotes the transpose

of [N ].

The Moore-Penrose pseudo inverse (Hαβγδεζ) is hence obtained through:

[H] = [N ] . [A] . [N ]T = [N ] .



A1 0 0 0 0 0

0 A2 0 0 0 0

0 0 A3 0 0 0

0 0 0 A4 0 0

0 0 0 0 A5 0

0 0 0 0 0 A6


. [N ]T , (26)

with Ak = 0 if ak = 0 and Ak = 1
ak

if ak 6= 0.

Sab and Lebée (2015) demonstrated that the projection operator (P S
αβγδεζ) can be ex-

pressed in the form of a matrix as:[
P S
]

= [H] · [h] = [h] · [H] . (27)

Substituting [h] and [H] by their expressions (24) and (26), we obtain that:

[
P S
]

= [N ] . [α] . [N ]T = [N ] .



α1 0 0 0 0 0

0 α2 0 0 0 0

0 0 α3 0 0 0

0 0 0 α4 0 0

0 0 0 0 α5 0

0 0 0 0 0 α6


. [N ]T , (28)
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where αk = 0 if ak = 0 and αk = 1 if ak 6= 0. In practice, assuming αk are sorted in

decreasing order, if αk ≤ 10−3α1, then αk = 0.

Let (PK
αβγδεζ) denote the projection operator onto Kerh (see Appendix A). (PK

αβγδεζ) has

the following form:

[
PK
]

= [N ] . [β] . [N ]T = [N ] .



β1 0 0 0 0 0

0 β2 0 0 0 0

0 0 β3 0 0 0

0 0 0 β4 0 0

0 0 0 0 β5 0

0 0 0 0 0 β6


. [N ]T , (29)

where βk = 1 if ak = 0 and βk = 0 if ak 6= 0.

As stated earlier, the condition Γαβγ ∈ Imh is equivalent to Φαβγ ∈ Imh since iαβγδU3,δ

always belongs to Imh. This implies that[
PK
]
· [Φ] =

[
PK
]
· [Γ] , (30)

and [
PK
]
· [i · ∇U3] = 0. (31)

Combining equations (7)b, (29) and (30) yields:[
PK
]
· [Φ] =

[
PK
]
· [Γ] = [N ] · [β] · [N ]T · [N ] · [α] · [N ]T · [R] = 0 (32)

since we have that:

[N ] · [N ]T = [I] and [β] · [α] = 0. (33)

Introducing the change of variable [Φ] = [N ] · [Φ∗] in equation (32) grants:[
PK
]
· [Φ] = [N ] · [β] · [N ]T · [Φ] = [N ] · [β] · [Φ∗] = 0⇐⇒ [β] · [Φ∗] = 0, (34)

which means that (Φαβγ) ∈ Imh if, and only if, Φ∗
i = 0 for all i such that ai = 0.

In brief, the reduction method consists in making the change of variable

[Φ] = [N ] · [Φ∗] (35)
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in the Bending-Gradient equations (5), (7) and (8), and imposing Φ∗
i = 0 for all i such that

ai = 0. This allows us to write the reciprocal relationship of equation (7)b:

Rαβγ = HαβγδεζΓζεδ, Γαβγ ∈ Imh. (36)

4. Propagation of plane waves in an anisotropic plate

In this section, we first study the propagation of waves in anisotropic plates in the frame-

work of the three-dimensional elasticity theory. Our main purpose is to accurately predict

the dispersion curve associated to long flexural waves, which is conventionally approximated

by the finite element method.

Good approximations of the static 3D solutions can be obtained from the Bending-

Gradient plate model (Sab and Lebée, 2015). It is hence worth to also estimate the dis-

persion relation through the Bending-Gradient equations of motion. We also suggest using

the Reissner-Mindlin models obtained by projections of the Bending-Gradient model as

explained in Section 3.4.

In this part, we consider a symmetrical plate with the same configuration as Section 3.

Assuming the plate is infinite in directions 1 and 2, no boundary conditions need to be

applied on ∂Vlat. We particularly focus attention on waves propagating in direction 1.

4.1. Exact dispersion curves for guided waves

4.1.1. Three-dimensional equations of motion

For plane waves propagating in direction 1, the displacement vector ui is a function of

the coordinates (x1, x3) and of the time t:

ui = ui(x1, x3, t), i = 1, 2, 3.

The basic equation of motion is obtained by relating the stress σij to the motion of the

particles in the plate using Newton’s second law. Let ρ denote the density (mass per unit

volume). In the absence of body forces, the Momentum equation writes:

σij,j − ρüi = 0, (37)
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where the double dot indicates a second derivative with respect to time
(
ẍ = dx2

dt2

)
.

Wave propagation in infinite anisotropic elastic plate is governed by the full set of equa-

tions of the three-dimensional theory of elasticity, namely:

σij,j − ρüi = 0, (38a)

σij − Cijkl(x3) : εlk = 0, (38b)

εij −
1

2
(ui,j + uj,i) = 0, (38c)

σi3 = 0 at x3 = ±h
2
. (38d)

Additionally, the stresses σi3 and the displacements ui must be continuous at the interfaces

between the different layers of the plate.

For harmonic waves propagating in direction 1 at time t, the displacements ui, solution

to (38), can be described using:

ui(x1, x3, t) = <
(
ûi (x3) e

j(ωt−kx1)
)
, i = 1, 2, 3, (39)

where (ûi)i=1,2,3 are amplitudes of the displacement components, ω is the angular frequency,

k 6= 0 is the wave number and j the imaginary unit. The symbol <(z) is used to designate

the real part of the complex number z. We denote by λ the wavelength and c the wave

velocity. We recall that the wave number is related to the wavelength through:

k =
2π

λ
, (40)

and that the phase velocity c is expressed as:

c =
ω

k
. (41)

The problem is to find a relation between the angular frequency ω and the wave number

k which ensures the existence of a non-zero vector (ûi)i=1,2,3, satisfying the three-dimensional

equations of motion (38).

Reference solutions of the 3D problem (38) can be computed via the finite element

method whose procedure is presented next.
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4.1.2. Resolution by means of Finite Element Analysis

Injecting the plane wave displacement (39) in the local equations (38) leads to the for-

mulation of a quadratic eigenvalue problem in both wavenumber k and frequency ω that

has to be solved. In the case of homogeneous isotropic plates, it can be reduced to the well

known Lamb modes transcendental equation (Lamb, 1917). The case of laminated plates

has been first investigated by T. Thomson (1950), who expressed the inter-lamina continuity

conditions with the help of transfer matrices. As a consequence of the numerical instability

of the method (Haskell, 1953), several reformulations has been proposed in the following

decades (Schmidt and Tango, 2007, Nayfeh, 1991, Rokhlin and Wang, 2002).

Alternatively, the variationnal formulation of the problem (integral equations) can be

used (Dong and B. Nelson, 1972, Datta et al., 1988, Xi et al., 2000). The finite element

approach then leads to the following eigenvalue problem:(
k2 [K2] + jk [K1] + [K0]− ω2 [M]

)
[U] = 0 , (42)

where [Ki], i = 1, 2, 3 and [M] are symetric hermitian matrices and [U] is the vector of nodal

displacements. This formulation is usually referred as the Spectral Finite Element Method

(J. Shorter, 2004, Barbieri et al., 2009) (SFEM) or Semi-Analytical Finite Element method

(Bartoli et al., 2006) (SAFE). The preceding eigenvalue problem is solved more easily by

searching the eigenfrequencies related to a given wavenumber. However, it is often more

convenient to search for the wavenumber solutions corresponding to a fixed frequency; this

can be performed by the resolution of the associated quadratic eigenvalue problem, giving

both real and imaginary solutions (resp. denoting propagating and evanescent waves).

This method has been implemented here to compute reference solutions to the problem

of wave propagation in anisotropic plates. Linear elements were used since the problem is

one-dimensional in x3. We used three degrees of freedom per node to take account of the

three components of the displacement field. In the wavelength range of interest, it has been

observed that 10 elements by layer was sufficient to avoid convergence issues.
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4.2. Plate models dispersion curves

4.2.1. Bending-Gradient equations of motion

In this section, we study wave propagation in anisotropic media using the Bending-

Gradient model. We first provide the formulation of the Bending-Gradient equations of

motion for heterogeneous plates. Then, we explain how to find numerically the corresponding

dispersion curves. Finally, the classical dispersion relation for the Reissner-Mindlin and the

Kirchhoff-Love model are retrieved.

The formulation of the wave propagation problem is based on Mindlin’s paper (Mindlin,

1951), in which a comparison was made between the exact solution of the three-dimensional

equations and the solution obtained using the CPT. It was shown that the CPT deviates sig-

nificantly from the three-dimensional theory whether the rotatory inertia correction is added

or not. However, when taking into consideration the effects of transverse shear deformation

solely, the obtained solution is very close to the three-dimensional solution. Thereby, the

Bending-Gradient equations of motion are formulated by considering that the only inertia

forces are those due to the transverse translation of the plate elements, and hence neglecting

rotatory effects. In this case, the transverse load p given by:

p = −Ü3ρ̄, (43)

where ρ̄ = 〈ρ〉. In the following, we assume that the shear compliance tensor hαβγδεζ is

definite. In this case, P S
αβγδεζ is the identity operator. Hence, the generalized shear force

Rαβγ is the gradient of the bending moment Mαβ.

Wave propagation in anisotropic plates in the absence of body forces is thus modelled by:
Rαβγ −Mαβ,γ = 0,

Qα = Rαββ,

Qα,α = Ü3ρ̄.

(44)

Using constitutive equations (7) and compatibility conditions (5), equations (44) are restated

in terms of the generalized displacements (U3,Φαβγ) (x1, t) as:{
Hαβγδεζ (Φζεδ + iζεδηU3,η)−DαβθεΦεθξ,ξγ = 0, (45a)

Hαββδεζ (Φζεδ,α + iζεδηU3,ηα) = Ü3ρ̄. (45b)
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We point out that when the sixth-order tensor hαβγδεζ is not definite, it suffices to make the

change of variables (35) in equations (45) as detailed in Sect. 3.6.

For waves propagating in direction 1, the generalized displacements (U3,Φαβγ) (x1, t),

solution to (45), can be described using:U3(x1, t) = <
(
Û3e

j(ωt−kx1)
)
, (46a)

Φαβγ(x1, t) = <
(

Φ̂αβγe
j(ωt−kx1)

)
, (46b)

where Û3 and Φ̂αβγ are arbitrary constants. Indeed, all derivatives with respect to x2 are

equal to zero, since the displacements U3 and Φαβγ are functions of x1. Thus, substituting

(46) into (45) yields:Hαβγδεζ

(
Φ̂ζεδ − jkiζεδ1Û3

)
+ k2DαβθεΦ̂εθ1δ1γ = 0, (47a)

H1ββδεζ

(
−jkΦ̂ζεδ − k2iζεδ1Û3

)
+ ω2Û3ρ̄ = 0. (47b)

Finding the dispersion relation associated to flexural waves requires using a mathematical

computing software such as Matlab. The implementation of equations (47) is presented in

the following section.

4.2.2. Implementation of plate dispersion equations

Suppose that the shear compliance tensor hαβγδεζ is definite. Using Kelvin notation

introduced in Section 3.5, equation (44)a writes:

[R]− [M ⊗∇] = 0, (48)

where [M ⊗∇] represents the gradient of the bending moment expressed by:

[M ⊗∇] =



M11,1

M22,1

√
2M12,1

0

0

0


. (49)
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Using compatibility conditions (5)b, [R] is defined by:

[R] = [H] · ([Φ] + [i · ∇U3]) . (50)

The third-order tensor [i · ∇U3] is expressed in Kelvin notation by:

[i · ∇U3] = U3,1 [J 1] = −jkÛ3 [J 1] . (51)

Using compatibility conditions (5)a, we have:
M11,1

M22,1

√
2M12,1

 = [D] ·


Φ111,11

Φ221,11

√
2Φ121,11

 = −k2 [D] ·


Φ̂111

Φ̂221

√
2Φ̂121

 . (52)

Making use of the notations described above, wave propagation equations (47) can be written

as a matrix-vector product:

[A] · [δ] = 0, (53)

where [δ] is a vector representing the generalized displacements
(
Û3, Φ̂αβγ

)
:

[δ]T =
[
Û3, Φ̂111, Φ̂221,

√
2Φ̂121, Φ̂112, Φ̂222,

√
2Φ̂122

]
, (54)

and [A] is a symmetric 7× 7 matrix given by:

[A] =



A11 A12 A13 A14 A15 A16 A17

A12 H11 + k2D11 H12 + k2D12 H13 + k2D13 H14 H15 H16

A13 H21 + k2D21 H22 + k2D22 H23 + k2D23 H24 H25 H26

A14 H31 + k2D31 H32 + k2D32 H33 + k2D33 H34 H35 H36

A15 H41 H42 H43 H44 H45 H46

A16 H51 H52 H53 H54 H55 H56

A17 H61 H62 H63 H64 H65 H66


, (55)
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with 

A11 = ω2ρ̄− k2
(
H11 +

√
2H61 +

1

2
H66

)
,

A12 = −jk

(
H11 +

√
2

2
H16

)
,

A13 = −jk

(
H12 +

√
2

2
H26

)
,

A14 = −jk

(
H13 +

√
2

2
H36

)
,

A15 = −jk

(
H14 +

√
2

2
H46

)
,

A16 = −jk

(
H15 +

√
2

2
H56

)
,

A17 = −jk

(
H16 +

√
2

2
H66

)
.

(56)

The existence of non-trivial solutions to equation (53) implies the vanishing of the determi-

nant of the square matrix [A]:

det[A] = 0. (57)

Our aim is to find the expression of the angular frequency ω in terms of the wave number k

which is purely real since it is associated to flexural waves. The analytical expression of the

determinant of [A], being very lengthy, is omitted here. Nevertheless, it can be noticed that

det[A] is a second degree polynomial in ω of the form aω2 + b, where a and b are functions

of the wave number k. Therefore, equation (57) admits only two roots whose nature is

determined by the sign of the quantity − b
a

. It appears through numerical calculations using

Matlab that the quantity − b
a

is always positive, and that the two roots of equation (57) are

purely real and correspond to the forward and backward flexural waves.

We shall not go into details concerning the case when hαβγδεζ is not definite, but we note

that the dispersion relation is obtained by setting to zero the determinant of a (m+1)×(m+1)

matrix, where m denotes the dimension of Imh, with 2 < m < 6. For calculation and

implementation details in the case of a single layer of anisotropic material, the reader is
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referred to Appendix A.

For ease of computing the Bending-Gradient flexural dispersion curves, a code was cre-

ated using the Matlab programming language. Kindly refer to Bejjani (2019) for further

details. The code is simple to use in the sense that it provides the desired results just by

inputting the constitutive material properties.

4.2.3. Reissner-Mindlin and Kirchhoff-Love plate models

Let us recall that when the Bending-Gradient shear compliance tensor hαβγδεζ is of the

form (11), the Bending-Gradient model is turned into the Reissner-Mindlin model with fR
αβ

as shear forces compliance. In this case the flexural branches of the dispersion curve may

be written as (see Appendix A):

ω = ±k
√
k4F R

11 (D1111D2121 −D2
1121) + k2D1111 (F R

11F
R
22 − (F R

12)
2)

ρ̄
(
(F R

11 + k2D1111) (F R
22 + k2D2121)− (F R

12 + k2D2111)
2) . (58)

where F R
αβ is the shear stiffness tensor, inverse of the shear compliance tensor fR

αβ.

Finally, the Kirchhoff-Love theory is obtained setting hαβγδεζ = 0. This leads to the

classical result:

ω = ±

√
D1111

ρ̄
k2. (59)

5. Numerical Results and Verification

Having presented the wave propagation problem and the derivation of its solution, we

are now in position to evaluate the effectiveness of the Bending-Gradient theory and of the

shear compliance and shear stiffness projections. Generally, this evaluation is performed by

comparing obtained results to reference results. The natural reference for such an assessment

is the solution of the three-dimensional dynamic problem, which can be computed using the

finite element method (FEM) as detailed in Section 4.1.2. In the following, reference results

are compared to those obtained using the Classical Plate Theory (CPT), the Bending-

Gradient theory (BG) as well as the Shear Compliance (SCP), the Shear Stiffness (SSP)

projections and the first order shear deformation theory (π
2

12
-FOSDT).
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Simulations reported in the present paper were performed using the calculation software

Matlab. The proposed numerical method applies to any stack of layers whether the shear

compliance tensor is definite or not. If the latter is the case, the reduction method presented

in Section 3.6 is used in the calculations.

The analytical models presented throughout this work were applied to various lami-

nate configurations. Below we present numerical simulations realized for a laminate whose

material properties are listed in table 1 (Lebée and Sab, 2015, Pagano, 1969):

Table 1: Elastic properties of the laminate, E and G in Pa, ρ in kg/m3

EL EN = ET GLN = GLT GTN νLN = νLT = νTN ρ

1.72e+11 6.89e+09 3.45e+09 2.75e+09 0.25 2260

The symbols E, G, ν and ρ respectively denote the Young’s modulus, the shear mod-

ulus, Poisson’s ratio and the density of the material. The indices L, T and N correspond

respectively to the longitudinal, transversal and normal directions. Each ply of the lami-

nate is made of unidirectional fiber-reinforced material oriented at θ relative to the bending

direction x1. All plies have the same thickness h = 0.01 mm and are perfectly bounded.

In the following, symmetric laminates are designated by the sequence of fiber orientations,

from the outermost ply till the midplane, enclosed by brackets subscripted with an s. For

instance [0◦, 90◦]s denotes a 4-ply laminate with [0◦, 90◦, 90◦, 0◦].

In the figures below, the x-axis indicates the thickness-wavelength ratio (h/λ). The y-axis

corresponds to the ratio (c/cS), where c is the wave velocity and cS denotes a normalization

factor defined by Mindlin (1951):

cS =

√
GLN

ρ
.

In Figs. 2, 3 and 4 are illustrated the dispersion curves for a [0◦, 90◦]s ply, a [−30◦, 30◦]s

ply and a [0◦,−45◦, 90◦, 45◦]s ply respectively. We mention that the shear compliance tensor

hαβγδεζ of both 4-layer laminates is not definite and that the dimension of Imh is equal to
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Figure 2: Comparison of the dispersion curves for a [0◦, 90◦]s ply

4. However, when considering the 8-layer laminate, the sixth-order tensor hαβγδεζ is definite

and therefore dim Imh = 6.

The relative error is computed as follows:

Er =
capp − cfem

cfem

, (60)

where capp and cfem respectively denote the approximate value and the reference value of

the the wave velocity. The relative errors with respect to reference solutions computed with

the finite element method (FEM) are shown in Table 2 for a thickness-wavelength ratio

h/λ = 0.3.

It is worth noting that dispersion relations generally depend on the angle of wave propa-

gation ψ. Taking into account ψ in the computations consists in rotating the entire laminate

by −ψ. In the following, calculations on the [0◦,−45◦, 90◦, 45◦]s ply are performed for several

values of ψ (+15◦,+22◦ and +45) and the related relative errors are set out in Table 3.

As is seen from Figs. 2, 3 and 4, when the wavelength becomes less than 10 times

the plate thickness, the Kirchhoff-Love theory (KL) fails to correctly predict the dispersion

curve of the flexural mode. In fact, relative errors noticed for h/λ = 0.3 are greater than

80%. This is expected since the rotatory inertia and the transverse shear deformations are
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Figure 3: Comparison of the dispersion curves for a [−30◦, 30◦]s ply
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Figure 4: Comparison of the dispersion curves for a [0◦,−45◦, 90◦, 45◦]s ply
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Table 2: Relative error of plate models compared to finite element results with h/λ = 0.3

Laminate KL π2

12
FOSDT BG SCP SSP

[0◦, 90◦]s 1.044 -0.035 -0.038 -0.091 -0.015

[−30◦, 30◦]s 0.896 -0.002 -0.041 -0.046 -0.211

[0◦,−45◦, 90◦, 45◦]s 0.917 -0.045 -0.006 -0.037 0.008

Table 3: Relative error of plate models compared to finite element results for a [0◦,−45◦, 90◦, 45◦]s ply with

h/λ = 0.3

ψ KL π2

12
FOSDT BG SCP SSP

+15◦ 0.935 -0.046 -0.005 -0.037 0.0029

+22◦ 0.960 -0.042 0.024 -0.036 0.005

+45◦ 1.064 0.0006 -0.024 -0.014 0.054

supposed to be negligible (Love, 1888).

In the case of a [0◦, 90◦]s ply, one can observe on Fig. 2 that the results obtained with the

shear stiffness projection (SSP) agree well with the reference results (FEM). Indeed, the SSP

wave velocity is lower than the reference value by 1.5% approximately. The Shear stiffness

projection (SSP) is clearly more efficient than the shear compliance projection (SCP), which

nevertheless gives a satisfactory approximation of the solution with an error |Er| that does

not exceed 9.1%.

When considering a [−30◦, 30◦]s ply, Fig. 3 shows a very good accordance between the

shear compliance projection (SCP) and the finite element method (FEM). In this case, the

shear stiffness projection (SSP) underestimates the dispersion curve of the flexural mode by

21.1%.

For the [0◦,−45◦, 90◦, 45◦]s ply, it is evidently seen on Fig. 4 that the curve obtained

by the shear compliance (SCP) and the shear stiffness projections (SSP) match very well

the solution computed with the finite element method (FEM). The relative error |Er| has
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a minimum value of 0.5% and a maximum value of 5% for both projections in case of all

measurements (see Tables 2 and 3).

The conformity between the π2

12
-FOSDT and the reference results is very good according

to Figs. 2, 3 and 4 with a relative error that reaches a maximum of about 4.6% in absolute

value for the considered examples.

Tables 2 and 3 show that the the relative error |Er| of the Bending-Gradient model ranges

from 0.5% to 4.1%. Such small errors result in precise approximation of the wave dispersion

relation, which is illustrated in Figs. 2, 3 and 4.

More numerical simulations were carried out to assess the validity range of the Bending-

Gradient model and the Reissner-Mindlin models suggested in Section 3.4. For instance, we

considered a multilayered plate consisting of alternate layers of the same thickness h = 1mm

of epoxy-glass woven composite and aluminium whose elastic properties are respectively set

down in Tables 4 and 5. The sequence is [ GFRP, Al, GFRP, Al ]s and the GFRP material

directions L,N are aligned with Directions 1 and 2.

Table 4: Elastic properties of epoxy-glass fiber composite material Renno et al. (2013), E and G in Pa, ρ

in kg/m3

EL = ET EN GLT GLN = GTN νLT νLN = νTN ρ

5.40e+10 4.80e+09 3.16e+09 1.78e+09 0.06 0.31 2000

Table 5: Elastic properties of aluminium material Liu et al. (2016), E and G in Pa, ρ in kg/m3

E G ν ρ

7.20e+10 2.67e+10 0.35 2700

The obtained dispersion curves are depicted in Fig. 5. The relative errors with respect

to finite element (FEM) solutions are given in Table 6 for a thickness-wavelength ratio

h/λ = 0.3.
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Figure 5: Comparison of the dispersion curves for a [GFRP, Al, GFRP, Al ]s ply

Table 6: Relative error of plate models compared to finite element results with h/λ = 0.3 for a [0◦, 0◦, 90◦, 0◦]s

ply

Laminate π2

12
FOSDT BG SCP SSP

[0◦, 0◦, 90◦, 0◦]s -0.134 -0.065 -0.069 -0.031

According to Fig. 5, the agreement between the π2

12
-FOSDT and the reference results is

poor. For a thickness-wavelength ratio h/λ = 0.3, the relative error |Er| is around 13%.

It can be seen that the Bending-Gradient model (BG) and the shear compliance pro-

jection (SCP) provide good approximations of the flexural dispersion curves. The relative

error |Er| is lower than 7% as stated in Table 6.

The computed results reveal the better approximation from the shear stiffness projection

(SSP) in this case. The relative error |Er| is equal to 3.1% for h/λ = 0.3.

Whereas Reissner-Mindlin approximations (SCP, SSP, π2

12
-FOSDT) may give very accu-

rate estimates of the dispersion curve in some specific cases, it appears that the Bending-

Gradient approximation is the most robust one. Indeed, in all cases, reasonable estimates

of the wave velocity is provided.
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6. Conclusion

In this paper, we addressed the problem of flexural wave propagation in anisotropic

laminated plates by using the Bending-Gradient theory. The Bending-Gradient problem was

briefly recalled and two projections on a simplified Reissner-Mindlin model were introduced:

the shear compliance projection and the shear stiffness projection. The particular case of

homogeneous plates, in which the Bending-Gradient model is turned into a Reissner-Mindlin

model, was also discussed.

Inspired by Mindlin’s paper, the dynamic problem was formulated by taking into account

transverse shear deformations and neglecting rotatory inertia effects. The solution of these

equations enabled the derivation of the dispersion relation connecting the angular frequency

and the wave number. The analytical models were verified by comparing them to finite

element solutions considered as reference solutions. Numerical simulations were conducted

and it was shown that the Reissner-Mindlin models obtained by projections may yield accu-

rate estimations of the solution in some cases. Nevertheless, it was clear that the numerical

results obtained by the Bending-Gradient theory are more robust and less sensitive to the

ply configuration. Though the Bending-Gradient theory seems more complicated than the

Reissner-Mindlin theory, a practical, easy-to-use and publicly accessible Matlab code was

created for obtaining the Bending-Gradient flexural dispersion curves.

Appendix A.

A.1

Let R
_

be the space of 2D third order tensors which comply with the following symmetries:

R
_

=
{

(Xαβγ) ∈ R8| Xαβγ = Xβαγ

}
. (A.1)

Sab and Lebée (2015) orthogonally decomposed the vector space R
_

, endowed with the scalar

product XαβγX
′
αβγ, into Imh and its orthogonal Kerh:

R
_

= Kerh⊕ Imh,

28



where ⊕ is the direct sum operator (Section 2), Imh is the image of the sixth-order shear

force compliance tensor hαβγδεζ :

Imh = {hαβγδεζXζεδ, Xζεδ ∈ R
_
},

and Kerh denotes its kernel:

Kerh = {Xαβγ ∈ R
_
| hαβγδεζXζεδ = 0}.

Sab and Lebée (2015) have proved that the shear force compliance tensor hαβγδεζ is definite

only on the subspace Imh whose dimension is between two and six, depending on the elastic

properties of the plate. When the plate is homogeneous, the dimension of Imh is exactly two

and in this case the Bending-Gradient theory degenerates into the Reissner-Mindlin theory.

When hαβγδεζ is definite and therefore invertible, Imh is equal to R
_

of dimension six.

A.2

For the particular case of homogeneous plates, we recall that the Bending-Gradient shear

compliance tensor hαβγδεζ is of the form

hαβγδεζ = iαβγηf
R

ηθiθδεζ . (A.2)

Contracting three times the left and the right of both sides of the above equation with 2
3
iαβγδ,

we obtain the expression of fR
αβ in terms of hαβγδεζ :

f RM

11 =
4

9
(h111111 + h122221 + 2h111221) ,

f RM

12 = f RM

21 =
4

9
(h111121 + h111222 + h121221 + h222221) ,

f RM

22 =
4

9
(h222222 + h121121 + 2h121222) .

(A.3)

In view of the positive definiteness of fR
αβ, we define its inverse F R

αβ.

Propagation of elastic waves is governed by the equations of the Bending-Gradient theory,

which for homogeneous plates write:Qα −Mαβ,β = 0,

Qα,α = Ü3ρ̄.
(A.4)
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In terms of displacements (U3, ϕα), the above equations are revised as:{
F R

αβ (ϕβ + U3,β)−Dαβξηϕη,ξβ = 0, (A.5a)

F R

αβ (ϕβ,α + U3,βα) = Ü3ρ̄. (A.5b)

The displacements (U3, ϕα) (x1, t), solution to the wave equations (A.5), have the general

following form: U3(x1, t) = <
(
Û3e

j(ωt−kx1)
)
, (A.6a)

ϕα(x1, t) = <
(
ϕ̂αe

j(ωt−kx1)
)
, (A.6b)

where Û3 and ϕ̂α are constants. Plugging these functions into equations (A.5), it follows

that: F R

αβ

(
ϕ̂β − jkδβ1Û3

)
+ k2Dα11ηϕ̂η = 0, (A.7a)

F R

1β

(
−jkϕ̂β − k2δβ1Û3

)
+ ω2Û3ρ̄ = 0. (A.7b)

We denote by [δh] the vector of dimension 3 representing the generalized displacements:

[δh]T =
[
Û3, ϕ̂1, ϕ̂2

]
. (A.8)

Equations (A.7) can be rewritten as:

[B] · [δh] = 0, (A.9)

where [B] is a 3× 3 matrix identified as:

[B] =


ω2ρ̄− k2F R

11 −jkF R
11 −jkF R

12

−jkF R
11 F R

11 + k2D1111 F R
12 + k2D1121

−jkF R
21 F R

21 + k2D2111 F R
22 + k2D2121

 . (A.10)

The dispersion relation of flexural waves for homogeneous plates is deduced from solving:

det[B] = 0, (A.11)

which yields

ω2 =
k6F R

11 (D1111D2121 −D2
1121) + k4D1111 (F R

11F
R
22 − (F R

12)
2)

ρ̄
(
(F R

11 + k2D1111) (F R
22 + k2D2121)− (F R

12 + k2D2111)
2) . (A.12)
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The tensors F R
αβ and Dαβγδ, being positive definite respectively imply that:

F R

11 > 0, F R

11F
R

22 − (F R

12)
2 > 0

and

D1111 > 0, D1111D2121 −D2
1121 > 0.

Furthermore, the wavenumber k being real implies that the matrix

 F R
11 + k2D1111 F R

12 + k2D2111

F R
12 + k2D2111 F R

22 + k2D2121


is positive definite. Therefore, its determinant is always positive. Namely,

(
F R

11 + k2D1111

) (
F R

22 + k2D2121

)
−
(
F R

12 + k2D2111

)2
> 0.

As a consequence, equation (A.12) admits two real roots corresponding to the forward and

backward flexural waves.
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