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Abstract. Blind image deconvolution recovers a deblurred image and the blur kernel from a
blurred image. From a mathematical point of view, this is a strongly ill-posed problem and several
works have been proposed to address it. One successful approach proposed by Chan and Wong,
consists in using the total variation (TV) as a regularization for both the image and the kernel.
These authors also introduced an Alternating Minimization (AM) algorithm in order to compute
a physical solution. Unfortunately, Chanâs approach suffers in particular from the ringing and
staircasing effects produced by the TV regularization. To address these problems, we propose a
new model based on Bilateral Total Variation (BTV) regularization of the sharp image keeping the
same regularization for the kernel. We prove the existence of a minimizer of a proposed variational
problem in a suitable space using a relaxation process. We also propose an AM algorithm based
on our model.
The efficiency and robustness of our model are illustrated and compared with the TV method
through numerical simulations.

Key words: Blind deconvolution, Deblurring, Total Variation, Bilateral Total Variation, Regular-
ization, Relaxation, Alternating Minimization.

1. Introduction
Image-processing techniques such as denoising [26], deblurring [28, 12], and super-resolution
[14, 10] , play a key role in science. Blind deblurring [3, 21, 20], for example, is used widely
in a variety of scientific areas such as astronomical imaging, anatomy, medical imaging, remote
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sensing, and more recently for removing motion blur in mobile phone images [1].
The main goal of blind deblurring is to reconstruct the original image from a blurred observation.
This image is degraded by an unknown blur kernel called the Point Spread Function (PSF).

Three major types of blur [5] are addressed: motion blur, atmospheric blur, and out-of -ocus
blur. Out-of-focus blur is produced by the deviation of an imaging plane from the focus of an
optical lens. Atmospheric blur is due to the optical turbulence of photonic media through travelling
light rays, andmotion blur is caused by the movement of either the observed object or of the camera
during the image acquisition process. In addition, images are always corrupted by noise, which
arises from several sources such as radiation scatter from the surface before the image is acquired
and electrical noise in the sensor or camera.

Mathematically, blind deblurring is considered as an inverse problem. To overcome its ill-
posedness, several works have been proposed such as [16, 2, 3, 7, 18, 11]. You and Kaveh [2]
proposed a regularization based on H1 norm with respect to both the deblurred image and the
blur kernel. However, the H1 norm has very strong isotropic smoothing properties and does not
preserve edges well. Instead of the H1 norm, Chan and Wong [3] used the Total Variation (TV)
regularization [26] for both the image and the kernel. In the same work they also introduced
an alternating minimization (AM) algorithm with the cosine preconditioned conjugate gradient
methodand a fixed-point (FP) method. The resulting objective function, in Chan’s model, is not
jointly convex, and thus its minimum is not unique. The authors in [3] then added some constraints
in order to stabilize their algorithm. Despite these constraints, Chan’s approach suffers from several
drawbacks, for example, it is prone to local minima and does not favor the correct solution [6].
Several works have subsequently tried to counteract the weakness of the Chan and Wong process,
including Perrone et al.[6], who propose an alternative way to limit the AM algorithm problems.
They prove analytically that the normalization in the iterative step of the blur kernel is essential to
the convergence of the AM algorithm.

However, Perroneâs modified version of the AM algorithm still suffers from the staircasing
and ringing effects. The first effect is caused by the use of the TV regularization. The second
appears after applying an iterative deblurring algorithm, known as the Gibbs phenomenon in im-
age processing. In this work we try to reduce these two effects, by proposing an alternative and
new regularization to the Chan and Wong model based on a Bilateral Total Variation process [9].
This kind of regularization has been successfully applied in many problems in image processing
[9, 22, 19, 10]. We first investigate a theoretical study using a relaxation framework [27, 8] to
demonstrate the existence of a solution to our minimization problem. Numerically, we apply the
same constraints proposed by Perrone et al.[6] to stabilize our AM algorithm. Using experimental
tests, we show the effectiveness of the BTV regularization in reducing the staircasing and ringing
effects in both blind and non-blind deconvolution processes.

This paper is organized as follows. Section 2 presents the general formulation of the blind decon-
volution problem. Section 3 recalls various classical models in image deconvolution. Section 4
describes our model with theoretical results. Finally, numerical results are presented in Section 5.
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2. Problem formulation
The main objective of blind deconvolution is to jointly estimate an “ideal” image u and a blur
kernel k from a given input data u0. Formally, the problem is modeled by the following inverse
problem

u0 = k ∗ u+ n, (2.1)

where ∗ is the convolution operator.
The most successful approach that jointly reconstructs u and k is based on the maximum-a-

posterior (MAP). The MAP framework consists in maximizing the posterior p(u, k|u0), which can
be further reformulated by

(ū, k̄) = arg max
u,k

p(u, k|u0) (2.2)

= arg max
u,k

p(u0|u, k)p(u)p(k)

p(u0)
(2.3)

= arg min
u,k
− log(p(u0|u, k))− log(p(u))− log(p(k)), (2.4)

the likelihood term p(u0|u, k) is defined as

p(u0|u, k) = exp

(
−1

2
‖k ∗ u− u0‖2

L2(Ω)

)
. (2.5)

We assume that the probabilities p(u) and p(k) are given respectively by

p(u) = exp(−α1R1(u)), (2.6)

and
p(k) = exp(−α2R2(k)), (2.7)

where R1 and R2 are chosen positive functions, and α1, α2 are two non-negative parameters.
With these formulations, the resolution of the problem (2.2) is then equivalent to the following
minimization problem

min
u,k

1

2
‖k ∗ u− u0‖2

L2(Ω) + α1R1(u) + α2R2(k), (2.8)

where Ω is a bounded open subset of R2.
Note that the first term in (2.8) measures the fidelity of the data, while the second and the third
terms are two penalty functions. These two norms are used to regularize the problem with respect
to the sharp image u and the kernel k.

3. Previous works
Choosing the appropriate regularization R1 and R2 that considers the suitable image space is al-
ways difficult. Many functions have therefore been proposed in the literature with different degrees
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of success. The first proposition by You and Kaveh [2] consists in choosing the following two reg-
ularization terms

R1(u) = ‖u‖H1(Ω) and R2(k) = ‖k‖H1(Ω). (3.1)

It is well known that H1 norm has very strong isotropic smoothing properties and thus fails to
preserve edges and corners of the restored image. Since TV regularization can effectively recover
and preserve edges of an image, Chan and Wong used the TV norm instead of the H1. They
proposed the following problem

min
(u,k)∈BV (Ω)2

1

2
‖k ∗ u− u0‖2

L2(Ω) + α1TV (u) + α2TV (k), (3.2)

where TV (u) represents the total variation of a u ∈ BV (Ω) is defined as follows

TV (u) =

∫
Ω

|Du|dx

= sup

{∫
Ω

u divϕ dx : ϕ ∈ C1(Ω,R), ‖ϕ‖∞ ≤ 1

}
,

and BV (Ω) is the space of integrable functions with bounded variations and Ω is a bounded do-
main [29, 27].
To approximate a numerical solution, Chan and Wong introduced an alternating minimization
(AM) algorithm to solve the above minimization problem. They also used the cosine precondi-
tioned conjugate gradient method and a fixed-point approach to obtain a solution. However, the
function in (3.2) is not jointly convex if it is considered as a two-variable function, then if (u, k) is
a solution, (u(x+ c), k(x+ c)) and (αu(x), 1

α
k(x)) are also solutions for any c ∈ R2 and non-zero

α. In order to stabilize their algorithm, Chan and Wong added some constraints on the functions u
and k, such as

‖k‖1 = 1, k(x) ≥ 0, u(x) ≥ 0,∀x ∈ Ω. (3.3)

Despite these constraints, the AM algorithm still suffers from the existence of a local minima
[7, 6]. Recently, Perrone et al.[6] proposed a new model which reduced some difficulties of the
AM algorithm. They combine the advantages of the Chan [3] and Levin [7] models in a new
approach, which consists in solving the following problem

min
u,k

1

2
‖k ∗ u− u0‖2

L2(Ω) + λTV (u). (3.4)

Similarly to Chan [3], Perrone et al. introduced an alternating minimization algorithm to resolve
this problem. In this paper, we consider a more robust regularization, namely the Bilateral Total
Variation filter (BTV) [9, 10, 13, 22].This filter is constructed by considering a larger neighborhood
in the computation of the gradient at each pixel. This preserves the sharp edges much better and
reduces the staircase effects in smooth regions. The expression of the BTV function is given by

BTV (v) =

p∑
i=−p

p∑
j=−p

α|i|+|j|‖v − SixSjyv‖1, (3.5)
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where Six and Sjy are two shift operators v respectively by i and j pixels in horizontal and vertical
directions with i + j > 0 . The parameter α ∈]0, 1[ is a scalar weight applied to give a spatially
decaying effect to the summation of the regularization terms. p is the spatial window size.
In fact, to prove the solution of the minimization problem (3.2), the appropriate functional space
is the BV (Ω) space. On the other hand, the main difficulty is to guarantee that the minimization
sequence is bounded in BV (Ω). To tackle this problem, we can consider BTV0 instead of BTV ,
where

BTV0(u) = α‖∇u‖L1(Ω) +

p∑
i=−p
i 6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)u‖L1(Ω). (3.6)

Now we can thus use the function BTV0 to find a solution to our problem, keeping the BTV
term in the numerical approximation.

4. Proposed model
In this section, we present our model with various theoretical results before introducing an alter-
nating algorithm for the numerical approximation of the solution.

4.1. Theoretical framework
Using the regularization term BTV0, we present the new blind deconvolution problem as follows:

inf
(u,k)

{
F (u, k) := ‖k ∗ u− u0‖2

L2(Ω) + α1BTV0(u) + α2TV (k)
}
, (4.1)

where α1 > 0 and α2 > 0 are two regularization parameters, which measure the trade-off between
a right fit with the regularity of both solutions u and k.
In order to give a brief theoretical steady of our problem, we need the following conditions

1. u0 ∈ L∞(Ω)

2. k ∈ BV (Ω),
∫

Ω

|k(x)|dx = 1 and k ∗ 1 6= 0

3. The operator I − SixSjy : L1(Ω)→ L1(Ω) is continuous.

Naturally, the appropriate functional space where the cost function is well defined is V ×BV (Ω),
with

V =
{
u ∈ L2(Ω); ∇u ∈

(
L1(Ω)

)2
}
. (4.2)

Unfortunately, this space is not reflexive. We thus need to look for a suitable space that guarantees
some compactness properties. The suitable space is BV (Ω), in fact for every bounded sequence in
V it is also bounded inBV (Ω) [8]. However, if we extend the function F by∞ on (BV (Ω)− V )×
BV (Ω), this function is not lower semi continuous for the BV − w∗ topology. An alternative is
then to consider the convex envelope associated with the relaxed function. The following theorem
presents the relaxed function of the problem (4.1).
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Theorem 1. The relaxed function associated with the problem (4.1), for the weak∗ topology of
BV (Ω)×BV (Ω) is given by

F̄ (u, k) =
1

2
‖k ∗ u− u0‖2

L2(Ω) + α1(α

∫
Ω

|Du|

+

p∑
i=−p
i6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)u‖L1(Ω)) + α2TV (k), (4.3)

where Du is the derivative of u in the sense of distributions.

We recall that ∫
Ω

|Du| =
∫

Ω

|∇u|dx+

∫
Su

(u+ − u−)dH1 + c

∫
Ω−Su

|Cu|, (4.4)

where u+ and u− are the approximate upper limit and the approximate lower limit respectively of
u ∈ BV (Ω) (for more details see [8]).
The set Su is defined as follows:

Su =
{
x ∈ Ω, u− < u+

}
,

whereH1 is the Hausdorff measure, Cu is the Cantor part and c is a real constant.

Proof. Let us first denote by Fet the extended function of F on the space BV (Ω)×BV (Ω), which
is defined as follows

Fet(u, k) =



1
2
‖k ∗ u− u0‖2

L2(Ω) + α1(α‖∇u‖L1(Ω)

+

p∑
i=−p
i 6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)u‖L1(Ω)) + α2TV (k) if (u, k) ∈ V ×BV (Ω)

+∞ if u ∈ BV (Ω)− V.
(4.5)

If (u, k) ∈ V ×BV (Ω), then Fet(u, k) = F̄ (u, k), generally we have F̄ (u, k) ≤ Fet(u, k).
The function Fet is not lower semi-continuous for the weak∗ topology of BV (Ω) × BV (Ω). We
then compute its relaxed function F̄et. In fact, we need to show that F̄et = F̄ .
The function F̄ is lower semi-continuous for the weak topology. To prove it, we use the continuity
of the operator (I − SixSjy) and the lower semi-continuity of the total variation.
Let us now prove (xn, kn)n is a convergent sequence to some (u, k) in BV (Ω)×BV (Ω), then

F̄ (x, k) ≤ lim inf
n→∞

F̄ (xn, kn), (4.6)

since F̄ (u, k) ≤ Fet(u, k), we deduce that

F̄ (u, k) ≤ lim inf
n→∞

Fet(un, kn). (4.7)

6
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Concerning the other inequality: we use a classical result in [27], then for every (u, k) ∈ BV (Ω)×
BV (Ω), there exists a sequence (un, kn) ∈ (C∞ ∩BV (Ω))2 such that

un −→
L1(Ω)

u,

∫
Ω

|Dun| −→
∫

Ω

|Du|, (4.8)

and
kn −→

L1(Ω)
k,

∫
Ω

|Dkn| −→
∫

Ω

|Dk|. (4.9)

We thus conclude that
lim inf
n→∞

Fet(un, kn) ≤ F̄ (u, k). (4.10)

Combining the two inequalities (4.7) and (4.10), we obtain

F̄ (u, k) = lim inf
n→∞

Fet(un, kn). (4.11)

Let us now prove the existence of a solution of relaxed problem associated with (4.1).

Theorem 2. Given α1 > 0 and α2 > 0, the problem

inf
(u,k)∈BV (Ω)2

F̄ (u, k), (4.12)

admits a solution in BV (Ω)×BV (Ω).

Proof. 1. Existence:
Let (un, kn)n be a minimizing sequence for (4.12). Then, there exists a constantM > 0 such
that 

1
2
‖kn ∗ un − u0‖2

L2(Ω) ≤M∫
Ω

|Dun|+
p∑

i=−p
i 6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)un‖L1(Ω) ≤M

TV (kn) ≤M

(4.13)

The inequality (4.13) confirms that the total variations of (un)n and (kn)n are bounded. It
remains to be proven that these sequences are also bounded in L1(Ω). Let us consider that

wn =
1

|Ω|

∫
Ω

un(x)dx, we then construct the sequence vn such as

vn = wn − un. (4.14)

Using the Poincaré-Wirtinger inequality, there exists a constant C1 > 0 such that

‖vn‖L2(Ω) ≤ C1

∫
Ω

|Dun|. (4.15)

7
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We conclude that the sequence (vn)n is bounded in L2(Ω), since
∫

Ω
|Dun| ≤ M . On the

other hand, we have ‖kn ∗ un − u0‖2
L2(Ω) ≤M , which implies

‖kn ∗ vn + kn ∗ wn − u0‖2
L2(Ω) ≤M. (4.16)

In addition we have

kn ∗ wn = (kn ∗ vn + kn ∗ wn − u0)− (kn ∗ vn − u0), (4.17)

therefore,

‖kn ∗ wn‖L2(Ω) ≤ ‖kn ∗ vn + kn ∗ wn − u0‖L2(Ω) + ‖kn ∗ vn‖L2(Ω) + ‖u0‖L2(Ω)

≤M + ‖kn ∗ vn‖L2(Ω) + ‖u0‖L2(Ω), (4.18)

using the assumption (2) and the Young inequality [15], we have

‖kn ∗ vn‖L2(Ω) ≤ ‖kn‖L1(Ω)‖vn‖L2(Ω) (4.19)
≤ C2.

Then,
‖kn ∗ wn‖L2(Ω) ≤ C3, (4.20)

moreover,
‖kn ∗ wn‖L2(Ω) = |wn|‖kn ∗ 1‖L2(Ω) ≤ C3, (4.21)

as kn ∗ 1 6= 0 (assumption 2), we deduce that the sequence |
∫

Ω
un(x)dx| is bounded.

As a result

‖un‖L2(Ω) = ‖vn +
1

Ω

∫
Ω

un(x)dx‖L2(Ω)

≤ ‖vn‖L2(Ω) + |
∫

Ω

un(x)dx| (4.22)

≤ C4,

where C2, C3 and C4 are positive constants. Finally, thanks to the Schwartz inequality that
ensures

‖un‖L1(Ω) ≤
√
|Ω|‖un‖L2(Ω)

≤ C5. (4.23)

Consequently, the sequence (un)n is bounded in the BV (Ω) space. Hence, there exists a
subsequence (which is also denoted by (un)n) that weakly∗ converges to some ū ∈ BV (Ω)
[27], such that

un →
L1(Ω)

ū. (4.24)

8
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In addition we have : ∫
Ω

|Dū| ≤ lim inf
n→∞

∫
Ω

|Dun|. (4.25)

Since the operator I − SixSjy is continuous from L1(Ω) into L1(Ω) (condition 3), then

lim
n→∞

p∑
i=−p
i 6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)un‖L1(Ω) =

p∑
i=−p
i 6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)ū‖L1(Ω). (4.26)

Concerning the sequence (kn)n, we use equation (4.13) and the assumption (2). We then
conclude that the sequence (kn)n is bounded in BV (Ω). Therefore, there exists a subse-
quence (which we still denote by (kn)n) that weakly∗ converges to some k̄ ∈ BV (Ω) [27],
such that

kn →
L1(Ω)

k̄, (4.27)

and we have ∫
Ω

|Dk̄| ≤ lim inf
n→∞

∫
Ω

|Dkn|. (4.28)

For the fidelity theorem, thanks to the Fatou lemma, which implies∫
Ω

(k̄ ∗ ū− u0)2 =

∫
Ω

lim inf
n→∞

(kn ∗ un − u0)2

≤ lim inf
n→∞

∫
Ω

(kn ∗ un − u0)2. (4.29)

We finally deduce that (ū, k̄) is a minimizer of the function F̄ on the space BV (Ω)2.

2. Non-uniqueness
Unfortunately, the uniqueness of the solution to the problem (4.12) is not guaranteed. In fact,
the cost function F̄ is not jointly convex. Furthermore, it is clear that if (u, k) is a solution,
then (−u,−k) and (u(x±d), k(x±d)) are also solutions for the problem (4.12) for any real
constant d.

4.2. Numerical Algorithm
The various methods and techniques are presented in the literature see for example [2, 24, 3] to
approximate the minimizers of a cost function. In this subsection we present the numerical imple-
mentation of the proposed problem (4.1), which approximates both the deblurred image u and the
blur kernel k in an alternative way.

9
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Our practical model minimizes the cost function in (4.1), where BTV0 is the regularization
with respect to the sharp image. In the discrete setting, and instead of this function, we regularize
our problem by BTV . In fact, we can prove that BTV ' BTV0, and, we have [17]

‖∇u‖1 ' ‖Qxu‖1 + ‖Qyu‖1, (4.30)

where Qxu = (I − S1
x)u and Qyu = (I − S1

y)u. Then, we find that

BTV (u) =

p∑
i=−p

p∑
j=−p

α|i|+|j|‖u− SixSjyu‖1

= α(‖Qxu‖L1(Ω) + ‖Qyu‖L1(Ω)) +

p∑
i=−p
i 6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)u‖L1(Ω)

' α‖∇u‖1 +

p∑
i=−p
i 6=0,1

p∑
j=−p
j 6=0,1

α|i|+|j|‖(I − SixSjy)u‖L1(Ω)

= BTV0(u).

Consequently, we solve the problem

inf
(u,k)

{
F (u, k) := ‖k ∗ u− u0‖2

L2(Ω) + α1BTV (u) + α2TV (k)
}
, (4.31)

As described above, the minimizer is not unique. Many works [3, 6] have been proposed to
approximate a local minimum using different variants of the Alternating Minimization algorithm.
Note that, PAM [6] is one of the most efficient algorithms proposed, since it avoids the undesired
solutions and local minimums. We thus select this algorithm to estimate the associated Euler-
Lagrange equations related to the problem (4.1) with BTV regularization. The equations are
given by

Fu(u, k) := k̂ ∗ (k ∗ u− u0) + α1

p∑
i,j=−p

α|i|+|j|
(
I − S−ix S−jy

)
sign(u− SixSjyu) = 0, (4.32)

Fk(u, k) := û ∗ (k ∗ u− u0)− α2div

(
∇k
|∇k|

)
= 0, (4.33)

where û, k̂, S−ix and S−jy are the adjoint operators of u, k, Six and Sjy respectively. To solve
the equations (4.32) and (4.33), we use the Alternating Minimization algorithm with projection
constraints [6]. Hence, our proposed algorithm is

ut ← ut − εu

(
kt− ? (kt ? ut − u0) + α1

p∑
i,j=−p

α|i|+|j|
(
I − S−ix S−jy

)
sign(u− SixSjyu)

)
, (4.34)

kt ← kt − εk
(
ut− ? (kt ? ut − u0)− α2div

(
∇kt

|∇kt|

))
, (4.35)
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TV BTV
XXXXXXXXXXXXimage

measure
PSNR SSIM PSNR SSIM

Square 37.53 0.969 38.23 0.970
Triangle 30.92 0.960 31.02 0.970
Bridge 22.50 0.697 22.62 0.681
Car 24.98 0.760 25.13 0.773

Table 1: Comparison of measures PSNR and SSIM.

under the following constraints

kt ← max(0, kt), kt ← kt

|kt|1
, ut(x) ≥ 0,∀x ∈ Ω (4.36)

where εu and εk are two positive steps.
Finally, we summarize our problem of blind deconvolution in the algorithm 1. In this algorithm

”u-step” and ”k-step” are two functions which calculate at each iteration n an approximation of un

and kn, respectively (4.34,4.35).
Algorithm 1: PAM-BTV Algorithm

Data: u0 the degraded image, u0 = u0, k0 = δ the Dirac delta function, parameters :
α1 > 0, α2 > 0 the regularization parameters, α the weight scalar, the “small
positive steps” εu and εk > 0 and p ∈ N the spatial window size

Result: u and k are the restored image and the kernel respectively
while not converged do

un+1 = u-step(un, kn, εu, α1, p, α); // using (4.34)
kn+1 = k-step(un+1, kn, εk, α2); // using (4.35), in this step we
impose the PAM constraints (4.36)
n← n+ 1

end

5. Numerical implementation
In this section, we present various experimental results obtained by our method. For the purposes
of comparison, these experiments are implemented using Matlab 2015a with an Intel Core i5 CPU
3.2 GHz and 16 GB RAM. Note that we tested our model using a reasonable benchmark database
of thirteen images, some of which we show here. We first consider some examples of a non-
blind deconvolution problem. To compare the performance of the BTV regularization with the
TV, we thus used two metrics: the peak-signal-to-noise ratio (PSNR) [25], and the mean structure
similarity (SSIM) [23].
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Figure1 presents the first set of images selected to evaluate the performance of the BTV reg-
ularization in the non-blind deblurring problem. These images are taken of different real scenes
with different grey-level histograms. Figure2 shows the associated degraded images using a mo-
tion blur of size 11× 11 and corrupted with an additive Gaussian noise. Also, we show the results
obtained using the TV and BTV non blind deconvolution problems. Table 1 presents a quantita-
tive comparison using the PSNR (measures signal strength relative to noise in the image) and the
SSIM (measures the similarity between two images).

Concerning the blind deconvolution, in Fig.3, Fig.4 and Fig.5 we propose real examples used
for the first time in [6]. Each image in Fig.3a, Fig.4a and Fig.5a is in fact degraded by an unknown
motion blur. The results of the Perrone algorithm [6] (resp. our proposed algorithm) are presented
in Fig.3b-Fig.4b-Fig.5b (resp. in Fig.3c-Fig.4c-Fig.5c). The parameters chosen for our algorithm
are p = 2 in all tests. For α, we chose α = 0.25, α = 0.47, α = 0.3 and α = 0.35 in the
non-blind deconvolution, and α = 0.13, α = 0.35 and α = 0.27 for the three examples in the
blind one respectively. Concerning the regularization parameters λ1 and λ2, we used the formula
[6] λn+1 → max(0.99λn, λmin), which automatically selects λ. The optimal values of λmin and λ0

are selected according to the best PSNR value for our method in all the experiments.
These experiments illustrate that our algorithm gives the best result in terms of the highest

PSNR and SSIM values compared to the PAM algorithm [6]. In addition, the staircasing effect
can be seen in the results with TV regularization (images in Fig.2e, Fig.2h, Fig.2k, Fig.3b, Fig.4b,
Fig.5b), while it is lower for our result (images in Fig.2f, Fig.2i, Fig.2l, Fig.3c, Fig.4c, Fig.5c).
The ringing effect also clearly appears in the Perrone method (image in Fig.4b), and it reduced in
our presented result (image in Fig.4c).

(a) Square (b) Triangle (c) Bridge

(d) Car

Figure 1: Set of original images used in the tests
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(a) Degraded (b) TV (c) BTV

(d) Degraded (e) TV (f) BTV

(g) Degraded (h) TV (i) BTV

(j) Degraded (k) TV (l) BTV

Figure 2: The first column presents the degraded images, the second and third columns illustrate
the results of the TV and BTV non blind deconvolution problem, respectively.
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(a) The initial image [6] (b) PAM Algorithm [6] (c) PAM-BTV Algo.1

Figure 3: Results of the blind deconvolution obtained by PAM and our algorithm.

(a) The initial image (b) PAM Algorithm [6] (c) PAM-BTV Algo.1

Figure 4: Results of the blind deconvolution obtained by PAM and our algorithm.
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(a) The initial image (b) PAM Algorithm [6] (c) PAM-BTV Algo.1

Figure 5: Results of the blind deconvolution obtained by PAM and our algorithm.

6. Conclusions
We have proposed a variational method for an image blind deconvolution. Our method is based
on a BTV regularization for the resulting image and a TV regularization for the blur kernel. This
method reduces the staircasing and ringing effects while the edges are preserved. In addition, we
have also proved the existence of a solution to the BTV-TV blind deconvolution problem with a
relaxation technique. We have illustrated the robustness of our method by what we feel are very
promising simulated and real experimental results.
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