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Blind image deconvolution recovers a deblurred image and the blur kernel from a blurred image. From a mathematical point of view, this is a strongly ill-posed problem and several works have been proposed to address it. One successful approach proposed by Chan and Wong, consists in using the total variation (TV) as a regularization for both the image and the kernel. These authors also introduced an Alternating Minimization (AM) algorithm in order to compute a physical solution. Unfortunately, Chanâs approach suffers in particular from the ringing and staircasing effects produced by the TV regularization. To address these problems, we propose a new model based on Bilateral Total Variation (BTV) regularization of the sharp image keeping the same regularization for the kernel. We prove the existence of a minimizer of a proposed variational problem in a suitable space using a relaxation process. We also propose an AM algorithm based on our model. The efficiency and robustness of our model are illustrated and compared with the TV method through numerical simulations.

Introduction

Image-processing techniques such as denoising [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], deblurring [START_REF] Liu | Surface-aware Blind Image Deblurring[END_REF][START_REF] Rhabi | A new image deblurring approach using a special convolution expansion[END_REF], and super-resolution [START_REF] Mourabit | A new denoising model for multi-frame super-resolution image reconstruction[END_REF][START_REF] Laghrib | A combined total variation and bilateral filter approach for image robust super resolution[END_REF] , play a key role in science. Blind deblurring [START_REF] Chan | Total variation blind deconvolution[END_REF][START_REF] Zhong | Spatially adaptive total generalized variationregularized image deblurring with impulse noise[END_REF][START_REF] Liu | L0-regularized hybrid gradient sparsity priors for robust single-image blind deblurring[END_REF], for example, is used widely in a variety of scientific areas such as astronomical imaging, anatomy, medical imaging, remote sensing, and more recently for removing motion blur in mobile phone images [START_REF] Fergus | Removing camera shake from a single photograph[END_REF]. The main goal of blind deblurring is to reconstruct the original image from a blurred observation. This image is degraded by an unknown blur kernel called the Point Spread Function (PSF).

Three major types of blur [START_REF] Chan | Image Processing and Analysis[END_REF] are addressed: motion blur, atmospheric blur, and out-of -ocus blur. Out-of-focus blur is produced by the deviation of an imaging plane from the focus of an optical lens. Atmospheric blur is due to the optical turbulence of photonic media through travelling light rays, andmotion blur is caused by the movement of either the observed object or of the camera during the image acquisition process. In addition, images are always corrupted by noise, which arises from several sources such as radiation scatter from the surface before the image is acquired and electrical noise in the sensor or camera.

Mathematically, blind deblurring is considered as an inverse problem. To overcome its illposedness, several works have been proposed such as [START_REF] Ayers | Iterative blind deconvolution method and its applications[END_REF][START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF][START_REF] Chan | Total variation blind deconvolution[END_REF][START_REF] Levin | Understanding blind deconvolution algorithms[END_REF][START_REF] Ashino | Blind image source separations by wavelet analysis[END_REF][START_REF] Dumas | An evolutionary approach for blind deconvolution of barcode images with nonuniform illumination[END_REF]. You and Kaveh [START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF] proposed a regularization based on H 1 norm with respect to both the deblurred image and the blur kernel. However, the H 1 norm has very strong isotropic smoothing properties and does not preserve edges well. Instead of the H 1 norm, Chan and Wong [START_REF] Chan | Total variation blind deconvolution[END_REF] used the Total Variation (TV) regularization [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] for both the image and the kernel. In the same work they also introduced an alternating minimization (AM) algorithm with the cosine preconditioned conjugate gradient methodand a fixed-point (FP) method. The resulting objective function, in Chan's model, is not jointly convex, and thus its minimum is not unique. The authors in [START_REF] Chan | Total variation blind deconvolution[END_REF] then added some constraints in order to stabilize their algorithm. Despite these constraints, Chan's approach suffers from several drawbacks, for example, it is prone to local minima and does not favor the correct solution [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF]. Several works have subsequently tried to counteract the weakness of the Chan and Wong process, including Perrone et al. [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF], who propose an alternative way to limit the AM algorithm problems. They prove analytically that the normalization in the iterative step of the blur kernel is essential to the convergence of the AM algorithm.

However, Perroneâs modified version of the AM algorithm still suffers from the staircasing and ringing effects. The first effect is caused by the use of the TV regularization. The second appears after applying an iterative deblurring algorithm, known as the Gibbs phenomenon in image processing. In this work we try to reduce these two effects, by proposing an alternative and new regularization to the Chan and Wong model based on a Bilateral Total Variation process [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]. This kind of regularization has been successfully applied in many problems in image processing [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF][START_REF] Zenga | A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization[END_REF][START_REF] Farsiu | Advanced and challenges in superresolution[END_REF][START_REF] Laghrib | A combined total variation and bilateral filter approach for image robust super resolution[END_REF]. We first investigate a theoretical study using a relaxation framework [START_REF] Attouch | Variational Analysis in Sobolev and BV Spaces: Applications to PDE's and Optimization[END_REF][START_REF] Aubert | Mathematical Problems in Image Processing Partial Differential Equations and the Calculus of Variations[END_REF] to demonstrate the existence of a solution to our minimization problem. Numerically, we apply the same constraints proposed by Perrone et al. [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF] to stabilize our AM algorithm. Using experimental tests, we show the effectiveness of the BTV regularization in reducing the staircasing and ringing effects in both blind and non-blind deconvolution processes. This paper is organized as follows. Section 2 presents the general formulation of the blind deconvolution problem. Section 3 recalls various classical models in image deconvolution. Section 4 describes our model with theoretical results. Finally, numerical results are presented in Section 5.

Problem formulation

The main objective of blind deconvolution is to jointly estimate an "ideal" image u and a blur kernel k from a given input data u 0 . Formally, the problem is modeled by the following inverse problem

u 0 = k * u + n, (2.1) 
where * is the convolution operator. The most successful approach that jointly reconstructs u and k is based on the maximum-aposterior (MAP). The MAP framework consists in maximizing the posterior p(u, k|u 0 ), which can be further reformulated by

(ū, k) = arg max u,k p(u, k|u 0 ) (2.2) = arg max u,k p(u 0 |u, k)p(u)p(k) p(u 0 ) (2.3) = arg min u,k -log(p(u 0 |u, k)) -log(p(u)) -log(p(k)), (2.4) 
the likelihood term p(u 0 |u, k) is defined as

p(u 0 |u, k) = exp - 1 2 k * u -u 0 2 L 2 (Ω) . (2.5) 
We assume that the probabilities p(u) and p(k) are given respectively by

p(u) = exp(-α 1 R 1 (u)), (2.6) 
and

p(k) = exp(-α 2 R 2 (k)), (2.7) 
where R 1 and R 2 are chosen positive functions, and α 1 , α 2 are two non-negative parameters. With these formulations, the resolution of the problem (2.2) is then equivalent to the following minimization problem

min u,k 1 2 k * u -u 0 2 L 2 (Ω) + α 1 R 1 (u) + α 2 R 2 (k), (2.8) 
where

Ω is a bounded open subset of R 2 .
Note that the first term in (2.8) measures the fidelity of the data, while the second and the third terms are two penalty functions. These two norms are used to regularize the problem with respect to the sharp image u and the kernel k.

Previous works

Choosing the appropriate regularization R 1 and R 2 that considers the suitable image space is always difficult. Many functions have therefore been proposed in the literature with different degrees of success. The first proposition by You and Kaveh [START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF] consists in choosing the following two regularization terms

R 1 (u) = u H 1 (Ω) and R 2 (k) = k H 1 (Ω) . (3.1)
It is well known that H 1 norm has very strong isotropic smoothing properties and thus fails to preserve edges and corners of the restored image. Since TV regularization can effectively recover and preserve edges of an image, Chan and Wong used the TV norm instead of the H 1 . They proposed the following problem

min (u,k)∈BV (Ω) 2 1 2 k * u -u 0 2 L 2 (Ω) + α 1 T V (u) + α 2 T V (k), (3.2) 
where T V (u) represents the total variation of a u ∈ BV (Ω) is defined as follows

T V (u) = Ω |Du|dx = sup Ω u div ϕ dx : ϕ ∈ C 1 (Ω, R), ϕ ∞ ≤ 1 ,
and BV (Ω) is the space of integrable functions with bounded variations and Ω is a bounded domain [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Attouch | Variational Analysis in Sobolev and BV Spaces: Applications to PDE's and Optimization[END_REF].

To approximate a numerical solution, Chan and Wong introduced an alternating minimization (AM) algorithm to solve the above minimization problem. They also used the cosine preconditioned conjugate gradient method and a fixed-point approach to obtain a solution. However, the function in (3.2) is not jointly convex if it is considered as a two-variable function, then if (u, k) is a solution, (u(x + c), k(x + c)) and (αu(x), 1 α k(x)) are also solutions for any c ∈ R 2 and non-zero α. In order to stabilize their algorithm, Chan and Wong added some constraints on the functions u and k, such as

k 1 = 1, k(x) ≥ 0, u(x) ≥ 0, ∀x ∈ Ω. (3.3) 
Despite these constraints, the AM algorithm still suffers from the existence of a local minima [START_REF] Levin | Understanding blind deconvolution algorithms[END_REF][START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF]. Recently, Perrone et al. [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF] proposed a new model which reduced some difficulties of the AM algorithm. They combine the advantages of the Chan [START_REF] Chan | Total variation blind deconvolution[END_REF] and Levin [START_REF] Levin | Understanding blind deconvolution algorithms[END_REF] models in a new approach, which consists in solving the following problem

min u,k 1 2 k * u -u 0 2 L 2 (Ω) + λT V (u). (3.4) 
Similarly to Chan [START_REF] Chan | Total variation blind deconvolution[END_REF], Perrone et al. introduced an alternating minimization algorithm to resolve this problem. In this paper, we consider a more robust regularization, namely the Bilateral Total Variation filter (BTV) [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF][START_REF] Laghrib | A combined total variation and bilateral filter approach for image robust super resolution[END_REF][START_REF] Ghazdali | A new method for the extraction of fetal ECG from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques[END_REF][START_REF] Zenga | A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization[END_REF].This filter is constructed by considering a larger neighborhood in the computation of the gradient at each pixel. This preserves the sharp edges much better and reduces the staircase effects in smooth regions. The expression of the BTV function is given by

BT V (v) = p i=-p p j=-p α |i|+|j| v -S i x S j y v 1 , (3.5) 
where S i x and S j y are two shift operators v respectively by i and j pixels in horizontal and vertical directions with i + j > 0 . The parameter α ∈]0, 1[ is a scalar weight applied to give a spatially decaying effect to the summation of the regularization terms. p is the spatial window size. In fact, to prove the solution of the minimization problem (3.2), the appropriate functional space is the BV (Ω) space. On the other hand, the main difficulty is to guarantee that the minimization sequence is bounded in BV (Ω). To tackle this problem, we can consider BT V 0 instead of BT V , where

BT V 0 (u) = α ∇u L 1 (Ω) + p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )u L 1 (Ω) . (3.6) 
Now we can thus use the function BT V 0 to find a solution to our problem, keeping the BT V term in the numerical approximation.

Proposed model

In this section, we present our model with various theoretical results before introducing an alternating algorithm for the numerical approximation of the solution.

Theoretical framework

Using the regularization term BT V 0 , we present the new blind deconvolution problem as follows:

inf (u,k) F (u, k) := k * u -u 0 2 L 2 (Ω) + α 1 BT V 0 (u) + α 2 T V (k) , (4.1) 
where α 1 > 0 and α 2 > 0 are two regularization parameters, which measure the trade-off between a right fit with the regularity of both solutions u and k.

In order to give a brief theoretical steady of our problem, we need the following conditions

1. u 0 ∈ L ∞ (Ω) 2. k ∈ BV (Ω), Ω |k(x)|dx = 1 and k * 1 = 0 3. The operator I -S i x S j y : L 1 (Ω) → L 1 (Ω) is continuous.
Naturally, the appropriate functional space where the cost function is well defined is

V × BV (Ω), with V = u ∈ L 2 (Ω); ∇u ∈ L 1 (Ω) 2 . (4.2)
Unfortunately, this space is not reflexive. We thus need to look for a suitable space that guarantees some compactness properties. The suitable space is BV (Ω), in fact for every bounded sequence in V it is also bounded in BV (Ω) [START_REF] Aubert | Mathematical Problems in Image Processing Partial Differential Equations and the Calculus of Variations[END_REF]. However, if we extend the function F by ∞ on (BV (Ω) -V )× BV (Ω), this function is not lower semi continuous for the BV -w * topology. An alternative is then to consider the convex envelope associated with the relaxed function. The following theorem presents the relaxed function of the problem (4.1).

Theorem 1. The relaxed function associated with the problem (4.1), for the weak * topology of BV (Ω) × BV (Ω) is given by

F (u, k) = 1 2 k * u -u 0 2 L 2 (Ω) + α 1 (α Ω |Du| + p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )u L 1 (Ω) ) + α 2 T V (k), (4.3) 
where Du is the derivative of u in the sense of distributions.

We recall that

Ω |Du| = Ω |∇u|dx + Su (u + -u -)dH 1 + c Ω-Su |C u |, (4.4) 
where u + and u -are the approximate upper limit and the approximate lower limit respectively of u ∈ BV (Ω) (for more details see [START_REF] Aubert | Mathematical Problems in Image Processing Partial Differential Equations and the Calculus of Variations[END_REF]).

The set S u is defined as follows:

S u = x ∈ Ω, u -< u + ,
where H 1 is the Hausdorff measure, C u is the Cantor part and c is a real constant.

Proof. Let us first denote by F et the extended function of F on the space BV (Ω) × BV (Ω), which is defined as follows

F et (u, k) =              1 2 k * u -u 0 2 L 2 (Ω) + α 1 (α ∇u L 1 (Ω) + p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )u L 1 (Ω) ) + α 2 T V (k) if (u, k) ∈ V × BV (Ω) +∞ if u ∈ BV (Ω) -V. (4.5) If (u, k) ∈ V × BV (Ω), then F et (u, k) = F (u, k), generally we have F (u, k) ≤ F et (u, k).
The function F et is not lower semi-continuous for the weak * topology of BV (Ω) × BV (Ω). We then compute its relaxed function Fet . In fact, we need to show that Fet = F . The function F is lower semi-continuous for the weak topology. To prove it, we use the continuity of the operator (I -S i x S j y ) and the lower semi-continuity of the total variation. Let us now prove (x n , k n ) n is a convergent sequence to some (u, k) in BV (Ω) × BV (Ω), then

F (x, k) ≤ lim inf n→∞ F (x n , k n ), (4.6) 
since F (u, k) ≤ F et (u, k), we deduce that

F (u, k) ≤ lim inf n→∞ F et (u n , k n ). (4.7) 
Concerning the other inequality: we use a classical result in [START_REF] Attouch | Variational Analysis in Sobolev and BV Spaces: Applications to PDE's and Optimization[END_REF], then for every (u, k) ∈ BV (Ω) × BV (Ω), there exists a sequence

(u n , k n ) ∈ (C ∞ ∩ BV (Ω)) 2 such that u n -→ L 1 (Ω) u, Ω |Du n | -→ Ω |Du|, (4.8) 
and

k n -→ L 1 (Ω) k, Ω |Dk n | -→ Ω |Dk|. (4.9) 
We thus conclude that lim inf

n→∞ F et (u n , k n ) ≤ F (u, k). (4.10)
Combining the two inequalities (4.7) and (4.10), we obtain

F (u, k) = lim inf n→∞ F et (u n , k n ). (4.11) 
Let us now prove the existence of a solution of relaxed problem associated with (4.1).

Theorem 2. Given α 1 > 0 and α 2 > 0, the problem

inf (u,k)∈BV (Ω) 2 F (u, k), (4.12)
admits a solution in BV (Ω) × BV (Ω).

Proof.

1. Existence: Let (u n , k n ) n be a minimizing sequence for (4.12). Then, there exists a constant M > 0 such that

             1 2 k n * u n -u 0 2 L 2 (Ω) ≤ M Ω |Du n | + p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )u n L 1 (Ω) ≤ M T V (k n ) ≤ M (4.13)
The inequality (4.13) confirms that the total variations of (u n ) n and (k n ) n are bounded. It remains to be proven that these sequences are also bounded in L 1 (Ω). Let us consider that

w n = 1
|Ω| Ω u n (x)dx, we then construct the sequence v n such as

v n = w n -u n . (4.14)
Using the Poincaré-Wirtinger inequality, there exists a constant C 1 > 0 such that

v n L 2 (Ω) ≤ C 1 Ω |Du n |. (4.15)
We conclude that the sequence

(v n ) n is bounded in L 2 (Ω), since Ω |Du n | ≤ M . On the other hand, we have k n * u n -u 0 2 L 2 (Ω) ≤ M , which implies k n * v n + k n * w n -u 0 2 L 2 (Ω) ≤ M. (4.16)
In addition we have

k n * w n = (k n * v n + k n * w n -u 0 ) -(k n * v n -u 0 ), (4.17) 
therefore,

k n * w n L 2 (Ω) ≤ k n * v n + k n * w n -u 0 L 2 (Ω) + k n * v n L 2 (Ω) + u 0 L 2 (Ω) ≤ M + k n * v n L 2 (Ω) + u 0 L 2 (Ω) , (4.18) 
using the assumption (2) and the Young inequality [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], we have

k n * v n L 2 (Ω) ≤ k n L 1 (Ω) v n L 2 (Ω) (4.19) ≤ C 2 .
Then,

k n * w n L 2 (Ω) ≤ C 3 , (4.20) 
moreover,

k n * w n L 2 (Ω) = |w n | k n * 1 L 2 (Ω) ≤ C 3 , (4.21) 
as k n * 1 = 0 (assumption 2), we deduce that the sequence | Ω u n (x)dx| is bounded. As a result

u n L 2 (Ω) = v n + 1 Ω Ω u n (x)dx L 2 (Ω) ≤ v n L 2 (Ω) + | Ω u n (x)dx| (4.22) ≤ C 4 ,
where C 2 , C 3 and C 4 are positive constants. Finally, thanks to the Schwartz inequality that ensures

u n L 1 (Ω) ≤ |Ω| u n L 2 (Ω) ≤ C 5 . (4.23) 
Consequently, the sequence (u n ) n is bounded in the BV (Ω) space. Hence, there exists a subsequence (which is also denoted by (u n ) n ) that weakly * converges to some ū ∈ BV (Ω) [START_REF] Attouch | Variational Analysis in Sobolev and BV Spaces: Applications to PDE's and Optimization[END_REF], such that

u n → L 1 (Ω) ū. (4.24) 
In addition we have :

Ω |Dū| ≤ lim inf n→∞ Ω |Du n |. (4.25) 
Since the operator I -S i x S j y is continuous from L 1 (Ω) into L 1 (Ω) (condition 3), then

lim n→∞ p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )u n L 1 (Ω) = p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )ū L 1 (Ω) . (4.26)
Concerning the sequence (k n ) n , we use equation (4.13) and the assumption (2). We then conclude that the sequence (k n ) n is bounded in BV (Ω). Therefore, there exists a subsequence (which we still denote by (k n ) n ) that weakly * converges to some k ∈ BV (Ω) [START_REF] Attouch | Variational Analysis in Sobolev and BV Spaces: Applications to PDE's and Optimization[END_REF], such that

k n → L 1 (Ω) k, (4.27) 
and we have

Ω |D k| ≤ lim inf n→∞ Ω |Dk n |. (4.28) 
For the fidelity theorem, thanks to the Fatou lemma, which implies

Ω ( k * ū -u 0 ) 2 = Ω lim inf n→∞ (k n * u n -u 0 ) 2 ≤ lim inf n→∞ Ω (k n * u n -u 0 ) 2 . (4.29) 
We finally deduce that (ū, k) is a minimizer of the function F on the space BV (Ω) 2 .

Non-uniqueness

Unfortunately, the uniqueness of the solution to the problem (4.12) is not guaranteed. In fact, the cost function F is not jointly convex. Furthermore, it is clear that if (u, k) is a solution, then (-u, -k) and (u(x ± d), k(x ± d)) are also solutions for the problem (4.12) for any real constant d.

Numerical Algorithm

The various methods and techniques are presented in the literature see for example [START_REF] You | A regularization approach to joint blur identification and image restoration[END_REF][START_REF] Lu | Implementation of high-order variational models made easy for image processing[END_REF][START_REF] Chan | Total variation blind deconvolution[END_REF] to approximate the minimizers of a cost function. In this subsection we present the numerical implementation of the proposed problem (4.1), which approximates both the deblurred image u and the blur kernel k in an alternative way.

Our practical model minimizes the cost function in (4.1), where BT V 0 is the regularization with respect to the sharp image. In the discrete setting, and instead of this function, we regularize our problem by BT V . In fact, we can prove that BT V BT V 0 , and, we have [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF] ∇u

1 Q x u 1 + Q y u 1 , (4.30) 
where Q x u = (I -S 1 x )u and Q y u = (I -S 1 y )u. Then, we find that

BT V (u) = p i=-p p j=-p α |i|+|j| u -S i x S j y u 1 = α( Q x u L 1 (Ω) + Q y u L 1 (Ω) ) + p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )u L 1 (Ω) α ∇u 1 + p i=-p i =0,1 p j=-p j =0,1 α |i|+|j| (I -S i x S j y )u L 1 (Ω) = BT V 0 (u).
Consequently, we solve the problem

inf (u,k) F (u, k) := k * u -u 0 2 L 2 (Ω) + α 1 BT V (u) + α 2 T V (k) , (4.31) 
As described above, the minimizer is not unique. Many works [START_REF] Chan | Total variation blind deconvolution[END_REF][START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF] have been proposed to approximate a local minimum using different variants of the Alternating Minimization algorithm. Note that, P AM [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF] is one of the most efficient algorithms proposed, since it avoids the undesired solutions and local minimums. We thus select this algorithm to estimate the associated Euler-Lagrange equations related to the problem (4.1) with BT V regularization. The equations are given by

F u (u, k) := k * (k * u -u 0 ) + α 1 p i,j=-p α |i|+|j| I -S -i
x S -j y sign(u -S i x S j y u) = 0, (4.32)

F k (u, k) := u * (k * u -u 0 ) -α 2 div ∇k |∇k| = 0, (4.33) 
where u, k, S -i x and S -j y are the adjoint operators of u, k, S i x and S j y respectively. To solve the equations (4.32) and (4.33), we use the Alternating Minimization algorithm with projection constraints [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF]. Hence, our proposed algorithm is

u t ← u t -ε u k t -(k t u t -u 0 ) + α 1 p i,j=-p α |i|+|j| I -S -i x S -j y sign(u -S i x S j y u) , (4.34) k t ← k t -ε k u t -(k t u t -u 0 ) -α 2 div ∇k t |∇k t | , (4.35) 
Figure1 presents the first set of images selected to evaluate the performance of the BTV regularization in the non-blind deblurring problem. These images are taken of different real scenes with different grey-level histograms. Figure2 shows the associated degraded images using a motion blur of size 11 × 11 and corrupted with an additive Gaussian noise. Also, we show the results obtained using the T V and BT V non blind deconvolution problems. Table 1 presents a quantitative comparison using the PSNR (measures signal strength relative to noise in the image) and the SSIM (measures the similarity between two images).

Concerning the blind deconvolution, in Fig. 3, Fig. 4 and Fig. 5 we propose real examples used for the first time in [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF]. Each image in Fig. 3a, Fig. 4a and Fig. 5a These experiments illustrate that our algorithm gives the best result in terms of the highest PSNR and SSIM values compared to the PAM algorithm [START_REF] Perrone | A Clearer Picture of Total Variation Blind Deconvolution[END_REF]. In addition, the staircasing effect can be seen in the results with TV regularization (images in Fig. 2e 5c). The ringing effect also clearly appears in the Perrone method (image in Fig. 4b), and it reduced in our presented result (image in Fig. 4c). 

Conclusions

We have proposed a variational method for an image blind deconvolution. Our method is based on a BTV regularization for the resulting image and a TV regularization for the blur kernel. This method reduces the staircasing and ringing effects while the edges are preserved. In addition, we have also proved the existence of a solution to the BTV-TV blind deconvolution problem with a relaxation technique. We have illustrated the robustness of our method by what we feel are very promising simulated and real experimental results.
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 1 Figure 1: Set of original images used in the tests
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 2 Figure 2: The first column presents the degraded images, the second and third columns illustrate the results of the TV and BTV non blind deconvolution problem, respectively.
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 13 Figure 3: Results of the blind deconvolution obtained by PAM and our algorithm.
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 14 Figure 4: Results of the blind deconvolution obtained by PAM and our algorithm.
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 15 Figure 5: Results of the blind deconvolution obtained by PAM and our algorithm.

under the following constraints

where ε u and ε k are two positive steps. Finally, we summarize our problem of blind deconvolution in the algorithm 1. In this algorithm "u-step" and "k-step" are two functions which calculate at each iteration n an approximation of u n and k n , respectively (4.34,4.35).

Algorithm 1: PAM-BTV Algorithm Data: u 0 the degraded image, u 0 = u 0 , k 0 = δ the Dirac delta function, parameters : α 1 > 0, α 2 > 0 the regularization parameters, α the weight scalar, the "small positive steps" ε u and ε k > 0 and p ∈ N the spatial window size Result: u and k are the restored image and the kernel respectively while not converged do u n+1 = u-step(u n , k n , ε u , α 1 , p, α); // using (4.34)

// using (4.35), in this step we impose the PAM constraints (4.36) n ← n + 1 end

Numerical implementation

In this section, we present various experimental results obtained by our method. For the purposes of comparison, these experiments are implemented using Matlab 2015a with an Intel Core i5 CPU 3.2 GHz and 16 GB RAM. Note that we tested our model using a reasonable benchmark database of thirteen images, some of which we show here. We first consider some examples of a nonblind deconvolution problem. To compare the performance of the BTV regularization with the TV, we thus used two metrics: the peak-signal-to-noise ratio (PSNR) [START_REF] Wang | Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures[END_REF], and the mean structure similarity (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF].