
HAL Id: hal-03164498
https://enpc.hal.science/hal-03164498

Submitted on 10 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling transient variations of permeability in coal
seams at the reservoir scale

Najib Abouloifa, Matthieu Vandamme, Patrick Dangla

To cite this version:
Najib Abouloifa, Matthieu Vandamme, Patrick Dangla. Modeling transient variations of permeability
in coal seams at the reservoir scale. Journal of Natural Gas Science and Engineering, 2021, 88,
pp.103796. �10.1016/j.jngse.2021.103796�. �hal-03164498�

https://enpc.hal.science/hal-03164498
https://hal.archives-ouvertes.fr


1 

 

Modeling transient variations of permeability in coal seams at the reservoir scale 1 
by N. Abouloifa, M. Vandamme1, and P. Dangla 2 

Navier, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France 3 

 4 

Abstract 5 

Production of fluid from or injection of fluid into a coal seam leads to variations of 6 

permeability of the seam, resulting from adsorption of fluid in the coal matrix in particular. 7 

One subtle effect is that, if the fluid pressure in the cleat increases, after an immediate 8 

opening of the cleat, one expects the cleat aperture (and hence the permeability) to decrease 9 

for a transient time, as a consequence of the fluid diffusion from the cleat to the coal matrix. 10 

In this work, we aim to model such transient variations of permeability by proposing 11 

constitutive equations at the fractured coal scale. Permeability depends on the complete 12 

history of pressures over time. The constitutive equations rely on Boltzmann’s superposition 13 

principle, which requires kernels as inputs. One can identify the kernels with finite-element 14 

simulations of the response of an individual cleat subjected to a history of fluid pressure. We 15 

also propose approximate versions of those kernels, which only depend on a few parameters 16 

with a physical meaning. Examples of fluid injection simulations into a coal seam making use 17 

of the constitutive equations here derived are presented. 18 

 19 

1 Introduction 20 

Unminable coal seams could contribute to the storage of CO2 (i.e., carbon dioxide) up to 21 

20 Gt (Gale, 2004). Given that anthropogenic emissions of CO2 are estimated at 10 Gt per year 22 

(Knorr, 2009), coal seams could contribute to store about two years of those emissions, which 23 

is small but non-negligible. Unminable coal seams contain CH4 (i.e., methane) naturally: 24 

proven resources are 2 billion standard cubic feet, and contingent resources are estimated at 25 

300 billion standard cubic feet (Moore, 2012). Natural gas presently contributes to about 21% 26 

of the world’s energy supply (International Energy Agency, 2019). Production of CH4 can be 27 

enhanced by injecting CO2 into the seam –a process known as CO2-enhanced coal bed 28 

methane recovery (or CO2-ECBM). During both injection of CO2 (Oudinot et al., 2011; Pekot 29 

and Reeves, 2002) and production of CH4 (Palmer and Mansoori, 1998; Moore et al., 2011; 30 

Scott et al., 2012), significant variations of permeability are observed. The reason beyond 31 

those variations is well known: they are the consequence of adsorption-induced volume 32 

variations of the coal (Gray, 1987). 33 

Naturally, coal is a fractured material (Laubach et al., 1998): those natural fractures are 34 

called cleats, vary in size, are mostly vertical, and are spaced by about a centimeter. Cleats 35 

govern the seam's permeability (Mazumder et al., 2006; Pan and Connell, 2007). Between 36 

cleats, one finds the coal matrix (Harpalani and Schraufnagel, 1990), porous, with pores down 37 

to a sub-nanometric size. The variations of permeability observed during production or 38 

injection are due to the cleats' opening or closure, which is consecutive to shrinkage or 39 

swelling of the coal matrix, respectively. Dimensional variations of the coal matrix observed 40 

upon variations of the pressure of the fluid it contains are known to be due to adsorption 41 
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effects (Levine, 1996). In the smallest pores of the material, most of the fluid it contains is 42 

indeed adsorbed, i.e., in intermolecular interaction with the solid skeleton's atoms. Because 43 

of those intermolecular interactions, an unconstrained piece of coal matrix tends to swell 44 

upon an increase of fluid pressure. The magnitude of those pressure-induced dimensional 45 

variations depends on the fluid. Upon CO2 injection, the injection induces increased CO2 46 

pressure in the bed and coal matrix swelling. In the confined conditions that prevail in the 47 

underground, this swelling translates into cleats closure, and finally into permeability 48 

decrease. 49 

Subtle adsorption-induced variations of permeability can take place. Let us consider a 50 

sample of fractured coal submitted to constant confining stresses, in which we inject fluid. 51 

Because the cleat system's permeability is larger than that of the coal matrix, fluid will first 52 

penetrate the cleats (such flow of fluid or transfer of mass through the cleats is also referred 53 

to as seepage (Barenblatt et al., 1960)). It will decrease the effective stress, hence leading to 54 

an aperture of the cleats and increasing the sample's permeability. Immediately after the 55 

injection, fluid will start penetrating the coal matrix through Fickian diffusion (Moore, 2012). 56 

At early times, the concentration of fluid in the coal matrix must be larger in the vicinity of the 57 

cleat than far from it (see Figure 1-b). Even if the sample is under constant confining stresses, 58 

the coal matrix's swelling will be localized around the cleat, which will tend to close the cleat. 59 

At large times, the concentration of fluid in the coal matrix should be homogeneous. In this 60 

case, if the sample is under constant confining stresses and the coal matrix is homogeneous, 61 

swelling of the coal matrix should translate into a homothetic swelling of the whole sample 62 

and hence of the cleats as well, leading to a long-term increase of permeability (see Figure 1-63 

a at large times). As a result, even if fluid pressure in the cleats is constant over time, one can 64 

expect a non-monotonic and complex variation of permeability, as displayed in Figure 1-a. This 65 

complex variation results from the transient diffusion of fluid through the coal matrix and the 66 

induced heterogeneity of fluid pressure in the matrix. We will refer to those variations as 67 

“transient variations of permeability.” 68 

 69 
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 70 

Figure 1: Schematics of (a) transient variations of permeability and (b) distribution of fluid in 71 

the coal. The black ellipse represents the cleat, and we display the injected fluid in blue. The 72 

dashed line on subfigure (a) indicates the initial permeability.  73 

 74 

The study of those transient variations of permeability has gained significant interest 75 

recently. With finite-element simulations of coal samples (Peng et al., 2014b; Qu et al., 2014; 76 

X. Liu et al., 2018) or through review of laboratory data (Liu et al., 2011a), several studies 77 

showed that the diffusion of fluid through the coal matrix could yield non-monotonic 78 

variations of permeability of significant magnitude. Assuming local thermodynamic 79 

equilibrium (i.e., assuming that, inside a representative elementary volume of fractured coal, 80 

the fluid's thermodynamic pressure is homogeneous, i.e., the same at any location in the coal 81 

matrix as in the cleats) can yield significant errors. 82 

On laboratory samples submitted to constant confining stresses, several groups 83 

(Robertson, 2005; Pini et al., 2009; Wang et al., 2011) observed non-monotonic variations of 84 

permeability with the pore fluid’s pressure –a phenomenon known as permeability rebound. 85 

Liu et al. (2011b), Peng et al. (2014a), and Qu et al. (2014) proposed to explain this 86 

permeability rebound by the fact that experimental data would have been acquired before 87 

reaching an equilibrium or a steady-state. Therefore, this permeability rebound would be a 88 

consequence of transient variations of permeability. Experimentally, Wei et al. (2019b) 89 

observed non-monotonic evolutions of permeability with time for a coal sample submitted to 90 

constant confining stresses and fluid pressures, which, according to them, suggests a 91 

transition from a swelling nearby the cleat to further away. Note, however, that other theories 92 

can explain the permeability rebound without invoking transient effects. For instance, by 93 

assuming that a fraction of the bulk coal swelling or of the matrix coal swelling translates into 94 

the closure of the cleats, models can capture permeability rebound. This ability holds 95 

independent of whether the fraction is considered constant (Liu and Rutqvist, 2010; Connell 96 

et al., 2010; Chen et al., 2012; Guo et al., 2014; Lu et al., 2016; Z. Liu et al., 2018) or pressure-97 
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dependent (Peng et al., 2017). Heterogeneity of coal (Izadi et al., 2011; Chen et al., 2013), as 98 

well as gas slippage (Niu et al., 2018) or a transition between different flow regimes (Wang et 99 

al., 2019) could also explain complex variations of the permeability with pore pressure for a 100 

piece of coal submitted to constant confining stresses. 101 

Our aim in this work is to model transient variations of permeability in reservoir 102 

simulations. As Peng et al. (2014b), Qu et al. (2014), and X. Liu et al. (2018) showed, those 103 

transient variations of permeability can be modeled numerically as soon as the coal matrix 104 

around the cleat is meshed and the diffusion of fluid through the coal matrix is explicitly 105 

modeled. However, such an approach cannot be employed to perform reservoir simulations, 106 

as the number of elements required to perform such simulation would be much too large. 107 

Consequently, we aim at deriving a model at a scale such that the representative elementary 108 

volume is a piece of fractured coal. 109 

At our scale of interest, i.e., at the scale where a piece of fractured coal is our 110 

representative elementary volume (seen as a smeared porous medium), many have modeled 111 

adsorption-induced variations of permeability (for a review, see Pan and Connell (2012)). Most 112 

models (e.g., Palmer and Mansoori (1998), Shi and Durucan (2004), Cui and Bustin (2005), 113 

Vandamme et al. (2010), Pijaudier-Cabot et al. (2011), Wu et al. (2011), Brochard et al. (2012), 114 

Espinoza et al. (2014)) assume local thermodynamic equilibrium. This assumption means that, 115 

by nature, those models are unable to capture the non-monotonic variations of permeability 116 

displayed in Figure 1-a, as those variations are the direct consequence of the heterogeneity of 117 

the concentration of fluid in the coal matrix within the representative elementary volume. In 118 

contrast, others aimed at relaxing this assumption of local thermodynamic equilibrium (Wu et 119 

al., 2010; Liu et al., 2011b; Wu et al., 2011; Peng et al., 2014a; Vandamme et al., 2014; Zang 120 

and Wang, 2017; Wei et al., 2019a). 121 

Barenblatt et al. (1960) modeled fluid flow in fractured rocks by introducing variables 122 

averaged over a scale much larger than the spacing between fractures. They considered two 123 

pressures of fluid at each point in space, i.e., one in the fractures and one in the pore space in 124 

the rock between the fractures. They considered the transfer of fluid between fractures and 125 

rock porosity, but, by construction, in their model, the fluid pressure is homogeneous in the 126 

whole rock porosity at each point in space. In the same spirit, but specifically for coal, Wu et 127 

al. (2010, 2011) and Vandamme et al. (2014) introduced kinetics of transfer between cleats 128 

and coal matrix. But they considered that the thermodynamic pressure of fluid in the coal 129 

matrix is homogeneous: such simplification makes it impossible to capture the non-monotonic 130 

variations of permeability displayed in Figure 1-a. To solve this issue, the model of Liu et al. 131 

(2011b) and its extension to double-porosity media (Peng et al., 2014a) introduce the notion 132 

of local and global swelling. In fact, in those models, in a representative elementary volume 133 

of fractured coal, one pressure of the fluid in the cleats and one pressure of the fluid in the 134 

coal matrix is defined, which can differ. But fluid in the cleats is considered to make the cleat’s 135 

vicinity swell so that the cleats aperture (and thus the permeability) decreases with increased 136 

fluid pressure in the cleat. Upon fluid injection in an unconfined sample, both the fluid 137 

pressure in the cleats and the coal matrix vary. After an immediate opening of the cleats, the 138 

cleats' fluid pressure tends to close the cleats in the short term. In unconfined conditions, the 139 

fluid pressure in the matrix tends to open the cleats in the long term. Those two kinetics 140 

compete. Zang and Wang (2017) also relax the local thermodynamic equilibrium condition by 141 

introducing a non-equilibrium swelling and defining the kinetics that governs this non-142 
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equilibrium swelling related to fluid diffusion in the coal matrix. Like the model of Liu et al. 143 

(2011b), this model can capture non-monotonic evolutions of permeability upon injection into 144 

an unconfined piece of coal, depending on the kinetics of increase of fluid pressure in the 145 

cleats and the coal matrix. Wei et al. (2019a) consider that the transient variation of the cleats’ 146 

aperture is related to the gradient of fluid pressure in the coal matrix. Therefore, they 147 

postulate that it is associated with the rate of coal matrix swelling. By doing so, they end up 148 

with a model able to capture non-monotonic transient variations of permeability. 149 

In this work, we aim to propose constitutive equations that can model transient 150 

permeability variations in reservoir simulations. Hence, we formulate them at a scale such 151 

that the representative elementary volume is a small piece of fractured coal. Our approach is 152 

original and alternative to the previous paragraph's models, as it relies on the Boltzmann 153 

superposition principle. In such a framework, we can model the transient variations of 154 

permeability predicted by simulations of fluid injection in an individual cleat with constitutive 155 

equations formulated at a scale above (i.e., at a scale at which the representative elementary 156 

volume contains both coal matrix and cleats). The fact that this upscaling is exact represents 157 

the main interest of the model we propose. 158 

Section 2 starts by performing finite-element simulations of fluid injection in a cleat 159 

surrounded by the coal matrix. Those simulations, performed at a scale lower than the one at 160 

which we aim at deriving our model, make it possible to understand the process at stake better 161 

and serve as a reference case. This section also presents the principle of the modeling 162 

proposed, which relies on the Boltzmann superposition principle. In section 3, we derive the 163 

constitutive equations able to capture transient variations of permeability at the scale of a 164 

representative elementary volume of fractured coal. We also implement those equations and 165 

simulate fluid injection into a reservoir by using the results of the finite-element simulations 166 

performed in section 2 as input. In section 4, we propose an engineering version of our model, 167 

with which we can model transient variations of permeability by introducing just a few 168 

parameters with a physical meaning. 169 

2 Transient variations of permeability of an individual cleat whose permeability is governed 170 

by its aperture 171 

This section considers a system made of a single cleat surrounded by an isotropic coal 172 

matrix. The cleat is cylindrical and infinitely long. The history of pressure 𝑝𝑐(𝑡) of the fluid in 173 

the cleats is imposed and is homogeneous in the cleat. Consequently, the problem is 2-174 

dimensional, and we focus on what happens in a slice perpendicular to the direction of the 175 

cleat (i.e., in the plane visible in Figure 1-b). We aim to simulate numerically (see section 2.2) 176 

and then model (see section 2.3) how this system reacts to the history of pressure, particularly 177 

in terms of permeability and transfer of fluid from the cleat to the coal matrix. 178 

We give the various geometries of cleats considered in this study in Figure 2. All cleats 179 

are embedded in a square with edges with a length equal to 1 cm. We consider one cleat with 180 

a rectangular cross-section (called `rectangular cleat’) of dimensions 0.05 cm by 0.5 cm. We 181 

also consider cleats with an elliptical cross-section (called `elliptical cleats’) of a long axis 𝐴 =182 

0.25 cm and of short axis 𝑎. Various ratios 𝑎/𝐴 are considered: 0.03, 0.10, 0.30, 1.00. The cleat 183 

with aspect ratio 𝑎/𝐴 = 1 corresponds to a cleat with a circular cross-section. 184 



6 

 

 185 

Figure 2: Various geometries of the cross-section of cleats considered in this study: cleats 186 

with (a) an elliptical cross-section and (b) a rectangular cross-section.  187 

 188 

 The intrinsic permeability 𝜅(𝑡) of the cleat is assumed to be governed by its aperture and 189 

to follow the celebrated Kozeny-Carman relationship (Coussy, 2010): 190 

𝜅 ∝
(𝜙𝑐)

3

(1−𝜙𝑐)2
, (1) 

where 𝜙𝑐  is the porosity associated with the cleat system and is defined as: 191 

 𝜙𝑐 =
𝑉𝑐
𝑉0

 (2) 

where 𝑉𝑐 is the actual volume of cleats in the volume of fractured coal of interest. In the 192 

reference configuration, the volume of fractured coal of interest is 𝑉0. Under the assumption 193 

that the porosity is much smaller than 1, Eq. (1) reduces to: 194 

 𝜅 = 𝜅0 (
𝑉𝑐
𝑉𝑐,0

)

3

= 𝜅0 (1 +
∆𝑉𝑐
𝑉𝑐,0

)

3

 (3) 

where 𝜅0 is the permeability in the reference configuration, 𝑉𝑐,0 is the volume of the cleats in 195 

the reference configuration, and Δ𝑉𝑐 is the variation of the volume of the cleats. 196 

2.1 Equations governing the problem 197 

We consider that the cleat is subjected to a fluid pressure 𝑝𝑐(𝑡). At a given time 𝑡, the 198 

thermodynamic pressure 𝑝𝑚(𝑦, 𝑧, 𝑡) of the fluid in the coal matrix (where 𝑦 and 𝑧 are 199 

coordinates in the plane of interest) is, in the generic case, heterogeneous. 200 

The Langmuir adsorption isotherm relates the mass concentration 𝑐𝑚(𝑦, 𝑧, 𝑡) of fluid in 201 

the coal matrix (per unit volume of coal matrix in the reference configuration) to the 202 

thermodynamic pressure 𝑝𝑚(𝑦, 𝑧, 𝑡) of the fluid in the coal matrix through: 203 

𝑐𝑚(𝑦, 𝑧, 𝑡) = 𝑐𝑚,𝑚𝑎𝑥
𝑝𝑚(𝑦, 𝑧, 𝑡)/𝑝𝐿0

1 + 𝑝𝑚(𝑦, 𝑧, 𝑡)/𝑝𝐿0
 (4) 

where 𝑐𝑚,𝑚𝑎𝑥 and 𝑝𝐿0 are Langmuir parameters. 204 

The pressure 𝑝𝑐(𝑡) of fluid in the cleats imposes the thermodynamic pressure 𝑝𝑚(𝑦, 𝑧, 𝑡) 205 

of fluid on the edge of the cleat and hence the concentration 𝑐𝑒𝑑𝑔𝑒(𝑡) of fluid in the coal 206 

matrix on the edge of the cleat, through: 207 
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𝑐𝑒𝑑𝑔𝑒(𝑝𝑐(𝑡)) = 𝑐𝑚,𝑚𝑎𝑥
𝑝𝑐(𝑡)/𝑝𝐿0

1 + 𝑝𝑐(𝑡)/𝑝𝐿0
 (5) 

The transport of fluid in the coal matrix is assumed to be diffusive and to follow Fick’s 208 

law (Moore, 2012) so that the mass flow vector 𝑤𝑚 of fluid through the coal matrix verifies: 209 

𝑤𝑚 = −𝐷∇𝑐𝑚 (6) 

where 𝐷 is the diffusivity of the fluid through the coal matrix. For engineering applications, it 210 

is common to consider that the diffusivity 𝐷 is constant (which we will assume here), while in 211 

practice, it may not be (Zhao et al., 2019). The mass concentration of fluid then verifies: 212 

 
𝜕𝑐𝑚
𝜕𝑡

= 𝐷∆𝑐𝑚 (7) 

The coal matrix is assumed to behave in a linear elastic manner. We note its stiffness 213 

tensor 𝑪𝒎. Its bulk modulus is 𝐾𝑚 and its Poisson’s ratio 𝜈𝑚. Adsorption roughly makes a piece 214 

of coal swell proportionally to the concentration 𝑐𝑚 of fluid in the coal matrix, so that the 215 

constitutive equation of the coal matrix is: 216 

𝜎 = 𝑪𝒎: (휀 − 휀
𝑎(𝑐𝑚)1) with 휀𝑎(𝑐𝑚) = 𝛼𝑐𝑚 (8) 

where 휀𝑎 is an adsorption strain and 𝛼 a parameter governing the magnitude of adsorption-217 

induced swelling. Likewise, we can express this equation as: 218 

𝜎 = 𝑪𝒎: 휀 + 𝜎
𝑎(𝑐𝑚)1 with 𝜎𝑎(𝑐𝑚) = −3𝐾𝑚휀

𝑎(𝑐𝑚) = −3𝐾𝑚𝛼𝑐𝑚 (9) 

where we call 𝜎𝑎(𝑐𝑚) adsorption stress. 219 

2.2 Numerical solution of response to a step loading 220 

We perform two-dimensional simulations with Abaqus. We use plane-strain conditions 221 

and consider no confining stress, i.e., 𝜎0 = 0. Note that, by considering non-zero constant 222 

confining stress, we would have calculated identical variations of aperture. We give properties 223 

and conditions in Table 1. We obtained material properties in this table from the literature. 224 

The maximum adsorbed amount 𝑐𝑚,𝑚𝑎𝑥 expressed in kg.m-3 is calculated from the maximum 225 

adsorbed amount of 2.4 mol.L
-1
 in Espinoza et al. (2014) as: 𝑐𝑚,𝑚𝑎𝑥 = (2.4 mol.L

-1) ∗ 𝑀CO2  226 

where 𝑀CO2 = 44 g/mol
-1 is the molar mass of CO2. The parameter 𝛼 expressed in m3.kg-1 is 227 

calculated from the swelling coefficient 4 ∗ 10−3 L.mol-1 in Espinoza et al. (2014) as 𝛼 = 4 ∗228 

10−3 L.mol-1/𝑀CO2. 229 

 230 

Table 1: Input parameters for computation 231 
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 232 

We apply a step loading of fluid pressure in the cleat: 233 

𝑝𝑐(𝑡) = {
0     if 𝑡 ≤ 0
𝑝𝑐,0 if 𝑡 > 0 (10) 

Consequently, the hydric boundary conditions on the edge 𝜕Ω𝑖𝑛 of the cleat are:  234 

𝑐𝑚(𝑦, 𝑧, 𝑡) =  𝑐𝑒𝑑𝑔𝑒(𝑡) = {

0                                    if 𝑡 ≤ 0

𝑐𝑚,𝑚𝑎𝑥
𝑝𝑐,0/𝑝𝐿0

1 + 𝑝𝑐,0/𝑝𝐿0
 if 𝑡 > 0  (11) 

On all boundaries other than the edge of the cleat, we impose no flux. 235 

The mechanical boundary conditions on the edge 𝜕Ω𝑖𝑛 of the cleat are: 236 

𝜎. 𝑛 = {
0           if 𝑡 ≤ 0
−𝑝𝑐𝑛   if 𝑡 > 0 (12) 

As stated in Table 1, on the outer boundaries, we impose no stress. On the boundaries that 237 

correspond to planes of symmetry of the modeled system, we impose mechanical boundary 238 

conditions that are consistent with the symmetry, namely free sliding parallel to the boundary 239 

and no displacement perpendicular to the boundary.  240 

We give an example of the distribution of concentration around a cleat with an elliptical 241 

cross-section in Figure 3. 242 

 243 

Parameter Value Reference 

Diffusivity  𝑫 of fluid in coal matrix (m2.s-1) 1.0 · 10-9 Order of magnitude from 

Nazarova et al. (2014) 

Bulk modulus 𝑲𝒎 of coal matrix (GPa) 5.0 (Espinoza et al., 2014) 

Poisson’s ratio 𝝂𝒎 of coal matrix (1) 0.2 Order of magnitude from 

Espinoza et al. (2014) 

Maximum adsorbed amount 𝒄𝒎,𝒎𝒂𝒙 in 

Langmuir isotherm (kg.m-3) 

105.6 Calculated from 

Espinoza et al. (2014) 

Characteristic pressure 𝒑𝑳𝟎 in Langmuir 

isotherm (MPa) 

1.6 Espinoza et al. (2014) 

Parameter 𝜶 = 𝚫𝜺𝒂/𝚫𝒄𝒎  governing the 

magnitude of adsorption-induced swelling 

(m3.kg-1) 

9.1 · 10-5 Calculated from 

Espinoza et al. (2014) 

Temperature T (°C) 40  

Confining stress 𝝈𝟎 (MPa) 0  
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 244 

Figure 3: Distribution of fluid concentration 𝑐𝑚 in the coal matrix at various times around a 245 

cleat with an elliptical cross-section and an aspect ratio 𝑎/𝐴 = 0.03. 246 

The variation Δ𝑉𝑐 of the cleat’s volume is calculated from the displacements 𝜉 of the 247 

edges of the cleat according to: 248 

 ∆𝑉𝑐 = −∫ 𝜉. 𝑛 𝑑𝑆
𝜕𝛺𝑖𝑛

 (13) 

where 𝑛 is the vector normal to the inner surface 𝜕𝛺𝑖𝑛 of the region occupied by the coal 249 

matrix. For some of the geometries considered, normalized variations ∆𝑉𝑐/𝑉𝑐,0 of the aperture 250 

of the cleat are displayed in Figure 4. From those variations of aperture, variations of 251 

permeability can be readily obtained with the Kozeny-Carman equation (3), as displayed in 252 

Figure 5. 253 

On those figures, one observes that, for cleats with a circular cross-section, permeability 254 

increases monotonically with time. For all other cleats with a cross-section with an aspect ratio 255 

different from 1.0, permeability varies in a nonmonotonic manner, first decreasing at early 256 

times before increasing at larger times. In all cases, permeability at equilibrium is larger than 257 

permeability at early times since, in unconfined conditions, the coal matrix's swelling 258 

translates into a homothetic swelling of the sample and hence of the cleat as well. 259 

For a given aspect ratio, the geometry of the cross-section (namely elliptical (see Figure 260 

4-b and Figure 5-b) or rectangular (see Figure 4-d and Figure 5-d)) impacts the evolutions of 261 

permeability over time, but not very significantly. However, we note that, for given fluid 262 

pressure, the immediate increase of permeability is larger for the cleat with a rectangular 263 

cross-section (see Figure 4-d) than with an elliptical one (see Figure 4-b). For cleats with an 264 

elliptical cross-section, when the aspect ratio decreases (i.e., when the cleat is flatter), both 265 

the transient reduction of permeability and the immediate increase of permeability (i.e., the 266 

poroelastic effect due to the mechanical pressure of the fluid on the pore walls) are more 267 

pronounced. In contrast, the characteristic time to reach equilibrium seems roughly 268 
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independent of the cleat's cross-section geometry. The time at which permeability is the 269 

lowest is equal to about 1500s for the cleat with a rectangular cross-section whose aspect 270 

ratio is 0.3 and for cleats with an elliptical cross-section whose aspect ratio is 0.1 or 0.03. This 271 

time is equal to about 750s for the cleat with an elliptical cross-section whose aspect ratio is 272 

0.3. For sufficiently flat cleats, the time at which permeability is the lowest is roughly 273 

independent of the cleat's cross-section geometry. We will discuss those trends further in a 274 

quantitative analysis of the time-dependent response performed in Section 4.2. 275 

a) b)

c)                                                                         d)
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Figure 4: Evolution over time of cleat aperture for cleats with various geometries subjected to 277 

various fluid pressures: (a) elliptical cross-section with aspect ratio 𝑎/𝐴 =  0.03, (b) elliptical 278 

cross-section with aspect ratio 𝑎/𝐴 =  0.3, (c) elliptical cross-section with aspect ratio 279 

𝑎/𝐴 =  1.0, (d) rectangular cross-section with aspect ratio 𝑎/𝐴 = 0.3.  280 

 281 
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Figure 5: Evolution over time of permeability for cleats with various geometries subjected to 283 

various fluid pressures: (a) elliptical cross-section with aspect ratio 𝑎/𝐴 =  0.03, (b) elliptical 284 

cross-section with aspect ratio 𝑎/𝐴 =  0.3, (c) elliptical cross-section with aspect ratio 285 

𝑎/𝐴 =  1.0, (d) rectangular cross-section with aspect ratio 𝑎/𝐴 = 0.3. 286 

From the simulations performed, the flow rate 𝑑𝑚𝑚/𝑑𝑡 of fluid from the cleats to the 287 

coal matrix (expressed per unit volume 𝑉0 of fractured coal in the reference configuration) can 288 

be calculated by spatial integration of the flux on the edges of the cleat: 289 

𝑑𝑚𝑚

𝑑𝑡
= −

1

𝑉0
∫ 𝑤𝑚. 𝑛𝑑𝑆
𝜕𝛺𝑖𝑛

 (14) 

The amount 𝑚𝑚 of fluid in the coal matrix (still per unit volume 𝑉0 of fractured coal in the 290 

reference configuration) can be calculated by integration over time of Eq. (14). 291 

The average mass < 𝑐𝑚 > of fluid in the coal matrix per unit volume of coal matrix in 292 

the reference configuration is displayed in Figure 6 for the example of the elliptical cleat with 293 

an aspect ratio 𝑎/𝐴 = 0.03. In this figure, time is displayed in a dimensionless manner by 294 

dividing it by a characteristic time 𝜏 = 25,000 s, which corresponds to 𝜏 = 𝐿𝑑𝑖𝑓𝑓²/𝐷, where 295 

𝐷 =  1 × 10−9 m²/s is the diffusion coefficient of the coal matrix and 𝐿𝑑𝑖𝑓𝑓 = 0.5 cm is a 296 

drainage length equal to half of the characteristic spacing between cleats. The value toward 297 

which < 𝑐𝑚(𝑡) > should converge at large times is known: it should tend toward 𝑐𝑒𝑑𝑔𝑒,0, since 298 

the concentration of fluid in the coal matrix per unit of coal matrix should be homogeneous 299 

and equal to its value 𝑐𝑒𝑑𝑔𝑒,0 on the edge of the cleat. We noticed however a slight 300 
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discrepancy, as < 𝑐𝑚(𝑡) > tended toward values that slightly differed from the expected one. 301 

We attributed this discrepancy to numerical errors. In the rest of the manuscript, we rescaled 302 

all values of 𝑐𝑚(𝑡) (and consequently of 𝑚𝑚(𝑡) = (1 − 𝜙𝑐,0)𝑐𝑚(𝑡) and of �̇�𝑚) based on the 303 

calculated asymptotic value of 𝑐𝑚(𝑡), to ensure that the rescaled 𝑐𝑚(𝑡) properly converged 304 

toward the expected value 𝑐𝑒𝑑𝑔𝑒,0. Hence, the rescaled 𝑚𝑚(𝑡) also properly converges toward 305 

its expected valued, namely (1 − 𝜙𝑐,0)𝑐𝑒𝑑𝑔𝑒,0. 306 
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Figure 6: Evolution of average mass < 𝑐𝑚(𝑡) > of fluid in coal matrix per unit volume of coal 308 

matrix, for the elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03. The characteristic time 𝜏 used 309 

to make the time dimensionless is 𝜏 = 25,000 s. 310 

2.3 Principle of the solution to a generic loading: analogy with linear viscoelasticity 311 

This section is devoted to explaining how, based on the cleat's response to a step loading 312 

of fluid pressure simulated in section 2.2, we can calculate the cleat’s response to a generic 313 

fluid pressure evolution. The approach is based on the Boltzmann superposition principle. 314 

Part of the variation Δ𝑉𝑐 of the cleat’s volume is due to the deformation induced by the 315 

fluid’s mechanical pressure on the cleat’s walls and by the confining stress potentially applied 316 

to the system, while another part of the variation is due to the diffusion of fluid in the coal 317 

matrix and to the swelling it induces, i.e.: 318 

Δ𝑉𝑐 = Δ𝑉𝑐,𝑚𝑒𝑐ℎ + Δ𝑉𝑐,ℎ𝑦𝑑𝑟 

 

(15) 

where Δ𝑉𝑐,𝑚𝑒𝑐ℎ is the contribution due to the mechanical loading (called `mechanical 319 

contribution’) and Δ𝑉𝑐,ℎ𝑦𝑑𝑟 is the contribution due to the diffusion of fluid in the coal matrix 320 

(called `hydraulic contribution’). For the case of the elliptical cleat with an aspect ratio 𝑎/𝐴 =321 

0.03, we display the two contributions in Figure 7. 322 
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Figure 7: For an elliptical cleat with aspect ratio 𝑎/𝐴 = 0.03, mechanical contribution 324 

𝛥𝑉𝑐,𝑚𝑒𝑐ℎ and hydraulic contribution 𝛥𝑉𝑐,ℎ𝑦𝑑𝑟 to the variation 𝛥𝑉𝑐 of the volume of the cleat. 325 

The mechanical contribution Δ𝑉𝑐,𝑚𝑒𝑐ℎ to the variation Δ𝑉𝑐 of the cleat’s volume depends 326 

linearly on the pressure 𝑝𝑐(𝑡) of the fluid in the cleats and on the confining stress 𝜎0(𝑡): 327 

Δ𝑉𝑐,𝑚𝑒𝑐ℎ(𝑡)

𝑉𝑐,0
=
𝑝𝑐(𝑡)

𝐾𝑐,𝑝
+
𝜎0(𝑡)

𝐾𝑐,𝜎
 

(16) 

where 𝐾𝑐,𝑝 and 𝐾𝑐,𝜎 characterize the stiffness of the cleat. Since we performed the calculations 328 

in section 2.2 in the absence of any confining stress (i.e., 𝜎0 = 0), we restrict ourselves to the 329 

case where the variation Δ𝑉𝑐,𝑚𝑒𝑐ℎ/𝑉𝑐,0 is proportional to the fluid pressure 𝑝𝑐(𝑡): 330 

Δ𝑉𝑐,𝑚𝑒𝑐ℎ(𝑡)

𝑉𝑐,0
=
𝑝𝑐(𝑡)

𝐾𝑐,𝑝
 

(17) 

In contrast, even in the case of a step of fluid pressure (i.e., 𝑝𝑐(𝑡) = 𝑝𝑐,0), the hydraulic 331 

contribution Δ𝑉𝑐,ℎ𝑦𝑑𝑟(𝑡) at any time 𝑡 is not proportional to the pressure 𝑝𝑐,0 of fluid in the 332 

cleats, as can be observed in Figure 8-a in the case of the elliptical cleat with aspect ratio 333 

𝑎/𝐴 = 0.03. But transport of fluid is a linear process (see Eq. (7)), and swelling depends 334 

linearly on the concentration 𝑐𝑒𝑑𝑔𝑒,0 on the edge of the cleat as well (see Eqs. (8) and (9)), so 335 

that the hydraulic contribution Δ𝑉𝑐,ℎ𝑦𝑑𝑟(𝑡) at any time 𝑡 is proportional to this concentration, 336 
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as can be observed in Figure 8-b. If we consider this concentration 𝑐𝑒𝑑𝑔𝑒,0 on the edge of the 337 

cleat as the variable with which to formulate the problem, we can hence consider coal as a 338 

Boltzmann-type material, for which the superposition of the action implies the superposition 339 

of the responses, and for which one can express the evolution of the aperture of the cleat as 340 

follows: 341 

 
∆𝑉𝑐,ℎ𝑦𝑑𝑟

𝑉𝑐,0
= {

𝐽𝛿𝑐(𝑡). 𝑐𝑒𝑑𝑔𝑒,0 if 𝑡 > 0

0 if 𝑡 ≤ 0
 (18) 

Here we call 𝐽𝛿𝑐(𝑡) the kernel of the variation of aperture due to the ingress of fluid in the coal 342 

matrix. It is the response to a unit step of concentration 𝑐𝑒𝑑𝑔𝑒,0 = 1 kg/m3. 343 
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Figure 8: For elliptical cleat with aspect ratio 𝑎/𝐴 = 0.03, contribution of the fluid in the 346 

matrix to the variation of aperture (a) normalized by the pressure of the fluid in the cleat or 347 

(b) normalized by the concentration on the edge of the cleat. 348 

Let us now consider a generic injection of fluid following a history of pressure 𝑝𝑐(𝑡) in 349 

the cleat. This injection causes a history of concentration 𝑐𝑒𝑑𝑔𝑒(𝑡) on the edge of the cleat 350 

(see Eq. (5)). We consider that this function 𝑐𝑒𝑑𝑔𝑒(𝑡) is piecewise continuous and 351 

differentiable. We note 𝜏𝑖 the instances where 𝑐𝑒𝑑𝑔𝑒 is discontinuous and [𝑐𝑒𝑑𝑔𝑒]𝑖
 the 352 

corresponding jumps of the concentration on the edge of the cleat. Therefore, the 353 

concentration function 𝑐𝑒𝑑𝑔𝑒(𝑡) can be rewritten as: 354 
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 𝑐𝑒𝑑𝑔𝑒(𝑡) = ∫ 𝑌(𝑡 − 𝜏)𝑑𝑐𝑒𝑑𝑔𝑒

𝑡

−∞

+∑  [𝑐𝑒𝑑𝑔𝑒]𝑖
𝑌(𝑡 − 𝜏𝑖)

𝜏𝑖<𝑡

 (19) 

where 𝑌(𝑡) is the Heaviside function. The response Δ𝑉𝑐,ℎ𝑦𝑑𝑟(𝑡) of the cleat aperture to the 355 

variations of concentration is derived directly from the application of Boltzmann superposition 356 

principle to Eq. (19): 357 

 
∆𝑉𝑐,ℎ𝑦𝑑𝑟

𝑉𝑐,0
= ∫ 𝐽𝛿𝑐(𝑡 − 𝜏)𝑑𝑐𝑒𝑑𝑔𝑒

𝑡

−∞

+∑  [𝑐𝑒𝑑𝑔𝑒]𝑖
𝐽𝛿𝑐(𝑡 − 𝜏𝑖)

𝜏𝑖<𝑡

 (20) 

We can write Eq. (20) by using Stieltjes integrals as follows: 358 

 
∆𝑉𝑐,ℎ𝑦𝑑𝑟

𝑉𝑐,0
= 𝐽𝛿𝑐(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑡) = ∫ 𝐽𝛿𝑐(𝑡 − 𝜏)

𝜕𝑐𝑒𝑑𝑔𝑒

𝜕𝜏
(𝜏)𝑑𝜏

𝑡

𝜏=−∞

 (21) 

with: 359 

where 𝛿(𝑡) is the Dirac function, {} is the derivative of the continuous part of the 360 

concentration 𝑐𝑒𝑑𝑔𝑒(𝑡), and where ⊗ denotes the Stieltjes convolution product. 361 

Combining Eqs. (3), (15), (16), and (21), we can finally express the variation of 362 

permeability for a generic loading: 363 

𝜅(𝑡) = 𝜅0 (1 +
Δ𝑉𝑐,𝑚𝑒𝑐ℎ
𝑉𝑐0

+
Δ𝑉𝑐,ℎ𝑦𝑑𝑟

𝑉𝑐0
)

3

= 𝜅0 (1 +
𝑝𝑐(𝑡)

𝐾𝑐,𝑝
+
𝜎0(𝑡)

𝐾𝑐,𝜎
+ 𝐽𝛿𝑐(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑡))

3

 

(23) 

where 𝑐𝑒𝑑𝑔𝑒(𝑡) = 𝑐𝑒𝑑𝑔𝑒(𝑝𝑐(𝑡)), as given by Eq. (5). Note that, although the variations of 364 

volume Δ𝑉𝑐 satisfy Boltzmann superposition principle when expressed versus the amount of 365 

adsorbed fluid on the edge of the cleat, the variations of permeability do not. Likewise, when 366 

expressed versus the pressure 𝑝𝑐 of the fluid in the cleats, the variations of volume Δ𝑉𝑐 do not 367 

satisfy the Boltzmann superposition principle. 368 

Note that the amount 𝑚𝑚(𝑡) of fluid in the coal matrix (per unit volume 𝑉0 of fractured 369 

coal in the reference configuration), as well as the flux �̇�𝑚(𝑡) of fluid from the cleats to the 370 

coal matrix (still per unit volume 𝑉0 of fractured coal in the reference configuration), also 371 

satisfy the Boltzmann superposition principle, so that one can write: 372 

𝑚𝑚(𝑡) = 𝐽𝑚𝑚
(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑡) = ∫ 𝐽𝑚𝑚

(𝑡 − 𝜏)
𝜕𝑐𝑒𝑑𝑔𝑒

𝜕𝜏
(𝜏)𝑑𝜏

𝑡

𝜏=−∞

 (24) 

and: 373 

�̇�𝑚(𝑡) = 𝐽�̇�𝑚
(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑡) = ∫ 𝐽�̇�𝑚

(𝑡 − 𝜏)
𝜕𝑐𝑒𝑑𝑔𝑒

𝜕𝜏
(𝜏)𝑑𝜏

𝑡

𝜏=−∞

 (25) 

where 𝐽𝑚𝑚
(𝑡) and 𝐽�̇�𝑚

(𝑡) are two kernels which verify: 374 

𝐽�̇�𝑚
(𝑡) = 𝑑𝐽𝑚𝑚

/𝑑𝑡 (26) 

The three kernels 𝐽𝛿𝑐(𝑡),  𝐽𝑚𝑚
(𝑡), and 𝐽�̇�𝑚

(𝑡) are displayed in Figure 9 for the various 375 

geometries of cleats. For what concerns the variation of aperture Δ𝑉𝑐,𝑚𝑒𝑐ℎ(𝑡)/𝑉𝑐,0 due to the 376 

 
𝜕𝑐𝑒𝑑𝑔𝑒

𝜕𝑡
= {

𝜕𝑐𝑒𝑑𝑔𝑒

𝜕𝑡
} +∑  [𝑐𝑒𝑑𝑔𝑒]𝑖

𝛿(𝑡 − 𝜏𝑖)

𝜏𝑖<𝑡

 (22) 



16 

 

mechanical pressure of the fluid in the cleat (see Eq. (16)), the stiffness 𝐾𝑐,𝑝 can be directly 377 

calculated from the numerical simulations of individual cleats performed in section 2.2. This 378 

stiffness characterizes how much the cleat’s volume increases instantaneously when the fluid 379 

pressure in the cleat increases. From those simulations, we find that the stiffness 𝐾𝑐,𝑝 is equal 380 

to  104.2 MPa, 381.1 MPa, 1.121 GPa, 2.558 GPa, for the cleats with an elliptical cross-section 381 

with aspect ratio 𝑎/𝐴 = 0.03, 0.1, 0.3, 1, respectively, and to 161.3 MPa for the cleat with 382 

rectangular cross-section. We observe that the shape of the cleat seems to have little effect 383 

on the time at which the aperture of the cleat is minimal, but has a significant effect on the 384 

magnitude of the transient variation of this aperture: the smaller the aspect ratio 𝑎/𝐴, the 385 

more pronounced those variations are. 386 

 387 

 388 

Figure 9: Kernels (a) 𝐽𝛿𝑐(𝑡), (b) 𝐽𝑚𝑚
(𝑡), and (c) 𝐽�̇�𝑚

(𝑡) for all geometries of cleats, which 389 

define the response of the cleat in terms of relative volume variation 𝛥𝑉𝑐(𝑡)/𝑉0, average 390 

amount 𝑚𝑚(𝑡) of fluid in the coal matrix per unit volume of fractured coal, and rate �̇�𝑚(𝑡) 391 



17 

 

of variation of this same amount, respectively. The characteristic time 𝜏 used to make the 392 

time dimensionless is 𝜏 = 25,000 s. 393 

 394 

2.4 A numerical verification of response of individual cleat to a generic loading 395 

This section is dedicated to validating the approach proposed in section 2.3, based on 396 

the Boltzmann superposition principle, to calculate the response of an individual cleat to a 397 

generic history 𝑝𝑐(𝑡) of the pressure of fluid in the cleat. We perform the validation on the 398 

elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03 submitted to no confining stress (i.e., 𝜎0 = 0). 399 

The cleat is submitted to various histories 𝑝𝑐(𝑡) of the pressure of fluid. We calculate the 400 

cleat’s response in two manners: 1) plane-strain finite-element calculations identical to the 401 

ones performed in section 2.2 but for the history 𝑝𝑐(𝑡) of the pressure of fluid in the cleat, 402 

and 2) calculations based on the method proposed in section 2.3 that uses the Boltzmann 403 

superposition principle. From both approaches, we obtain: the relative volume variation 404 

Δ𝑉𝑐(𝑡)/𝑉0 of the cleat, the permeability 𝜅(𝑡) over time (calculated from the relative volume 405 

variation Δ𝑉𝑐(𝑡)/𝑉0 with Kozeny-Carman equation (3)), and the average amount < 𝑐𝑚(𝑡) > 406 

of fluid in the coal matrix per unit volume of coal matrix (with < 𝑐𝑚(𝑡) > = 𝑚𝑚(𝑡)/(1 −407 

𝜙𝑐,0), where 𝑚𝑚(𝑡) is the average amount of fluid in the coal matrix per unit volume of 408 

fractured coal). When aiming at using the Boltzmann superposition principle (section 2.3), the 409 

relative volume variation Δ𝑉𝑐(𝑡)/𝑉0 and the average amount 𝑚𝑚(𝑡) of fluid in the coal matrix 410 

(per unit volume of fractured coal) are calculated with Eq. (15) (which uses Eqs. (16) and (21)) 411 

and Eq. (24), respectively, by using the kernels displayed in Figure 9. 412 

We display the results of the comparison in Figure 10, Figure 11, and Figure 12, for what 413 

concerns the relative volume variation 𝛥𝑉𝑐(𝑡)/𝑉𝑐,0 of the cleat, the permeability 𝜅(𝑡), and the 414 

average amount < 𝑐𝑚(𝑡) > of fluid in the coal matrix per unit volume of coal matrix, 415 

respectively. All calculations performed with Boltzmann superposition principle are in perfect 416 

agreement with the finite-element calculations, which validates the applicability of this former 417 

method introduced in section 2.3. 418 
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a) b) 

c)                                                                                        d)

<
c m

>

 419 

Figure 10: Response of an individual elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03 to a 420 

periodic rectangular loading: (a) history 𝑝𝑐(𝑡) of pressure of fluid considered, (b) variation 421 

𝛥𝑉𝑐(𝑡)/𝑉0 of the relative volume of the cleat, (c) permeability 𝜅(𝑡), and (d) average amount 422 

< 𝑐𝑚(𝑡) > of fluid in the coal matrix per unit volume of coal matrix. The characteristic time 𝜏 423 

used to make the time dimensionless is 𝜏 = 25,000 s. 424 

 425 
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a) b) 

c)                                                                                        d)

<
c m

>

 426 

Figure 11: Response of an individual elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03 to a 427 

triangular loading: (a) history 𝑝𝑐(𝑡) of pressure of fluid considered, (b) variation 𝛥𝑉𝑐(𝑡)/𝑉0 of 428 

the relative volume of the cleat, (c) permeability 𝜅(𝑡), and (d) average amount < 𝑐𝑚(𝑡) > of 429 

fluid in the coal matrix per unit volume of coal matrix. The characteristic time 𝜏 used to make 430 

the time dimensionless is 𝜏 = 25,000 s. 431 

 432 



20 

 

a) b) 

c)                                                                                        d)

<
c m

>

 433 

Figure 12: Response of an individual elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03 to a 434 

staircase loading: (a) history 𝑝𝑐(𝑡) of pressure of fluid considered, (b) variation 𝛥𝑉𝑐(𝑡)/𝑉0 of 435 

the relative volume of the cleat, (c) permeability 𝜅(𝑡), and (d) average amount < 𝑐𝑚(𝑡) > of 436 

fluid in the coal matrix per unit volume of coal matrix. The characteristic time 𝜏 used to make 437 

the time dimensionless is 𝜏 = 25,000 s. 438 

 439 

3 Modeling at the scale of the coal seam integrating transient 440 

variations of permeability obtained by FEM calculations at the 441 

scale of an individual cleat 442 

We now consider the problem of an injection into a cylindrical coal structure of direction 443 

𝑒𝑥, of length 𝐿 = 200 m, with an arbitrary cross-section whose characteristic dimension is 444 

much larger than the centimeter, so that there are many cleats over the cross-section (see 445 

Figure 13). The cleat with an elliptic cross-section of aspect ratio 𝑎/𝐴 =  0.03 considered in 446 

section 2 is assumed to be representative of the cleats in the sample. The sample initially 447 

contains CO2 at 𝑝𝑖𝑛𝑖𝑡 = 1 MPa. At time 𝑡 = 0 s, CO2 is injected at one end of the cylinder at a 448 

pressure 𝑝𝑖𝑛𝑗(𝑡) = 10 MPa while the other end and the lateral surface remain sealed. The 449 

process is assumed isothermal, remaining at 40°C. At this temperature, we consider an 450 

equation of state for CO2 of the form: 451 
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𝜌(𝑝) = 𝑀CO2

(

 
 𝑝

𝑅𝑇
+

𝑐1

1 + exp(−(
𝑝 − 𝑐2
𝑐3

))
)

 
 

 (27) 

where 𝑝 is the pressure of the fluid, 𝜌 is its mass density, 𝑅 = 8.314 J.mol-1.K-1 is the ideal gas 452 

constant, and 𝑐1, 𝑐2, 𝑐3 are parameters. A fit of this equation to the actual equation of state 453 

of CO2 at 40°C (Lemmon et al., 2020) yields 𝑐1 = 2.19 ⋅ 104 mol.m-3, 𝑐2 = 9.92 ⋅ 10
6 Pa, and 454 

𝑐3 = 1.21 ⋅ 106 Pa, with an error smaller than 12% over the whole range of pressures 455 

considered, even in supercritical conditions (i.e., above approximately 7.5 MPa). We consider 456 

that the properties of the material are those given in Table 1. We aim at solving the evolutions 457 

of the system over time. 458 

 459 

Figure 13: 1-dimensional problem solved at the scale of a structure. The inset is a zoom on a 460 

representative elementary volume. In the cleats, the fluid pressure is 𝑝(𝑥, 𝑡). 461 

 462 

The initial hydraulic conditions read: 463 

𝑝𝑐(𝑥, 0) = 𝑝𝑖𝑛𝑖𝑡, (28) 
and the hydraulic boundary conditions read: 464 

{
𝑝𝑐(𝑥 = 0, 𝑡) = 𝑝𝑖𝑛𝑗(𝑡) = 10 MPa

𝜕𝑝𝑐

𝜕𝑥
|
𝑥=𝐿

= 0
. (29) 

We assume that the hydro-mechanical response of any representative elementary 465 

volume of material to a history of pressure 𝑝𝑐(𝑥, 𝑡) of fluid in the cleats is the same as the one 466 

identified with the Abaqus calculations performed in section 2 for a system containing an 467 

individual cleat. We will study the hydro-mechanical response of a representative elementary 468 

volume subjected to generic mechanical boundary conditions in section 4. 469 

The problem considered is one-dimensional: at any time, all variables depend on the 470 

coordinate 𝑥 only. Consequently, solving the problem means, in particular, finding out the 471 

evolutions in time of the pressure 𝑝𝑐(𝑥, 𝑡) of fluid in the cleat, of the average amount 𝑚𝑚(𝑥, 𝑡) 472 

of fluid in the coal matrix (per unit volume of fractured coal), and the permeability 𝜅(𝑥, 𝑡). 473 

Since the fluid is injected from one end of the sample, in the generic case, the pressure 𝑝𝑐(𝑥, 𝑡) 474 

is expected to be heterogeneous, and hence the parameters 𝑚𝑚(𝑥, 𝑡) or 𝜅(𝑥, 𝑡) as well. We 475 

expect the degree of heterogeneity and how heterogeneity remains to depend on the 476 

permeability 𝜅0 of the fractured coal: we will vary this parameter from 𝜅0 = 10
−13 m2 to 𝜅0 =477 

10−11 m2 (which corresponds to the low permeability domain of Moore (2012)), while keeping 478 

other properties (see Table 1) constant. 479 
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Solving the problem requires first formulating the fractured coal's constitutive 480 

equations, the next section's focus. 481 

3.1 Governing equations at the scale of the coal seam 482 

We can write the mass balance equation for a representative elementary volume of 483 

fractured coal as: 484 

𝜕𝑚

𝜕𝑡
= −

𝜕𝑤

𝜕𝑥
, (30) 

where 𝑤 is the macroscopic fluid mass flow through the cleat and 𝑚 is the total fluid mass 485 

content (per unit volume 𝑉0 of fractured coal in the reference configuration) which is 486 

composed of the fluid mass content 𝑚𝑐 in the cleat and the fluid mass content 𝑚𝑚 in the coal 487 

matrix (still per unit volume 𝑉0 of fractured coal in the reference configuration), i.e., 𝑚 =488 

𝑚𝑐 +𝑚𝑚. 489 

The macroscopic flow (i.e., transfer of mass) of fluid through the cleats (also called 490 

seepage) is a viscous flow generally considered (Harpalani and Chen, 1997) to obey Darcy’s 491 

law (Darcy, 1856): 492 

𝑤(𝑥, 𝑡) = −
𝜌𝐹𝜅

𝜂𝐹

𝜕𝑝𝑐
𝜕𝑥

= −𝑘
𝜕𝑝𝑐
𝜕𝑥
  (31) 

where 𝑘 = 𝜌𝐹𝜅/𝜂𝐹 , 𝑝𝑐 = 𝑝𝑐(𝑥, 𝑡), 𝜅 = 𝜅(𝑥, 𝑡), and where 𝜌𝐹 and 𝜂𝐹 are the bulk mass density 493 

and the viscosity of the fluid (here CO2), respectively. Under isothermal conditions, 𝜌𝐹 =494 

𝜌𝐹(𝑝𝑐). For CO2, we consider the equation of state given in Eq. (27). We assume that the 495 

viscosity 𝜂𝐹 = 47.83 ∙ 10
−3 Pa.s (which corresponds to the viscosity of CO2 at 313.15K and 10 496 

MPa (Lemmon et al., 2020)) does not depend on the pressure of the fluid. 497 

 The mass 𝑚𝑐 of fluid in the cleat is related to the cleat porosity 𝜙𝑐  through 𝑚𝑐 = 𝜌𝐹𝜙𝑐. 498 

Assuming that the variations of the mass of fluid in the cleat due to the deformation of the 499 

cleat are negligible when compared to variations of mass due to variations of density, the mass 500 

𝑚𝑐 of fluid in the cleats can be written as follows: 501 

𝑚𝑐 = 𝜌𝐹𝜙𝑐,0 (32) 
We neglect microscopic flow through the coal matrix in the direction (Ox) (i.e., 𝑤𝑚. 𝑒𝑥 =502 

0). Therefore, one can adapt Eq. (24) as follows: 503 

𝑚𝑚(𝑥, 𝑡) = 𝐽𝑚𝑚
(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑥, 𝑡) (33) 

Likewise, for what concerns the evolutions of permeability, by taking into account that 𝜎0 =504 

0, we can adapt Eq. (23) as: 505 

𝜅(𝑥, 𝑡) = 𝜅0 (1 +
𝑝𝑐(𝑥, 𝑡)

𝐾𝑐
+ 𝐽𝛿𝑐(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑥, 𝑡))

3

 (34) 

where 𝑐𝑒𝑑𝑔𝑒(𝑥, 𝑡) = 𝑐𝑒𝑑𝑔𝑒(𝑝𝑐(𝑥, 𝑡)), as given by Eq. (5). 506 

The kernels 𝐽𝛿𝑐(𝑡) and 𝐽�̇�𝑚
(𝑡) required for the computation are those displayed in 507 

Figure 9 for the elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03. 508 

 509 
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3.2 Resolution of the problem with finite volume method 510 

We divide space into 𝑁𝑛𝑜𝑑𝑒𝑠 + 1 equispaced nodes, with node 0 located in 𝑥0 = 0 and 511 

node 𝑁𝑛𝑜𝑑𝑒𝑠 located in 𝑥𝑁𝑛𝑜𝑑𝑒𝑠 = 𝐿. We note 𝑑𝑖𝑗 = 𝐿/𝑁𝑛𝑜𝑑𝑒𝑠 the distance between 512 

neighboring nodes 𝑖 and 𝑗. We note all variables at node 𝑖 with a subscript 𝑖. We note the time 513 

step Δ𝑡. 514 

We obtain the finite volume scheme by a discrete balance in the elements of the mesh. 515 

Integrating Eq. (30) over any element 𝑖 of length 𝑉𝑖 and discretizing it in time with a backward 516 

Euler scheme yields, for all elements 𝑖: 517 

𝑉𝑖(𝑚𝑖(𝑡 + Δ𝑡) − 𝑚𝑖(𝑡)) + Δ𝑡 ∑𝑤𝑖𝑗(𝑡 + Δ𝑡)

𝑗

= 0 (35) 

where 𝑤𝑖𝑗 expresses an approximation of the outflow from element 𝑖 to element 𝑗 for any 𝑖 518 

and any neighbor 𝑗 of 𝑖: 519 

𝑤𝑖𝑗(𝑡 + Δ𝑡) = − 𝑘𝑖𝑗(𝑡)
𝑝𝑗(𝑡 + Δ𝑡)  − 𝑝𝑖(𝑡 + Δ𝑡)

𝑑𝑖𝑗
 (36) 

where 𝑑𝑖𝑗 is the distance between the center of element 𝑖 and element 𝑗. In this equation 𝑘𝑖𝑗 520 

is an explicit evaluation of the permeability coefficient 𝑘 = 𝜌𝐹𝜅/𝜂𝐹 at the interface between 521 

element 𝑖 and element 𝑗, here 𝑘𝑖𝑗 = (𝑘𝑖 + 𝑘𝑗)/2. 522 

At node 0, the pressure is imposed: 523 

𝑝0(𝑡 + Δ𝑡) − 𝑝𝑖𝑛𝑗 = 0 (37) 

Equation (35) is solved through an iterative process. Since 𝑚𝑚 is a functional of 𝑐(𝑡), we 524 

have to evaluate the change 𝛿𝑚𝑚 for any change 𝛿𝑐 between 𝑡 and 𝑡 + Δ𝑡: 525 

𝛿𝑚𝑚 = ∫ 𝐽𝑚𝑚
(𝑡 + Δ𝑡 − 𝑢)

𝑡+Δ𝑡

𝑡

𝜕

𝜕𝑢
(𝛿𝑐)𝑑𝑢 (38) 

Approximating 𝛿𝑐 by 𝛿[𝑐(𝑡 + Δ𝑡)] (𝑢 − 𝑡)/Δ𝑡 between 𝑡 and 𝑡 + Δ𝑡, we finally get: 526 

𝛿𝑚𝑚 = (
1

Δ𝑡
∫ 𝐽𝑚𝑚

(Δ𝑡 − 𝑢)𝑑𝑢
Δ𝑡

0

)𝛿𝑐(𝑡 + Δ𝑡) ≈ 𝐽𝑚𝑚
( Δ𝑡)𝛿𝑐(𝑡 + Δ𝑡)/2 (39) 

So, the set of equations (35), formally 𝐸𝑖 = 0 for all 𝑖 ≥ 1, can be solved iteratively through a 527 

Newton method, 𝐴𝑖𝑗𝛿𝑝𝑗 = − 𝐸𝑖, and using the jacobian matrix: 528 

𝐴𝑖𝑗 = 𝑉𝑖 (𝜙𝑐,0
𝑑𝜌𝐹
𝑑𝑝𝑖

+
𝐽𝑚𝑚

(Δ𝑡)

2
 
𝑑𝑐𝑒𝑑𝑔𝑒

𝑑𝑝𝑖
)𝛿𝑖𝑗

+ Δ𝑡(( ∑
𝑘𝑖𝑟(𝑡)

𝑑𝑖𝑟 
𝑟∈neighbors

)𝛿𝑖𝑗 −
𝑘𝑖𝑗(𝑡)

𝑑𝑖𝑗
) 

(40) 

The Python code to solve this problem is available on the GitHub repository of the 529 

corresponding author2. 530 

 531 

                                                           
2 If you base future research on this code, please acknowledge it appropriately in your publications and cite the 

present article. 
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3.3 Results and discussion of the various kinetics involved 532 

We display the results in Figure 14, Figure 15, and Figure 16 for the samples with a 533 

reference permeability 𝜅0 equal to 10-11 m2, 10-12 m2 and 10-13 m2, respectively. Note that the 534 

times at which we display the results vary from figure to figure since the pressure in the cleats 535 

needs more time to reach its asymptotic value when the permeability 𝜅0 is lower. 536 

 537 

Figure 14: Distribution of (a) pressure 𝑝𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations 538 

of adsorbed fluid during injection into a coal sample with a reference permeability 𝜅0 =539 

10−11 m2. In sub-figure c are displayed the concentration 𝑐𝑒𝑑𝑔𝑒 of fluid adsorbed on the edge 540 

of the cleat (with symbols) and the average concentration < 𝑐𝑚 > of fluid adsorbed in the 541 

coal matrix (with solid lines). Both concentrations are expressed per unit volume of the coal 542 

matrix. 543 

 544 
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 545 

Figure 15: Distribution of (a) pressure 𝑝𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations 546 

of adsorbed fluid during injection into a coal sample with a reference permeability 𝜅0 =547 

10−12 m2. In sub-figure c are displayed the concentration 𝑐𝑒𝑑𝑔𝑒 of fluid adsorbed on the edge 548 

of the cleat (with symbols) and the average concentration < 𝑐𝑚 > of fluid adsorbed in the 549 

coal matrix (with solid lines). Both concentrations are expressed per unit volume of the coal 550 

matrix. 551 

 552 
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 553 

Figure 16: Distribution of (a) pressure 𝑝𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations 554 

of adsorbed fluid during injection into a coal sample with a reference permeability 𝜅0 =555 

10−13 m2. In sub-figure c are displayed the concentration 𝑐𝑒𝑑𝑔𝑒 of fluid adsorbed on the edge 556 

of the cleat (with symbols) and the average concentration < 𝑐𝑚 > of fluid adsorbed in the 557 

coal matrix (with solid lines). Both concentrations are expressed per unit volume of the coal 558 

matrix. 559 

 560 

One can observe different behaviors depending on the permeability 𝜅0. For the system 561 

with the highest permeability 𝜅0 = 10
−11 m2 (see Figure 14), the pressure 𝑝𝑐 in the cleats 562 

becomes homogeneous before a significant amount of fluid has diffused into the coal matrix 563 

(since at time 𝑡 = 1000 s, the average concentration < 𝑐𝑚 > of fluid in the coal matrix is still 564 

low almost everywhere in the sample (see Figure 14-c)). Consequently, diffusion in the coal 565 

matrix mostly happens after the pressure in the cleats has become homogeneous. The 566 

average amounts of fluid adsorbed in the coal matrix and the transient adsorption-induced 567 
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variations of permeability are relatively homogeneous compared to the concentration on the 568 

edge of the cleats. Also, the evolution of the permeability over time is rather complex, as it is 569 

nonmonotonic and shaped like the letter N (i.e., it increases, decreases, and then increases 570 

back). In contrast, for the system with the lowest permeability 𝜅0 = 10−13 m2 (see Figure 16), 571 

transfer of fluid from/to the coal matrix happens faster than transport of fluid through the 572 

cleat system: when the pressure in the cleats becomes homogeneous, the system has reached 573 

equilibrium. One can check that, during the injection, at any position 𝑥 > 100 m and at any 574 

time 𝑡, the average concentration of fluid in the coal matrix is relatively close to the one given 575 

by Eq. (5), i.e., relatively close to the concentration of fluid adsorbed on the cleat’s edge. 576 

Locally, for all those positions, we always remain relatively close to local thermodynamic 577 

equilibrium. Far from the injection point, the permeability almost increases monotonically 578 

with time while displaying the same pattern of heterogeneity as the pressure. Finally, the 579 

system with the intermediate permeability 𝜅0 = 10
−12 m2 (see Figure 15) manifests a 580 

behavior that is intermediate between the one observed for the system with permeability 581 

𝜅0 = 10
−11 m2 (see Figure 14) and 𝜅0 = 10

−13 m2 (see Figure 16). 582 

The results show a competition between two kinetics: 1) advective transfer through the 583 

cleat network and 2) diffusive exchange between cleats and coal matrix. A characteristic time 584 

𝜏𝑑𝑖𝑓𝑓 of diffusion of fluid from the cleats to the coal matrix is: 585 

𝜏𝑑𝑖𝑓𝑓 = (𝐿𝑑𝑖𝑓𝑓)
2/𝐷, (41) 

where 𝐿𝑑𝑖𝑓𝑓 is a characteristic drainage length around each cleat (and is therefore equal to 586 

half a characteristic distance between cleats). In the simulations at the scale of an individual 587 

cleat performed in section 2, for which 𝐿𝑑𝑖𝑓𝑓~0.5 × 10
−2 m, we find 𝜏𝑑𝑖𝑓𝑓~2.5 × 10

4 s. 588 

We define a characteristic time 𝜏𝑎𝑑𝑣𝑒𝑐 of the advective transfer through the cleats network as 589 

the characteristic time required for the pressure on the edge of the reservoir to be disturbed 590 

by the injection. We can obtain this characteristic time readily from an observation of Figure 591 

14, Figure 15, and Figure 16: we find that 𝜏𝑎𝑑𝑣𝑒𝑐 ~1 ⋅ 102 s,  𝜏𝑎𝑑𝑣𝑒𝑐~1 ⋅ 10
4 s, and 𝜏𝑎𝑑𝑣𝑒𝑐~1 ⋅592 

105 s, for the systems with 𝜅0 = 1 ⋅ 10−11 m2, 𝜅0 = 1 ⋅ 10
−12 m2, and 𝜅0 = 1 ⋅ 10−13 m2, 593 

respectively. 594 

From the orders of magnitude just calculated, we infer that the assumption of local 595 

thermodynamic equilibrium is reasonably valid if: 596 

𝜏𝑎𝑑𝑣𝑒𝑐 ≫ 𝜏𝑑𝑖𝑓𝑓. (42) 
In such a case, transient variations of permeability occur on the time scale 𝜏𝑑𝑖𝑓𝑓, which is too 597 

short to impact the transfer process at the structural scale (which occurs on the time scale 598 

𝜏𝑎𝑑𝑣𝑒𝑐) significantly. At all positions that verify this criterion, at any time 𝑡, the average 599 

concentration < 𝑐𝑚 > of fluid in the coal matrix is relatively close to the one given by Eq. (5). 600 

In contrast, if 𝜏𝑎𝑑𝑣𝑒𝑐 is not much larger than 𝜏𝑑𝑖𝑓𝑓, the assumption of local thermodynamic 601 

equilibrium is not valid anymore, and transient variations of permeability can impact the 602 

dynamics of transfer at the structural scale (if the magnitude of those variations is significant). 603 

The results displayed in Figure 14 to Figure 16 support this discussion regarding the various 604 

kinetics involved in the process: only in the system with reference permeability 𝜅0 = 1 ⋅ 10
−13 605 

m2 and further from about 100 m from the point of injection is the condition (42) respected 606 

and the assumption of local thermodynamic equilibrium appears to be reasonably valid. 607 
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In contrast, in the case where 𝜏𝑎𝑑𝑣𝑒𝑐 ≪ 𝜏𝑑𝑖𝑓𝑓, the fluid has time to flow through the 608 

cleats before diffusing significantly through the coal matrix. The transient variations of 609 

permeability occur once the pressure of fluid in the cleats has become homogeneous. 610 

Consequently, the transient variations of permeability occur homogeneously as well. 611 

4 Modeling at the scale of the coal seam integrating transient 612 

variations of permeability: an engineering approach 613 

In section 3, we showed that one could perform calculations at the structural scale as 614 

soon as two kernels are known: the kernel 𝐽𝛿𝑐(𝑡) that governs how the volume or aperture of 615 

the cleats varies over time and the kernel 𝐽�̇�𝑚
(𝑡) that governs the rate at which fluid is being 616 

transferred from the cleats to the coal matrix. We obtained those kernels through finite-617 

elements simulations in section 2.3. However, the need to resort to finite-element simulations 618 

of a representative cleat is impractical for the engineer, who first of all does not know the 619 

cleats’ geometry. To respond to this issue, in this section, we propose a generic form for those 620 

kernels. 621 

In section 2, also, we performed all calculations in plane-strain. In this section, we derive 622 

constitutive equations of a representative elementary volume of fractured coal submitted to 623 

a generic state of strains and stresses to give more flexibility to use the proposed model. 624 

Finally, up to now, we considered exclusively that variations of permeability are due to 625 

variations of aperture or volume of the cleat through the Kozeny-Carman relationship (3). 626 

However, instead of using Kozeny-Carman-type laws to model permeability in coal, many use 627 

stress-based permeability laws. This section also explains how to model transient variations 628 

of permeability when using those latter permeability laws. 629 

4.1 Constitutive equations of a representative elementary volume of fractured coal 630 

including transient variations of permeability under a generic state of strains or 631 

stresses 632 

We consider a representative elementary volume of isotropic fractured coal under a 633 

generic state of strains or stresses. Suppose the coal matrix fluid is homogeneously distributed 634 

(without needing necessarily to be in equilibrium with the fluid in the cleats). Under the 635 

assumption that deformations have a negligible impact on the amounts of fluid in the cleats 636 

and the coal matrix, the poromechanical behavior of this representative elementary volume 637 

is given by (Espinoza et al., 2016): 638 

{
 
 

 
 
𝜎 = 𝐾휀 − 𝑏𝑝𝑐 − (1 − 𝑏)𝜎

𝑎(𝑐𝑚)
𝑠𝑖𝑗 = 2𝐺𝑒𝑖𝑗

𝜙𝑐 − 𝜙𝑐,0 = 𝑏휀 +
𝑝𝑐

𝑁
−
𝜎𝑎(𝑐𝑚)

𝑁

𝑚𝑇 = 𝜙𝑐,0𝜌𝐹(𝑝𝑐) + (1 − 𝜙𝑐,0)𝑐𝑚

, (43) 

where 𝑐𝑚 is the mass of fluid in the coal matrix per unit volume of coal matrix (such that 𝑚𝑚 =639 

(1 − 𝜙𝑐,0)𝑐𝑚, since 𝑚𝑚 is the mass of fluid in the coal matrix per unit volume of fractured 640 

coal); 𝑚𝑇 is the total mass of fluid in the fractured coal per unit volume of fractured coal; 𝜎, 641 

𝑠𝑖𝑗, 휀, and 𝑒𝑖𝑗 are the volume stress, shear stresses, volume strain, and shear strains, 642 
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respectively; 𝐾, 𝐺, 𝑏, and 𝑁 are the bulk modulus, shear modulus, Biot coefficient, and Biot 643 

modulus, respectively; 𝜎𝑎 is the adsorption stress that intervened in Eq. (9). 644 

As explained in section 2, transient variations of permeability are due to the fluid 645 

distribution's heterogeneity in the coal matrix. To capture those transient effects, we, 646 

therefore, propose to extend the set of Eqs. (43) into: 647 

{
 
 

 
 

𝜎 = 𝐾휀 − 𝑏𝑝𝑐 − (1 − 𝑏)𝜎
𝑎(< 𝑐𝑚 >)

𝑠𝑖𝑗 = 2𝐺𝑒𝑖𝑗

𝜙𝑐 − 𝜙𝑐,0 = 𝑏휀 +
𝑝𝑐
𝑁
−
𝜎𝑎(< 𝑐𝑚 >)

𝑁
+ Δ𝜙𝑐,𝑡

𝑚𝑇 = 𝜙𝑐,0𝜌𝐹(𝑝𝑐) + (1 − 𝜙𝑐,0) < 𝑐𝑚 >

 

 

(44) 

where < 𝑐𝑚 > denotes the volume average of 𝑐𝑚 over the coal matrix, and where the 648 

function Δ𝜙𝑐,𝑡 captures the transient variations of the porosity associated with the cleat 649 

system. Note that, like in section 3.1, these functions neglect the impact of deformation on 650 

the fluid amounts. 651 

With the same reasoning as the one performed in section 2.3, we can obtain the average 652 

amount < 𝑐𝑚 > of fluid in the coal matrix through convolution: 653 

< 𝑐𝑚(𝑡) >= 𝐽<𝑐𝑚>(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑡) (45) 
where the function 𝐽<𝑐𝑚>(𝑡) is a kernel. Since 𝑚𝑚(𝑡) = (1 − 𝜙𝑐,0) < 𝑐𝑚(𝑡) >, we have 654 

𝐽<𝑐𝑚>(𝑡) = 𝐽𝑚𝑚
(𝑡)/(1 − 𝜙𝑐,0). Given the shape of the kernel 𝐽𝑚𝑚

(𝑡) (see Figure 9-b), for the 655 

kernel 𝐽<𝑐𝑚>(𝑡) we propose the function: 656 

𝐽<𝑐𝑚>(𝑡) = 1 − exp(−𝑡/𝜏𝑑𝑖𝑓𝑓), (46) 
where 𝜏𝑑𝑖𝑓𝑓 is the characteristic time for the fluid in the representative elementary volume to 657 

diffuse through the coal matrix. This kernel tends toward one at large times and thus verifies 658 

that when a step of concentration 𝑐𝑒𝑑𝑔𝑒,0 is applied on the edge of the cleat, at large times, 659 

the average concentration of fluid in the coal matrix tends toward 𝑐𝑒𝑑𝑔𝑒,0. 660 

Because of the presence of the term < 𝑐𝑚(𝑡) >, the set of equations (44) includes some 661 

dependency versus time, such that the porous solid behaves apparently like a poroviscoelastic 662 

solid. Consequently, we could rewrite this set of equations in the framework of a functional 663 

approach to poroviscoelasticity (Coussy, 2004) by introducing an apparent relaxation bulk 664 

modulus 𝐾(𝑡), a shear modulus 𝐺(𝑡), and a Biot coefficient 𝑏(𝑡), but such rewriting is out of 665 

the scope of this study, which is focused on the modeling of transient evolutions of 666 

permeability mostly. 667 

In Eq. (44), variations 𝜙𝑐 − 𝜙𝑐,0 of cleat porosity are composed of various terms: 1) 668 

terms that depend on time-independent variables, 2) a term that takes into account the 669 

average swelling of the coal matrix and takes into account the history of concentration, 3) a 670 

transient term Δ𝜙𝑐,𝑡. Again, we can assert that this transient variation Δ𝜙𝑐,𝑡 of the cleat pore 671 

volume can be obtained through a convolution product: 672 

Δ𝜙𝑐,𝑡 = 𝐽𝜙𝑐(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑡) (47) 
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where the function 𝐽𝜙𝑐(𝑡) is a kernel. For this kernel 𝐽𝜙𝑐(𝑡), we propose a function of the 673 

form: 674 

𝐽𝜙𝑐(𝑡) = −
Δ𝜙𝑐,𝑚𝑎𝑥

𝑐𝑚,𝑚𝑎𝑥
 exp(−𝑡/𝜏𝑑𝑖𝑓𝑓)(1 − exp (−𝑡/𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔), (48) 

where it is reasonable to consider that the characteristic time 𝜏𝑑𝑖𝑓𝑓 is the same as in the 675 

previous equation, where 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 is another characteristic time, related to the time for the 676 

cleat to reach its minimum aperture, and where the parameter Δ𝜙𝑐,𝑚𝑎𝑥 controls the 677 

magnitude of the maximal reduction of the cleat’s aperture. 678 

When permeability is given by the Kozeny-Carman relationship (3), we have all 679 

equations needed to perform the calculations. In comparison with classical poromechanical 680 

formulations that disregard the transient phenomena here considered, to capture those 681 

transient phenomena, we need therefore to introduce two kernels, namely the function 682 

𝐽<𝑐𝑚>(𝑡) that governs how the average concentration of fluid in the coal matrix varies and the 683 

function 𝐽𝜙𝑐(𝑡) that governs how the cleat porosity varies. To define those two kernels, we 684 

need only three parameters: the characteristic time 𝜏𝑑𝑖𝑓𝑓 needed for the fluid to diffuse 685 

through the coal matrix (which is the only parameter required to define 𝐽<𝑐𝑚>(𝑡)), a 686 

parameter Δ𝜙𝑐,𝑚𝑎𝑥 that controls the magnitude of the maximal transient reduction of the 687 

cleat’s aperture, and a characteristic time 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 for the cleat to reach its minimal aperture. 688 

In contrast, when the permeability law is stress-based, we propose to adapt it into: 689 

𝜅 = 𝜅0 exp(𝜎 + 𝑝𝑐 − 𝜎𝑡) (49) 
where 𝜎 is the total volume stress and 𝜎𝑡 is a transient stress. We assume that we can obtain 690 

this transient stress through the following convolution product: 691 

𝜎𝑡 = 𝐽𝜎(𝑡) ⊗ 𝑐𝑒𝑑𝑔𝑒(𝑡) (50) 
where, for the kernel 𝐽𝜎(𝑡), we propose: 692 

𝐽𝜎(𝑡) =
𝜎𝑡,𝑚𝑎𝑥
𝑐𝑚,𝑚𝑎𝑥

exp(−𝑡/𝜏𝑑𝑖𝑓𝑓) (1 − exp (−𝑡/𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔)) (51) 

where 𝜎𝑡,𝑚𝑎𝑥 is a parameter that controls the magnitude of the maximal transient stress. Note 693 

that, in the absence of sorption, Eq. (49) leads to a permeability of coal, which depends on the 694 

Terzaghi effective stress (as was considered analytically by Connell et al. (2010) or 695 

experimentally by Somerton et al. (1975), for instance). In contrast, by considering a Kozeny-696 

Carman-type aperture-based permeability relationship (Eq. (1)), with the set of poroelastic 697 

equations (44), one instead finds that the permeability depends on the Biot effective stress. 698 

Here again, in comparison with classical poromechanical formulations that disregard the 699 

transient phenomena here considered, to capture those transient phenomena, we need to 700 

use two kernels, namely the function 𝐽<𝑐𝑚>(𝑡) that governs how the average concentration 701 

of fluid in the coal matrix varies and the function 𝐽𝜎(𝑡) that governs how the effective stress 702 

acting on the cleat porosity varies. To define those two functions, we need only three 703 

parameters: the characteristic time 𝜏𝑑𝑖𝑓𝑓 for the fluid in the representative elementary 704 

volume to diffuse through the coal matrix, the characteristic time 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 for the cleat to reach 705 
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its minimum aperture and a characteristic maximal transient variation 𝜎𝑡,𝑚𝑎𝑥 of the effective 706 

stress acting on the cleat porosity. 707 

4.2 Verification of the validity of the proposed kernels 708 

As already explained in section 4.1, the kernel 𝐽<𝑐𝑚>(𝑡) that intervenes in Eq. (45) and 709 

was defined in Eq. (46) is related to the kernel 𝐽𝑚𝑚
(𝑡) introduced in Eq. (24) through: 710 

𝐽𝑚𝑚
(𝑡) = (1 − 𝜙𝑐,0)𝐽<𝑐𝑚>(𝑡). (52) 

Consequently, given Eq. (26), we have: 711 

𝐽�̇�𝑚
(𝑡) = (1 − 𝜙𝑐,0)𝑑𝐽<𝑐𝑚>/𝑑𝑡. (53) 

The relation between the kernel 𝐽𝜙𝑐(𝑡) (that intervened in Eq. (47) and that we defined in Eq. 712 

(48)) and kernels introduced in section 2.3 is more complicated. An examination of the 713 

equation governing 𝜙𝑐 − 𝜙𝑐,0 in the set of equations (44), together with the fact that the 714 

adsorption stress  𝜎𝑎 depends linearly on the average concentration < 𝑐𝑚 > in the coal matrix 715 

(see Eq. (9)), show that the kernel 𝐽𝜙𝑐  must depend linearly on the kernels 𝐽𝛿𝑐  and 𝐽𝑚𝑚
. Given 716 

that the kernel 𝐽𝜙𝑐  captures variations of pore volume relative to the reference volume of 717 

porous solid (see Eq. (47)) while the kernel 𝐽𝛿𝑐  captures variations of pore volume relative to 718 

the reference pore volume (see Eq. (18)), we pose:  719 

𝐽𝛿𝑐 =
1

𝜙𝑐,0
𝐽𝜙𝑐 + 𝛽𝐽𝑚𝑚

 (54) 

where 𝛽 is a proportionality factor that we can calculate from the simulated kernels, as 𝛽 =720 

lim
𝑡→+∞ 

𝐽𝛿𝑐 /𝐽𝑚𝑚
. Based on the simulations performed in section 2.2, for the elliptical cleat with 721 

aspect ratio 𝑎/𝐴 = 0.03, we find 𝛽 = 2.35 ⋅ 10−4 m3.kg-1. Relation (54)  explains that the 722 

kernel 𝐽𝜙𝑐  can converge toward 0 in the long term, while Figure 8-b displays a contribution 723 

Δ𝑉𝑐,ℎ𝑦𝑑𝑟 to the variation of volume of the cleats that converges toward a strictly positive value: 724 

in Eq. (44), we capture this net increase of cleat volume due to hydric effects in the long term 725 

by terms other than Δ𝜙𝑐,𝑡. 726 

Based on these relations, we can assess the validity of the generic forms (46) and (48) 727 

proposed for the kernels 𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡). To do so, for each cleat geometry, we fit the 728 

parameters 𝜏𝑑𝑖𝑓𝑓, 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 and Δ𝜙𝑡,𝑚𝑎𝑥 which define the kernels 𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡) so that 729 

the kernels 𝐽𝑚𝑚
(𝑡) and 𝐽�̇�𝑚

(𝑡), 𝐽𝛿𝑐(𝑡), as calculated through relations (52), (53), and (54),  730 

respectively, are as close as possible from their numerical evaluation by finite-element 731 

calculations (see Figure 9). Note that, in this fit, all parameters other than 𝜏𝑑𝑖𝑓𝑓, 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔  and 732 

Δ𝜙𝑡,𝑚𝑎𝑥 that are required for the evaluation of the kernels (e.g., 𝑐𝑚,𝑚𝑎𝑥 and 𝜙𝑐,0) are already 733 

known and can be found in Table 1. 734 

We display the results of this fit for all cleat geometries in Figure 17 and give the fitted 735 

parameters in Table 2. The figure shows that the form chosen for the kernels 𝐽<𝑐𝑚>(𝑡) and 736 

𝐽𝜙𝑐(𝑡) is appropriate, in the sense that those kernels can be successfully fitted to kernels 737 

obtained numerically with finite-element simulations of the explicit diffusion of the fluid 738 

through the coal matrix. 739 



32 

 

 740 

 741 

Figure 17: Kernels (a) 𝐽𝛿𝑐(𝑡), (b) 𝐽𝑚𝑚
(𝑡), and (c) 𝐽�̇�𝑚

(𝑡) for all geometries of cleats 742 

considered in this study, as evaluated with finite-element simulations (solid lines) and as 743 

obtained by fitting the generic functions proposed for the kernels 𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡) 744 

(dashed lines).  745 

 746 

Table 2: Results of fit of kernels 𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡) 747 
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 748 

The values provided in Table 2 make it possible to confirm an observation already given 749 

in section 2.2: the transient decrease of permeability (characterized by the parameter 750 

Δ𝜙𝑐,𝑚𝑎𝑥) is all the more pronounced that the aspect ratio 𝑎/𝐴 of the cross section of the cleat 751 

differs from 1.0. The characteristic time 𝜏𝑑𝑖𝑓𝑓 of the process of diffusion also decreases with 752 

an increasing aspect ratio 𝑎/𝐴, but we believe that this effect is mostly due to the fact that, in 753 

our study, by construction, with an increasing aspect ratio 𝑎/𝐴, the porosity of the cleats 754 

increases and hence the volume of coal matrix toward which fluid diffuses is lower.  The 755 

magnitude of this characteristic time 𝜏𝑑𝑖𝑓𝑓 is consistent with the value 𝐿𝑑𝑖𝑓𝑓
2 /𝐷 =756 

(0.5 × 10−2 m2)2/(10−9 m2. s−1) = 2.5 ⋅ 104 s expected from the inter-cleats spacing. Also, 757 

as already discussed in section 2.2, the characteristic time 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 is mostly independent of 758 

the aspect ratio when this aspect ratio differs sufficiently from 1 (i.e., when the cleat is flat 759 

enough). Figure 17 shows that this characteristic time 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 is about half-an-order-of-760 

magnitude smaller than the actual time for the cleat to reach its minimal aperture (and hence 761 

for the permeability to be minimal). At a given aspect ratio, the three parameters are shown 762 

in Table 2, which define the various kernels, are roughly independent of the geometry of the 763 

cleat's cross-section, as can be inferred from an observation of the parameters for the elliptic 764 

and rectangular cleats with aspect ratio 𝑎/𝐴 = 0.1. 765 

Parameters (e.g., permeability (Wold et al., 2008)) can vary significantly from the lab 766 

scale to the field scale. In the same spirit, the parameters proposed here in Table 2, obtained 767 

by calculations performed at the scale of an individual cleat, may differ from parameters 768 

relevant for calculations at the scale of the seam. However,  Figure 17 shows that the kernels’ 769 

form that we propose is valid for all geometries assumed for the cleat. Consequently, one 770 

could expect that this kernels’ form should also be relevant for calculations performed at the 771 

seam scale, even though the three parameters that define the kernels quantitatively may 772 

differ from those given in Table 2. This difference must stem from the difference of scale and 773 

the fact that the actual cleats' geometry is not elliptical. 774 

 775 

4.3 Example of calculation with the proposed kernels 776 

In this section, we consider again the problem treated in section 3 of a one-dimensional 777 

injection into a cylindrical coal structure of length 𝐿 = 200 m and of arbitrary cross section, 778 

Geometry of cleat’s cross-section 

Characteristic 

time 𝜏𝑑𝑖𝑓𝑓, s 

Characteristic 

time 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔, 

s 

Characteristic 

maximal 

reduction of cleat 

porosity  Δ𝜙𝑐,𝑚𝑎𝑥, 

1 

Elliptic with aspect ratio 𝑎/𝐴 = 0.03 13502.2 503.4 1.390 · 10-3 

Elliptic with aspect ratio  𝑎/𝐴 = 0.1 12615.8 538.7 1.064 · 10-3 

Elliptic with aspect ratio 𝑎/𝐴 = 0.3 10388.4 200.8 6.085 · 10-4 

Elliptic with aspect ratio 𝑎/𝐴 = 1 5103.9 204.5 -6.396 · 10-4 

Rectangular with aspect ratio  𝑎/𝐴 =
0.1 

11447.5 600.1 1.251 · 10-3 
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in which cleats with an elliptic cross-section of aspect ratio 𝑎/𝐴 =  0.03 is assumed to be 779 

representative. We consider the same initial conditions (i.e., the sample contains CO2 at 1 780 

MPa) and hydraulic boundary conditions (i.e., CO2 is injected at 10 MPa at one end of the 781 

cylinder while the other surfaces remain sealed). However, in contrast to what we did in 782 

section 3 in which we calculated the needed kernels with finite-element simulation, here we 783 

use the kernels  𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡) given by Eqs. (46) and (48), respectively, together with 784 

the fitted parameters given in Table 2 for the cleat of interest, i.e., 𝜏𝑑𝑖𝑓𝑓 =  13502.2 s, 785 

𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 =  503.4 s, and Δ𝜙𝑐,𝑚𝑎𝑥 = 1.390 ⋅ 10−3. The same code as in section 3.2 is used, but 786 

now the kernels 𝐽𝑚𝑚
(𝑡) and 𝐽�̇�𝑚

(𝑡), 𝐽𝛿𝑐(𝑡) are calculated from the kernels 𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡) 787 

through relations (52), (53), and (54). For such one-dimensional simulations, assuming like in 788 

Section 3 that the hydro-mechanical couplings are all lumped in  the proposed kernels, the 789 

knowledge of Biot coefficient of Biot modulus is not needed. In contrast, generic 3-790 

dimensional simulations require those parameters. 791 

The results of the simulation of the injection, displayed in Figure 18, compare well with 792 

the results obtained with the kernels calculated with the finite-element simulations (see 793 

Figure 15). Nevertheless, we observe some differences at the earliest times, when the 794 

proposed kernels differ the most from the simulated ones (see Figure 17-a in particular). 795 

However, the good agreement confirms that the generic form (46) and (48) of the kernels 796 

𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡) is appropriate to capture adsorption-induced transient variations of 797 

permeability. 798 

 799 
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 800 

Figure 18: Distribution of (a) pressure 𝑝𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations 801 

of adsorbed fluid during an injection in a coal sample with a reference permeability 𝜅0 =802 

10−12 m2, based on the generic kernels 𝐽<𝑐𝑚>(𝑡) and 𝐽𝜙𝑐(𝑡) given by Eqs. (46) and (48), 803 

respectively. For sub-figure c, the same comments apply as for Figure 15-c. 804 

 805 

4.4 Limitations and perspectives 806 

 807 

We identify the following limitations and perspectives: 808 
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 In the simulations of an injection of CO2 into a coal sample or coal reservoir (see 809 

section 3), we made some assumptions to use the kernels calculated with finite-810 

element simulations in section 2. Indeed, we assumed that fluid diffuses through 811 

the coal matrix only perpendicular to the cleats and neighboring slices do not 812 

restrain the swelling of a slice of coal perpendicular to the cleat. By relaxing those 813 

assumptions, the actual kernels to be used would differ from the ones calculated. 814 

But we do not expect the kernels’ form to differ significantly from the generic 815 

forms proposed in section 4. Consequently, for the simulations performed in 816 

section 4.3, relaxing the assumptions above-mentioned would come back to use 817 

input parameters that would differ from the ones given in Table 2. 818 

 The calculations that we performed in sections 3 and 4 at the scale of a coal 819 

sample or coal seam were based on the idea that some representative cleat 820 

exists. However, we know that the cleat system of coal seams is complex and 821 

somehow fractal, involving various geometries (i.e., shape, aperture, or aspect 822 

ratio) of the cleats and their spacing. Consequently, one should extend the 823 

approach presented in this work to such a case. We see no a priori impossibility 824 

in performing this extension. One could express the permeability of the 825 

representative elementary volume of fractured coal as a function of the aperture 826 

of the various families of cleats and could introduce kernels specific to each 827 

family of cleats. 828 

 We discussed in section 3.3 the notion of local thermodynamic equilibrium. 829 

Depending on the coal's properties and the distance to the injection well, we 830 

found out that assuming local thermodynamic equilibrium could be reasonable 831 

or not. Even if, for a given coal seam, the assumption of local thermodynamic 832 

equilibrium is not valid at some locations in the seam or at some time during the 833 

injection process, assessing the quantitative impact of this assumption on the 834 

seam’s response (in particular on the predicted flow rates) would be interesting. 835 

 The proposed approach could be applied to other physical processes that induce 836 

heterogeneity inside the representative elementary volume of fractured coal. 837 

For instance, injection of a hot fluid would cause heterogeneity of temperature 838 

and thermal dilation inside the coal matrix and induce transient permeability 839 

variations. However, the approach here proposed, relying on the Boltzmann 840 

superposition principle, is limited to processes for which the time-dependent 841 

phenomena and their consequences can be expressed linearly. If nonlinearities 842 

enter the picture, then the method could be extended by introducing nonlinear 843 

convolutions in Volterra’s formalism (Ogunfunmi, 2007). However, such 844 

formulation is significantly more complex than the one used in this study and 845 

requires a larger number of kernels, whose identification could prove difficult. 846 

As proposed in this study, as much as possible, aiming at formulating the 847 

governing equations linearly of the time-dependent physical process seems to 848 

be a reasonable approach to try before considering nonlinear developments. 849 

 850 
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5 Conclusions 851 

In this work, we aimed at finding out how to model transient variations of permeability 852 

due to heterogeneous adsorption-induced swelling of the coal matrix by formulating 853 

constitutive equations at the scale of a representative elementary volume of fractured coal. 854 

The need to develop constitutive equations at this scale rather than at a lower scale stems 855 

from the will to perform simulations at the scale of a coal sample or a coal reservoir, without 856 

meshing explicitly coal matrix and cleat network and solving for the transport through the coal 857 

matrix. To better understand the physical processes involved, we first performed finite-858 

element simulations of an individual cleat surrounded by a coal matrix, solving the transport 859 

of fluid through the coal matrix and the coal matrix's swelling. Then we derived the 860 

constitutive equations that we were seeking for, using the just mentioned finite-element 861 

calculations as inputs. Finally, we solved those constitutive equations with the finite-volume 862 

method to simulate CO2 injection into a coal structure. The conclusions of this work are: 863 

 We confirm that adsorption-induced transient variations of permeability can be 864 

due to the heterogeneity of the concentration of fluid in the coal matrix. The 865 

magnitude of those transient variations of permeability depends significantly on 866 

the aspect ratio of the cleat's cross-section (see Figure 5). In contrast, a 867 

characteristic duration 𝜏𝑑𝑖𝑓𝑓 of those transient variations is relatively 868 

independent of the geometry of the cleat's cross-section (see Figure 5 again). 869 

This characteristic duration 𝜏𝑑𝑖𝑓𝑓 should rather depend on the diffusivity 𝐷 of 870 

the fluid through the coal matrix and on the characteristic distance 𝐿𝑑𝑖𝑓𝑓 871 

between neighboring cleats (see Eq. (41)). 872 

 Transient variations of permeability can be rigorously captured with constitutive 873 

equations formulated at the scale of a representative elementary volume of 874 

fractured coal. To do so, we relied on the Boltzmann superposition principle. The 875 

resulting constitutive equation (see Eq. (23)) involves a convolution product so 876 

that the permeability 𝜅(𝑡) at a given time 𝑡 depends on the full history of 877 

pressure 𝑝𝑐(𝑡′) of fluid in the cleats until time 𝑡, i.e., at all times 𝑡′ < 𝑡. 878 

 Although transient adsorption-induced variations of permeability are involved, 879 

we could model them with a not-too-complex use of the Boltzmann 880 

superposition principle. The reason why we succeeded in doing so is the 881 

following: we can express the swelling as depending linearly on the 882 

concentration of fluid in the coal matrix (see Eq. (8)), and the transport of fluid 883 

through the coal matrix can be well modeled with a linear diffusion equation (see 884 

Eq. (7)) so that all-time dependent processes and their consequences depend 885 

linearly on the history 𝑐𝑒𝑑𝑔𝑒(𝑡) of concentration of fluid in the coal matrix in the 886 

vicinity of the cleat. In this approach, all nonlinearity is concentrated into the 887 

instantaneous relation (5) between this concentration and the pressure 𝑝𝑐(𝑡) of 888 

the fluid in the cleats. 889 

 At the scale of a representative elementary volume of fractured coal, to 890 

formulate a complete set of constitutive equations that can capture transient 891 

variations of permeability, we need to use convolutions productions that rely on 892 
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two kernels: one that governs the evolution of the aperture of the cleat 893 

(depending on how we write the equations, this kernel is 𝐽𝛿𝑐(𝑡) (see Eq. (34) in 894 

section 3.1) or 𝐽𝜙𝑐(𝑡) (see Eq. (47) in section 4.1) and one that governs the 895 

evolution of the amount of fluid in the coal matrix (depending on how we write 896 

the equations, this kernel is 𝐽�̇�𝑚
(𝑡) = 𝑑𝐽𝑚𝑚

(𝑡)/𝑑𝑡 (see Eq. (33) in section 3.1) 897 

or 𝐽<𝑐𝑚>(𝑡) (see Eq. (45) in section 4.1)). Those two kernels can be identified with 898 

finite-element simulations of the transport of fluid through the coal matrix and 899 

the swelling it induces (see section 2.2 and Figure 9). 900 

 At this same scale of a representative elementary volume of fractured coal, we 901 

proposed three-dimensional constitutive equations that can capture transient 902 

permeability variations in Eq. (44). Those constitutive equations require the 903 

knowledge of two kernels (i.e., 𝐽𝜙𝑐(𝑡) and 𝐽<𝑐𝑚>(𝑡)), for which we propose 904 

generic forms (see Eqs. (46) and (48)) that can be used by the engineer. 905 

Altogether, those two kernels depend on only three parameters with an explicit 906 

physical meaning: a characteristic time 𝜏𝑑𝑖𝑓𝑓 of diffusion of fluid through the coal 907 

matrix, a characteristic time 𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 related to the closure of the cleats, and a 908 

parameter Δ𝜙𝑐,𝑚𝑎𝑥 that controls the magnitude of the maximal transient 909 

variation of permeability. For those who prefer to model permeability as 910 

depending on stresses rather than on aperture of the cleat, we propose an 911 

appropriate adaptation of the permeability law (see Eq. (49)), which requires the 912 

knowledge of 1 kernel (see Eq. (50)) for which we also propose a generic form 913 

(see Eq. (51)) that also depends on three parameters with the same explicit 914 

physical meaning (i.e., the same two characteristic times and a parameter 𝜎𝑡,𝑚𝑎𝑥 915 

that controls the magnitude of the maximal transient variations of effective 916 

stress). 917 

 In the process of injection of fluid in a coal bed, two kinetics are at stake, namely 918 

the kinetics of advective transfer through the cleats (with a characteristic time 919 

𝜏𝑎𝑑𝑣𝑒𝑐) and the kinetics of transfer from the cleats to the coal matrix (with a 920 

characteristic time 𝜏𝑑𝑖𝑓𝑓). If those characteristic times verify Eq. (42), i.e., 921 

𝜏𝑎𝑑𝑣𝑒𝑐 ≫ 𝜏𝑑𝑖𝑓𝑓, local thermodynamic equilibrium is ensured: in a small 922 

representative elementary volume of fractured coal, one can consider that the 923 

chemical potential of the fluid is homogeneous (i.e., the same in the cleat as 924 

anywhere in the coal matrix). We provide an expression for the characteristic 925 

time 𝜏𝑑𝑖𝑓𝑓 in Eq. (41). For a given system, it is possible that the assumption of 926 

local thermodynamic equilibrium could be valid far from the injection well but 927 

not reasonable in the vicinity of the injection well. 928 

We discussed the limitations and perspectives in section 4.4. 929 

 930 

 931 

Nomenclature 932 
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Symbol Meaning Unit 

𝐴𝑖𝑗 Jacobian matrix kg.m-2.Pa-1 

𝑎/𝐴 Aspect ratio of elliptical cleat 1 

𝛼 Parameter governing magnitude of adsorption-induced swelling m3.kg-1 

𝑏 Biot coefficient of fractured coal 1 

𝛽 Proportionality factor m3.kg-1 
𝑐𝑒𝑑𝑔𝑒 Amount of fluid adsorbed on edge of cleat kg.m-3 

𝑪𝒎 Stiffness tensor of coal matrix Pa 

𝑐𝑚 Mass concentration of fluid in coal matrix, per unit volume of 
coal matrix in reference configuration 

kg.m-3 

𝑐𝑚,𝑚𝑎𝑥 Maximum adsorbed amount in Langmuir isotherm kg.m-3 

𝐷 Diffusivity of fluid in coal matrix m2.s-1 

𝜕Ω𝑖𝑛 Inner surface of system N.A. 

𝜕Ω𝑜𝑢𝑡 Outer surface of system N.A. 

Δ𝜙𝑐,𝑡 Transient variations of porosity associated to cleat system 1 

Δ𝜙𝑐,𝑚𝑎𝑥 Maximal transient variation of porosity associated to cleat 
system 

1 

𝑒 Shear strain tensor 1 

휀 Strain tensor 1 

휀 Volume strain 1 

휀𝑎 Adsorption strain 1 

𝜙𝑐  Porosity associated to cleats 1 

𝜂𝐹 Dynamic viscosity of fluid Pa.s 

𝐽<𝑐𝑚> Kernel associated to average mass concentration of fluid in coal 
matrix per unit volume of coal matrix 

1 

𝐽𝛿𝑐  Kernel associated to variation of aperture of cleats m3.kg-1 

𝐽𝑚𝑚
 Kernel associated to average mass concentration of fluid in coal 

matrix per unit volume of fractured coal 
1 

𝐽�̇�𝑚
 Kernel associated to rate of variation of average mass 

concentration of fluid in coal matrix per unit volume of fractured 
coal 

s-1 

𝐽𝜙𝑐  Kernel associated to variation of cleat porosity m3.kg-1 

𝐽𝜎 Kernel associated to transient stress Pa.m3.kg-1 

𝐾 Bulk modulus of fractured coal Pa 

𝐾𝑐,𝑝 Parameter characterizing stiffness of cleat Pa 

𝐾𝑐,𝜎 Parameter characterizing stiffness of cleat Pa 

𝐾𝑚 Bulk modulus of coal matrix Pa 

𝑘 Permeability coefficient kg.m-1.Pa-

1.s-1 

𝜅 Intrinsic permeability of fractured coal m2 

𝜅0 Intrinsic permeability of fractured coal in reference 
configuration 

m2 

𝜉 Displacement m 

𝐿 Length of system m 
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𝑀𝐹 Molar mass of fluid kg.m-3 

𝑀CO2  Molar mass of CO2 kg.m-3 

𝑚 Mass of fluid in fractured coal per unit volume of fractured coal kg.m-3 

𝑚𝑐 Mass of fluid in cleat per unit volume of fractured coal kg.m-3 

𝑚𝑚 Mass of fluid in coal matrix per unit volume of fractured coal kg.m-3 

𝑁 Biot modulus Pa 
𝑛 Outward normal vector N.A. 

𝜈𝑚 Poisson’s ratio of coal matrix 1 

𝑝𝑐 Pressure of fluid in cleats Pa 

𝑝𝑐,0 Step of pressure of fluid in cleats Pa 

𝑝𝑖𝑛𝑖𝑡 Initial pressure of fluid in coal seam Pa 
𝑝𝑖𝑛𝑗 Pressure of injection in coal seam Pa 

𝑝𝐿0 Characteristic pressure in Langmuir isotherm Pa 

𝑝𝑚 Thermodynamic pressure of fluid in coal matrix Pa 

𝜌𝐹 Mass density of fluid kg.m-3 

𝑅 Ideal gas constant J.mol-1.K-1 
𝑠 Shear stress tensor Pa 

𝜎 Stress tensor Pa 

𝜎 Volume stress Pa 

𝜎𝑎 Adsorption stress Pa 

𝜎0 Imposed confining stress Pa 

𝜎𝑡 Transient stress Pa 

𝜎𝑡,𝑚𝑎𝑥 Characteristic maximal transient stress Pa 

𝑡 Time s 

Δ𝑡 Time step s 

𝑇 Temperature K 

𝜏 Characteristic time s 

𝜏𝑎𝑑𝑣𝑒𝑐 Characteristic time of transfer through cleats network s 

𝜏𝑐𝑙𝑜𝑠𝑖𝑛𝑔 Characteristic time for cleats to reach their minimal aperture s 

𝜏𝑑𝑖𝑓𝑓 Characteristic time of diffusion of fluid from cleats to coal matrix s 

𝑉𝑐 Volume of cleats m3 

𝑉𝑐,0 Volume of cleats in reference configuration m3 

𝑉0 Volume of fractured coal in reference configuration m3 

𝑉𝑖 Volume of element 𝑖 m 

∆𝑉𝑐 Variation of volume of cleats m3 

∆𝑉𝑐,𝑚𝑒𝑐ℎ Variation of volume of cleats due to mechanical effects m3 

∆𝑉𝑐,ℎ𝑦𝑑𝑟 Variation of volume of cleats due to ingress of fluid in coal 
matrix 

m3 

𝑤 Mass flow rate of fluid through cleats kg.m-2.s-1 

𝑤𝑚 Mass flow rate of fluid through coal matrix kg.m-2.s-1 

𝑥 Position m 

Δ𝑥 Distance between nodes m 

𝑌 Heaviside function 1 
 933 
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