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Modeling transient variations of permeability in coal seams at the reservoir scale

Production of fluid from or injection of fluid into a coal seam leads to variations of permeability of the seam, resulting from adsorption of fluid in the coal matrix in particular.

One subtle effect is that, if the fluid pressure in the cleat increases, after an immediate opening of the cleat, one expects the cleat aperture (and hence the permeability) to decrease for a transient time, as a consequence of the fluid diffusion from the cleat to the coal matrix.

In this work, we aim to model such transient variations of permeability by proposing constitutive equations at the fractured coal scale. Permeability depends on the complete history of pressures over time. The constitutive equations rely on Boltzmann's superposition principle, which requires kernels as inputs. One can identify the kernels with finite-element simulations of the response of an individual cleat subjected to a history of fluid pressure. We also propose approximate versions of those kernels, which only depend on a few parameters with a physical meaning. Examples of fluid injection simulations into a coal seam making use of the constitutive equations here derived are presented.

Introduction

Unminable coal seams could contribute to the storage of CO2 (i.e., carbon dioxide) up to 20 Gt [START_REF] Gale | Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?[END_REF]. Given that anthropogenic emissions of CO2 are estimated at 10 Gt per year [START_REF] Knorr | Is the airborne fraction of anthropogenic CO2 emissions increasing[END_REF], coal seams could contribute to store about two years of those emissions, which is small but non-negligible. Unminable coal seams contain CH4 (i.e., methane) naturally: proven resources are 2 billion standard cubic feet, and contingent resources are estimated at 300 billion standard cubic feet [START_REF] Moore | Coalbed methane: A review[END_REF]. Natural gas presently contributes to about 21% of the world's energy supply (International Energy Agency, 2019). Production of CH4 can be enhanced by injecting CO2 into the seam -a process known as CO2-enhanced coal bed methane recovery (or CO2-ECBM). During both injection of CO2 [START_REF] Oudinot | CO2 injection performance in the Fruitland Coal Fairway, San Juan basin: Results of a field pilot[END_REF][START_REF] Pekot | Modeling the effects of matrix shrinkage and differential swelling on coalbed methane recovery and carbon sequestration[END_REF] and production of CH4 [START_REF] Palmer | How permeability depends on stress and pore pressure in coalbeds: A new model[END_REF][START_REF] Moore | History matching and permeability increases of mature coalbed methane wells in San Juan basin[END_REF][START_REF] Scott | Permeability increase in Bowen basin coal as a result of matrix shrinkage during primary depletion[END_REF], significant variations of permeability are observed. The reason beyond those variations is well known: they are the consequence of adsorption-induced volume variations of the coal [START_REF] Gray | Reservoir Engineering in Coal Seams: Part 1-The Physical Process of Gas Storage and Movement in Coal Seams[END_REF].

Naturally, coal is a fractured material [START_REF] Laubach | Characteristics and origins of coal cleat: A review[END_REF]: those natural fractures are called cleats, vary in size, are mostly vertical, and are spaced by about a centimeter. Cleats govern the seam's permeability [START_REF] Mazumder | Swelling of coal in response to CO2 sequestration for ECBM and its effect on fracture permeability[END_REF][START_REF] Pan | A theoretical model for gas adsorption-induced coal swelling[END_REF]. Between cleats, one finds the coal matrix [START_REF] Harpalani | Measurement of parameters impacting methane recovery from coal seams[END_REF], porous, with pores down to a sub-nanometric size. The variations of permeability observed during production or injection are due to the cleats' opening or closure, which is consecutive to shrinkage or swelling of the coal matrix, respectively. Dimensional variations of the coal matrix observed upon variations of the pressure of the fluid it contains are known to be due to adsorption effects [START_REF] Levine | Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[END_REF]. In the smallest pores of the material, most of the fluid it contains is indeed adsorbed, i.e., in intermolecular interaction with the solid skeleton's atoms. Because of those intermolecular interactions, an unconstrained piece of coal matrix tends to swell upon an increase of fluid pressure. The magnitude of those pressure-induced dimensional variations depends on the fluid. Upon CO2 injection, the injection induces increased CO2 pressure in the bed and coal matrix swelling. In the confined conditions that prevail in the underground, this swelling translates into cleats closure, and finally into permeability decrease.

Subtle adsorption-induced variations of permeability can take place. Let us consider a sample of fractured coal submitted to constant confining stresses, in which we inject fluid.

Because the cleat system's permeability is larger than that of the coal matrix, fluid will first penetrate the cleats (such flow of fluid or transfer of mass through the cleats is also referred to as seepage [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata][END_REF]). It will decrease the effective stress, hence leading to an aperture of the cleats and increasing the sample's permeability. Immediately after the injection, fluid will start penetrating the coal matrix through Fickian diffusion [START_REF] Moore | Coalbed methane: A review[END_REF].

At early times, the concentration of fluid in the coal matrix must be larger in the vicinity of the cleat than far from it (see Figure 1-b). Even if the sample is under constant confining stresses, the coal matrix's swelling will be localized around the cleat, which will tend to close the cleat.

At large times, the concentration of fluid in the coal matrix should be homogeneous. In this case, if the sample is under constant confining stresses and the coal matrix is homogeneous, swelling of the coal matrix should translate into a homothetic swelling of the whole sample and hence of the cleats as well, leading to a long-term increase of permeability (see Figure 1a at large times). As a result, even if fluid pressure in the cleats is constant over time, one can expect a non-monotonic and complex variation of permeability, as displayed in Figure 1-a. This complex variation results from the transient diffusion of fluid through the coal matrix and the induced heterogeneity of fluid pressure in the matrix. We will refer to those variations as "transient variations of permeability." The study of those transient variations of permeability has gained significant interest recently. With finite-element simulations of coal samples (Peng et al., 2014b;[START_REF] Qu | Impact of matrix swelling area propagation on the evolution of coal permeability under coupled multiple processes[END_REF] X. Liu et al., 2018) or through review of laboratory data (Liu et al., 2011a), several studies showed that the diffusion of fluid through the coal matrix could yield non-monotonic variations of permeability of significant magnitude. Assuming local thermodynamic equilibrium (i.e., assuming that, inside a representative elementary volume of fractured coal, the fluid's thermodynamic pressure is homogeneous, i.e., the same at any location in the coal matrix as in the cleats) can yield significant errors.

On laboratory samples submitted to constant confining stresses, several groups [START_REF] Robertson | Modeling permeability in coal using sorption-induced strain data[END_REF][START_REF] Pini | Role of adsorption and swelling on the dynamics of gas injection in coal[END_REF][START_REF] Wang | Permeability evolution in fractured coal: The roles of fracture geometry and water-content[END_REF] observed non-monotonic variations of permeability with the pore fluid's pressure -a phenomenon known as permeability rebound. Liu et al. (2011b), Peng et al. (2014a), and [START_REF] Qu | Impact of matrix swelling area propagation on the evolution of coal permeability under coupled multiple processes[END_REF] proposed to explain this permeability rebound by the fact that experimental data would have been acquired before reaching an equilibrium or a steady-state. Therefore, this permeability rebound would be a consequence of transient variations of permeability. Experimentally, Wei et al. (2019b) observed non-monotonic evolutions of permeability with time for a coal sample submitted to constant confining stresses and fluid pressures, which, according to them, suggests a transition from a swelling nearby the cleat to further away. Note, however, that other theories can explain the permeability rebound without invoking transient effects. For instance, by assuming that a fraction of the bulk coal swelling or of the matrix coal swelling translates into the closure of the cleats, models can capture permeability rebound. This ability holds independent of whether the fraction is considered constant [START_REF] Liu | A new coal-permeability model: Internal swelling stress and fracturematrix interaction[END_REF][START_REF] Connell | An analytical coal permeability model for tri-axial strain and stress conditions[END_REF][START_REF] Chen | Influence of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Model development and analysis[END_REF][START_REF] Guo | Impact of effective stress and matrix deformation on the coal fracture permeability[END_REF][START_REF] Lu | Model development and analysis of the evolution of coal permeability under different boundary conditions[END_REF][START_REF] Liu | Analysis of coal permeability rebound and recovery during methane extraction: Implications for carbon dioxide storage capability assessment[END_REF] or pressure-dependent [START_REF] Pekot | Modeling the effects of matrix shrinkage and differential swelling on coalbed methane recovery and carbon sequestration[END_REF]. Heterogeneity of coal [START_REF] Izadi | Permeability evolution of fluidinfiltrated coal containing discrete fractures[END_REF][START_REF] Chen | Roles of coal heterogeneity on evolution of coal permeability under unconstrained boundary conditions[END_REF], as well as gas slippage [START_REF] Niu | Coal permeability: gas slippage linked to permeability rebound[END_REF] or a transition between different flow regimes (Wang et al., 2019) could also explain complex variations of the permeability with pore pressure for a piece of coal submitted to constant confining stresses.

Our aim in this work is to model transient variations of permeability in reservoir simulations. As Peng et al. (2014b), [START_REF] Qu | Impact of matrix swelling area propagation on the evolution of coal permeability under coupled multiple processes[END_REF], and X. Liu et al. (2018) showed, those transient variations of permeability can be modeled numerically as soon as the coal matrix around the cleat is meshed and the diffusion of fluid through the coal matrix is explicitly modeled. However, such an approach cannot be employed to perform reservoir simulations, as the number of elements required to perform such simulation would be much too large.

Consequently, we aim at deriving a model at a scale such that the representative elementary volume is a piece of fractured coal.

At our scale of interest, i.e., at the scale where a piece of fractured coal is our representative elementary volume (seen as a smeared porous medium), many have modeled adsorption-induced variations of permeability (for a review, see [START_REF] Pan | Modelling permeability for coal reservoirs: A review of analytical models and testing data[END_REF]). Most models (e.g., [START_REF] Palmer | How permeability depends on stress and pore pressure in coalbeds: A new model[END_REF], [START_REF] Shi | Drawdown induced changes in permeability of coalbeds: A new interpretation of the reservoir response to primary recovery[END_REF], [START_REF] Cui | Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[END_REF], [START_REF] Vandamme | Adsorption and strain: The CO2induced swelling of coal[END_REF][START_REF] Pijaudier-Cabot | Revisiting poromechanics in the context of microporous materials[END_REF]), Wu et al. (2011[START_REF] Brochard | Poromechanics of microporous media[END_REF], [START_REF] Espinoza | Measurement and modeling of adsorptive-poromechanical properties of bituminous coal cores exposed to CO2: Adsorption, swelling strains, swelling stresses and impact on fracture permeability[END_REF]) assume local thermodynamic equilibrium. This assumption means that, by nature, those models are unable to capture the non-monotonic variations of permeability displayed in Figure 1-a, as those variations are the direct consequence of the heterogeneity of the concentration of fluid in the coal matrix within the representative elementary volume. In contrast, others aimed at relaxing this assumption of local thermodynamic equilibrium [START_REF] Wu | Dual poroelastic response of a coal seam to CO2 injection[END_REF]Liu et al., 2011b;[START_REF] Wu | A dual poroelastic model for CO2-enhanced coalbed methane recovery[END_REF]Peng et al., 2014a;[START_REF] Vandamme | Modeling the poromechanical behavior of microporous and mesoporous solids: Application to coal[END_REF][START_REF] Zang | Gas sorption-induced coal swelling kinetics and its effects on coal permeability evolution: Model development and analysis[END_REF]Wei et al., 2019a). [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata][END_REF] modeled fluid flow in fractured rocks by introducing variables averaged over a scale much larger than the spacing between fractures. They considered two pressures of fluid at each point in space, i.e., one in the fractures and one in the pore space in the rock between the fractures. They considered the transfer of fluid between fractures and rock porosity, but, by construction, in their model, the fluid pressure is homogeneous in the whole rock porosity at each point in space. In the same spirit, but specifically for coal, [START_REF] Wu | Dual poroelastic response of a coal seam to CO2 injection[END_REF]Wu et al. ( , 2011) ) and [START_REF] Vandamme | Modeling the poromechanical behavior of microporous and mesoporous solids: Application to coal[END_REF] introduced kinetics of transfer between cleats and coal matrix. But they considered that the thermodynamic pressure of fluid in the coal matrix is homogeneous: such simplification makes it impossible to capture the non-monotonic variations of permeability displayed in Figure 1-a. To solve this issue, the model of Liu et al. (2011b) and its extension to double-porosity media (Peng et al., 2014a) [START_REF] Zang | Gas sorption-induced coal swelling kinetics and its effects on coal permeability evolution: Model development and analysis[END_REF] also relax the local thermodynamic equilibrium condition by introducing a non-equilibrium swelling and defining the kinetics that governs this non-equilibrium swelling related to fluid diffusion in the coal matrix. Like the model of Liu et al. (2011b), this model can capture non-monotonic evolutions of permeability upon injection into an unconfined piece of coal, depending on the kinetics of increase of fluid pressure in the cleats and the coal matrix. Wei et al. (2019a) consider that the transient variation of the cleats' aperture is related to the gradient of fluid pressure in the coal matrix. Therefore, they postulate that it is associated with the rate of coal matrix swelling. By doing so, they end up with a model able to capture non-monotonic transient variations of permeability.

In this work, we aim to propose constitutive equations that can model transient permeability variations in reservoir simulations. Hence, we formulate them at a scale such that the representative elementary volume is a small piece of fractured coal. Our approach is original and alternative to the previous paragraph's models, as it relies on the Boltzmann superposition principle. In such a framework, we can model the transient variations of permeability predicted by simulations of fluid injection in an individual cleat with constitutive equations formulated at a scale above (i.e., at a scale at which the representative elementary volume contains both coal matrix and cleats). The fact that this upscaling is exact represents the main interest of the model we propose.

Section 2 starts by performing finite-element simulations of fluid injection in a cleat surrounded by the coal matrix. Those simulations, performed at a scale lower than the one at which we aim at deriving our model, make it possible to understand the process at stake better and serve as a reference case. This section also presents the principle of the modeling proposed, which relies on the Boltzmann superposition principle. In section 3, we derive the constitutive equations able to capture transient variations of permeability at the scale of a representative elementary volume of fractured coal. We also implement those equations and simulate fluid injection into a reservoir by using the results of the finite-element simulations performed in section 2 as input. In section 4, we propose an engineering version of our model, with which we can model transient variations of permeability by introducing just a few parameters with a physical meaning.

2 Transient variations of permeability of an individual cleat whose permeability is governed by its aperture This section considers a system made of a single cleat surrounded by an isotropic coal matrix. The cleat is cylindrical and infinitely long. The history of pressure 𝑝 𝑐 (𝑡) of the fluid in the cleats is imposed and is homogeneous in the cleat. Consequently, the problem is 2dimensional, and we focus on what happens in a slice perpendicular to the direction of the cleat (i.e., in the plane visible in Figure 1-b). We aim to simulate numerically (see section 2.2) and then model (see section 2.3) how this system reacts to the history of pressure, particularly in terms of permeability and transfer of fluid from the cleat to the coal matrix.

We give the various geometries of cleats considered in this study in Figure 2. All cleats are embedded in a square with edges with a length equal to 1 cm. We consider one cleat with a rectangular cross-section (called `rectangular cleat') of dimensions 0.05 cm by 0.5 cm. We also consider cleats with an elliptical cross-section (called `elliptical cleats') of a long axis 𝐴 = 0.25 cm and of short axis 𝑎. Various ratios 𝑎/𝐴 are considered: 0.03, 0.10, 0.30, 1.00. The cleat with aspect ratio 𝑎/𝐴 = 1 corresponds to a cleat with a circular cross-section. The intrinsic permeability 𝜅(𝑡) of the cleat is assumed to be governed by its aperture and to follow the celebrated Kozeny-Carman relationship [START_REF] Coussy | Mechanics and Physics of Porous Solids[END_REF]:

𝜅 ∝ (𝜙 𝑐 ) 3 (1-𝜙 𝑐 ) 2 , (1)
where 𝜙 𝑐 is the porosity associated with the cleat system and is defined as:

𝜙 𝑐 = 𝑉 𝑐 𝑉 0 (2)
where 𝑉 𝑐 is the actual volume of cleats in the volume of fractured coal of interest. In the reference configuration, the volume of fractured coal of interest is 𝑉 0 . Under the assumption that the porosity is much smaller than 1, Eq. (1) reduces to:

𝜅 = 𝜅 0 ( 𝑉 𝑐 𝑉 𝑐,0 ) 3 = 𝜅 0 (1 + ∆𝑉 𝑐 𝑉 𝑐,0 ) 3 (3)
where 𝜅 0 is the permeability in the reference configuration, 𝑉 𝑐,0 is the volume of the cleats in the reference configuration, and Δ𝑉 𝑐 is the variation of the volume of the cleats.

Equations governing the problem

We consider that the cleat is subjected to a fluid pressure 𝑝 𝑐 (𝑡). At a given time 𝑡, the thermodynamic pressure 𝑝 𝑚 (𝑦, 𝑧, 𝑡) of the fluid in the coal matrix (where 𝑦 and 𝑧 are coordinates in the plane of interest) is, in the generic case, heterogeneous.

The Langmuir adsorption isotherm relates the mass concentration 𝑐 𝑚 (𝑦, 𝑧, 𝑡) of fluid in the coal matrix (per unit volume of coal matrix in the reference configuration) to the thermodynamic pressure 𝑝 𝑚 (𝑦, 𝑧, 𝑡) of the fluid in the coal matrix through:

𝑐 𝑚 (𝑦, 𝑧, 𝑡) = 𝑐 𝑚,𝑚𝑎𝑥 𝑝 𝑚 (𝑦, 𝑧, 𝑡)/𝑝 𝐿0 1 + 𝑝 𝑚 (𝑦, 𝑧, 𝑡)/𝑝 𝐿0 (4)

where 𝑐 𝑚,𝑚𝑎𝑥 and 𝑝 𝐿0 are Langmuir parameters.

The pressure 𝑝 𝑐 (𝑡) of fluid in the cleats imposes the thermodynamic pressure 𝑝 𝑚 (𝑦, 𝑧, 𝑡)

of fluid on the edge of the cleat and hence the concentration 𝑐 𝑒𝑑𝑔𝑒 (𝑡) of fluid in the coal matrix on the edge of the cleat, through:

𝑐 𝑒𝑑𝑔𝑒 (𝑝 𝑐 (𝑡)) = 𝑐 𝑚,𝑚𝑎𝑥 𝑝 𝑐 (𝑡)/𝑝 𝐿0 1 + 𝑝 𝑐 (𝑡)/𝑝 𝐿0

(5)

The transport of fluid in the coal matrix is assumed to be diffusive and to follow Fick's law [START_REF] Moore | Coalbed methane: A review[END_REF] so that the mass flow vector 𝑤 𝑚 of fluid through the coal matrix verifies:

𝑤 𝑚 = -𝐷∇𝑐 𝑚 (6) where 𝐷 is the diffusivity of the fluid through the coal matrix. For engineering applications, it is common to consider that the diffusivity 𝐷 is constant (which we will assume here), while in practice, it may not be [START_REF] Zhao | Gas diffusion in coal particles: A review of mathematical models and their applications[END_REF]. The mass concentration of fluid then verifies:

𝜕𝑐 𝑚 𝜕𝑡 = 𝐷∆𝑐 𝑚 (7) 
The coal matrix is assumed to behave in a linear elastic manner. We note its stiffness tensor 𝑪 𝒎 . Its bulk modulus is 𝐾 𝑚 and its Poisson's ratio 𝜈 𝑚 . Adsorption roughly makes a piece of coal swell proportionally to the concentration 𝑐 𝑚 of fluid in the coal matrix, so that the constitutive equation of the coal matrix is:

𝜎 = 𝑪 𝒎 : (𝜀 -𝜀 𝑎 (𝑐 𝑚 )1) with 𝜀 𝑎 (𝑐 𝑚 ) = 𝛼𝑐 𝑚 (8)
where 𝜀 𝑎 is an adsorption strain and 𝛼 a parameter governing the magnitude of adsorptioninduced swelling. Likewise, we can express this equation as:

𝜎 = 𝑪 𝒎 : 𝜀 + 𝜎 𝑎 (𝑐 𝑚 )1 with 𝜎 𝑎 (𝑐 𝑚 ) = -3𝐾 𝑚 𝜀 𝑎 (𝑐 𝑚 ) = -3𝐾 𝑚 𝛼𝑐 𝑚 (9) where we call 𝜎 𝑎 (𝑐 𝑚 ) adsorption stress.

Numerical solution of response to a step loading

We perform two-dimensional simulations with Abaqus. We use plane-strain conditions and consider no confining stress, i.e., 𝜎 0 = 0. Note that, by considering non-zero constant confining stress, we would have calculated identical variations of aperture. We give properties and conditions in Table 1. We obtained material properties in this table from the literature.

The maximum adsorbed amount 𝑐 𝑚,𝑚𝑎𝑥 expressed in kg.m -3 is calculated from the maximum adsorbed amount of 2.4 mol.L -1 in [START_REF] Espinoza | Measurement and modeling of adsorptive-poromechanical properties of bituminous coal cores exposed to CO2: Adsorption, swelling strains, swelling stresses and impact on fracture permeability[END_REF] as: 𝑐 𝑚,𝑚𝑎𝑥 = (2.4 mol.L -1 ) * 𝑀 CO 2

where 𝑀 CO 2 = 44 g/mol -1 is the molar mass of CO2. The parameter 𝛼 expressed in m 3 .kg -1 is calculated from the swelling coefficient 4 * 10 -3 L.mol -1 in [START_REF] Espinoza | Measurement and modeling of adsorptive-poromechanical properties of bituminous coal cores exposed to CO2: Adsorption, swelling strains, swelling stresses and impact on fracture permeability[END_REF] as 𝛼 = 4 * 10 -3 L.mol -1 /𝑀 CO 2 .

Table 1: Input parameters for computation

We apply a step loading of fluid pressure in the cleat:

𝑝 𝑐 (𝑡) = { 0 if 𝑡 ≤ 0 𝑝 𝑐,0 if 𝑡 > 0 (10)
Consequently, the hydric boundary conditions on the edge 𝜕Ω 𝑖𝑛 of the cleat are:

𝑐 𝑚 (𝑦, 𝑧, 𝑡) = 𝑐 𝑒𝑑𝑔𝑒 (𝑡) = { 0 if 𝑡 ≤ 0 𝑐 𝑚,𝑚𝑎𝑥 𝑝 𝑐,0 /𝑝 𝐿0 1 + 𝑝 𝑐,0 /𝑝 𝐿0 if 𝑡 > 0 (11) 
On all boundaries other than the edge of the cleat, we impose no flux.

The mechanical boundary conditions on the edge 𝜕Ω 𝑖𝑛 of the cleat are:

𝜎. 𝑛 = { 0 if 𝑡 ≤ 0 -𝑝 𝑐 𝑛 if 𝑡 > 0 (12)
As stated in Table 1, on the outer boundaries, we impose no stress. On the boundaries that correspond to planes of symmetry of the modeled system, we impose mechanical boundary conditions that are consistent with the symmetry, namely free sliding parallel to the boundary and no displacement perpendicular to the boundary.

We give an example of the distribution of concentration around a cleat with an elliptical cross-section in Figure 3. On those figures, one observes that, for cleats with a circular cross-section, permeability increases monotonically with time. For all other cleats with a cross-section with an aspect ratio different from 1.0, permeability varies in a nonmonotonic manner, first decreasing at early times before increasing at larger times. In all cases, permeability at equilibrium is larger than permeability at early times since, in unconfined conditions, the coal matrix's swelling translates into a homothetic swelling of the sample and hence of the cleat as well.

Parameter

For a given aspect ratio, the geometry of the cross-section (namely elliptical (see Figure For cleats with an elliptical cross-section, when the aspect ratio decreases (i.e., when the cleat is flatter), both the transient reduction of permeability and the immediate increase of permeability (i.e., the poroelastic effect due to the mechanical pressure of the fluid on the pore walls) are more pronounced. In contrast, the characteristic time to reach equilibrium seems roughly independent of the cleat's cross-section geometry. The time at which permeability is the lowest is equal to about 1500s for the cleat with a rectangular cross-section whose aspect ratio is 0.3 and for cleats with an elliptical cross-section whose aspect ratio is 0.1 or 0.03. This time is equal to about 750s for the cleat with an elliptical cross-section whose aspect ratio is 0.3. For sufficiently flat cleats, the time at which permeability is the lowest is roughly independent of the cleat's cross-section geometry. We will discuss those trends further in a quantitative analysis of the time-dependent response performed in Section 4.2. From the simulations performed, the flow rate 𝑑𝑚 𝑚 /𝑑𝑡 of fluid from the cleats to the coal matrix (expressed per unit volume 𝑉 0 of fractured coal in the reference configuration) can be calculated by spatial integration of the flux on the edges of the cleat:

𝑑𝑚 𝑚 𝑑𝑡 = - 1 𝑉 0 ∫ 𝑤 𝑚 . 𝑛𝑑𝑆 𝜕𝛺 𝑖𝑛 (14) 
The amount 𝑚 𝑚 of fluid in the coal matrix (still per unit volume 𝑉 0 of fractured coal in the reference configuration) can be calculated by integration over time of Eq. ( 14).

The average mass < 𝑐 𝑚 > of fluid in the coal matrix per unit volume of coal matrix in the reference configuration is displayed in Figure 6 for the example of the elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03. In this figure, time is displayed in a dimensionless manner by dividing it by a characteristic time 𝜏 = 25,000 s, which corresponds to 𝜏 = 𝐿 𝑑𝑖𝑓𝑓 ²/𝐷, where 𝐷 = 1 × 10 -9 m²/s is the diffusion coefficient of the coal matrix and 𝐿 𝑑𝑖𝑓𝑓 = 0.5 cm is a drainage length equal to half of the characteristic spacing between cleats. The value toward which < 𝑐 𝑚 (𝑡) > should converge at large times is known: it should tend toward 𝑐 𝑒𝑑𝑔𝑒,0 , since the concentration of fluid in the coal matrix per unit of coal matrix should be homogeneous and equal to its value 𝑐 𝑒𝑑𝑔𝑒,0 on the edge of the cleat. We noticed however a slight discrepancy, as < 𝑐 𝑚 (𝑡) > tended toward values that slightly differed from the expected one.

We attributed this discrepancy to numerical errors. In the rest of the manuscript, we rescaled all values of 𝑐 𝑚 (𝑡) (and consequently of 𝑚 𝑚 (𝑡) = (1 -𝜙 𝑐,0 )𝑐 𝑚 (𝑡) and of 𝑚̇𝑚) based on the calculated asymptotic value of 𝑐 𝑚 (𝑡), to ensure that the rescaled 𝑐 𝑚 (𝑡) properly converged toward the expected value 𝑐 𝑒𝑑𝑔𝑒,0 . Hence, the rescaled 𝑚 𝑚 (𝑡) also properly converges toward its expected valued, namely (1 -𝜙 𝑐,0 )𝑐 𝑒𝑑𝑔𝑒,0 . Part of the variation Δ𝑉 𝑐 of the cleat's volume is due to the deformation induced by the fluid's mechanical pressure on the cleat's walls and by the confining stress potentially applied to the system, while another part of the variation is due to the diffusion of fluid in the coal matrix and to the swelling it induces, i.e.:

Δ𝑉 𝑐 = Δ𝑉 𝑐,𝑚𝑒𝑐ℎ + Δ𝑉 𝑐,ℎ𝑦𝑑𝑟 (15) 
where Δ𝑉 𝑐,𝑚𝑒𝑐ℎ is the contribution due to the mechanical loading (called `mechanical contribution') and Δ𝑉 𝑐,ℎ𝑦𝑑𝑟 is the contribution due to the diffusion of fluid in the coal matrix (called `hydraulic contribution'). For the case of the elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03, we display the two contributions in Figure 7. 

where 𝐾 𝑐,𝑝 and 𝐾 𝑐,𝜎 characterize the stiffness of the cleat. Since we performed the calculations in section 2.2 in the absence of any confining stress (i.e., 𝜎 0 = 0), we restrict ourselves to the case where the variation Δ𝑉 𝑐,𝑚𝑒𝑐ℎ /𝑉 𝑐,0 is proportional to the fluid pressure 𝑝 𝑐 (𝑡):

Δ𝑉 𝑐,𝑚𝑒𝑐ℎ (𝑡) 𝑉 𝑐,0 = 𝑝 𝑐 (𝑡) 𝐾 𝑐,𝑝 (17) 
In contrast, even in the case of a step of fluid pressure (i.e., 𝑝 𝑐 (𝑡) = 𝑝 𝑐,0 ), the hydraulic contribution Δ𝑉 𝑐,ℎ𝑦𝑑𝑟 (𝑡) at any time 𝑡 is not proportional to the pressure 𝑝 𝑐,0 of fluid in the cleats, as can be observed in Figure 8-a in the case of the elliptical cleat with aspect ratio 𝑎/𝐴 = 0.03. But transport of fluid is a linear process (see Eq. ( 7)), and swelling depends linearly on the concentration 𝑐 𝑒𝑑𝑔𝑒,0 on the edge of the cleat as well (see Eqs. ( 8) and ( 9)), so that the hydraulic contribution Δ𝑉 𝑐,ℎ𝑦𝑑𝑟 (𝑡) at any time 𝑡 is proportional to this concentration, as can be observed in Figure 8-b. If we consider this concentration 𝑐 𝑒𝑑𝑔𝑒,0 on the edge of the cleat as the variable with which to formulate the problem, we can hence consider coal as a Boltzmann-type material, for which the superposition of the action implies the superposition of the responses, and for which one can express the evolution of the aperture of the cleat as follows: Let us now consider a generic injection of fluid following a history of pressure 𝑝 𝑐 (𝑡) in the cleat. This injection causes a history of concentration 𝑐 𝑒𝑑𝑔𝑒 (𝑡) on the edge of the cleat (see Eq. ( 5)). We consider that this function 𝑐 𝑒𝑑𝑔𝑒 (𝑡) is piecewise continuous and differentiable. We note 𝜏 𝑖 the instances where 𝑐 𝑒𝑑𝑔𝑒 is discontinuous and [𝑐 𝑒𝑑𝑔𝑒 ] 𝑖 the corresponding jumps of the concentration on the edge of the cleat. Therefore, the concentration function 𝑐 𝑒𝑑𝑔𝑒 (𝑡) can be rewritten as:

∆𝑉 𝑐,ℎ𝑦𝑑𝑟 𝑉 𝑐,0 = { 𝐽 𝛿 𝑐 (𝑡). 𝑐 𝑒𝑑𝑔𝑒,0 if 𝑡 > 0 0 if 𝑡 ≤ 0 ( 
𝑐 𝑒𝑑𝑔𝑒 (𝑡) = ∫ 𝑌(𝑡 -𝜏)𝑑𝑐 𝑒𝑑𝑔𝑒 𝑡 -∞ + ∑ [𝑐 𝑒𝑑𝑔𝑒 ] 𝑖 𝑌(𝑡 -𝜏 𝑖 ) 𝜏 𝑖 <𝑡 (19) 
where 𝑌(𝑡) is the Heaviside function. The response Δ𝑉 𝑐,ℎ𝑦𝑑𝑟 (𝑡) of the cleat aperture to the variations of concentration is derived directly from the application of Boltzmann superposition principle to Eq. ( 19):

∆𝑉 𝑐,ℎ𝑦𝑑𝑟 𝑉 𝑐,0 = ∫ 𝐽 𝛿 𝑐 (𝑡 -𝜏)𝑑𝑐 𝑒𝑑𝑔𝑒 𝑡 -∞ + ∑ [𝑐 𝑒𝑑𝑔𝑒 ] 𝑖 𝐽 𝛿 𝑐 (𝑡 -𝜏 𝑖 ) 𝜏 𝑖 <𝑡 (20) 
We can write Eq. ( 20) by using Stieltjes integrals as follows:

∆𝑉 𝑐,ℎ𝑦𝑑𝑟 𝑉 𝑐,0 = 𝐽 𝛿 𝑐 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑡) = ∫ 𝐽 𝛿 𝑐 (𝑡 -𝜏) 𝜕𝑐 𝑒𝑑𝑔𝑒 𝜕𝜏 (𝜏)𝑑𝜏 𝑡 𝜏=-∞ (21) 
with:

where 𝛿(𝑡) is the Dirac function, {} is the derivative of the continuous part of the concentration 𝑐 𝑒𝑑𝑔𝑒 (𝑡), and where ⊗ denotes the Stieltjes convolution product.

Combining Eqs. ( 3), ( 15), ( 16), and ( 21), we can finally express the variation of permeability for a generic loading:

𝜅(𝑡) = 𝜅 0 (1 + Δ𝑉 𝑐,𝑚𝑒𝑐ℎ 𝑉 𝑐 0 + Δ𝑉 𝑐,ℎ𝑦𝑑𝑟 𝑉 𝑐0 ) 3 = 𝜅 0 (1 + 𝑝 𝑐 (𝑡) 𝐾 𝑐,𝑝 + 𝜎 0 (𝑡) 𝐾 𝑐,𝜎 + 𝐽 𝛿 𝑐 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑡)) 3 (23) 
where 𝑐 𝑒𝑑𝑔𝑒 (𝑡) = 𝑐 𝑒𝑑𝑔𝑒 (𝑝 𝑐 (𝑡)), as given by Eq. ( 5). Note that, although the variations of volume Δ𝑉 𝑐 satisfy Boltzmann superposition principle when expressed versus the amount of adsorbed fluid on the edge of the cleat, the variations of permeability do not. Likewise, when expressed versus the pressure 𝑝 𝑐 of the fluid in the cleats, the variations of volume Δ𝑉 𝑐 do not satisfy the Boltzmann superposition principle.

Note that the amount 𝑚 𝑚 (𝑡) of fluid in the coal matrix (per unit volume 𝑉 0 of fractured coal in the reference configuration), as well as the flux 𝑚̇𝑚(𝑡) of fluid from the cleats to the coal matrix (still per unit volume 𝑉 0 of fractured coal in the reference configuration), also satisfy the Boltzmann superposition principle, so that one can write:

𝑚 𝑚 (𝑡) = 𝐽 𝑚 𝑚 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑡) = ∫ 𝐽 𝑚 𝑚 (𝑡 -𝜏) 𝜕𝑐 𝑒𝑑𝑔𝑒 𝜕𝜏 (𝜏)𝑑𝜏 𝑡 𝜏=-∞ (24) 
and:

𝑚̇𝑚(𝑡) = 𝐽 𝑚̇𝑚 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑡) = ∫ 𝐽 𝑚̇𝑚 (𝑡 -𝜏) 𝜕𝑐 𝑒𝑑𝑔𝑒 𝜕𝜏 (𝜏)𝑑𝜏 𝑡 𝜏=-∞ (25) 
where 𝐽 𝑚 𝑚 (𝑡) and 𝐽 𝑚̇𝑚 (𝑡) are two kernels which verify:

𝐽 𝑚̇𝑚 (𝑡) = 𝑑𝐽 𝑚 𝑚 /𝑑𝑡 (26) The three kernels 𝐽 𝛿 𝑐 (𝑡), 𝐽 𝑚 𝑚 (𝑡), and 𝐽 𝑚̇𝑚 (𝑡) are displayed in Figure 9 for the various geometries of cleats. For what concerns the variation of aperture Δ𝑉 𝑐,𝑚𝑒𝑐ℎ (𝑡)/𝑉 𝑐,0 due to the

𝜕𝑐 𝑒𝑑𝑔𝑒 𝜕𝑡 = { 𝜕𝑐 𝑒𝑑𝑔𝑒 𝜕𝑡 } + ∑ [𝑐 𝑒𝑑𝑔𝑒 ] 𝑖 𝛿(𝑡 -𝜏 𝑖 ) 𝜏 𝑖 <𝑡 (22) 
mechanical pressure of the fluid in the cleat (see Eq. ( 16)), the stiffness 𝐾 𝑐,𝑝 can be directly calculated from the numerical simulations of individual cleats performed in section 2.2. This stiffness characterizes how much the cleat's volume increases instantaneously when the fluid pressure in the cleat increases. From those simulations, we find that the stiffness 𝐾 𝑐,𝑝 is equal to 104.2 MPa, 381.1 MPa, 1.121 GPa, 2.558 GPa, for the cleats with an elliptical cross-section with aspect ratio 𝑎/𝐴 = 0.03, 0.1, 0.3, 1, respectively, and to 161.3 MPa for the cleat with rectangular cross-section. We observe that the shape of the cleat seems to have little effect on the time at which the aperture of the cleat is minimal, but has a significant effect on the magnitude of the transient variation of this aperture: the smaller the aspect ratio 𝑎/𝐴, the more pronounced those variations are. of variation of this same amount, respectively. The characteristic time 𝜏 used to make the time dimensionless is 𝜏 = 25,000 s.

A numerical verification of response of individual cleat to a generic loading

This section is dedicated to validating the approach proposed in section 2.3, based on the Boltzmann superposition principle, to calculate the response of an individual cleat to a generic history 𝑝 𝑐 (𝑡) of the pressure of fluid in the cleat. We perform the validation on the elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03 submitted to no confining stress (i.e., 𝜎 0 = 0).

The cleat is submitted to various histories 𝑝 𝑐 (𝑡) of the pressure of fluid. We calculate the cleat's response in two manners: 1) plane-strain finite-element calculations identical to the ones performed in section 2.2 but for the history 𝑝 𝑐 (𝑡) of the pressure of fluid in the cleat, and 2) calculations based on the method proposed in section 2.3 that uses the Boltzmann superposition principle. From both approaches, we obtain: the relative volume variation 16) and ( 21))

and Eq. ( 24), respectively, by using the kernels displayed in Figure 9.

We display the results of the comparison in Figure 10 We now consider the problem of an injection into a cylindrical coal structure of direction 𝑒 𝑥 , of length 𝐿 = 200 m, with an arbitrary cross-section whose characteristic dimension is much larger than the centimeter, so that there are many cleats over the cross-section (see Figure 13). The cleat with an elliptic cross-section of aspect ratio 𝑎/𝐴 = 0.03 considered in section 2 is assumed to be representative of the cleats in the sample. The sample initially contains CO2 at 𝑝 𝑖𝑛𝑖𝑡 = 1 MPa. At time 𝑡 = 0 s, CO2 is injected at one end of the cylinder at a pressure 𝑝 𝑖𝑛𝑗 (𝑡) = 10 MPa while the other end and the lateral surface remain sealed. The process is assumed isothermal, remaining at 40°C. At this temperature, we consider an equation of state for CO2 of the form:

𝜌(𝑝) = 𝑀 CO 2 ( 𝑝 𝑅𝑇 + 𝑐 1 1 + exp (-( 𝑝 -𝑐 2 𝑐 3 )) ) ( 27 
)
where 𝑝 is the pressure of the fluid, 𝜌 is its mass density, 𝑅 = 8.314 J.mol -1 .K -1 is the ideal gas constant, and 𝑐 1 , 𝑐 2 , 𝑐 3 are parameters. A fit of this equation to the actual equation of state of CO2 at 40°C [START_REF] Lemmon | Thermophysical Properties of Fluid Systems[END_REF] yields 𝑐 1 = 2.19 ⋅ 10 4 mol.m -3 , 𝑐 2 = 9.92 ⋅ 10 6 Pa, and 𝑐 3 = 1.21 ⋅ 10 6 Pa, with an error smaller than 12% over the whole range of pressures considered, even in supercritical conditions (i.e., above approximately 7.5 MPa). We consider that the properties of the material are those given in Table 1. We aim at solving the evolutions of the system over time. We assume that the hydro-mechanical response of any representative elementary volume of material to a history of pressure 𝑝 𝑐 (𝑥, 𝑡) of fluid in the cleats is the same as the one identified with the Abaqus calculations performed in section 2 for a system containing an individual cleat. We will study the hydro-mechanical response of a representative elementary volume subjected to generic mechanical boundary conditions in section 4.

The problem considered is one-dimensional: at any time, all variables depend on the coordinate 𝑥 only. Consequently, solving the problem means, in particular, finding out the evolutions in time of the pressure 𝑝 𝑐 (𝑥, 𝑡) of fluid in the cleat, of the average amount 𝑚 𝑚 (𝑥, 𝑡)

of fluid in the coal matrix (per unit volume of fractured coal), and the permeability 𝜅(𝑥, 𝑡).

Since the fluid is injected from one end of the sample, in the generic case, the pressure 𝑝 𝑐 (𝑥, 𝑡) is expected to be heterogeneous, and hence the parameters 𝑚 𝑚 (𝑥, 𝑡) or 𝜅(𝑥, 𝑡) as well. We expect the degree of heterogeneity and how heterogeneity remains to depend on the permeability 𝜅 0 of the fractured coal: we will vary this parameter from 𝜅 0 = 10 -13 m 2 to 𝜅 0 = 10 -11 m 2 (which corresponds to the low permeability domain of Moore ( 2012)), while keeping other properties (see Table 1) constant.

Solving the problem requires first formulating the fractured coal's constitutive equations, the next section's focus.

Governing equations at the scale of the coal seam

We can write the mass balance equation for a representative elementary volume of fractured coal as: The macroscopic flow (i.e., transfer of mass) of fluid through the cleats (also called seepage) is a viscous flow generally considered [START_REF] Harpalani | Influence of gas production induced volumetric strain on permeability of coal[END_REF] to obey Darcy's law [START_REF] Darcy | Les Fontaines Publiques de la Ville de Dijon[END_REF]:

𝜕𝑚 𝜕𝑡 = - 𝜕𝑤 𝜕𝑥 , ( 30 
𝑤(𝑥, 𝑡) = - 𝜌 𝐹 𝜅 𝜂 𝐹 𝜕𝑝 𝑐 𝜕𝑥 = -𝑘 𝜕𝑝 𝑐 𝜕𝑥 (31) 
where 𝑘 = 𝜌 𝐹 𝜅/𝜂 𝐹 , 𝑝 𝑐 = 𝑝 𝑐 (𝑥, 𝑡), 𝜅 = 𝜅(𝑥, 𝑡), and where 𝜌 𝐹 and 𝜂 𝐹 are the bulk mass density and the viscosity of the fluid (here CO2), respectively. Under isothermal conditions, 𝜌 𝐹 = 𝜌 𝐹 (𝑝 𝑐 ). For CO2, we consider the equation of state given in Eq. ( 27). We assume that the viscosity 𝜂 𝐹 = 47.83 • 10 -3 Pa.s (which corresponds to the viscosity of CO2 at 313.15K and 10

MPa [START_REF] Lemmon | Thermophysical Properties of Fluid Systems[END_REF]) does not depend on the pressure of the fluid.

The mass 𝑚 𝑐 of fluid in the cleat is related to the cleat porosity 𝜙 𝑐 through 𝑚 𝑐 = 𝜌 𝐹 𝜙 𝑐 .

Assuming that the variations of the mass of fluid in the cleat due to the deformation of the cleat are negligible when compared to variations of mass due to variations of density, the mass 𝑚 𝑐 of fluid in the cleats can be written as follows:

𝑚 𝑐 = 𝜌 𝐹 𝜙 𝑐,0 (32) We neglect microscopic flow through the coal matrix in the direction (Ox) (i.e., 𝑤 𝑚 . 𝑒 𝑥 = 0). Therefore, one can adapt Eq. ( 24) as follows:

𝑚 𝑚 (𝑥, 𝑡) = 𝐽 𝑚 𝑚 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑥, 𝑡) (33) Likewise, for what concerns the evolutions of permeability, by taking into account that 𝜎 0 = 0, we can adapt Eq. ( 23) as:

𝜅(𝑥, 𝑡) = 𝜅 0 (1 + 𝑝 𝑐 (𝑥, 𝑡) 𝐾 𝑐 + 𝐽 𝛿 𝑐 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑥, 𝑡)) 3 ( 34 
)
where 𝑐 𝑒𝑑𝑔𝑒 (𝑥, 𝑡) = 𝑐 𝑒𝑑𝑔𝑒 (𝑝 𝑐 (𝑥, 𝑡)), as given by Eq. ( 5).

The kernels 𝐽 𝛿 𝑐 (𝑡) and 𝐽 𝑚̇𝑚 (𝑡) required for the computation are those displayed in Figure 9 for the elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03.

Resolution of the problem with finite volume method

We divide space into 𝑁 𝑛𝑜𝑑𝑒𝑠 + 1 equispaced nodes, with node 0 located in 𝑥 0 = 0 and node 𝑁 𝑛𝑜𝑑𝑒𝑠 located in 𝑥 𝑁 𝑛𝑜𝑑𝑒𝑠 = 𝐿. We note 𝑑 𝑖𝑗 = 𝐿/𝑁 𝑛𝑜𝑑𝑒𝑠 the distance between neighboring nodes 𝑖 and 𝑗. We note all variables at node 𝑖 with a subscript 𝑖. We note the time step Δ𝑡.

We obtain the finite volume scheme by a discrete balance in the elements of the mesh.

Integrating Eq. ( 30 where 𝑑 𝑖𝑗 is the distance between the center of element 𝑖 and element 𝑗. In this equation 𝑘 𝑖𝑗 is an explicit evaluation of the permeability coefficient 𝑘 = 𝜌 𝐹 𝜅/𝜂 𝐹 at the interface between element 𝑖 and element 𝑗, here 𝑘 𝑖𝑗 = (𝑘 𝑖 + 𝑘 𝑗 )/2.

At node 0, the pressure is imposed:

𝑝 0 (𝑡 + Δ𝑡) -𝑝 𝑖𝑛𝑗 = 0 (37) Equation ( 35) is solved through an iterative process. Since 𝑚 𝑚 is a functional of 𝑐(𝑡), we have to evaluate the change 𝛿𝑚 𝑚 for any change 𝛿𝑐 between 𝑡 and 𝑡 + Δ𝑡:

𝛿𝑚 𝑚 = ∫ 𝐽 𝑚 𝑚 (𝑡 + Δ𝑡 -𝑢) 𝑡+Δ𝑡 𝑡 𝜕 𝜕𝑢 (𝛿𝑐)𝑑𝑢 (38) 
Approximating 𝛿𝑐 by 𝛿[𝑐(𝑡 + Δ𝑡)] (𝑢 -𝑡)/Δ𝑡 between 𝑡 and 𝑡 + Δ𝑡, we finally get:

𝛿𝑚 𝑚 = ( 1 Δ𝑡 ∫ 𝐽 𝑚 𝑚 (Δ𝑡 -𝑢)𝑑𝑢 Δ𝑡 0 ) 𝛿𝑐(𝑡 + Δ𝑡) ≈ 𝐽 𝑚 𝑚 ( Δ𝑡)𝛿𝑐(𝑡 + Δ𝑡)/2 (39)
So, the set of equations ( 35), formally 𝐸 𝑖 = 0 for all 𝑖 ≥ 1, can be solved iteratively through a Newton method, 𝐴 𝑖𝑗 𝛿𝑝 𝑗 = -𝐸 𝑖 , and using the jacobian matrix:

𝐴 𝑖𝑗 = 𝑉 𝑖 (𝜙 𝑐,0 𝑑𝜌 𝐹 𝑑𝑝 𝑖 + 𝐽 𝑚 𝑚 (Δ𝑡) 2 𝑑𝑐 𝑒𝑑𝑔𝑒 𝑑𝑝 𝑖 ) 𝛿 𝑖𝑗 + Δ𝑡 (( ∑ 𝑘 𝑖𝑟 (𝑡) 𝑑 𝑖𝑟 𝑟∈neighbors ) 𝛿 𝑖𝑗 - 𝑘 𝑖𝑗 (𝑡) 𝑑 𝑖𝑗 ) (40) 
The Python code to solve this problem is available on the GitHub repository of the corresponding author2 .

Results and discussion of the various kinetics involved

We display the results in Figure 14, Figure 15, and Figure 16 for the samples with a reference permeability 𝜅 0 equal to 10 -11 m 2 , 10 -12 m 2 and 10 -13 m 2 , respectively. Note that the times at which we display the results vary from figure to figure since the pressure in the cleats needs more time to reach its asymptotic value when the permeability 𝜅 0 is lower. One can observe different behaviors depending on the permeability 𝜅 0 . For the system with the highest permeability 𝜅 0 = 10 -11 m 2 (see Figure 14), the pressure 𝑝 𝑐 in the cleats becomes homogeneous before a significant amount of fluid has diffused into the coal matrix (since at time 𝑡 = 1000 s, the average concentration < 𝑐 𝑚 > of fluid in the coal matrix is still low almost everywhere in the sample (see Figure 14-c)). Consequently, diffusion in the coal matrix mostly happens after the pressure in the cleats has become homogeneous. The average amounts of fluid adsorbed in the coal matrix and the transient adsorption-induced variations of permeability are relatively homogeneous compared to the concentration on the edge of the cleats. Also, the evolution of the permeability over time is rather complex, as it is nonmonotonic and shaped like the letter N (i.e., it increases, decreases, and then increases back). In contrast, for the system with the lowest permeability 𝜅 0 = 10 -13 m 2 (see Figure 16), transfer of fluid from/to the coal matrix happens faster than transport of fluid through the cleat system: when the pressure in the cleats becomes homogeneous, the system has reached equilibrium. One can check that, during the injection, at any position 𝑥 > 100 m and at any time 𝑡, the average concentration of fluid in the coal matrix is relatively close to the one given by Eq. ( 5), i.e., relatively close to the concentration of fluid adsorbed on the cleat's edge.

Locally, for all those positions, we always remain relatively close to local thermodynamic equilibrium. Far from the injection point, the permeability almost increases monotonically with time while displaying the same pattern of heterogeneity as the pressure. Finally, the system with the intermediate permeability 𝜅 0 = 10 -12 m 2 (see Figure 15) manifests a behavior that is intermediate between the one observed for the system with permeability 𝜅 0 = 10 -11 m 2 (see Figure 14) and 𝜅 0 = 10 -13 m 2 (see Figure 16).

The results show a competition between two kinetics: 1) advective transfer through the cleat network and 2) diffusive exchange between cleats and coal matrix. A characteristic time 𝜏 𝑑𝑖𝑓𝑓 of diffusion of fluid from the cleats to the coal matrix is:

𝜏 𝑑𝑖𝑓𝑓 = (𝐿 𝑑𝑖𝑓𝑓 ) 2 /𝐷, (41) 
where 𝐿 𝑑𝑖𝑓𝑓 is a characteristic drainage length around each cleat (and is therefore equal to half a characteristic distance between cleats). In the simulations at the scale of an individual cleat performed in section 2, for which 𝐿 𝑑𝑖𝑓𝑓 ~0.5 × 10 -2 m, we find 𝜏 𝑑𝑖𝑓𝑓 ~2.5 × 10 4 s.

We define a characteristic time 𝜏 𝑎𝑑𝑣𝑒𝑐 of the advective transfer through the cleats network as the characteristic time required for the pressure on the edge of the reservoir to be disturbed by the injection. We can obtain this characteristic time readily from an observation of Figure 14, Figure 15, and Figure 16: we find that 𝜏 𝑎𝑑𝑣𝑒𝑐 ~1 ⋅ 10 2 s, 𝜏 𝑎𝑑𝑣𝑒𝑐 ~1 ⋅ 10 4 s, and 𝜏 𝑎𝑑𝑣𝑒𝑐 ~1 ⋅ 10 5 s, for the systems with 𝜅 0 = 1 ⋅ 10 -11 m 2 , 𝜅 0 = 1 ⋅ 10 -12 m 2 , and 𝜅 0 = 1 ⋅ 10 -13 m 2 , respectively.

From the orders of magnitude just calculated, we infer that the assumption of local thermodynamic equilibrium is reasonably valid if:

𝜏 𝑎𝑑𝑣𝑒𝑐 ≫ 𝜏 𝑑𝑖𝑓𝑓 .
(42) In such a case, transient variations of permeability occur on the time scale 𝜏 𝑑𝑖𝑓𝑓 , which is too short to impact the transfer process at the structural scale (which occurs on the time scale 𝜏 𝑎𝑑𝑣𝑒𝑐 ) significantly. At all positions that verify this criterion, at any time 𝑡, the average concentration < 𝑐 𝑚 > of fluid in the coal matrix is relatively close to the one given by Eq. ( 5).

In contrast, if 𝜏 𝑎𝑑𝑣𝑒𝑐 is not much larger than 𝜏 𝑑𝑖𝑓𝑓 , the assumption of local thermodynamic equilibrium is not valid anymore, and transient variations of permeability can impact the dynamics of transfer at the structural scale (if the magnitude of those variations is significant).

The results displayed in Figure 14 to Figure 16 support this discussion regarding the various kinetics involved in the process: only in the system with reference permeability 𝜅 0 = 1 ⋅ 10 -13 m 2 and further from about 100 m from the point of injection is the condition (42) respected and the assumption of local thermodynamic equilibrium appears to be reasonably valid.

In contrast, in the case where 𝜏 𝑎𝑑𝑣𝑒𝑐 ≪ 𝜏 𝑑𝑖𝑓𝑓 , the fluid has time to flow through the cleats before diffusing significantly through the coal matrix. The transient variations of permeability occur once the pressure of fluid in the cleats has become homogeneous.

Consequently, the transient variations of permeability occur homogeneously as well.

4 Modeling at the scale of the coal seam integrating transient variations of permeability: an engineering approach In section 3, we showed that one could perform calculations at the structural scale as soon as two kernels are known: the kernel 𝐽 𝛿 𝑐 (𝑡) that governs how the volume or aperture of the cleats varies over time and the kernel 𝐽 𝑚̇𝑚 (𝑡) that governs the rate at which fluid is being transferred from the cleats to the coal matrix. We obtained those kernels through finiteelements simulations in section 2.3. However, the need to resort to finite-element simulations of a representative cleat is impractical for the engineer, who first of all does not know the cleats' geometry. To respond to this issue, in this section, we propose a generic form for those kernels.

In section 2, also, we performed all calculations in plane-strain. In this section, we derive constitutive equations of a representative elementary volume of fractured coal submitted to a generic state of strains and stresses to give more flexibility to use the proposed model.

Finally, up to now, we considered exclusively that variations of permeability are due to variations of aperture or volume of the cleat through the Kozeny-Carman relationship (3). However, instead of using Kozeny-Carman-type laws to model permeability in coal, many use stress-based permeability laws. This section also explains how to model transient variations of permeability when using those latter permeability laws.

Constitutive equations of a representative elementary volume of fractured coal including transient variations of permeability under a generic state of strains or stresses

We consider a representative elementary volume of isotropic fractured coal under a generic state of strains or stresses. Suppose the coal matrix fluid is homogeneously distributed (without needing necessarily to be in equilibrium with the fluid in the cleats). Under the assumption that deformations have a negligible impact on the amounts of fluid in the cleats and the coal matrix, the poromechanical behavior of this representative elementary volume is given by [START_REF] Espinoza | Adsorptivemechanical properties of reconstituted granular coal: Experimental characterization and poromechanical modeling[END_REF]:

{ 𝜎 = 𝐾𝜀 -𝑏𝑝 𝑐 -(1 -𝑏)𝜎 𝑎 (𝑐 𝑚 ) 𝑠 𝑖𝑗 = 2𝐺𝑒 𝑖𝑗 𝜙 𝑐 -𝜙 𝑐,0 = 𝑏𝜀 + 𝑝 𝑐 𝑁 - 𝜎 𝑎 (𝑐 𝑚 ) 𝑁 𝑚 𝑇 = 𝜙 𝑐,0 𝜌 𝐹 (𝑝 𝑐 ) + (1 -𝜙 𝑐,0 )𝑐 𝑚 , ( 43 
)
where 𝑐 𝑚 is the mass of fluid in the coal matrix per unit volume of coal matrix (such that 𝑚 𝑚 =

(1 -𝜙 𝑐,0 )𝑐 𝑚 , since 𝑚 𝑚 is the mass of fluid in the coal matrix per unit volume of fractured coal); 𝑚 𝑇 is the total mass of fluid in the fractured coal per unit volume of fractured coal; 𝜎, 𝑠 𝑖𝑗 , 𝜀, and 𝑒 𝑖𝑗 are the volume stress, shear stresses, volume strain, and shear strains, respectively; 𝐾, 𝐺, 𝑏, and 𝑁 are the bulk modulus, shear modulus, Biot coefficient, and Biot modulus, respectively; 𝜎 𝑎 is the adsorption stress that intervened in Eq. ( 9).

As explained in section 2, transient variations of permeability are due to the fluid distribution's heterogeneity in the coal matrix. To capture those transient effects, we, therefore, propose to extend the set of Eqs. ( 43) into:

{ 𝜎 = 𝐾𝜀 -𝑏𝑝 𝑐 -(1 -𝑏)𝜎 𝑎 (< 𝑐 𝑚 >) 𝑠 𝑖𝑗 = 2𝐺𝑒 𝑖𝑗 𝜙 𝑐 -𝜙 𝑐,0 = 𝑏𝜀 + 𝑝 𝑐 𝑁 - 𝜎 𝑎 (< 𝑐 𝑚 >) 𝑁 + Δ𝜙 𝑐,𝑡 𝑚 𝑇 = 𝜙 𝑐,0 𝜌 𝐹 (𝑝 𝑐 ) + (1 -𝜙 𝑐,0 ) < 𝑐 𝑚 > (44) 
where < 𝑐 𝑚 > denotes the volume average of 𝑐 𝑚 over the coal matrix, and where the function Δ𝜙 𝑐,𝑡 captures the transient variations of the porosity associated with the cleat system. Note that, like in section 3.1, these functions neglect the impact of deformation on the fluid amounts.

With the same reasoning as the one performed in section 2.3, we can obtain the average amount < 𝑐 𝑚 > of fluid in the coal matrix through convolution:

< 𝑐 𝑚 (𝑡) >= 𝐽 <𝑐 𝑚 > (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑡) (45) 
where the function 𝐽 <𝑐 𝑚 > (𝑡) is a kernel. Since 𝑚 𝑚 (𝑡) = (1 -𝜙 𝑐,0 ) < 𝑐 𝑚 (𝑡) >, we have 𝐽 <𝑐 𝑚 > (𝑡) = 𝐽 𝑚 𝑚 (𝑡)/(1 -𝜙 𝑐,0 ). Given the shape of the kernel 𝐽 𝑚 𝑚 (𝑡) (see Figure 9-b), for the kernel 𝐽 <𝑐 𝑚 > (𝑡) we propose the function:

𝐽 <𝑐 𝑚 > (𝑡) = 1 -exp(-𝑡/𝜏 𝑑𝑖𝑓𝑓 ), (46) 
where 𝜏 𝑑𝑖𝑓𝑓 is the characteristic time for the fluid in the representative elementary volume to diffuse through the coal matrix. This kernel tends toward one at large times and thus verifies that when a step of concentration 𝑐 𝑒𝑑𝑔𝑒,0 is applied on the edge of the cleat, at large times, the average concentration of fluid in the coal matrix tends toward 𝑐 𝑒𝑑𝑔𝑒,0 .

Because of the presence of the term < 𝑐 𝑚 (𝑡) >, the set of equations (44) includes some dependency versus time, such that the porous solid behaves apparently like a poroviscoelastic solid. Consequently, we could rewrite this set of equations in the framework of a functional approach to poroviscoelasticity [START_REF] Coussy | Poromechanics[END_REF] by introducing an apparent relaxation bulk modulus 𝐾(𝑡), a shear modulus 𝐺(𝑡), and a Biot coefficient 𝑏(𝑡), but such rewriting is out of the scope of this study, which is focused on the modeling of transient evolutions of permeability mostly.

In Eq. ( 44), variations 𝜙 𝑐 -𝜙 𝑐,0 of cleat porosity are composed of various terms: 1) terms that depend on time-independent variables, 2) a term that takes into account the average swelling of the coal matrix and takes into account the history of concentration, 3) a transient term Δ𝜙 𝑐,𝑡 . Again, we can assert that this transient variation Δ𝜙 𝑐,𝑡 of the cleat pore volume can be obtained through a convolution product:

Δ𝜙 𝑐,𝑡 = 𝐽 𝜙 𝑐 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑡) (47) 
where the function 𝐽 𝜙 𝑐 (𝑡) is a kernel. For this kernel 𝐽 𝜙 𝑐 (𝑡), we propose a function of the form:

𝐽 𝜙 𝑐 (𝑡) = - Δ𝜙 𝑐,𝑚𝑎𝑥 𝑐 𝑚,𝑚𝑎𝑥 exp(-𝑡/𝜏 𝑑𝑖𝑓𝑓 )(1 -exp (-𝑡/𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 ), (48) 
where it is reasonable to consider that the characteristic time 𝜏 𝑑𝑖𝑓𝑓 is the same as in the previous equation, where 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 is another characteristic time, related to the time for the cleat to reach its minimum aperture, and where the parameter Δ𝜙 𝑐,𝑚𝑎𝑥 controls the magnitude of the maximal reduction of the cleat's aperture. 

where 𝜎 𝑡,𝑚𝑎𝑥 is a parameter that controls the magnitude of the maximal transient stress. Note that, in the absence of sorption, Eq. ( 49) leads to a permeability of coal, which depends on the Terzaghi effective stress (as was considered analytically by [START_REF] Connell | An analytical coal permeability model for tri-axial strain and stress conditions[END_REF] or experimentally by [START_REF] Somerton | Effect of stress on permeability of coal[END_REF], for instance). In contrast, by considering a Kozeny-Carman-type aperture-based permeability relationship (Eq. ( 1)), with the set of poroelastic equations ( 44), one instead finds that the permeability depends on the Biot effective stress.

Here again, in comparison with classical poromechanical formulations that disregard the 

Verification of the validity of the proposed kernels

As already explained in section 4.1, the kernel 𝐽 <𝑐 𝑚 > (𝑡) that intervenes in Eq. ( 45) and was defined in Eq. ( 46) is related to the kernel 𝐽 𝑚 𝑚 (𝑡) introduced in Eq. ( 24) through:

𝐽 𝑚 𝑚 (𝑡) = (1 -𝜙 𝑐,0 )𝐽 <𝑐 𝑚 > (𝑡).

(52) Consequently, given Eq. ( 26), we have:

𝐽 𝑚̇𝑚 (𝑡) = (1 -𝜙 𝑐,0 )𝑑𝐽 <𝑐 𝑚 > /𝑑𝑡.
(53) The relation between the kernel 𝐽 𝜙 𝑐 (𝑡) (that intervened in Eq. ( 47) and that we defined in Eq. ( 48)) and kernels introduced in section 2.3 is more complicated. An examination of the equation governing 𝜙 𝑐 -𝜙 𝑐,0 in the set of equations ( 44), together with the fact that the adsorption stress 𝜎 𝑎 depends linearly on the average concentration < 𝑐 𝑚 > in the coal matrix (see Eq. ( 9)), show that the kernel 𝐽 𝜙 𝑐 must depend linearly on the kernels 𝐽 𝛿 𝑐 and 𝐽 𝑚 𝑚 . Given that the kernel 𝐽 𝜙 𝑐 captures variations of pore volume relative to the reference volume of porous solid (see Eq. ( 47)) while the kernel 𝐽 𝛿 𝑐 captures variations of pore volume relative to the reference pore volume (see Eq. ( 18)), we pose:

𝐽 𝛿 𝑐 = 1 𝜙 𝑐,0 𝐽 𝜙 𝑐 + 𝛽𝐽 𝑚 𝑚 ( 54 
)
where 𝛽 is a proportionality factor that we can calculate from the simulated kernels, as 𝛽 = Based on these relations, we can assess the validity of the generic forms ( 46) and ( 48)

proposed for the kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡). To do so, for each cleat geometry, we fit the parameters 𝜏 𝑑𝑖𝑓𝑓 , 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 and Δ𝜙 𝑡,𝑚𝑎𝑥 which define the kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡) so that the kernels 𝐽 𝑚 𝑚 (𝑡) and 𝐽 𝑚̇𝑚 (𝑡), 𝐽 𝛿 𝑐 (𝑡), as calculated through relations ( 52), (53), and (54), respectively, are as close as possible from their numerical evaluation by finite-element calculations (see Figure 9). Note that, in this fit, all parameters other than 𝜏 𝑑𝑖𝑓𝑓 , 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 and Δ𝜙 𝑡,𝑚𝑎𝑥 that are required for the evaluation of the kernels (e.g., 𝑐 𝑚,𝑚𝑎𝑥 and 𝜙 𝑐,0 ) are already known and can be found in Table 1.

We display the results of this fit for all cleat geometries in Figure 17 and give the fitted parameters in Table 2. The figure shows that the form chosen for the kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡) is appropriate, in the sense that those kernels can be successfully fitted to kernels obtained numerically with finite-element simulations of the explicit diffusion of the fluid through the coal matrix. in which cleats with an elliptic cross-section of aspect ratio 𝑎/𝐴 = 0.03 is assumed to be representative. We consider the same initial conditions (i.e., the sample contains CO2 at 1 MPa) and hydraulic boundary conditions (i.e., CO2 is injected at 10 MPa at one end of the cylinder while the other surfaces remain sealed). However, in contrast to what we did in section 3 in which we calculated the needed kernels with finite-element simulation, here we use the kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡) given by Eqs. ( 46) and ( 48), respectively, together with the fitted parameters given in Table 2 for the cleat of interest, i.e., 𝜏 𝑑𝑖𝑓𝑓 = 13502.2 s, 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 = 503.4 s, and Δ𝜙 𝑐,𝑚𝑎𝑥 = 1.390 ⋅ 10 -3 . The same code as in section 3.2 is used, but now the kernels 𝐽 𝑚 𝑚 (𝑡) and 𝐽 𝑚̇𝑚 (𝑡), 𝐽 𝛿 𝑐 (𝑡) are calculated from the kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡)

through relations ( 52), ( 53), and ( 54). For such one-dimensional simulations, assuming like in Section 3 that the hydro-mechanical couplings are all lumped in the proposed kernels, the knowledge of Biot coefficient of Biot modulus is not needed. In contrast, generic 3dimensional simulations require those parameters.

The results of the simulation of the injection, displayed in Figure 18, compare well with the results obtained with the kernels calculated with the finite-element simulations (see Figure 15). Nevertheless, we observe some differences at the earliest times, when the proposed kernels differ the most from the simulated ones (see Figure 17-a in particular).

However, the good agreement confirms that the generic form ( 46) and ( 48) of the kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡) is appropriate to capture adsorption-induced transient variations of permeability. 46) and ( 48), respectively. For sub-figure c, the same comments apply as for Figure 15-c.

Limitations and perspectives

We identify the following limitations and perspectives:  In the simulations of an injection of CO2 into a coal sample or coal reservoir (see section 3), we made some assumptions to use the kernels calculated with finiteelement simulations in section 2. Indeed, we assumed that fluid diffuses through the coal matrix only perpendicular to the cleats and neighboring slices do not restrain the swelling of a slice of coal perpendicular to the cleat. By relaxing those assumptions, the actual kernels to be used would differ from the ones calculated.

But we do not expect the kernels' form to differ significantly from the generic forms proposed in section 4. Consequently, for the simulations performed in section 4.3, relaxing the assumptions above-mentioned would come back to use input parameters that would differ from the ones given in Table 2.

 The calculations that we performed in sections 3 and 4 at the scale of a coal sample or coal seam were based on the idea that some representative cleat exists. However, we know that the cleat system of coal seams is complex and somehow fractal, involving various geometries (i.e., shape, aperture, or aspect ratio) of the cleats and their spacing. Consequently, one should extend the approach presented in this work to such a case. We see no a priori impossibility in performing this extension. One could express the permeability of the representative elementary volume of fractured coal as a function of the aperture of the various families of cleats and could introduce kernels specific to each family of cleats.

 We discussed in section 3.3 the notion of local thermodynamic equilibrium.

Depending on the coal's properties and the distance to the injection well, we found out that assuming local thermodynamic equilibrium could be reasonable or not. Even if, for a given coal seam, the assumption of local thermodynamic equilibrium is not valid at some locations in the seam or at some time during the injection process, assessing the quantitative impact of this assumption on the seam's response (in particular on the predicted flow rates) would be interesting.

 The proposed approach could be applied to other physical processes that induce heterogeneity inside the representative elementary volume of fractured coal.

For instance, injection of a hot fluid would cause heterogeneity of temperature and thermal dilation inside the coal matrix and induce transient permeability variations. However, the approach here proposed, relying on the Boltzmann superposition principle, is limited to processes for which the time-dependent phenomena and their consequences can be expressed linearly. If nonlinearities enter the picture, then the method could be extended by introducing nonlinear convolutions in Volterra's formalism [START_REF] Ogunfunmi | Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches, Signals and Communication Technology[END_REF]. However, such formulation is significantly more complex than the one used in this study and requires a larger number of kernels, whose identification could prove difficult.

As proposed in this study, as much as possible, aiming at formulating the governing equations linearly of the time-dependent physical process seems to be a reasonable approach to try before considering nonlinear developments.

Conclusions

In this work, we aimed at finding out how to model transient variations of permeability due to heterogeneous adsorption-induced swelling of the coal matrix by formulating constitutive equations at the scale of a representative elementary volume of fractured coal.

The need to develop constitutive equations at this scale rather than at a lower scale stems from the will to perform simulations at the scale of a coal sample or a coal reservoir, without meshing explicitly coal matrix and cleat network and solving for the transport through the coal matrix. To better understand the physical processes involved, we first performed finiteelement simulations of an individual cleat surrounded by a coal matrix, solving the transport of fluid through the coal matrix and the coal matrix's swelling. Then we derived the constitutive equations that we were seeking for, using the just mentioned finite-element calculations as inputs. Finally, we solved those constitutive equations with the finite-volume method to simulate CO2 injection into a coal structure. The conclusions of this work are:

 We confirm that adsorption-induced transient variations of permeability can be due to the heterogeneity of the concentration of fluid in the coal matrix. The magnitude of those transient variations of permeability depends significantly on the aspect ratio of the cleat's cross-section (see Figure 5). In contrast, a characteristic duration 𝜏 𝑑𝑖𝑓𝑓 of those transient variations is relatively independent of the geometry of the cleat's cross-section (see Figure 5 again).

This characteristic duration 𝜏 𝑑𝑖𝑓𝑓 should rather depend on the diffusivity 𝐷 of the fluid through the coal matrix and on the characteristic distance 𝐿 𝑑𝑖𝑓𝑓 between neighboring cleats (see Eq. ( 41)).

 Transient variations of permeability can be rigorously captured with constitutive equations formulated at the scale of a representative elementary volume of fractured coal. To do so, we relied on the Boltzmann superposition principle. The resulting constitutive equation (see Eq. ( 23)) involves a convolution product so that the permeability 𝜅(𝑡) at a given time 𝑡 depends on the full history of pressure 𝑝 𝑐 (𝑡′) of fluid in the cleats until time 𝑡, i.e., at all times 𝑡′ < 𝑡.

 Although transient adsorption-induced variations of permeability are involved, we could model them with a not-too-complex use of the Boltzmann superposition principle. The reason why we succeeded in doing so is the following: we can express the swelling as depending linearly on the concentration of fluid in the coal matrix (see Eq. ( 8)), and the transport of fluid through the coal matrix can be well modeled with a linear diffusion equation (see Eq. ( 7)) so that all-time dependent processes and their consequences depend linearly on the history 𝑐 𝑒𝑑𝑔𝑒 (𝑡) of concentration of fluid in the coal matrix in the vicinity of the cleat. In this approach, all nonlinearity is concentrated into the instantaneous relation (5) between this concentration and the pressure 𝑝 𝑐 (𝑡) of the fluid in the cleats.

 At the scale of a representative elementary volume of fractured coal, to formulate a complete set of constitutive equations that can capture transient variations of permeability, we need to use convolutions productions that rely on two kernels: one that governs the evolution of the aperture of the cleat (depending on how we write the equations, this kernel is 𝐽 𝛿 𝑐 (𝑡) (see Eq. ( 34) in section 3.1) or 𝐽 𝜙 𝑐 (𝑡) (see Eq. ( 47) in section 4.1) and one that governs the evolution of the amount of fluid in the coal matrix (depending on how we write the equations, this kernel is 𝐽 𝑚̇𝑚 (𝑡) = 𝑑𝐽 𝑚 𝑚 (𝑡)/𝑑𝑡 (see Eq. ( 33) in section 3.1)

or 𝐽 <𝑐 𝑚 > (𝑡) (see Eq. ( 45) in section 4.1)). Those two kernels can be identified with finite-element simulations of the transport of fluid through the coal matrix and the swelling it induces (see section 2.2 and Figure 9).

 At this same scale of a representative elementary volume of fractured coal, we proposed three-dimensional constitutive equations that can capture transient permeability variations in Eq. ( 44). Those constitutive equations require the knowledge of two kernels (i.e., 𝐽 𝜙 𝑐 (𝑡) and 𝐽 <𝑐 𝑚 > (𝑡)), for which we propose generic forms (see Eqs. ( 46) and ( 48)) that can be used by the engineer.

Altogether, those two kernels depend on only three parameters with an explicit physical meaning: a characteristic time 𝜏 𝑑𝑖𝑓𝑓 of diffusion of fluid through the coal matrix, a characteristic time 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 related to the closure of the cleats, and a parameter Δ𝜙 𝑐,𝑚𝑎𝑥 that controls the magnitude of the maximal transient variation of permeability. For those who prefer to model permeability as depending on stresses rather than on aperture of the cleat, we propose an appropriate adaptation of the permeability law (see Eq. ( 49)), which requires the knowledge of 1 kernel (see Eq. ( 50)) for which we also propose a generic form (see Eq. ( 51)) that also depends on three parameters with the same explicit physical meaning (i.e., the same two characteristic times and a parameter 𝜎 𝑡,𝑚𝑎𝑥 that controls the magnitude of the maximal transient variations of effective stress).

 In the process of injection of fluid in a coal bed, two kinetics are at stake, namely the kinetics of advective transfer through the cleats (with a characteristic time 𝜏 𝑎𝑑𝑣𝑒𝑐 ) and the kinetics of transfer from the cleats to the coal matrix (with a characteristic time 𝜏 𝑑𝑖𝑓𝑓 ). If those characteristic times verify Eq. ( 42), i.e., 𝜏 𝑎𝑑𝑣𝑒𝑐 ≫ 𝜏 𝑑𝑖𝑓𝑓 , local thermodynamic equilibrium is ensured: in a small representative elementary volume of fractured coal, one can consider that the chemical potential of the fluid is homogeneous (i.e., the same in the cleat as anywhere in the coal matrix). We provide an expression for the characteristic time 𝜏 𝑑𝑖𝑓𝑓 in Eq. ( 41). For a given system, it is possible that the assumption of local thermodynamic equilibrium could be valid far from the injection well but not reasonable in the vicinity of the injection well.

We discussed the limitations and perspectives in section 4.4. 
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 1 Figure 1: Schematics of (a) transient variations of permeability and (b) distribution of fluid in the coal. The black ellipse represents the cleat, and we display the injected fluid in blue. The dashed line on subfigure (a) indicates the initial permeability.

  introduce the notion of local and global swelling. In fact, in those models, in a representative elementary volume of fractured coal, one pressure of the fluid in the cleats and one pressure of the fluid in the coal matrix is defined, which can differ. But fluid in the cleats is considered to make the cleat's vicinity swell so that the cleats aperture (and thus the permeability) decreases with increased fluid pressure in the cleat. Upon fluid injection in an unconfined sample, both the fluid pressure in the cleats and the coal matrix vary. After an immediate opening of the cleats, the cleats' fluid pressure tends to close the cleats in the short term. In unconfined conditions, the fluid pressure in the matrix tends to open the cleats in the long term. Those two kinetics compete.

Figure 2 :

 2 Figure 2: Various geometries of the cross-section of cleats considered in this study: cleats with (a) an elliptical cross-section and (b) a rectangular cross-section.

Figure 3 :

 3 Figure 3: Distribution of fluid concentration 𝑐 𝑚 in the coal matrix at various times around a cleat with an elliptical cross-section and an aspect ratio 𝑎/𝐴 = 0.03. The variation Δ𝑉 𝑐 of the cleat's volume is calculated from the displacements 𝜉 of the edges of the cleat according to:
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  -b and Figure 5-b) or rectangular (see Figure 4-d and Figure5-d)) impacts the evolutions of permeability over time, but not very significantly. However, we note that, for given fluid pressure, the immediate increase of permeability is larger for the cleat with a rectangular cross-section (see Figure4-d) than with an elliptical one (see Figure4-b).

Figure 4 :Figure 5 :

 45 Figure 4: Evolution over time of cleat aperture for cleats with various geometries subjected to various fluid pressures: (a) elliptical cross-section with aspect ratio 𝑎/𝐴 = 0.03, (b) elliptical cross-section with aspect ratio 𝑎/𝐴 = 0.3, (c) elliptical cross-section with aspect ratio 𝑎/𝐴 = 1.0, (d) rectangular cross-section with aspect ratio 𝑎/𝐴 = 0.3.

Figure 6 :

 6 Figure 6: Evolution of average mass < 𝑐 𝑚 (𝑡) > of fluid in coal matrix per unit volume of coal matrix, for the elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03. The characteristic time 𝜏 used to make the time dimensionless is 𝜏 = 25,000 s.2.3 Principle of the solution to a generic loading: analogy with linear viscoelasticityThis section is devoted to explaining how, based on the cleat's response to a step loading of fluid pressure simulated in section 2.2, we can calculate the cleat's response to a generic fluid pressure evolution. The approach is based on the Boltzmann superposition principle.

Figure 7 :

 7 Figure 7: For an elliptical cleat with aspect ratio 𝑎/𝐴 = 0.03, mechanical contribution 𝛥𝑉 𝑐,𝑚𝑒𝑐ℎ and hydraulic contribution 𝛥𝑉 𝑐,ℎ𝑦𝑑𝑟 to the variation 𝛥𝑉 𝑐 of the volume of the cleat. The mechanical contribution Δ𝑉 𝑐,𝑚𝑒𝑐ℎ to the variation Δ𝑉 𝑐 of the cleat's volume depends linearly on the pressure 𝑝 𝑐 (𝑡) of the fluid in the cleats and on the confining stress 𝜎 0 (𝑡): Δ𝑉 𝑐,𝑚𝑒𝑐ℎ (𝑡) 𝑉 𝑐,0 = 𝑝 𝑐 (𝑡) 𝐾 𝑐,𝑝 + 𝜎 0 (𝑡) 𝐾 𝑐,𝜎

Figure 8 :

 8 Figure 8: For elliptical cleat with aspect ratio 𝑎/𝐴 = 0.03, contribution of the fluid in the matrix to the variation of aperture (a) normalized by the pressure of the fluid in the cleat or (b) normalized by the concentration on the edge of the cleat.

Figure 9 :

 9 Figure 9: Kernels (a) 𝐽 𝛿 𝑐 (𝑡), (b) 𝐽 𝑚 𝑚 (𝑡), and (c) 𝐽 𝑚̇𝑚 (𝑡) for all geometries of cleats, which define the response of the cleat in terms of relative volume variation 𝛥𝑉 𝑐 (𝑡)/𝑉 0 , average amount 𝑚 𝑚 (𝑡) of fluid in the coal matrix per unit volume of fractured coal, and rate 𝑚̇𝑚(𝑡)

  Δ𝑉 𝑐 (𝑡)/𝑉 0 of the cleat, the permeability 𝜅(𝑡) over time (calculated from the relative volume variation Δ𝑉 𝑐 (𝑡)/𝑉 0 with Kozeny-Carman equation (3)), and the average amount < 𝑐 𝑚 (𝑡) > of fluid in the coal matrix per unit volume of coal matrix (with < 𝑐 𝑚 (𝑡) > = 𝑚 𝑚 (𝑡)/(1 -𝜙 𝑐,0 ), where 𝑚 𝑚 (𝑡) is the average amount of fluid in the coal matrix per unit volume of fractured coal). When aiming at using the Boltzmann superposition principle (section 2.3), the relative volume variation Δ𝑉 𝑐 (𝑡)/𝑉 0 and the average amount 𝑚 𝑚 (𝑡) of fluid in the coal matrix (per unit volume of fractured coal) are calculated with Eq. (15) (which uses Eqs. (
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 101112 Figure 10: Response of an individual elliptical cleat with an aspect ratio 𝑎/𝐴 = 0.03 to a periodic rectangular loading: (a) history 𝑝 𝑐 (𝑡) of pressure of fluid considered, (b) variation 𝛥𝑉 𝑐 (𝑡)/𝑉 0 of the relative volume of the cleat, (c) permeability 𝜅(𝑡), and (d) average amount < 𝑐 𝑚 (𝑡) > of fluid in the coal matrix per unit volume of coal matrix. The characteristic time 𝜏 used to make the time dimensionless is 𝜏 = 25,000 s.

Figure 13 :

 13 Figure 13: 1-dimensional problem solved at the scale of a structure. The inset is a zoom on a representative elementary volume. In the cleats, the fluid pressure is 𝑝(𝑥, 𝑡).

  ) where 𝑤 is the macroscopic fluid mass flow through the cleat and 𝑚 is the total fluid mass content (per unit volume 𝑉 0 of fractured coal in the reference configuration) which is composed of the fluid mass content 𝑚 𝑐 in the cleat and the fluid mass content 𝑚 𝑚 in the coal matrix (still per unit volume 𝑉 0 of fractured coal in the reference configuration), i.e., 𝑚 = 𝑚 𝑐 + 𝑚 𝑚 .

Figure 14 :

 14 Figure 14: Distribution of (a) pressure 𝑝 𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations of adsorbed fluid during injection into a coal sample with a reference permeability 𝜅 0 = 10 -11 m 2 . In sub-figure c are displayed the concentration 𝑐 𝑒𝑑𝑔𝑒 of fluid adsorbed on the edge of the cleat (with symbols) and the average concentration < 𝑐 𝑚 > of fluid adsorbed in the coal matrix (with solid lines). Both concentrations are expressed per unit volume of the coal matrix.

Figure 15 :

 15 Figure 15: Distribution of (a) pressure 𝑝 𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations of adsorbed fluid during injection into a coal sample with a reference permeability 𝜅 0 = 10 -12 m 2 . In sub-figure c are displayed the concentration 𝑐 𝑒𝑑𝑔𝑒 of fluid adsorbed on the edge of the cleat (with symbols) and the average concentration < 𝑐 𝑚 > of fluid adsorbed in the coal matrix (with solid lines). Both concentrations are expressed per unit volume of the coal matrix.

Figure 16 :

 16 Figure 16: Distribution of (a) pressure 𝑝 𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations of adsorbed fluid during injection into a coal sample with a reference permeability 𝜅 0 = 10 -13 m 2 . In sub-figure c are displayed the concentration 𝑐 𝑒𝑑𝑔𝑒 of fluid adsorbed on the edge of the cleat (with symbols) and the average concentration < 𝑐 𝑚 > of fluid adsorbed in the coal matrix (with solid lines). Both concentrations are expressed per unit volume of the coal matrix.

  When permeability is given by the Kozeny-Carman relationship (3), we have all equations needed to perform the calculations. In comparison with classical poromechanical formulations that disregard the transient phenomena here considered, to capture those transient phenomena, we need therefore to introduce two kernels, namely the function 𝐽 <𝑐 𝑚 > (𝑡) that governs how the average concentration of fluid in the coal matrix varies and the function 𝐽 𝜙 𝑐 (𝑡) that governs how the cleat porosity varies. To define those two kernels, we need only three parameters: the characteristic time 𝜏 𝑑𝑖𝑓𝑓 needed for the fluid to diffuse through the coal matrix (which is the only parameter required to define 𝐽 <𝑐 𝑚 > (𝑡)), a parameter Δ𝜙 𝑐,𝑚𝑎𝑥 that controls the magnitude of the maximal transient reduction of the cleat's aperture, and a characteristic time 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 for the cleat to reach its minimal aperture.In contrast, when the permeability law is stress-based, we propose to adapt it into:𝜅 = 𝜅 0 exp(𝜎 + 𝑝 𝑐 -𝜎 𝑡 )(49) where 𝜎 is the total volume stress and 𝜎 𝑡 is a transient stress. We assume that we can obtain this transient stress through the following convolution product:𝜎 𝑡 = 𝐽 𝜎 (𝑡) ⊗ 𝑐 𝑒𝑑𝑔𝑒 (𝑡)(50) where, for the kernel 𝐽 𝜎 (𝑡), we propose: 𝐽 𝜎 (𝑡) = 𝜎 𝑡,𝑚𝑎𝑥 𝑐 𝑚,𝑚𝑎𝑥 exp(-𝑡/𝜏 𝑑𝑖𝑓𝑓 ) (1 -exp (-𝑡/𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 ))

  transient phenomena here considered, to capture those transient phenomena, we need to use two kernels, namely the function 𝐽 <𝑐 𝑚 > (𝑡) that governs how the average concentration of fluid in the coal matrix varies and the function 𝐽 𝜎 (𝑡) that governs how the effective stress acting on the cleat porosity varies. To define those two functions, we need only three parameters: the characteristic time 𝜏 𝑑𝑖𝑓𝑓 for the fluid in the representative elementary volume to diffuse through the coal matrix, the characteristic time 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 for the cleat to reach its minimum aperture and a characteristic maximal transient variation 𝜎 𝑡,𝑚𝑎𝑥 of the effective stress acting on the cleat porosity.

  /𝐽 𝑚 𝑚 . Based on the simulations performed in section 2.2, for the elliptical cleat with aspect ratio 𝑎/𝐴 = 0.03, we find 𝛽 = 2.35 ⋅ 10 -4 m 3 .kg -1 . Relation (54) explains that the kernel 𝐽 𝜙 𝑐 can converge toward 0 in the long term, while Figure8-b displays a contribution Δ𝑉 𝑐,ℎ𝑦𝑑𝑟 to the variation of volume of the cleats that converges toward a strictly positive value: in Eq. (44), we capture this net increase of cleat volume due to hydric effects in the long term by terms other than Δ𝜙 𝑐,𝑡 .

Figure 17 :

 17 Figure 17: Kernels (a) 𝐽 𝛿 𝑐 (𝑡), (b) 𝐽 𝑚 𝑚 (𝑡), and (c) 𝐽 𝑚̇𝑚 (𝑡) for all geometries of cleats considered in this study, as evaluated with finite-element simulations (solid lines) and as obtained by fitting the generic functions proposed for the kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡) (dashed lines).

Figure 18 :

 18 Figure 18: Distribution of (a) pressure 𝑝 𝑐 in cleats, (b) permeability 𝜅, and (c) concentrations of adsorbed fluid during an injection in a coal sample with a reference permeability 𝜅 0 = 10 -12 m 2 , based on the generic kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐 (𝑡) given by Eqs. (46) and (48),

  ) over any element 𝑖 of length 𝑉 𝑖 and discretizing it in time with a backward

	Euler scheme yields, for all elements 𝑖:		
	𝑉 𝑖 (𝑚 𝑖 (𝑡 + Δ𝑡) -𝑚 𝑖 (𝑡)) + Δ𝑡 ∑ 𝑤 𝑖𝑗 (𝑡 + Δ𝑡)	= 0	(35)
		𝑗	
	where 𝑤 𝑖𝑗 expresses an approximation of the outflow from element 𝑖 to element 𝑗 for any 𝑖
	and any neighbor 𝑗 of 𝑖:		
	𝑤 𝑖𝑗 (𝑡 + Δ𝑡) = -𝑘 𝑖𝑗 (𝑡)	𝑝 𝑗 (𝑡 + Δ𝑡) -𝑝 𝑖 (𝑡 + Δ𝑡) 𝑑 𝑖𝑗	(36)

Table 2 :

 2 Results of fit of kernels 𝐽 <𝑐 𝑚 > (𝑡) and 𝐽 𝜙 𝑐(𝑡) 

  𝑚 Mass of fluid in fractured coal per unit volume of fractured coal kg.m -3 𝑚 𝑐 Mass of fluid in cleat per unit volume of fractured coal kg.m -3 𝑚 𝑚 Mass of fluid in coal matrix per unit volume of fractured coal kg.m -3

		𝑀 𝐹	Molar mass of fluid	kg.m -3
		𝑀 CO 2	Molar mass of CO2	kg.m -3
		𝑁	Biot modulus	Pa
		𝑛	Outward normal vector	N.A.
		𝜈 𝑚	Poisson's ratio of coal matrix	1
		𝑝 𝑐	Pressure of fluid in cleats	Pa
		𝑝 𝑐,0	Step of pressure of fluid in cleats	Pa
		𝑝 𝑖𝑛𝑖𝑡	Initial pressure of fluid in coal seam	Pa
		𝑝 𝑖𝑛𝑗	Pressure of injection in coal seam	Pa
		𝑝 𝐿0	Characteristic pressure in Langmuir isotherm	Pa
		𝑝 𝑚	Thermodynamic pressure of fluid in coal matrix	Pa
		𝜌 𝐹	Mass density of fluid	kg.m -3
		𝑅	Ideal gas constant	J.mol -1 .K -1
		𝑠	Shear stress tensor	Pa
		𝜎	Stress tensor	Pa
		𝜎	Volume stress	Pa
		𝜎 𝑎	Adsorption stress	Pa
		𝜎 0	Imposed confining stress	Pa
		𝜎 𝑡	Transient stress	Pa
		𝜎 𝑡,𝑚𝑎𝑥	Characteristic maximal transient stress	Pa
		𝑡	Time	s
		Δ𝑡	Time step	s
		𝑇	Temperature	K
		𝜏	Characteristic time	s
		𝜏 𝑎𝑑𝑣𝑒𝑐	Characteristic time of transfer through cleats network	s
		𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔	Characteristic time for cleats to reach their minimal aperture	s
		𝜏 𝑑𝑖𝑓𝑓	Characteristic time of diffusion of fluid from cleats to coal matrix s
		𝑉 𝑐	Volume of cleats	m 3
		𝑉 𝑐,0	Volume of cleats in reference configuration	m 3
		𝑉 0	Volume of fractured coal in reference configuration	m 3
		𝑉 𝑖	Volume of element 𝑖	m
		∆𝑉 𝑐	Variation of volume of cleats	m 3
		∆𝑉 𝑐,𝑚𝑒𝑐ℎ	Variation of volume of cleats due to mechanical effects	m 3
		∆𝑉 𝑐,ℎ𝑦𝑑𝑟	Variation of volume of cleats due to ingress of fluid in coal	m 3
			matrix	
		𝑤	Mass flow rate of fluid through cleats	kg.m -2 .s -1
		𝑤 𝑚	Mass flow rate of fluid through coal matrix	kg.m -2 .s -1
		𝑥	Position	m
		Δ𝑥	Distance between nodes	m
	933	𝑌 Nomenclature	Heaviside function	1
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The values provided in Table 2 make it possible to confirm an observation already given in section 2.2: the transient decrease of permeability (characterized by the parameter Δ𝜙 𝑐,𝑚𝑎𝑥 ) is all the more pronounced that the aspect ratio 𝑎/𝐴 of the cross section of the cleat differs from 1.0. The characteristic time 𝜏 𝑑𝑖𝑓𝑓 of the process of diffusion also decreases with an increasing aspect ratio 𝑎/𝐴, but we believe that this effect is mostly due to the fact that, in our study, by construction, with an increasing aspect ratio 𝑎/𝐴, the porosity of the cleats increases and hence the volume of coal matrix toward which fluid diffuses is lower. The magnitude of this characteristic time 𝜏 𝑑𝑖𝑓𝑓 is consistent with the value 𝐿 𝑑𝑖𝑓𝑓 2 /𝐷 = (0.5 × 10 -2 m 2 ) 2 /(10 -9 m 2 . s -1 ) = 2.5 ⋅ 10 4 s expected from the inter-cleats spacing. Also, as already discussed in section 2.2, the characteristic time 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 is mostly independent of the aspect ratio when this aspect ratio differs sufficiently from 1 (i.e., when the cleat is flat enough). Figure 17 shows that this characteristic time 𝜏 𝑐𝑙𝑜𝑠𝑖𝑛𝑔 is about half-an-order-ofmagnitude smaller than the actual time for the cleat to reach its minimal aperture (and hence for the permeability to be minimal). At a given aspect ratio, the three parameters are shown in Table 2, which define the various kernels, are roughly independent of the geometry of the cleat's cross-section, as can be inferred from an observation of the parameters for the elliptic and rectangular cleats with aspect ratio 𝑎/𝐴 = 0.1.

Parameters (e.g., permeability [START_REF] Wold | The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining[END_REF]) can vary significantly from the lab scale to the field scale. In the same spirit, the parameters proposed here in Table 2, obtained by calculations performed at the scale of an individual cleat, may differ from parameters relevant for calculations at the scale of the seam. However, Figure 17 shows that the kernels' form that we propose is valid for all geometries assumed for the cleat. Consequently, one could expect that this kernels' form should also be relevant for calculations performed at the seam scale, even though the three parameters that define the kernels quantitatively may differ from those given in Table 2. This difference must stem from the difference of scale and the fact that the actual cleats' geometry is not elliptical.

Example of calculation with the proposed kernels

In this section, we consider again the problem treated in section 3 of a one-dimensional injection into a cylindrical coal structure of length 𝐿 = 200 m and of arbitrary cross section,