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Motivation (1/2)

Outline of the Moulinec—Suquet method

m Step 1 — Start from the corrector problem (system of PDEs)
m Step 2 —Reformulate as an integral equation (Lippmann—Schwinger)
m Step 3 — Replace Fourier series with discrete Fourier transforms

m Step 4 — Introduce fixed-point iterations

We recognize a familiar pattern

m Step 3 is the discretization step

m Step 4 is the solution step (introduces an iterative linear solver)
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Motivation (2/2)

Questions
m Convergence with respect to grid size? (S. Brisard)

— Investigation of the spatial discretization (this talk)
— Cast the method in a Galerkin setting

m Convergence of the iterative solver? (M. Schneider)

— How to minimize number of iterations?

— Can we do better than fixed-point iterations
m Strategies for complex material non-linearities? (L. Gélébart)

— Use condensed potential (M. Schneider)

— Alternative approach
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Outline of this talk

This talk is devoted to the spatial discretization
of the Lippmann—-Schwinger equation

Introducing the corrector problem

Preliminaries

The periodic, fourth-rank Green operator

Strong and weak forms of the Lippmann—Schwinger (LS) equation
m Discretization of the LS equation
m Connexion with the discrete Fourier transform

m Consistent vs. asymptotically consistent discretizations
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Introducing the corrector problem

m The corrector problem

m On periodic boundary conditions



The “‘corrector” problem

Field equations

dive=10
c=C:¢ (material is heterogeneous!)
€ =symgradu

Periodic boundary conditions

C depends on observation point

La
K——>+
Q=(0,L1)X"'X(O,Ld) . 1‘” 7
def | u(x) —e-x Q-periodic A j
PBC{z} = P o v b
o(x)-n(x) Q-skew-periodic P
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On periodic boundary conditions

La
K< F
PBC(Z) def ux) —€-X Q—periodic. | 4 4 41:}
o(x)-n(x) Q-skew-periodic v b

kvl
= 2" condition should be understood as
ox+L;e)-e; =0o(x)-e forall i=1,...,d
(no summation)

m € (prescribed) is the macroscopic strain: (€) = €

m Hill-Mandel lemma holds!

Sébastien Brisard On the spatial discretization of the Lippmann—Schwinger equation — 26 january 2021



Preliminaries

On the Mandel-Voigt representation of tensors
On Fourier series
On the discrete Fourier transform

Fourier series vs. discrete Fourier transforms



Mandel-Voigt representation of tensors

2" order, symmetric, tensors

—_ — —_ T . —_
[s] = [SII’SZZ’ S33,:‘S23,ZS31,:S12] with =

4™ order tensors with minor symmetries

[ Ty Tz Tizs ETygs
Ty Thonn  Trnsy Elxns
(T] = HT3311 HT3322 HT3333 ET33p3
ETs11 ETyz EToszz 2133
ET31 ET31p ETs133 273193

[ 5T ETn ETiaszz 2Top3
Some properties

s 08, =[s]" - [s,] [T:s]=[T]-

T3
ETy31
ET333;
2Th331
T35
2Tip3

[s]

V2

ET2
ETxnn
ET3310
2T315
2Ts112

2T12

(T =(7!
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On Fourier series

Input data is a periodic function;
output data is an infinite, discrete set of numbers

Discrete wave vectors over unit-cell Q = (0, L,) X --- X (0, L,)

Fourier coefficients of a periodic function

~ dﬁ 1
£ IQI/ fx)e kX qy,

Inversion (under mild regularity conditions)

fE =Y, fret
nez4
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On the discrete Fourier transform (1/2)

Input and output data are finite sets of numbers

(x,), and (%,), with 0<p;,n <N;

1

and i=1,...,d

Definition
2 dele e pn Ly Paly
2 Z x exp[ 2171'( S N )]
=0 p;=0 d

Output can be seen as a discrete, periodic series
)%n_‘_mN:)%n Wlth n+mN (n1+m1N1,...,nd+mde)

Implementation: fast Fourier transform (FFT)
O(N log N) rather than O(N?)
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On the discrete Fourier transform (2/2)

Inversion

Ni-1  Ny-1

1 . . (D1 Dahyg
X, =— X exp[217r<—+---+ )]
p N1 "‘Nd nlzzo ndEZ:O n N1 Nd

. . . qe . def
= input can also be seen as a discrete, periodic series (X, ,n = X)).

Circular convolution theorem
Ni-1  Ny-1

— A . def
x*xy,=2%,9, with (x*y), = z 2 Xp_qVq
=0 q;=0
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Fourier series vs. DFT

Cell-wise constant functions (over a grid)
lepzfp and <f>p:fp

Fourier coefficients of cell-wise constant functions

1 A . . K . Ky
F(hk,)f, with F(K)=sinc = sinc BN

fn=ﬁ

] fn: Fourier coefficients of the periodic function f

m f,: discrete Fourier transform of the cell values f »

Note: how to sum over Z%?

Z fngn= Z fn[% Z F(hkn+mN)gn+mN]

nezd 0<n;<N; mezd
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The periodic, fourth-order
Green operator

m Definition
m Elementary properties

m Expression in Fourier space



Definition

We consider here a homogeneous material!

The elementary problem
dive =0

Prescribed average strain is null!
c=Cj e+

C, = const.
€ =symgradu

PBC(z}

This is a linear problem

T(X) # const.

m Output depends linearly on input
m Loading parameters are € (const. tensor) and T (tensor field)
e=A:e-Ty1)=e-Ty(1)
See Korringa [Kor73], Zeller and Dederichs [ZD73], and Kréner [Kr674]
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Elementary properties

m Constant eigenstress: [y((T)) =0

® Volume average: (Iy(1)) =0

m Symmetry: (1) : F(ty)) = (Fp(T)) : 1)
m “Idempotence”: [H[C : Fy(T)] = [y(T)

m Positivity: (t : (1)) >0

Iy is a projector onto the space of
geometrically compatible strain fields

See Willis [Wil77] and Bellis and Suquet [BS18]
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Expression in Fourier space

Use Fourier series expansions of all mechanical fields
{u(x) £(x), o(x), T(X)} = Z {un, g, n,’tn}e‘k x
nezd
Expression of the Green operator in Fourier space
g,=-Fyk,:%, with Fk=I,:[k® (k- Cyk)

In other words

Mo = Y Fok,) : &,

nezd

Note that fo(k) does not depend on || k]||!
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The dirty details (1/2)

m Rewrite BVP in Fourier space (C = const. is crucial!)

dive=10 — 6,-1k, =0 (N

13

c=Cj:e+1 — 6,=C,:§,+7, )

ge=symgradu ——— §, =sym(, ® ik,) 3)
m Combine (2) and (3) (drop indices)

S C g
o= ETT }:»6=(Co-ik)-ﬁ+’r

m Plug into (1)
6-k=0=> (k-Cy-k)- =it -k
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The dirty details (2/2)

m General expression of displacement (k = || k|| and n = k/k)
i(k-Co k)™ -7k
=i[(k-Co- k) ®K] :
i[(k-Co- k)" ®K| : (I, : %)
=i{[(k-Co-k) ' ®K|] : L} : %
=ik {[(n-Cy-n)"'®n| : L} : %
m General expression of strain

g=symik®@i)=1,: (k®u)=-I;: %

with
fo=I,:[n®(n-Cy-n)"'®n]:1, (QED)
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Isotropic reference material

I+v,
Co=2M0< -

J4+K4> J4:—12®12 K4:I4_J4
1—2V0

- n@n
yoln-CO-n=IZ+ 1—2\/0 = (Iz—n®n)+1_—2von®n

1—2V0 n®n

Mo(“'co‘“)_1 = (12_“®n)+mn®“=12—

5l-knjn, + 6,-,njnk + 5jkn,-n, + éﬂn,-nk ninnn,

T,k =

(applies also to plane strain elasticity)
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The Lippmann-Schwinger equation

m Strong form of the LS equation
m Weak form of the LS equation

m The space of stress-polarizations



Derivation of the LS equation

Recall the corrector problem

dive=0
def c=C:¢ Heterogeneous material!
7= € =symgradu C(x) # const.
PBC{e}

Introduce one new unknown... and one new equation

( dive=0

c=Cj e+ Arbitrary reference material
P < <{ e=symgradu C, = const.
PBC{e} T: stress-polarization

(t=(C-Cy) : ¢
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Strong form of the LS equation

From Hervé’s talk

e=e—Ty)
Corrector problem <<
T= (C - CO) . €
LS equation: strong form #1 LS equation: strong form #2
8+ro[(C—Co)35]=E (C—CO)_I:'r+I‘0('r)=E
Simplify notation

Lx) = Cx)-C, and M) = Lx)~!

See Korringa [Kor73], Zeller and Dederichs [ZD73], and Kroner [Kr574]
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Weak form of the LS equation [Wil77]

Step 1 — Start from strong form of LS equation
Find t € V such that, for all x € Q:
M(x) : 1(x) + Fp(D)(x) = &
Step 2 — “Multiply” with arbitrary test stress-polarization
Find Tt € V such that, for all x € Q and w € V:
w(x) I MX) : 1(x) + ®x) : MH(DX) =®(x) : €
Step 3 — Integrate over unit-cell Q2 (take volume average)

Find Tt € V such that, for all w € V:

a(t, @) o (@:M:t)+(w:H(1)=(w:€) o ? (@)
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On the space of stress-polarizations

Find t € V such that, for all w € V:

a(t, @) o (@M )+ (w: (1) =(w: €) o £(w)

m T trial function (stress-polarization),
m w@: test function (stress-polarization),

m V: space of second-rank, symmetric tensors fields
with square integrable components [BD12].
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Discretization of the
Lippmann—-Schwinger equation

m Galerkin discretization
m The approximation subspace
m The discrete variational problem

m Structure of the underlying linear system



Galerkin discretization in a nutshell

The initial problem
Find T € V such that a(t,w) =¢/(w) forallwm eV
Exhaustive exploration of V is not possible!
Explore a finite-dimension subspace V" C V
Find " € V/ such that a(t", ") = £(w") forall m" € V"
This is a linear system!
Our roadmap

m Define the approximation subspace i
» Evaluate the linear form # over V"

= Evaluate the bilinear form a over V"
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Defining the approximation subspace (1/2)

Discretization over a grid
= Any mesh would do...but we anticipate on the use of FFTs!
m Regular grid: Ny X -« X Ny
m Grid spacing: h; = L;/N;; Total number of cells: N = N --- N,
m Convention: p, g cell indices (pixels); m, n frequency indices.
Cell average
def

ef ]
<@>p = @'/Qp @(X)dx

Average over whole unit-cell

s S e
(@ =+ Y (@), Q
p=0
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Defining the approximation subspace (2/2)

Two natural choices for square-integrable fields

m Trigonometric polynomials
(outside the scope of this talk, see [VZM14; VZMI15; Vonl6])

m Cell-wise constant functions

Nyogs = dim V" = sN s=d(d+1)2

Some technical details
m Trial and test stress-polarization defined by their cell-values

X € QP : 'rh(x) = ‘l‘;l and wh(x) = wf}

m Cell-averages

(), =

hy _ .h
, and (@), =®w

p
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(w) =

(@), =@

Sébastien Brisard

Evaluating # and a over V"

(w)he} > f(wh)=%z'wf,‘:§

p p
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Evaluating a over V"

a ' w") = (w" : M ")+ (wm" : Ty(h)

(" : M) = NZ(‘W M: <" Zw (M),

p

(@ 1 Fo(h)) = % 3w Ty, = N Y wh ¢ (Fo),
p P

The discrete Green operator
For " € V%, (1: 1'2, L) e (I'O('th)) is linear with respect to the 1:

rh

: 7" = average strain in cell p induced
0,pq q

(Fo(a), = Z R 7

by constant eigenstress 'rf} in cell ¢!
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The discrete variational problem

The discrete variational problem

h
N-1

Z’m (M), T+th ngq'TfI’:Z'w;’:E
p P

h h

Flnd‘l' 'rl,...,'r such that, forall'wg,'wl,...,wN

-1

The linear system

(M), : ! +Zropq- v=%

Convergence w.r.t grid-size

OK, classical Galerkin setting [BD12]
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Assembling the linear system

The linear system

(M)p:r§;+2rgm:¢;’=z = A-x=b
q

Use the Mandel-Voigt representation
m (M), ngq: fourth-rank tensors — s X s blocks

(] 1';’ and €: second-rank tensors — s X 1 blocks

x,=It,] and b, =]e] aooyi oy g
A0+ g=(1

Apg = Spg[(M)gl + [rg,pq] DDEII 0
block-diagonal full matrix! A x L
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On the structure of the matrix

Apg =8p(M) 1+, 1 = A=D+C.

m D: block-diagonal
= Fg o influence of cell g over cell p
m Translation invariant in periodic setting = C: block-circulant!

m Convolution product in real space — local product in Fourier space
(here comes the discrete Fourier transform!!!)

| w0
OO0 O (wOEd
00 ]y
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Connexion with the
discrete Fourier transform

m Expression of the discrete Green operator
m Matrix-free implementation

m Wait a minute...



Expression of the discrete Green operator

Exact for cell-wise constant stress-polarizations!

(To(x"), = DFT,'[A%], with A} =F} :4! and %) =DFT,[t}]

fg,n = Z [F(hkn+mN)]2fO(kn+mN)

mezd4
F(K) = si Ky sine Ka
= sinc — -+ sinc —
2 2
n+mN n; +m;N
K,y = 2ﬂ<#el T+t Me[»
L, L,

Proof is not difficult, but technical [BD10; BD12]
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Wait a minute...

The consistent discrete Green operator

IA_(})l,n = Z [F(hkn+mN)]2ﬁ0(kn+mN)

mez4

Above expression is exact, but its evaluation
is difficult, if possible at all [BD10]!

Introduce an approximation of this operator
(asymptotically consistent discretization)
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Consistent vs. asymptotically
consistent discretizations

m What is a variational crime?
m Asymptotically consistent approx. of local operator

m Asymptotically consistent approx. of non-local operator



On variational crimes

The initial problem

Find T € V such that a(t,w) =¢/(w) forallwm eV

Exhaustive exploration of V is not possible!

Consistent discretization

Find v € V" such that a(‘th,'wh) = f('wh) for all w”* € V"

Exact evaluation of the bilinear and linear forms!

Asymptotically consistent discretization

Find ©* € V" such that o"(t", w") = 7" (w") for all " € V"

Approximations #* and 4" must be asymptotically consistent [EG04]
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We are all criminals

Examples of variational crimes (FEM)

The bilinear form
a(u,v) = / grad[u] : C : grad[v]
Q
Geometry
Ue. #a

Quadrature

/ grad[u] : C : grad[v] ~ Z w, grad[u](xg) :C: grad[v](xg)
g

e
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Handling heterogeneous cells
Consistent equivalent stiffness of cell [BD12]
(' :M: 7" 2 w 1(M),

=LY ()
P

h 9t Aref -1
Cre <M>p

C,

Although consistent, this rule sometimes leads to
surprising convergence results in practice.

Alternative, non-consistent rules

= “Black-or-white”: C;’ = stiffness at cell center
m Laminate approximation [KMS15]: probably your best bet
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Discrete Green operators

The consistent discrete Green operator

(Fo(x), =DFT,'[A%], with A =F}<: 4

e = Y [FUKy )] Fo®mn)

mezd

Asymptotically consistent discrete Green operators

Retain the nice block-circulant structure!

(Fo(x)), ~ DFT,'[4%],  with /) =F(> ;4
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Signal processing approaches

Filter out high frequencies!

Rectangular window [MS94; MS98]
Select m; € {—1,0} that minimizes n; + m; N;

ARMS )
FAMS _ f (k) with m =
O.n OXntmN ! 0  otherwise

If any of the #; is such that 2n;, = N, then set Fh Ms

Cosine window [BD12]

=C,.

£h,BD 28 K, K,
For” = D Gk, mn)] FoKypmn) G(K) = cos = -+ cos

me{-1,0}4 4

Strong connexion w. band-limited approximation of Zeman et al. [Zem-+10] and Vondfejc [Von16]
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Discretization in the real space

Discretize the homogeneous, eigenstressed problem!

Finite differences on rotated grids [Will5; SOK15]

1 y 1 h
kW — tan —el + -+ —tan —3e3
PR _ e hy N, hy — Nj
on — " 0\Pa SOK e127z'n1/N1 -1 ei271:n3/N1 -1
kKt =————e+ -+ ———e

See also Willot and Pellegrini [WP08] and Willot et al. [WAP14]
The above, more operational formula for k,,wis proved in [Bril7]

Finite elements [SMK17; Bril7]

No closed-form expression, but fairly easy implementation.
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Comparison in Fourier space

r

Moulinec and Suquet [MS98] Brisard and Dormieux Willot [Will5]
[BD12]

-
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Comparison for impulse

..-. . .-. - .a.

Moulinec and Suquet [MS98] Brisard and Dormieux Willot [Will5]
[BD12]
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Which operator should I use?

Moulinec and Suquet [MS98]

Pros: cheap, no dependency on C,, Cons: strong Gibbs

Brisard and Dormieux [BD12]

Pros: virtually no Gibbs Cons: costly, dependency on C,,

Willot [Will5] (recommended)

Pros: quite cheap, no dependency on C,, Cons: slight Gibbs

Schneider et al. [SMK17]

Pros: no dependency on C, Cons: quite costly
Gibbs?
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Conclusion

Weak form of the Lippmann—Schwinger equation
m Galerkin discretization (cell-wise constant test functions)
m Consistent discretization impractical

m Introduce several asymptotically consistent discretizations

The problem is now ready to be handed to a solver!
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