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Motivation (1/2)

Outline of the Moulinec–Suquet method
Step 1 – Start from the corrector problem (system of PDEs)
Step 2 –Reformulate as an integral equation (Lippmann–Schwinger)
Step 3 – Replace Fourier series with discrete Fourier transforms
Step 4 – Introduce fixed-point iterations

We recognize a familiar pattern
Step 3 is the discretization step
Step 4 is the solution step (introduces an iterative linear solver)
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Motivation (2/2)
Questions

Convergence with respect to grid size? (S. Brisard)

– Investigation of the spatial discretization (this talk)
– Cast the method in a Galerkin setting

Convergence of the iterative solver? (M. Schneider)

– How to minimize number of iterations?
– Can we do better than fixed-point iterations

Strategies for complex material non-linearities? (L. Gélébart)

– Use condensed potential (M. Schneider)
– Alternative approach
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Outline of this talk
This talk is devoted to the spatial discretization

of the Lippmann–Schwinger equation

Introducing the corrector problem

Preliminaries

The periodic, fourth-rank Green operator

Strong and weak forms of the Lippmann–Schwinger (LS) equation

Discretization of the LS equation

Connexion with the discrete Fourier transform

Consistent vs. asymptotically consistent discretizations
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Introducing the corrector problem
The corrector problem

On periodic boundary conditions



The “corrector” problem

Field equations

div 𝞂 = 𝟎
𝞂 = 𝗖 ∶ 𝝴

𝝴 = 𝘀𝘆𝗺 𝗴𝗿𝗮𝗱 𝐮

𝗖 depends on observation point
(material is heterogeneous!)

Periodic boundary conditions

Ω = (0, 𝐿1) × ⋯ × (0, 𝐿𝑑)

PBC{𝝴} def=
{

𝐮(𝐱) − 𝝴 ⋅ 𝐱 Ω-periodic
𝞂(𝐱) ⋅ 𝐧(𝐱) Ω-skew-periodic
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On periodic boundary conditions

PBC{𝝴} def=
{

𝐮(𝐱) − 𝝴 ⋅ 𝐱 Ω-periodic
𝞂(𝐱) ⋅ 𝐧(𝐱) Ω-skew-periodic

2nd condition should be understood as

𝞂(𝐱 + 𝐿𝑖 𝐞𝑖) ⋅ 𝐞𝑖 = 𝞂(𝐱) ⋅ 𝐞𝑖 for all 𝑖 = 1, … , 𝑑

(no summation)

𝝴 (prescribed) is the macroscopic strain: ⟨𝝴⟩ = 𝝴

Hill–Mandel lemma holds!
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Preliminaries
On the Mandel–Voigt representation of tensors

On Fourier series

On the discrete Fourier transform

Fourier series vs. discrete Fourier transforms



Mandel–Voigt representation of tensors
2nd order, symmetric, tensors

[𝘀] = [𝑠11, 𝑠22, 𝑠33, Ξ𝑠23, Ξ𝑠31, Ξ𝑠12]
𝖳 with Ξ = √2

4th order tensors with minor symmetries

[𝗧] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑇1111 𝑇1122 𝑇1133 Ξ𝑇1123 Ξ𝑇1131 Ξ𝑇1112
𝑇2211 𝑇2222 𝑇2233 Ξ𝑇2223 Ξ𝑇2231 Ξ𝑇2212
𝑇3311 𝑇3322 𝑇3333 Ξ𝑇3323 Ξ𝑇3331 Ξ𝑇3312

Ξ𝑇2311 Ξ𝑇2322 Ξ𝑇2333 2𝑇2323 2𝑇2331 2𝑇2312
Ξ𝑇3111 Ξ𝑇3122 Ξ𝑇3133 2𝑇3123 2𝑇3131 2𝑇3112
Ξ𝑇1211 Ξ𝑇1222 Ξ𝑇1233 2𝑇1223 2𝑇1231 2𝑇1212

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Some properties
𝘀1 ∶ 𝘀2 = [𝘀1]𝖳 ⋅ [𝘀2] [𝗧 ∶ 𝘀] = [𝗧] ⋅ [𝘀] [𝗧−1] = [𝗧]−1
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On Fourier series
Input data is a periodic function;

output data is an infinite, discrete set of numbers

Discrete wave vectors over unit-cell Ω = (0, 𝐿1) × ⋯ × (0, 𝐿𝑑)

𝐤𝑛 = 2𝜋𝑛1
𝐿1

𝐞1 + ⋯ + 2𝜋𝑛𝑑
𝐿𝑑

𝐞𝑑

Fourier coefficients of a periodic function

̃𝑓𝑛
def= 1

|Ω| ∫𝐱∈Ω
𝑓(𝐱) e−i𝐤𝑛⋅𝐱 d𝑉𝐱

Inversion (under mild regularity conditions)
𝑓(𝐱) = ∑

𝑛∈ℤ𝑑

̃𝑓𝑛 ei𝐤𝑛⋅𝐱
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On the discrete Fourier transform (1/2)
Input and output data are finite sets of numbers

(𝑥𝑝)𝑝 and (𝑥̂𝑛)𝑛 with 0 ≤ 𝑝𝑖, 𝑛𝑖 < 𝑁𝑖 and 𝑖 = 1, … , 𝑑

Definition

𝑥̂𝑛
def=

𝑁1−1

∑
𝑝1=0

⋯
𝑁𝑑−1

∑
𝑝𝑑=0

𝑥𝑝 exp[−2i𝜋(
𝑝1𝑛1
𝑁1

+ ⋯ + 𝑝𝑑𝑛𝑑
𝑁𝑑 )]

Output can be seen as a discrete, periodic series

𝑥̂𝑛+𝑚𝑁 = 𝑥̂𝑛 with 𝑛 + 𝑚𝑁 def= (𝑛1 + 𝑚1𝑁1, … , 𝑛𝑑 + 𝑚𝑑𝑁𝑑)

Implementation: fast Fourier transform (FFT)
𝒪(𝑁 log𝑁) rather than 𝒪(𝑁2)
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On the discrete Fourier transform (2/2)

Inversion

𝑥𝑝 = 1
𝑁1 ⋯ 𝑁𝑑

𝑁1−1

∑
𝑛1=0

⋯
𝑁𝑑−1

∑
𝑛𝑑=0

𝑥̂𝑛 exp[2i𝜋(
𝑝1𝑛1
𝑁1

+ ⋯ + 𝑝𝑑𝑛𝑑
𝑁𝑑 )]

⇒ input can also be seen as a discrete, periodic series (𝑥𝑝+𝑞𝑁
def= 𝑥𝑝).

Circular convolution theorem

𝑥 ⋆ 𝑦𝑛 = 𝑥̂𝑛 ̂𝑦𝑛 with (𝑥 ⋆ 𝑦)𝑝
def=

𝑁1−1

∑
𝑞1=0

⋯
𝑁𝑑−1

∑
𝑞𝑑=0

𝑥𝑝−𝑞 𝑦𝑞
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Fourier series vs. DFT
Cell-wise constant functions (over a grid)

𝑓|Ω𝑝 = 𝑓𝑝 and ⟨𝑓⟩𝑝 = 𝑓𝑝

Fourier coefficients of cell-wise constant functions
̃𝑓𝑛 = 1

𝑁 𝐹 (ℎ𝐤𝑛) ̂𝑓𝑛 with 𝐹 (𝐊) = sinc 𝐾1
2 ⋯ sinc

𝐾𝑑
2

̃𝑓𝑛: Fourier coefficients of the periodic function 𝑓
̂𝑓𝑛: discrete Fourier transform of the cell values 𝑓𝑝

Note: how to sum over ℤ𝑑?

∑
𝑛∈ℤ𝑑

̃𝑓𝑛 𝑔𝑛 = ∑
0≤𝑛𝑖<𝑁𝑖

̂𝑓𝑛[
1
𝑁 ∑

𝑚∈ℤ𝑑
𝐹 (ℎ𝐤𝑛+𝑚𝑁 ) 𝑔𝑛+𝑚𝑁 ]
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The periodic, fourth-order
Green operator

Definition

Elementary properties

Expression in Fourier space



Definition
We consider here a homogeneous material!

The elementary problem

⎧⎪
⎪
⎨
⎪
⎪⎩

div 𝞂 = 𝟎
𝞂 = 𝗖0 ∶ 𝝴 + 𝞃
𝝴 = 𝘀𝘆𝗺 𝗴𝗿𝗮𝗱 𝐮

PBC{𝝴}

Prescribed average strain is null!
𝗖0 = const.

𝞃(𝐱) ≠ const.

This is a linear problem
Output depends linearly on input
Loading parameters are 𝝴 (const. tensor) and 𝞃 (tensor field)

𝝴 = 𝗔 ∶ 𝝴 − 𝝘0(𝞃) = 𝝴 − 𝝘0(𝞃)
See Korringa [Kor73], Zeller and Dederichs [ZD73], and Kröner [Krö74]
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Elementary properties
Constant eigenstress: 𝝘0(⟨𝞃⟩) = 𝟬

Volume average: ⟨𝝘0(𝞃)⟩ = 𝟬

Symmetry: ⟨𝞃1 ∶ 𝝘0(𝞃2)⟩ = ⟨𝝘0(𝞃1) ∶ 𝞃2⟩

“Idempotence”: 𝝘0[𝗖0 ∶ 𝝘0(𝞃)] = 𝝘0(𝞃)

Positivity: ⟨𝞃 ∶ 𝝘0(𝞃)⟩ ≥ 0

𝝘0 is a projector onto the space of
geometrically compatible strain fields

See Willis [Wil77] and Bellis and Suquet [BS18]
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Expression in Fourier space

Use Fourier series expansions of all mechanical fields

{𝐮(𝐱), 𝝴(𝐱), 𝞂(𝐱), 𝞃(𝐱)} = ∑
𝑛∈ℤ𝑑

{𝐮̃𝑛, ̃𝝴𝑛, 𝞂̃𝑛, 𝞃̃𝑛}ei𝐤𝑛⋅𝐱

Expression of the Green operator in Fourier space

̃𝝴𝑛 = −𝝘̂0(𝐤𝑛) ∶ 𝞃̃𝑛, with 𝝘̂0(𝐤) = 𝗜4 ∶ [𝐤 ⊗ (𝐤 ⋅ 𝗖0 ⋅ 𝐤)
−1 ⊗ 𝐤] ∶ 𝗜4

In other words

𝝘0(𝞃)(𝐱) = ∑
𝑛∈ℤ𝑑

𝝘̂0(𝐤𝑛) ∶ 𝞃̃𝑛 ei𝐤𝑛⋅𝐱

Note that 𝝘̂0(𝐤) does not depend on ‖𝐤‖!
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The dirty details (1/2)
Rewrite BVP in Fourier space (𝗖0 = const. is crucial!)

div 𝞂 = 𝟎 −−−−−−−→ 𝞂̃𝑛 ⋅ i𝐤𝑛 = 𝟎 (1)
𝞂 = 𝗖0 ∶ 𝝴 + 𝞃 −−−−−−−→ 𝞂̃𝑛 = 𝗖0 ∶ ̃𝝴𝑛 + 𝞃̃𝑛 (2)
𝝴 = 𝘀𝘆𝗺 𝗴𝗿𝗮𝗱 𝐮 −−−−−−−→ ̃𝝴𝑛 = 𝘀𝘆𝗺(𝐮̃𝑛 ⊗ i𝐤𝑛) (3)

Combine (2) and (3) (drop indices)

𝞂̃ = 𝗖0 ∶ ̃𝝴 + 𝞃̃
̃𝝴 = 𝘀𝘆𝗺(𝐮̃ ⊗ i𝐤)}

⇒ 𝞂̃ = (𝗖0 ⋅ i𝐤) ⋅ 𝐮̃ + 𝞃̃

Plug into (1)

𝞂̃ ⋅ i𝐤 = 𝟎 ⇒ (𝐤 ⋅ 𝗖0 ⋅ 𝐤) ⋅ 𝐮̃ = i 𝞃̃ ⋅ 𝐤
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The dirty details (2/2)
General expression of displacement (𝑘 = ‖𝐤‖ and 𝐧 = 𝐤/𝑘)

𝐮̃ = i(𝐤 ⋅ 𝗖0 ⋅ 𝐤)
−1 ⋅ 𝞃̃ ⋅ 𝐤

= i[(𝐤 ⋅ 𝗖0 ⋅ 𝐤)
−1 ⊗ 𝐤] ∶ 𝞃̃

= i[(𝐤 ⋅ 𝗖0 ⋅ 𝐤)
−1 ⊗ 𝐤] ∶ (𝗜4 ∶ 𝞃̃)

= i{[(𝐤 ⋅ 𝗖0 ⋅ 𝐤)
−1 ⊗ 𝐤] ∶ 𝗜4} ∶ 𝞃̃

= i𝑘−1{[(𝐧 ⋅ 𝗖0 ⋅ 𝐧)
−1 ⊗ 𝐧] ∶ 𝗜4} ∶ 𝞃̃

General expression of strain
̃𝝴 = 𝘀𝘆𝗺(i𝐤 ⊗ 𝐮̃) = 𝗜4 ∶ (i𝐤 ⊗ 𝐮̃) = −𝝘̂0 ∶ 𝞃̃

with
𝝘̂0 = 𝗜4 ∶ [𝐧 ⊗ (𝐧 ⋅ 𝗖0 ⋅ 𝐧)

−1 ⊗ 𝐧] ∶ 𝗜4 (QED)
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Isotropic reference material

𝗖0 = 2𝜇0(
1 + 𝜈0
1 − 2𝜈0

𝗝4 + 𝗞4) 𝗝4 = 1
3𝗜2 ⊗ 𝗜2 𝗞4 = 𝗜4 − 𝗝4

𝜇−1
0 𝐧 ⋅ 𝗖0 ⋅ 𝐧 = 𝗜2 + 𝐧 ⊗ 𝐧

1 − 2𝜈0
= (𝗜2 − 𝐧 ⊗ 𝐧) +

2(1 − 𝜈0)
1 − 2𝜈0

𝐧 ⊗ 𝐧

𝜇0(𝐧 ⋅ 𝗖0 ⋅ 𝐧)
−1 = (𝗜2 − 𝐧 ⊗ 𝐧) + 1 − 2𝜈0

2(1 − 𝜈0)
𝐧 ⊗ 𝐧 = 𝗜2 − 𝐧 ⊗ 𝐧

2(1 − 𝜈0)

Γ̂0,𝑖𝑗𝑘𝑙(𝐤) =
𝛿𝑖𝑘𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙𝑛𝑗𝑛𝑘 + 𝛿𝑗𝑘𝑛𝑖𝑛𝑙 + 𝛿𝑗𝑙𝑛𝑖𝑛𝑘

4𝜇0
−

𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙

2𝜇0(1 − 𝜈0)
(applies also to plane strain elasticity)
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The Lippmann–Schwinger equation
Strong form of the LS equation

Weak form of the LS equation

The space of stress-polarizations



Derivation of the LS equation
Recall the corrector problem

𝒫 def=

⎧⎪
⎪
⎨
⎪
⎪⎩

div 𝞂 = 𝟎
𝞂 = 𝗖 ∶ 𝝴

𝝴 = 𝘀𝘆𝗺 𝗴𝗿𝗮𝗱 𝐮
PBC{𝝴}

Heterogeneous material!
𝗖(𝐱) ≠ const.

Introduce one new unknown… and one new equation

𝒫 ⟺

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

div 𝞂 = 𝟎
𝞂 = 𝗖0 ∶ 𝝴 + 𝞃
𝝴 = 𝘀𝘆𝗺 𝗴𝗿𝗮𝗱 𝐮

PBC{𝝴}
𝞃 = (𝗖 − 𝗖0) ∶ 𝝴

Arbitrary reference material
𝗖0 = const.

𝞃: stress-polarization

Sébastien Brisard On the spatial discretization of the Lippmann–Schwinger equation — 26 january 2021 22



Strong form of the LS equation

From Hervé’s talk

Corrector problem ⟺
{

𝝴 = 𝝴 − 𝝘0(𝞃)
𝞃 = (𝗖 − 𝗖0) ∶ 𝝴

LS equation: strong form #1
𝝴 + 𝝘0[(𝗖 − 𝗖0) ∶ 𝝴] = 𝝴

LS equation: strong form #2

(𝗖 − 𝗖0)
−1 ∶ 𝞃 + 𝝘0(𝞃) = 𝝴

Simplify notation

𝗟(𝐱) def= 𝗖(𝐱) − 𝗖0 and 𝗠(𝐱) = 𝗟(𝐱)−1

See Korringa [Kor73], Zeller and Dederichs [ZD73], and Kröner [Krö74]
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Weak form of the LS equation [Wil77]
Step 1 – Start from strong form of LS equation
Find 𝞃 ∈ 𝕍 such that, for all 𝐱 ∈ Ω:

𝗠(𝐱) ∶ 𝞃(𝐱) + 𝝘0(𝞃)(𝐱) = 𝝴

Step 2 – “Multiply” with arbitrary test stress-polarization
Find 𝞃 ∈ 𝕍 such that, for all 𝐱 ∈ Ω and 𝞏 ∈ 𝕍 :

𝞏(𝐱) ∶ 𝗠(𝐱) ∶ 𝞃(𝐱) + 𝞏(𝐱) ∶ 𝝘0(𝞃)(𝐱) = 𝞏(𝐱) ∶ 𝝴

Step 3 – Integrate over unit-cell Ω (take volume average)
Find 𝞃 ∈ 𝕍 such that, for all 𝞏 ∈ 𝕍 :

𝑎(𝞃, 𝞏) def= ⟨𝞏 ∶ 𝗠 ∶ 𝞃⟩ + ⟨𝞏 ∶ 𝝘0(𝞃)⟩ = ⟨𝞏 ∶ 𝝴⟩ def= ℓ(𝞏)
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On the space of stress-polarizations

Find 𝞃 ∈ 𝕍 such that, for all 𝞏 ∈ 𝕍 :

𝑎(𝞃, 𝞏) def= ⟨𝞏 ∶ 𝗠 ∶ 𝞃⟩ + ⟨𝞏 ∶ 𝝘0(𝞃)⟩ = ⟨𝞏 ∶ 𝝴⟩ def= ℓ(𝞏)

𝞃: trial function (stress-polarization),

𝞏: test function (stress-polarization),

𝕍 : space of second-rank, symmetric tensors fields
with square integrable components [BD12].
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Discretization of the
Lippmann–Schwinger equation

Galerkin discretization

The approximation subspace

The discrete variational problem

Structure of the underlying linear system



Galerkin discretization in a nutshell
The initial problem

Find 𝞃 ∈ 𝕍 such that 𝑎(𝞃, 𝞏) = ℓ(𝞏) for all 𝞏 ∈ 𝕍
Exhaustive exploration of 𝕍 is not possible!

Explore a finite-dimension subspace 𝕍 ℎ ⊂ 𝕍
Find 𝞃ℎ ∈ 𝕍 ℎ such that 𝑎(𝞃ℎ, 𝞏ℎ) = ℓ(𝞏ℎ) for all 𝞏ℎ ∈ 𝕍 ℎ

This is a linear system!

Our roadmap
Define the approximation subspace 𝕍 ℎ

Evaluate the linear form ℓ over 𝕍 ℎ

Evaluate the bilinear form 𝑎 over 𝕍 ℎ
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Defining the approximation subspace (1/2)
Discretization over a grid

Any mesh would do…but we anticipate on the use of FFTs!
Regular grid: 𝑁1 × ⋯ × 𝑁𝑑
Grid spacing: ℎ𝑖 = 𝐿𝑖/𝑁𝑖; Total number of cells: 𝑁 = 𝑁1 ⋯ 𝑁𝑑
Convention: 𝑝, 𝑞 cell indices (pixels); 𝑚, 𝑛 frequency indices.

Cell average

⟨𝒬⟩𝑝
def= 1

|Ω𝑝| ∫Ω𝑝
𝒬(𝐱) d𝐱

Average over whole unit-cell

⟨𝒬⟩ = 1
𝑁

𝑁−1

∑
𝑝=0

⟨𝒬⟩𝑝
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Defining the approximation subspace (2/2)
Two natural choices for square-integrable fields

Trigonometric polynomials
(outside the scope of this talk, see [VZM14; VZM15; Von16])
Cell-wise constant functions

𝒩dofs = dim𝕍 ℎ = 𝑠𝑁 𝑠 = 𝑑(𝑑 + 1)/2

Some technical details
Trial and test stress-polarization defined by their cell-values

𝐱 ∈ Ω𝑝 ∶ 𝞃ℎ(𝐱) = 𝞃ℎ
𝑝 and 𝞏ℎ(𝐱) = 𝞏ℎ

𝑝

Cell-averages

⟨𝞃ℎ⟩𝑝 = 𝞃ℎ
𝑝 and ⟨𝞏ℎ⟩𝑝 = 𝞏ℎ

𝑝
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Evaluating ℓ and 𝑎 over 𝕍 ℎ

ℓ(𝞏) = ⟨𝞏⟩ ∶ 𝝴
⟨𝞏ℎ⟩𝑝 = 𝞏ℎ

𝑝 }
⇒ ℓ(𝞏ℎ) = 1

𝑁 ∑𝑝
𝞏ℎ

𝑝 ∶ 𝝴
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Evaluating 𝑎 over 𝕍 ℎ

𝑎(𝞃ℎ, 𝞏ℎ) = ⟨𝞏ℎ ∶ 𝗠 ∶ 𝞃ℎ⟩ + ⟨𝞏ℎ ∶ 𝝘0(𝞃ℎ)⟩

⟨𝞏ℎ ∶ 𝗠 ∶ 𝞃ℎ⟩ = 1
𝑁 ∑𝑝

⟨𝞏ℎ ∶ 𝗠 ∶ 𝞃ℎ⟩𝑝 = 1
𝑁 ∑𝑝

𝞏ℎ
𝑝 ∶ ⟨𝗠⟩𝑝 ∶ 𝞃ℎ

𝑝

⟨𝞏ℎ ∶ 𝝘0(𝞃ℎ)⟩ = 1
𝑁 ∑𝑝

⟨𝞏ℎ ∶ 𝝘0(𝞃ℎ)⟩𝑝 = 1
𝑁 ∑𝑝

𝞏ℎ
𝑝 ∶ ⟨𝝘0(𝞃ℎ)⟩𝑝

The discrete Green operator
For 𝞃ℎ ∈ 𝕍 ℎ, (𝞃ℎ

1 , 𝞃ℎ
2 , …) ↦ ⟨𝝘0(𝞃ℎ)⟩𝑝 is linear with respect to the 𝞃ℎ

𝑝

⟨𝝘0(𝞃ℎ)⟩𝑝 = ∑𝑞
𝝘ℎ

0,𝑝𝑞 ∶ 𝞃ℎ
𝑞

−𝝘ℎ
0,𝑝𝑞 ∶ 𝞃ℎ

𝑞 = average strain in cell 𝑝 induced
by constant eigenstress 𝞃ℎ

𝑞 in cell 𝑞!
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The discrete variational problem
The discrete variational problem
Find 𝞃ℎ

0 , 𝞃ℎ
1 , … , 𝞃ℎ

𝑁−1 such that, for all 𝞏ℎ
0 , 𝞏ℎ

1 , … , 𝞏ℎ
𝑁−1

∑𝑝
𝞏ℎ

𝑝 ∶ ⟨𝗠⟩𝑝 ∶ 𝞃ℎ
𝑝 + ∑𝑝,𝑞

𝞏ℎ
𝑝 ∶ 𝝘ℎ

0,𝑝𝑞 ∶ 𝞃ℎ
𝑞 = ∑𝑝

𝞏ℎ
𝑝 ∶ 𝝴

The linear system
⟨𝗠⟩𝑝 ∶ 𝞃ℎ

𝑝 + ∑𝑞
𝝘ℎ

0,𝑝𝑞 ∶ 𝞃ℎ
𝑞 = 𝝴

Convergence w.r.t grid-size
OK, classical Galerkin setting [BD12]
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Assembling the linear system
The linear system

⟨𝗠⟩𝑝 ∶ 𝞃ℎ
𝑝 + ∑𝑞

𝝘ℎ
0,𝑝𝑞 ∶ 𝞃ℎ

𝑞 = 𝝴 ⟺ 𝐴 ⋅ 𝑥 = 𝑏

Use the Mandel–Voigt representation
⟨𝗠⟩𝑝, 𝝘ℎ

0,𝑝𝑞: fourth-rank tensors → 𝑠 × 𝑠 blocks

𝞃ℎ
𝑝 and 𝝴: second-rank tensors → 𝑠 × 1 blocks

𝑥𝑝 = [𝞃𝑝] and 𝑏𝑝 = [𝝴]

𝐴𝑝𝑞 = 𝛿𝑝𝑞[⟨𝗠⟩𝑞]⏟⏟⏟⏟⏟
block-diagonal

+ [𝝘ℎ
0,𝑝𝑞]⏟

full matrix!
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On the structure of the matrix

𝐴𝑝𝑞 = 𝛿𝑝𝑞[⟨𝗠⟩𝑞] + [𝝘ℎ
0,𝑝𝑞] ⟺ 𝐴 = 𝐷 + 𝐶.

𝐷: block-diagonal
𝝘ℎ

0,𝑝𝑞: influence of cell 𝑞 over cell 𝑝
Translation invariant in periodic setting ⇒ 𝐶: block-circulant!
Convolution product in real space → local product in Fourier space
(here comes the discrete Fourier transform!!!)
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Connexion with the
discrete Fourier transform

Expression of the discrete Green operator

Matrix-free implementation

Wait a minute…



Expression of the discrete Green operator
Exact for cell-wise constant stress-polarizations!

⟨𝝘0(𝞃ℎ)⟩𝑝 = DFT−1
𝑝 [𝝶̂ℎ

•], with 𝝶̂ℎ
𝑛 = 𝝘̂ℎ

0,𝑛∶𝞃̂ℎ
𝑛 and 𝞃̂ℎ

𝑛 = DFT𝑛[𝞃ℎ
•]

𝝘̂ℎ
0,𝑛 = ∑

𝑚∈ℤ𝑑
[𝐹 (ℎ𝐤𝑛+𝑚𝑁 )]

2𝝘̂0(𝐤𝑛+𝑚𝑁 )

𝐹 (𝐊) = sinc 𝐾1
2 ⋯ sinc

𝐾𝑑
2

𝐤𝑛+𝑚𝑁 = 2𝜋(
𝑛1 + 𝑚1𝑁1

𝐿1
𝐞1 + ⋯ + 𝑛𝑑 + 𝑚𝑑𝑁𝑑

𝐿𝑑
𝐞𝑑)

Proof is not difficult, but technical [BD10; BD12]

Sébastien Brisard On the spatial discretization of the Lippmann–Schwinger equation — 26 january 2021 36



Wait a minute…

The consistent discrete Green operator

𝝘̂ℎ
0,𝑛 = ∑

𝑚∈ℤ𝑑
[𝐹 (ℎ𝐤𝑛+𝑚𝑁 )]

2𝝘̂0(𝐤𝑛+𝑚𝑁 )

Above expression is exact, but its evaluation
is difficult, if possible at all [BD10]!

Introduce an approximation of this operator
(asymptotically consistent discretization)
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Consistent vs. asymptotically
consistent discretizations

What is a variational crime?

Asymptotically consistent approx. of local operator

Asymptotically consistent approx. of non-local operator



On variational crimes
The initial problem

Find 𝞃 ∈ 𝕍 such that 𝑎(𝞃, 𝞏) = ℓ(𝞏) for all 𝞏 ∈ 𝕍

Exhaustive exploration of 𝕍 is not possible!

Consistent discretization
Find 𝞃ℎ ∈ 𝕍 ℎ such that 𝑎(𝞃ℎ, 𝞏ℎ) = ℓ(𝞏ℎ) for all 𝞏ℎ ∈ 𝕍 ℎ

Exact evaluation of the bilinear and linear forms!

Asymptotically consistent discretization
Find 𝞃ℎ ∈ 𝕍 ℎ such that 𝑎ℎ(𝞃ℎ, 𝞏ℎ) = ℓℎ(𝞏ℎ) for all 𝞏ℎ ∈ 𝕍 ℎ

Approximations ℓℎ and 𝑎ℎ must be asymptotically consistent [EG04]
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We are all criminals
Examples of variational crimes (FEM)

The bilinear form

𝑎(𝐮, 𝐯) = ∫Ω
𝗴𝗿𝗮𝗱[𝐮] ∶ 𝗖 ∶ 𝗴𝗿𝗮𝗱[𝐯]

Geometry

⋃𝑒
Ω𝑒 ≠ Ω

Quadrature

∫Ω𝑒
𝗴𝗿𝗮𝗱[𝐮] ∶ 𝗖 ∶ 𝗴𝗿𝗮𝗱[𝐯] ≃ ∑𝑔

𝑤𝑔 𝗴𝗿𝗮𝗱[𝐮](𝐱𝑔) ∶ 𝗖 ∶ 𝗴𝗿𝗮𝗱[𝐯](𝐱𝑔)
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Handling heterogeneous cells
Consistent equivalent stiffness of cell [BD12]

⟨𝞏ℎ ∶ 𝗠 ∶ 𝞃ℎ⟩ = 1
𝑁 ∑𝑝

𝞏ℎ
𝑝 ∶ ⟨𝗠⟩𝑝 ∶ 𝞃ℎ

𝑝

= 1
𝑁 ∑𝑝

𝞃ℎ
𝑝 ∶ (𝗖ℎ

𝑝 − 𝗖ref)
−1 ∶ 𝞏ℎ

𝑝

𝗖ℎ
𝑝

def= 𝗖ref + ⟨𝗠⟩−1
𝑝

Although consistent, this rule sometimes leads to
surprising convergence results in practice.

Alternative, non-consistent rules
“Black-or-white”: 𝗖ℎ

𝑝 = stiffness at cell center
Laminate approximation [KMS15]: probably your best bet
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Discrete Green operators

The consistent discrete Green operator
⟨𝝘0(𝞃ℎ)⟩𝑝 = DFT−1

𝑝 [𝝶̂ℎ
•], with 𝝶̂ℎ

𝑛 = 𝝘̂ℎ,c
0,𝑛 ∶ 𝞃̂ℎ

𝑛

𝝘̂ℎ,c
0,𝑛 = ∑

𝑚∈ℤ𝑑
[𝐹 (ℎ𝐤𝑛+𝑚𝑁 )]

2𝝘̂0(𝐤𝑛+𝑚𝑁 )

Asymptotically consistent discrete Green operators
Retain the nice block-circulant structure!

⟨𝝘0(𝞃)⟩𝑝 ≃ DFT−1
𝑝 [𝝶̂ℎ

•], with 𝝶̂ℎ
𝑛 = 𝝘̂ℎ,⋆

0,𝑛 ∶ 𝞃̂ℎ
𝑛
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Signal processing approaches
Filter out high frequencies!

Rectangular window [MS94; MS98]
Select 𝑚𝑖 ∈ {−1, 0} that minimizes 𝑛𝑖 + 𝑚𝑖𝑁𝑖

𝝘̂ℎ,MS
0,𝑛 = 𝝘̂0(𝐤𝑛+𝑚𝑁 ) with 𝑚𝑖 =

{
−1 if 2𝑛𝑖 > 𝑁𝑖
0 otherwise

If any of the 𝑛𝑖 is such that 2𝑛𝑖 = 𝑁𝑖, then set 𝝘̂ℎ,MS
0,𝑛 = 𝗖0 .

Cosine window [BD12]

𝝘̂ℎ,BD
0,𝑛 = ∑

𝑚∈{−1,0}𝑑
[𝐺(ℎ𝐤𝑛+𝑚𝑁 )]

2𝝘̂0(𝐤𝑛+𝑚𝑁 ) 𝐺(𝐊) = cos 𝐾1
4 ⋯ cos

𝐾𝑑
4

Strong connexion w. band-limited approximation of Zeman et al. [Zem+10] and Vondřejc [Von16]
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Discretization in the real space

Discretize the homogeneous, eigenstressed problem!

Finite differences on rotated grids [Wil15; SOK15]

𝝘̂ℎ,⋆
0,𝑛 = 𝝘̂0(𝐤⋆

𝑛 )
⎧
⎪
⎨
⎪
⎩

𝐤W
𝑛 = 1

ℎ1
tan 𝜋𝑛1

𝑁1
𝐞1 + ⋯ + 1

ℎ3
tan

𝜋𝑛3
𝑁3

𝐞3

𝐤SOK
𝑛 = ei2𝜋𝑛1/𝑁1 − 1

ℎ1
𝐞1 + ⋯ + ei2𝜋𝑛3/𝑁1 − 1

ℎ3
𝐞3

See also Willot and Pellegrini [WP08] and Willot et al. [WAP14]
The above, more operational formula for 𝐤W

𝑛 is proved in [Bri17]

Finite elements [SMK17; Bri17]
No closed-form expression, but fairly easy implementation.
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Comparison in Fourier space

Moulinec and Suquet [MS98] Brisard and Dormieux
[BD12]

Willot [Wil15]
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Comparison for impulse

Moulinec and Suquet [MS98] Brisard and Dormieux
[BD12]

Willot [Wil15]
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Which operator should I use?

Moulinec and Suquet [MS98]
Pros: cheap, no dependency on 𝗖0 Cons: strong Gibbs

Brisard and Dormieux [BD12]
Pros: virtually no Gibbs Cons: costly, dependency on 𝗖0

Willot [Wil15] (recommended)
Pros: quite cheap, no dependency on 𝗖0 Cons: slight Gibbs

Schneider et al. [SMK17]
Pros: no dependency on 𝗖0 Cons: quite costly
Gibbs?
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Conclusion

Weak form of the Lippmann–Schwinger equation

Galerkin discretization (cell-wise constant test functions)

Consistent discretization impractical

Introduce several asymptotically consistent discretizations

The problem is now ready to be handed to a solver!
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Thank you for your attention
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