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December 23, 2020

Abstract

In this study, we provide an interpretation of the dual differential Riccati equation of Linear-Quadratic
(LQ) optimal control problems. Adopting a novel viewpoint, we show that LQ optimal control can be seen as
a regression problem over the space of controlled trajectories, and that the latter has a very natural structure
as a reproducing kernel Hilbert space (RKHS). The dual Riccati equation then describes the evolution of the
values of the LQ reproducing kernel when the initial time changes. This unveils new connections between
control theory and kernel methods, a field widely used in machine learning.

1 Introduction
We consider the problem of finite-dimensional time-varying linear quadratic (LQ) optimal control with finite
horizon and quadratic terminal cost as in

V (t0,x0) := min
u(·)

x(T )>JT x(T ) +
∫ T

t0
[x(t)>Q(t)x(t) + u(t)>R(t)u(t)]dt (1)

s.t. x′(t) = A(t)x(t) + B(t)u(t), a.e. in [t0, T ], (1a)
x(t0) = x0, (1b)

where the state x(t) ∈ RN and the control u(t) ∈ RM . We shall henceforth assume that JT � 0,1 and
for all t ∈ [t0, T ], R(t) < rIdM with r > 0, as well as A(·) ∈ L1([t0, T ],RN,N ), B(·) ∈ L2([t0, T ],RN,M ),
Q(·) ∈ L1([t0, T ],RN,N ), and R(·) ∈ L2([t0, T ],RN,N ). To have a finite objective, we restrict our attention to
measurable controls satisfying R(·)1/2u(·) ∈ L2([t0, T ],RN ). Problem (1) is intimately related to the differential
Riccati equation,2 expressed as

− ∂1J(t, T ) = A(t)>J(t, T ) + J(t, T )A(t)− J(t, T )B(t)R(t)−1B(t)>J(t, T ) + Q(t) ; J(T, T ) = JT , (2)

which solution J(·, T ) satisfies V (t0,x0) = x>0 J(t0, T )x0. It is well-known (e.g. [1, pp. 31, 408]) that under the
above positivity assumptions, J(t, T ) is a symmetric positive definite matrix, which inverse M(t, T ) := J(t, T )−1

satisfies a dual Riccati equation

∂1M(t, T ) = A(t)M(t, T ) + M(t, T )A(t)> −B(t)R(t)−1B(t)> + M(t, T )Q(t)M(t, T ) ; M(T, T ) = J−1
T . (3)

This inverse matrix has been used as a tool to obtain a representation formula in infinite-dimensional LQ control
[2] but it has not received the deserved interest yet. Whereas the solution of (2) is equal to the Hessian of the
value function V (t0, ·), i.e. J(t0, T ) = ∂x,xV (t0, ·), we show (Theorem 2 below) that the solution of (3) is equal
to the diagonal element of a matrix-valued reproducing kernel K(·, ·), naturally associated with (1). Owing to
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1Here < (resp. �) denotes the (strict) partial order over positive semi-definite matrices.
2The index T in J(·, T ) is kept as a reminder that (2) is defined w.r.t. a given terminal time T . We denote by ∂1 the derivative

w.r.t. the first variable.
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this interpretation, the dual Riccati equation (3) is thus no less fundamental and effectively allows to reverse
the perspective between the adjoint vector and the optimal trajectory.

We first need to bring trajectories to the fore in (1). In his seminal book, Luenberger [3, p255] already
discussed that an optimal control problem such as (1) can be seen as either optimizing over the set of controls
u(·), or jointly over the set of trajectories x(·) and controls u(·), connected through the dynamic constraint (1a).
Luenberger also alluded without details to a third possibility, that of optimizing directly over the controlled
trajectories. We follow this last viewpoint and consequently introduce the vector space S[t0,T ] of controlled
trajectories of the linear system:

S[t0,T ] := {x : [t0, T ]→ RN | ∃u(·) s.t. x′(t) = A(t)x(t) + B(t)u(t) a.e. and R(·)1/2u(·) ∈ L2([t0, T ],RN )}. (4)

There is not necessarily a unique choice of u(·) for a given x(·) ∈ S[t0,T ].3 Therefore, with each x(·) ∈ S[t0,T ],
we associate the control u(·) having minimal norm based on the pseudoinverse B(t)	 of B(t) for the RM -norm
‖ · ‖R(t) := ‖R(t)1/2 · ‖:

u(t) = B(t)	[x′(t)−A(t)x(t)] a.e. in [t0, T ]. (5)

Problem (1) then induces a natural inner product over S[t0,T ]. As a matter of fact, the expression

〈x1(·),x2(·)〉K := x1(T )>JT x2(T ) +
∫ T

t0
[x1(t)>Q(t)x2(t) + u1(t)>R(t)u2(t)]dt (6)

is bilinear and symmetric over S[t0,T ] × S[t0,T ]. It is positive definite over S[t0,T ] as ‖x(·)‖2K = 0 implies that
u(·) a.e≡ 0 and, as JT � 0, x(T ) = 0, hence x(·) ≡ 0. Therefore

V (t0,x0) = min
x(·)∈S[t0,T ]

‖x(·)‖2K

s.t. x(t0) = x0.
(7)

In other words the value function V (t0,x0) of (1) coincides with the optimal value of a constrained norm
minimization over S[t0,T ]. The solution of (7) can be made explicit as (S[t0,T ], 〈·, ·〉K) is not an arbitrary Hilbert
space, but a vector-valued reproducing kernel Hilbert space (vRKHS).

2 Vector spaces of linear controlled trajectories as vRKHSs
Definition 1. Let T be a non-empty set. A Hilbert space (HK(T), 〈·, ·〉K) of RN -vector-valued functions defined
on T is called a vRKHS if there exists a matrix-valued kernel KT : T × T → RN,N such that the reproducing
property holds: for all t ∈ T, p ∈ RN , KT(·, t)p ∈ HK(T) and for all f ∈ HK(T), p>f(t) = 〈f ,KT(·, t)p〉K .

Remark: It is well-known that by Riesz’s theorem, an equivalent definition of a vRKHS is that, for every t ∈ T

and p ∈ RN , the evaluation functional f ∈ HK(T) 7→ p>f(t) ∈ R is continuous. There is also a one-to-one
correspondence between the kernel KT and the vRKHS (HK(T), 〈·, ·〉K) (see e.g. [4, Theorem 2.6]). Moreover,
by symmetry of the scalar product, the matrix-valued kernel has a Hermitian symmetry, i.e.KT(s, t) = KT(t, s)>
for any s, t ∈ T.

Lemma 1. (S[t0,T ], 〈·, ·〉K) is a vRKHS over [t0, T ] with a reproducing kernel K[t0,T ] which we call the LQ
kernel.

Proof of Lemma 1: The proof is identical to the one of Lemma 1 in [5] where S[t0,T ] was equipped with the
following inner product

〈x1(·),x2(·)〉K,init := x1(t0)>x2(t0) +
∫ T

t0
[x1(t)>Q(t)x2(t) + u1(t)>R(t)u2(t)]dt. (8)

3This is the case for instance if B(t) is not injective for a set of times t with positive measure.
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Owing to Lemma 1, we can look for a “representer theorem“, i.e. a necessary condition to ensure that the
solutions of an optimization problem like (7) live in a finite dimensional subspace of S[t0,T ] and consequently
enjoy a finite representation.

Theorem 1. [5] Let (HK(T), 〈·, ·〉K) be a vRKHS defined on a set T. For a given I ∈ N, let {ti}i∈[[1,I]] ⊂ T.
Consider the following optimization problem with “loss“ function L : RI → R ∪ {+∞}, strictly increasing
“regularizer“ function Ω : R+ → R, and vectors {ci}i∈[[1,I]] ⊂ RN

min
f∈HK(T)

L
(
c>1 f(t1), . . . , c>I f(tI)

)
+ Ω (‖f‖K) .

Then, for any minimizer f̄ , there exists {pi}i∈[[1,I]] ⊂ RN such that f̄ =
∑I
i=1KT(·, ti)pi with pi = αici for some

αi ∈ R.

Taking L(e>1 x(t0), . . . , e>Nx(t0)) := χx0(x(t0)) and Ω(y) = y2, with ei the i-th basis vector of RN , χx0

the indicator function of x0, we apply Theorem 1 to (7). Since ‖ · ‖2K is strongly convex and there exists
x(·) ∈ S[t0,T ] satisfying x(t0) = x0, the solution of (7) is unique and can be written as x̄(t) = K[t0,T ](t, t0)p0,
with p0 = K[t0,T ](t0, t0)	x0 ∈ RN , where K[t0,T ](t0, t0)	 is the pseudoinverse of K[t0,T ](t0, t0) for the RN -
seminorm ‖K[t0,T ](t0, t0)1/2 · ‖. Thus, owing to the reproducing property,

V (t0,x0) = ‖x̄(·)‖2K = 〈K[t0,T ](·, t0)p0,K[t0,T ](·, t0)p0〉K = p>0 K[t0,T ](t0, t0)p0 (9)
= x>0 K[t0,T ](t0, t0)	x0 = p>0 x0.

So we conjecture that K[t0,T ](t0, t0)	 = J(t0, T ). We actually have a stronger result:

Theorem 2. Let Kd : t0 ∈]−∞, T ] 7→ K[t0,T ](t0, t0). Then Kd(t0) = J(t0, T )−1.

The proof of Theorem 2 (in Section 3 below) boils down to identifying the reproducing kernel of (S[t0,T ], 〈·, ·〉K).
Informally, the inverse relation comes from inverting the graph of the (x,p)-relation. As a matter of fact, con-
sider the solution p(t) of the adjoint equation

p′(t) = −A(t)>p(t) + Q(t)x̄(t) p(T ) = −JT x̄(T ). (10)

Then we have p(t) = −J(t, T )x̄(t). In other words, the solution J(·, T ) of the differential Riccati equation maps
the optimal trajectory x̄(·) to its adjoint vector p(·). On the contrary, since x̄(t) = K[t0,T ](t, t0)p0, the kernel
K[t0,T ](·, t0) maps an initial covector p0 ∈ Rn to the optimal trajectory x̄(·). This effectively inverts the graph
of the relation between x̄(·) and p(·). The inversion performed is related to yet another change of perspective,
from an online and differential approach to an offline and integral one.

Through Pontryagine’s Maximum Principle (PMP), it is well known that the optimal control ū(·) satisfies
ū(t) = R(t)−1B(t)>p(t) = −R(t)−1B(t)>J(t, T )x̄(t) =: G(t)x̄(t). Hence, based on J(t, T ), one has a closed
feedback loop, with gain matrix G(t), and knows the control to apply based only on the present time and state.
However the optimal trajectory x̄(·) is not encoded as simply as in the kernel formula x̄(t) = K[t0,T ](t, t0)p0.
It has to be derived through numerical approximations of the dynamics (1a). Conversely, the kernel K[t0,T ]
performs the integration of the Hamiltonian system (1a)-(10) and sparsely encodes x̄(·) over [t0, T ] by p0. This
sparsity partly stems from the smaller number of constraints in (7) w.r.t. (1) since the dynamics (1a) were
incorporated in the definition of S[t0,T ]. Unlike in the PMP, the adjoint vector p(t) disappears in the kernel
perspective and only the initial condition (or some intermediate rendezvous points) induce a covector pi.

More generally, for a given interval [t0, T ], Theorem 1 states that to encode the optimal trajectories one needs
at most as many covectors pi as there are points ti where the trajectory is evaluated in the optimization problem.
It is a classical property of “kernel machines“, frequently leveraged in classification tasks (e.g. SVMs in [6]). This
result was exploited in [5] to tackle affine state constraints. From the PMP perspective, it resulted in focusing
only on the measures supported on the constraint boundary. Unlike the adjoint vector p(t) associated with the
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equality constraint (1a), which never vanishes except for abnormal trajectories, the covectors corresponding to
inequality constraints are null whenever the constraint is not active. This led to extremely sparse encoding of
the optimal trajectory by specifying only the active covectors on the [t0, T ] time interval.4 Offline computation
of the kernel is indeed well suited for path-planning problems. The kernel formalism however conflicts with the
online perspective since varying t0 changes the domain of K[t0,T ]. As the correspondence between the kernel
KT and the vRKHS (HK(T), 〈·, ·〉K) is one-to-one (e.g. [4, Theorem 2.6]), varying T = [t0, T ] or modifying the
inner product changes the kernel. In general, restricting the domain leads to complicated relations between
a vRKHS and its kernel [7, pp.78-80]. In our case, the dual Riccati equation (3) precisely describes how the
values of the LQ kernel change when varying t0.

3 Proof of Theorem 2
The proof corresponds to the identification of the reproducing kernel of (S[t0,T ], 〈·, ·〉K). Since we shall proceed
with fixed initial time t0, we drop the corresponding index and set K(·, ·) = K[t0,T ](·, ·). By existence and
unicity of the reproducing kernel, we just have to exhibit a function K(·, ·) which satisfies the requirements of
Definition 1.

Let us denote by ΦA(t, s) ∈ RN,N the state-transition matrix of z′(τ) = A(τ)z(τ), defined from s to t,
i.e. z(t) = ΦA(t, s)z(s). The key property used throughout this section is the variation of constants, a.k.a.
Duhamel’s principle, stating that for any absolutely continuous x(·) such that x′(t) = A(t)x(t) + B(t)u(t) a.e.,
we have for any σ, t ∈ [t0, T ]

x(t) = ΦA(t, σ)x(σ) +
∫ t

σ
ΦA(t, τ)B(τ)u(τ)dτ. (11)

Setting ∂1K(s, t) : p 7→ d
ds(K(s, t)p), let us define formally U(s, t) := B(s)	[∂1K(s, t) − A(s)K(s, t)]. The

reproducing property for K then writes as follows, for all t ∈ [t0, T ], p ∈ RN , x(·) ∈ S[t0,T ],

p>x(t) = (K(T, t)p)>JTx(T ) +
∫ T

t0
(K(s, t)p)>Q(s)x(s)ds+

∫ T

t0
(U(s, t)p))>R(s)u(s)ds. (12)

By the Hermitian symmetry of K and the variation of constants (11) written for σ = T , we can rewrite (12)
as, for all t ∈ [t0, T ], x(·) ∈ S[t0,T ],

x(t) = K(t, T )JTx(T ) +
∫ T

t0
K(t, s)Q(s)

(
ΦA(s, T )x(T ) +

∫ s

T
ΦA(s, τ)B(τ)u(τ)dτ

)
ds

+
∫ T

t0
U(s, t)>R(s)u(s)ds.

Regrouping terms,

x(t) =
(
K(t, T )JT +

∫ T

t0
K(t, s)Q(s)ΦA(s, T )ds

)
x(T ) +

∫ T

t0
K(t, s)Q(s)

∫ s

T
ΦA(s, τ)B(τ)u(τ)dτds

+
∫ T

t0
U(s, t)>R(s)u(s)ds

Setting K̃(t, s) :=
∫ s
t0
K(t, τ)Q(τ)ΦA(τ, s)dτ , and applying Fubini’s theorem, we get

x(t) =
(
K(t, T )JT + K̃(t, T )

)
x(T ) +

∫ T

t0

[
U(s, t)>R(s)−

∫ s

t0
K(t, τ)Q(τ)ΦA(τ, s)B(s)dτ

]
u(s)ds.

4In [5], we considered the inner product (8) rather than (6) which assumes a terminal quadratic cost. The choice of (8) was more
appropriate for fixed initial time and general lower semicontinuous convex terminal costs, alongside affine state constraints.
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Identifying with (11) for σ = T , we derive that

K(t, T )JT = ΦA(t, T )− K̃(t, T ),

U(s, t)>R(s) =
{

(−ΦA(t, s) + K̃(t, s))B(s) ∀s ≥ t,
K̃(t, s)B(s) ∀s < t.

(13)

Let us introduce formally an adjoint equation defined for a variable Π(s, t) ∈ RN,N . For any given t ∈ [t0, T ],

∂1Π(s, t) = −A(s)>Π(s, t) + Q(s)K(s, t) Π(t0, t) = −IdN .

This is the matrix version of (10) but with an initial rather than terminal condition. Again, applying the
variation of constants (11) with σ = t0 to Π(s, t), taking the transpose and owing to the symmetries of K(·, ·)
and Φ(·, ·), we derive that

Π(s, t) = Φ(−A>)(s, t0)Π(t0, t) +
∫ s

t0
Φ(−A>)(s, τ)Q(τ)K(τ, t)dτ

Π(s, t)> = −ΦA(t0, s) +
∫ s

t0
K(t, τ)Q(τ)ΦA(τ, s)dτ = −ΦA(t0, s) + K̃(t, s).

Since ∂1K(s, t) = A(s)K(s, t) + B(s)U(s, t), by (13), for any given time t ∈ [t0, T ], we have two coupled
differential equations for K(·, t) and Π(·, t)

∂1K(s, t) = A(s)K(s, t) + B(s)R(s)−1B(s)>
{

Π(s, t) + ΦA(t0, s)> −ΦA(t, s)> ∀s ≥ t,
Π(s, t) + ΦA(t0, s)> ∀s < t.

∂1Π(s, t) = −A(s)>Π(s, t) + Q(s)K(s, t),
Π(t0, t) = −IdN K(t, T )JT = −Π(T, t)> + ΦA(t, T )−ΦA(t0, T ).

(14)

Equations (14) seem quite intricate but they become simpler for t = t0, and as seen in (9), t0 is actually the
only time that interests us to solve the LQ optimal control problem (7). For t = t0, the equations boil down to

∂1K(s, t0) = A(s)K(s, t0) + B(s)R(s)−1B(s)>Π(s, t0)
∂1Π(s, t0) = −A(s)>Π(s, t0) + Q(s)K(s, t0)
Π(t0, t0) = −IdN ; Π(T, t0) = −JTK(T, t0).

(15)

Let us solve (15) by variation of the constant JT . We thus look for a function J(·, T ), which we will prove
solves (2), such that J(T, T ) = JT and Π(s, t0) = −J(s, T )K(s, t0). We take the derivative in s of the latter
expression to obtain

−A(s)>Π(s, t0) + Q(s)K(s, t0) = −J(s, T )
(
A(s)K(s, t0) + B(s)R(s)−1B(s)>Π(s, t0)

)
− (∂1J(s, T ))K(s, t0)

Therefore, applying to the right of the equations any pseudo-inverse of K(s, t0),

0 =
[
A(s)>J(s, T )> + J(s, T )A(s)− J(s, T )B(s)R(s)−1B(s)>J(s, T ) + Q(s) + ∂1J(s, T )

]
projImK(s,t0).

So it suffices that J(·, T ) solves the differential Riccati equation (2) and that, by symmetry of K,

Π(t0, t0) = −IdN = −J(t0, T )K(t0, t0) = −K(t0, t0)J(t0, T ).

Consequently K(t0, t0) = J(t0, T )−1 which formalizes our intuition of the inverse relation between J and K.
Now let us vary the initial time and consider the function Kd : t0 7→ K[t0,T ](t0, t0). Taking the derivative w.r.t.
t0 of Π(t0, t0) = −IdN = −J(t0, T )K[t0,T ](t0, t0), we get

0 = (∂1J(t0, T )Kd(t0) + J(t0, T )(∂1Kd(t0)),

applying Kd(t0) to the left of the equation and using that Kd(t0) = J(t0, T )−1, we obtain

0 = −Kd(t0)A(t0)> −A(t0)Kd(t0) + B(t0)R(t0)−1B(t0)> −Kd(t0)Q(t0)Kd(t0) + ∂1Kd(t0).

This concludes our proof as Kd(·) solves the dual matrix Riccati equation (3) which has a unique solution.
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