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Abstract.  Accurate prediction of thermal regime (i.e., the variation of soil temperature, θ, and heat flux, 16 
 ) to investigate the migration of thermal energy in soil mass, poses challenge to the geoenvironmental 17 

engineers while dealing with various thermo-active structures. In this context, several numerical 18 
approaches have been attempted to solve the heat transfer equation (HTE) for conduction to predict the 19 
thermal regime. However, most of them need accurate boundary condition defined and involve 20 
complicated numerical approach which is inconvenient for the practising engineers. Hence, an attempt has 21 
been made in the present study to develop a simplified, but numerically efficient, approach based on the 22 
finite difference method (FDM) to analyse one dimensional heat transfer in dry sands when the end 23 
boundary is not defined. Furthermore, a time dependent initial boundary condition has been applied to this 24 
model to simulate similar experimental condition and results have been compared vis-à-vis those obtained 25 
from the experiment and COMSOL Multiphysics

®
 to validate the proposed approach. 26 

Keywords: sands; thermal regime; heat transfer equation; numerical analysis; finite difference model;  27 

1. Introduction 28 

Contemporary geoenvironmental engineering and practices deal with design and construction of 29 
several thermo-active structures such as furnaces, boiler units, forging units, brick kilns and rocket 30 
launching pads, buried conduits and electrical cables, air conditioning ducts (Kadali et al. 2013), 31 
disposal facilities of waste from the nuclear and thermal power plants (Rao and Singh 1999; 32 
Krishnaiah and Singh 2004; Delage et al. 2010; Dao et al. 2015), underground crude oil storage 33 
tanks (Mandal et al. 2013; Padmakumar 2013; Usmani et al. 2015), oil carrying pipelines ( 34 
Brandon and Mitchell 1989; Abuel-Naga et al. 2008; Lee et al. 2010; Manthena and Singh 2001), 35 
solar ponds (Velmurugan and Srithar 2008), energy geostructures ( Knellwolf et al. 2011; 36 
Loveridge and Powrie 2013; Salciarini et al. 2013; Yavari et al. 2014; Di Donna et al. 2016; Faizal 37 
et al. 2016; McCartney et al. 2016), which result in conveyance of thermal energy through the soil 38 
mass. Moreover, activities like dissociation of gas hydrates by heating (Feng et al. 2015; Song et 39 
al. 2015, 2016) and exploitation of oil sand by steam assisted gravity drainage (SAGD) (Elsayed et 40 
al. 2015; Lazzaroni et al. 2016) and also soil-atmosphere interaction ( Heusinkveld et al. 2004; 41 
Ochsner et al. 2007; Cui et al. 2013) involve heat migration through soil mass. These applications 42 
necessitate studies to understand how heat migrates in the soil mass by means of predicting the 43 
thermal regime (i.e., time dependent temperature and thermal flux) in it.  44 
In this context, several studies have been carried out to predict thermal regime of soil mass by 45 
solving HTE (Heat Transfer Equation) either numerically or analytically. Some of the broadly used 46 
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approaches are Finite Element Method (FEM) ( Timlin et al. 2002; Han and Huang 2002; Bittelli 47 
et al. 2008,), Finite Volume Method (LeVeque 2002), Finite Difference Method (FDM) (Sharratt 48 
et al. 1992; Han and Huang 2002; Wu and Sun 2004; Wang et al. 2011), Force Restore Method 49 
(FRM) ( Liebethal and Foken 2007; Gao et al. 2008). Moreover, different analytical methods like 50 
Harmonic Method, Laplace Transform Method, and Fourier Transform Method, have been 51 
considered by several researchers (Heusinkveld et al. 2004; Gao et al. 2007; Evett et al. 2012; 52 
Wang et al. 2012) to solve HTE in order to predict the thermal regime in soil mass (Mondal et al. 53 
2017). Nonetheless, the major hindrance of some of the abovementioned methods is that they 54 
involve complicated mathematics which is not convenient to the practising engineers. Moreover, 55 
for any numerical approach, proper boundary conditions are necessary to be defined. On the 56 
contrary, many a times while performing experimental investigations, proper boundary conditions 57 
are not monitored. This results in a real challenge to adopt a numerical study in order to conduct 58 
comparative analysis between experimental and numerical outcomes of any particular problem. 59 
Keeping this in view, an effort has been made to develop a computationally efficient and 60 
simplified numerical model based on FDM to predict (i) the end boundary and to estimate (ii) the 61 
realistic thermal regime in sandy soils, which would be very convenient for the practising 62 
geotechnical engineers. Furthermore, the results obtained from FDM and COMSOL 63 
Multiphysics

®
, a commercially available FEM based analysis tool, have been compared vis-à-vis 64 

with experimental results, details of which are presented in this paper.  65 
The distinctiveness of this model lies in the fact that it is simpler than the complicated analytical 66 
solutions yet numerically efficient. This would make the model widely accepted among practicing 67 
engineers who are working in the projects of construction of thermo-active structures. Moreover, 68 
this FDM can be employed to define the appropriate boundary conditions (in case of comparative 69 
analysis between experimental investigations with undefined boundary) to obtain an accurate 70 
numerical solution. 71 
 72 

2. Statement of the Problem  73 

This section deals with the details of the problem investigated in the present study, which 74 
essentially has been derived from the experiments conducted by Mondal et al. (2016). A 20 cm 75 
long (L) column of the Indian standard sands, designated as SI (refer Table 1 for the thermal 76 
properties of the sands) was used in the experiments. A temperature of 60 ⁰ C was applied at the 77 
top surface of this column, as depicted in Fig1a. Furthermore, as depicted in Fig1b, the flux 78 
sensors, and thermocouples were embedded at 5 cm and 9 cm depths, respectively, in the sample 79 
(Mondal et al. 2017). The heat gun was kept at a height of 400mm which ensured uniform heat 80 
application at the top surface of the column. Since the lateral boundary is maintained adiabatic as 81 
explained in Mondal et al. (2016) and the base of the column is made up of aluminium, which has 82 
very high thermal conductivity as compared to that of sand, the bottom boundary of this column 83 
can be considered as the ‘open end boundary’ through which thermal flux could exit. As such, the 84 
heat transfer through this column can be assumed to be one-dimensional, and after a specific time, 85 
the steady-state condition could be achieved in it. Hence, the novelty of the present study is that 86 
it’s an attempt to establish a simple numerical approach, based on finite difference method (FDM), 87 
to identify the correct end boundary conditions, which would facilitate determination of thermal 88 
regime for one-dimensional heat conduction in dry sands.  89 
 90 
Table 1. Thermal Properties of Sand used in this study 91 

Sand Dry density (ɣd) 

(g/cm
3
) 

Thermal Conductivity 

(k  (    C/m) 

 
 

Specific Heat (Cp) 

(J/kg /°C) 

SI 1.556 0.315 171 

 92 
 93 

3. The Proposed Methodology 94 



 

3 
 

The one-dimensional heat conduction equation can be written as:  95 
  

  
  

   

   
                                                           (1) 96 

where θ(z,t   is the temperature in the soil mass, at the depth of z and corresponding to time, t, and 97 
α is the thermal diffusivity of the soil mass  which can be determined if  , thermal conductivity 98 
and C, Specific heat for a particular bulk density,  , of the soil mass is known (refer Eq. 2). 99 

C





                                                                         (2) 100 

It should be noted that the conduction is the predominant mechanism of heat transfer through 101 
solids (Jackson and Taylor 1986; Mondal et al. 2018) and hence, equation of heat conduction is 102 
considered. 103 

3.1 The model based on the FDM 104 
 105 
The one-dimensional HTE, Eq. 1, is discretised in time and space using simple difference 106 

equations and ignoring the truncation error, which is negligibly small. Subsequently, the explicit 107 
solution has been obtained as: 108 

    
  

   

     
   

       
    

       
                                            (3) 109 

It is worth mentioning that the condition of stability for this explicit solution is 
   

     
 

 

 
 . As 110 

such, in order to maintain the stability, a time step of 30 seconds which corresponds to 111 
characteristic length of 1 cm, has been chosen.  112 
 113 
3.2 Determination of the End boundary  114 

The purpose of this simple numerical method is to analyse the experimental data where the 115 
end boundary condition is not defined. As described by Mondal et al. (2016) neither the 116 
temperature nor the thermal flux was measured at the end boundary while performing the 117 
experiment. Hence, it became mandatory to device a methodology that could be utilized to define 118 
the end boundary. With this in view, beyond the considered depth of the model, L (=20 cm), an 119 
additional depth of the soil mass of length, L, has been chosen (refer Fig. 2). This additional 120 
depth of the soil mass is beyond the zone of influence of the temperature applied at the top 121 
boundary, for a particular time, and is constrained by the bottom boundary. Hence, changes in the 122 
applied temperature at the top surface of the model would not be felt by the end boundary which 123 
is considered as the end point of the additional depth. As a result, at this end boundary the 124 
prevailing temperature could be considered as ambient when numerical simulation is being 125 
conducted. The obtained result, for different values of L were compared with the analytical 126 
solution of HTE (refer Eq. 4) for establishing the most suitable depth of end boundary. 127 

                   
 

     
                                                             (4)                                       128 

where    and    are initial and applied temperature respectively. 129 

 130 
3.3 Time dependent boundary condition 131 

As described by Mondal et al. (2016), the top surface of the sand column takes some time to 132 
achieve the applied temperature (i.e., the temperature at which the heat gun is set). While, in case 133 
of the FDM, corresponding to the second time step, the first node is considered to have achieved 134 
the maximum applied temperature, which results in higher rate of heat transfer. Hence, to 135 
simulate  136 
the true experimental conditions, a step thermal loading of 0.4 ⁰ C/min has been imposed at the 137 
second time step of the FDM, until the first node achieves the maximum applied temperature.  138 
 139 

4. Results 140 
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To define the bottom end boundary for the FDM, a methodology has been adopted as described 141 
in Section 3.2 and the results are compared vis-a-vis the analytical solution (refer Eq. 4), as 142 
depicted in Fig 3. It can be observed from Figs. 3 (a) and (b) that the results obtained from the 143 
FDM, for an additional depth (L) of 20 cm, exhibit the best agreement with the results obtained 144 
from analytical solution. Based on this finding, the end boundary condition for the FDM was 145 
considered as an optimum additional depth of 20 cm when there is no significant improvement for 146 
further increment of L. Moreover, the experimental data has been compared vis-à-vis the results 147 
obtained from the FDM and COMSOL Multiphysics

®
. It is worth mentioning here that the lateral 148 

boundaries of the COMSOL model have been assumed to be ‘adiabatic’ and the bottom boundary 149 
has been assigned the ambient temperature like the FDM. Subsequently, a comparison between 150 
the results obtained from the experiments, and FDM and COMSOL Multiphysics

®
 has been 151 

depicted in Fig 4 and Fig 5, respectively. 152 
It can be noticed from Fig 4 that there is a good match between the experimental and FDM 153 
results. However, it can be noticed from Fig 5 that the COMSOL Multiphysics

®
 predicts lower 154 

temperatures as compared to experimentally obtained results. Furthermore, it can be observed 155 
from Fig 6 that the temperature profile obtained from the FDM matches very well with the 156 
experimentally obtained temperature profile. However, Fig 7 exhibits not so good match between 157 
the temperature profiles obtained from COMSOL Multiphysics

®
 simulation and the experiments.  158 

 159 
5. Concluding Remarks 160 

Prediction of realistic thermal regime in soil mass by means of mathematical approach enforces 161 
challenges to geoenvironmental practitioners. In this context, a simple FDM has been developed 162 
to solve one-dimensional HTE equation in order to establish thermal regime in sandy soil mass. A 163 
simple mathematical approach has been proposed to define end boundary for the FDM, as in case 164 
of the experiment the temperature at the end boundary could not be monitored. It is worth 165 
mentioning that the proposed numerical approach can be used for any dry sandy soil to define the 166 
end boundary and to determine the thermal regime. Moreover, experimentally obtained thermal 167 
regime has been compared vis-à-vis that obtained from the FDM and COMSOL Multiphysics

®
 168 

and it has been demonstrated that the FDM results match satisfactorily with experimental results 169 
as compared to the COMSOL Multiphysics

®
. Hence, it is believed that the proposed FDM would 170 

be an efficient tool to estimate thermal regime in sandy soils. However, the applicability of the 171 
proposed model should be checked in clays to enhance its versatility. 172 
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Figure 3(a). Thermal regime obtained at 5 cm depth for different additional depths in FDM and 

analytical model, for applied temp 60ᵒC, soil SI 
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Figure 3(b). Thermal regime obtained at 9 cm depth for different additional depths in FDM and 

analytical model, for applied temp 60ᵒC, soil SI 
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Figure 4(a). Thermal regime obtained at 5 cm depth in FDM and experiment, for an applied 

temp 60ᵒC in step, soil SI 
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Figure 4(b). Thermal regime obtained at 9 cm depth in FDM and experiment, for an applied 

temp 60ᵒC in step, soil SI 
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Figure 5. Temperature profile obtained at 5 and 9 cm depth from experiment and COMSOL 

Multiphysics®, for an applied temp 60ᵒC in step, soil SI 
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Figure 6. Comparison of the temperature values at 5 cm depth obtained from the FDM and 

experiment  
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