
HAL Id: hal-03038092
https://enpc.hal.science/hal-03038092

Submitted on 3 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fourier-based machine learning technique with
application in engineering

Michaël Peigney

To cite this version:
Michaël Peigney. A Fourier-based machine learning technique with application in engineering. Inter-
national Journal for Numerical Methods in Engineering, In press, �10.1002/nme.6565�. �hal-03038092�

https://enpc.hal.science/hal-03038092
https://hal.archives-ouvertes.fr


A Fourier-based machine learning technique with application

in engineering

Michaël Peigney∗

Lab Navier, Univ Gustave Eiffel, ENPC, CNRS, F-77447 Marne la Vallée, France

Abstract

The generic problem in supervised machine learning is to learn a function f from a

collection of samples, with the objective of predicting the value taken by f for any

given input. In effect, the learning procedure consists in constructing an explicit

function that approximates f in some sense. In this paper is introduced a Fourier-

based machine learning method which could be an alternative or a complement to

neural networks for applications in engineering. The basic idea is to extend f into a

periodic function so as to use partial sums of the Fourier series as approximations.

For this approach to be effective in high dimension, it proved necessary to use several

ideas and concepts such as regularization, Sobol sequences and hyperbolic crosses.

An attractive feature of the proposed method is that the training stage reduces to

a quadratic programming problem. The presented method is first applied to some

examples of high-dimensional analytical functions, which allows some comparisons

with neural networks to be made. An application to a homogenization problem in

nonlinear conduction is discussed in detail. Various examples related to global sensi-

tivity analysis, assessing effective energies of microstructures, and solving boundary

value problems are presented.

∗Corresponding author
Email address: michael.peigney@polytechnique.org (Michaël Peigney)

Preprint submitted to Journal of LATEX Templates September 21, 2020



Keywords: Machine learning, Fourier decomposition, nonlinear homogenization,

conductivity

1. Introduction

In recent years, machine learning techniques have become pervasive in a lot of

fields and engineering is no exception. There is indeed a fast growing literature

devoted to the use of machine learning techniques for predicting the response of a

given mechanical system in terms of input parameters (see e.g. [1–4] for some ex-

amples). Implementing such techniques requires a database collecting the responses

of the system for a large number of samples of the input parameters. Compared

to domains in which machine learning is the most developed (such as image recog-

nition), engineering has some specificities regarding the machine learning problems

involved. For instance, problems encountered in engineering are mainly regression

problems (i.e. predicting a function whose both input and output are continuously

varying quantities) as opposed to classification problems (i.e predicting a function

whose input or output are discrete quantities). In contrast with molecular dynamics

[5], the functions to be predicted usually have no special structure.

Concerning applications in engineering, neural networks have been predominantly

used so far. The main argument often invoked for justifying that choice is the so-

called universal approximation theorem [6], which states that any given continuous

function can be approximated (to any desired level of accuracy) by a neural network

(it should be mentioned that the theorem does not give any clue on the number of

neurons that should be used to reach a prescribed accuracy). Even though neural

networks have proved to be an efficient tool in a lot of applications, they are not free

from inconvenient. For instance, the training stage can be quite time consuming.

Moreover, the minimization problem underlying the training stage has several local

2



minima, which notably means that several users training a neural network from the

same database may obtain different results. Choosing the architecture of a multilayer

neural network is also a critical and sensitive issue.

It should be emphasized that neural networks are not the only functions that en-

joy a ’universal approximation’ property. Fourier decomposition is one of the most

famous examples. There are a lot of available results on the latter, both from the the-

oretical (convergence properties) and practical (Fast Fourier Transform algorithms)

stand points. The guiding idea of this paper is to leverage those results to devise a

Fourier-based machine learning technique that hopefully could be an alternative or

a complement to neural networks for applications in engineering. Let f(x1, · · · , xd)

denote the function to be learned. The basic principle, presented in Sect. 2, is

to extend the function f into a function that is periodic with respect to each of

its variables, thus allowing to one to use a multidimensional Fourier decomposition

and consider partial sums of the Fourier series as approximations of f . The Fourier

coefficients can be evaluated numerically from samples of the function f , using for

instance a Fast Fourier Transform (FFT) algorithm. However, such a direct ap-

proach quickly breaks down as the number d of variables increases, because of the

so-called curse of dimensionality: Using a FFT algorithm for calculating the Fourier

coefficients requires a regular grid of sampling points, i.e. a number of samples that

grows exponentially with d. This approach becomes impractical for d ≥ 4, whereas

machine learning problems arising in continuum mechanics often have a dimension-

ality of 6 or more. On a related note, the number of Fourier coefficients in a square

partial sum of the Fourier series also grows exponentially with d. In Sects 3 and 4 are

presented some strategies for countering the curse of dimensionality in the context

of Fourier-based machine learning, namely regularization via a change of variables

and the use of hyperbolic crosses. The latter have been originally introduced in [7]

3



for studying approximations a certain class of functions satisfying a bounded mixed

derivative condition (we refer to [8] for an in-depth survey). Collecting all the var-

ious ideas introduced leads to a general machine-learning algorithm summarized in

Sect. 5. Partial differentiation and global sensitivity analysis are discussed. The

presented method is first applied to some examples of high-dimensional analytical

functions, which allows some comparisons with neural networks to be made. Those

examples allow us to compare the presented technique with neural networks. In

Sect. 6 is presented an application to a homogenization problem in nonlinear con-

ductivity. We use the Fourier-based machine learning technique to learn an energy

function related to two-dimensional isotropic conductors whose constituent materials

have a power-law behavior. Two machine learning models are generated, applying

respectively to 2- and 3-phase composites. Several possible applications of the ob-

tained machine learning models are presented: global sensitivity analysis, assessing

the effective energy of given microstructures, and solving multiscale boundary value

problems. Some concluding remarks follow in Sect. 7.

2. Periodic extension

Let f be a function that maps an input variable x = (x1, · · · , xd) ∈ [0, 1]d to an

output variable f(x) ∈ R. In supervised machine-learning, the generic problem is

to learn the function f from a collection of M samples {xk, f(xk)}1≤k≤M , with the

objective of being able to predict the value f(x̃) for any given new input x̃.

In effect, the learning procedure consists in constructing an explicit function f̃

that approximates the target function f in some sense. Our basic idea is to use

Fourier series to build approximations of f : Let h be a T−periodic function of d

variables x1,· · · , xd ( i.e. h is periodic with period T with respect to each of its

4



variables). The Fourier coefficients c(n,h) of h are defined for any n ∈ Zd by

c(n,h) =
1

T d

∫
[0,T ]d

h(x)e−i
2π
T
n·xdx (1)

where the operator · denotes the Euclidean scalar product in Rd, i.e. x·y =
∑d

j=1 xjyj

for any x = (x1, · · · , xd) and y = (y1, · · · , yd) in Rd. Because of T−periodicity,

the integration domain [0, T ]d in (1) can be replaced by any domain of the form

[a1, a1 + T ]× · · · × [ad, ad + T ]. The cubic partial sum SNh of rank N is defined by

SNh(x) =
∑

n∈[−N..N ]d

c(n,h)ei
2π
T
n·x (2)

for any x ∈ Rd. Here and the following, the notation [. .] is used for integer intervals,

e.g. [−N . .N ] = {−N,−N + 1, · · · , N − 1, N}.

Provided h is square-integrable on [0, T ]d, it is well known [9] that∫
[0,T ]d

|SNh(x)− h(x)|2dx −−−−→
N→+∞

0. (3)

The given target function f : [0, 1]d 7→ R is generally not periodic. For instance,

there is no reason that f(0, x2, · · · , xd) = f(1, x2, · · · , xd). However, f can be ex-

tended in a periodic function by considering the function f̃ defined on [−1, 1]d by

f̃(x1, · · · , xd) = f(|x1|, · · · , |xd|). (4)

Note that f̃(1, x2, · · · , xd) = f̃(−1, x2, · · ·xd) for any x2,· · · , xd in [−1, 1]d−1. A

similar relation holds with respect to each variable, i.e.

f̃(x1, · · · , xj−1,−1, xj+1, · · · , xd) = f̃(x1, · · · , xj−1, 1, xj+1, · · · , xd) (5)

for any j in [1 . . d] and (x1, · · · , xj−1, xj+1, · · · , xd) in [−1, 1]d−1. Property (5) allows

the function f̃ to be viewed as a 2−periodic function (i.e. periodic with period 2

with respect to each variable xi).

5



Let SNf be the restriction on [0, 1]d of the cubic partial sum SN f̃ associated with

the 2−periodic function f̃ , i.e.

SNf(x) =
∑

n∈[−N..N ]d

c(n,f̃)eiπn · x

where

c(n,f̃) =
1

2d

∫
[−1,1]d

f(|x1|, · · · , |xd|)e−iπn · xdx. (6)

Let

|||f − SNf |||2 =

∫
[0,1]d
|SNf(x)− f(x)|2dx

be the Mean Square Error (MSE) between f and SNf . Since |||f − SNf |||2 ≤∫
[−1,1]d

(f̃ − SN f̃)2, property (3) implies that

|||f − SNf |||2 −−−−→
N→+∞

0.

The family of functions {SNf}N thus allows one to approximate f to any level of

accuracy (in the sense of mean square error). Calculating SNf amounts to calculate

the integrals c(n, f̃) in (6) for all n ∈ [−N . .N ]d. In general, those integrals cannot

be calculated exactly and need to be evaluated numerically from samples of the

functions f (we will return to that issue later on). For an arbitrary T−periodic

function h, constructing the partial sum SNh of rank N requires the calculation of

(2N + 1)d integrals of the form (1). That number can be reduced to (N + 1)d for

a function f̃ satisfying the symmetry conditions (4). The hypercube [−1, 1]d in (6)

can indeed be broken down into 2d unit hypercubes C(ε1, · · · , εd) as

[−1, 1]d =
⋃

εj ∈ {−1, 1},

1 ≤ j ≤ d

C(ε1, · · · , εd)

6



where

C(ε1, · · · , εd) =
∏

1≤j≤d

[min(εj, 0),max(εj, 0)].

It follows that

c(n,f̃) =
1

2d

∑
εj ∈ {−1, 1},

1 ≤ j ≤ d

∫
C(ε1,··· ,εd)

f(|x1|, · · · , |xd|)e−iπn · xdx. (7)

In the sum above, each integral can be transformed into an integral over the unit

hypercube [0, 1]d by using the change of variables x′j = εjxj for j = 1, · · · , d. We find

∫
C(ε1,··· ,εd)

f(|x1|, · · · , |xd|)e−iπn · xdx =

∫
[0,1]d

f(x′) exp(−iπ
d∑
j=1

εjnjx
′
j)dx

′. (8)

Replacing in (7) and swapping the sum with the integral yields

c(n,f̃) =

∫
[0,1]d

f(x)h(n,x)dx (9)

where

h(n,x) =
1

2d

∑
εj ∈ {−1, 1},

1 ≤ j ≤ d

exp(−iπ
d∑
j=1

εjnjxj) =
∏

1≤j≤d

cos πnjxj. (10)

Relations (9) and (10) imply that

c(n,f̃) = c(|n1|,··· ,|nd|)(f̃) (11)

for any n = (n1, · · · , nd). The cubic partial sum SNf can thus be constructed by

calculating only the (N + 1)d coefficients c(n,f̃) corresponding to positive multi-

indices. In more detail, some manipulations reported in Appendix A show that

SNf(x) =
∑

n∈[0..N ]d

2σ(n)c(n, f̃)h(n,x) (12)

7



where σ(n) is the number of non-zero elements in n = (n1, · · · , nd).

Example: Consider the function f(x1, · · · , xd) defined on [0, 1]d by

f(x1, · · · , xd) = (x1x2 · · ·xd)
3
2 .

The coefficients c(n,f̃) in (6) can be calculated in closed form and read as

c(n,f̃) =

(
3

2π2

)d ∏
1≤j≤d

1

n2
j

(
(−1)nj −

C(
√

2nj)√
2nj

)

where C(u) =
∫ u

0
cos πx2

2
dx is the Fresnel integral. Parseval’s identity gives

|||f − SNf |||2

|||f |||2
= 1−

(
16

25
+

18

π4

N∑
j=1

1

j4

(
(−1)j − C(

√
2j)√

2j

)2
)d

(13)

where |||f |||2 = 1/4d. In Fig. 1 is plotted the relative error |||f − SNf |||2/|||f |||2 for

several values of the dimension d. As the dimension d increases, so does the minimal

rank N needed for the relative error to be smaller than a prescribed threshold. For

instance, in order to obtain a relative error below 10−3, the minimal rank N is equal

to 10 if d = 10, instead of 5 if d = 2. Such values of N may seem relatively small, but

it should be kept in mind that calculating SNf amounts to calculate (N+1)d Fourier

coefficients. In particular, calculating S10f in dimension 10 amounts to calculate 1110

Fourier coefficients. This would entail prohibitive computational costs in the general

situation where the integrals defining the Fourier coefficients need to be estimated

numerically. In the following are devised some strategies for reducing the number of

Fourier coefficients needed for reconstructing f with a given accuracy.

3. Regularization via a change of variables

It can be observed that the periodic extension procedure presented in Sect. 2

involves some loss of regularity: if the function f is (say) of class C1, its periodic

8



0 5 10 15 20 25 30 35 40
10−6

10−5

10−4

10−3

10−2

10−1

100

N

|||f
−
S
N
f
|||2
/||
|f
|||2

d = 2
d = 4
d = 6
d = 8
d = 10
d = 12

Figure 1: Relative mean square error |||f − SNf |||2/|||f |||2 as a function of the rank N , in the case

f(x1, · · · , xd) = (x1x2 · · ·xd)
3
2 with d = 2, 4, 6, 8, 10, 12.

extension f̃ is only piecewise C1 because of discontinuities of the partial derivative

∂f̃/∂xj on the hyperplanes xj = k with k ∈ Z, see Fig. 2(left). This has an impact

on the number of Fourier coefficients required to reconstruct f with a given accuracy

(in the sense of mean square error). Recall indeed that the Fourier coefficients of a

given T−periodic function h of class Cp in Rd verify [9]

c(n, h) = O

(
1

‖n‖p

)
, (14)

where ‖n‖ =
√∑d

j=1 n
2
j is the Euclidean norm in Rd. The smoother the function h

is, the faster its Fourier coefficients decrease with ‖n‖ and the lower the expected

9



Figure 2: Periodic extensions of f(x1, x2) = (x1x2)
3
2 (left) and g(x1, x2) = f(φ(x1), φ(x2)) (right)

with φ(x) = sin2 πx/2.

rank N necessary to reconstruct h is. The loss of regularity in the periodic extension

procedure can be mitigated by using a change of variables, as is now explained.

Consider a function φ : [0, 1]→ [0, 1] of class C1 such that

φ(0) = 0, φ(1) = 1,

φ′(0) = φ′(1) = 0,

φ′(x) > 0 for x ∈ (0, 1).

(15)

Some useful examples of functions satisfying (15) are φ(x) = x2(3− 2x) and φ(x) =

sin2 πx
2

(Fig. 3). For any x = (x1, · · · , xd) in Rd we set

Φ(x) = (φ(x1), · · · , φ(xd)) (16)

Conditions (15) ensure that Φ is invertible and maps the unit hypercube [0, 1]d to

itself.

If f is of class C1 then the function g defined on [0, 1]d by

g(x) = f(Φ(x)) (17)

10



is also of class C1 and the chain rule gives

∂g

∂xj
(x) = φ′(xj)

∂f

∂xj
(Φ(x)) = 0 (18)

for any x in [0, 1]d such that xj ∈ {0, 1}. In geometrical terms, Eq. (18) means that

the normal derivative of g vanishes on the boundary of the hypercube [0, 1]d.

Let g̃ be the 2−periodic extension of g constructed as in (4), i.e.

g̃(x1, · · · , xd) = f(Φ(|x1|, · · · , |xd|)) (19)

for x ∈ [−1, 1]d. As a consequence of (18), g̃ is of class C1: In particular, there is

no discontinuity of the partial derivatives ∂g̃/∂xj on the hyperplanes xj = k with

k ∈ Z, see Fig. 2(right). Hence the Fourier coefficient c(n,g̃) is expected to decrease

faster with ‖n‖ than c(n,f̃) does, which is helpful for the reconstruction.

More generally, consider a change of variables φ : [0, 1] → [0, 1] of class Cp

satisfying (15) and the additional requirement

φ(q)(0) = φ(q)(1) = 0 for 1 ≤ q ≤ p. (20)

If f is of class Cp, it can be shown that the function g̃ in (19) is also of class Cp.

For a given function f , the idea is use a Fourier decomposition of g̃ rather than

f̃ . Cubic partial sums SN g̃ translate as approximations TNf of f by the relation

TNf(x) = SN g̃(Ψ(x))

where Ψ is the inverse function of Φ in (16). We have Ψ(x1, · · · , xd) = (ψ(x1), · · · , ψ(xd))

where ψ is the inverse function of φ.

Remark: Changes of variables φ verifying (20) can easily be constructed. If φ is of

class Cp and satisfy (15), successive applications of the chain rule show indeed that

11



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

φ
(x

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

φ
′ (
x

)
Figure 3: Examples of C1 change of variables φ(x) (left) and their derivative φ′(x) (right): φ(x) =

sin2 πx
2 (blue), φ(x) = x2(3− 2x) (red).

the pth iterate φ(◦p) = φ◦φ◦ · · · ◦φ verifies (15) as well as the additional requirement

(20).

Example: Consider again the function f(x1, · · · , xd) = (x1x2 · · · xd)
3
2 as in Sect. 2.

Using the change of variables φ(x) = sin2 πx
2

, the function g defined in (17) specializes

as

g(x1, · · · , xd) = (sin
πx1

2
sin

πx2

2
· · · sin πxd

2
)3. (21)

Calculating the Fourier coefficients c(n,g̃) gives

c(n, g̃) =

(
12

π

)d ∏
1≤j≤d

1

(4n2
j − 1)(4n2

j − 9)

and

|||g − SNg|||2

|||g|||2
= 1−

(
32

π2

)d(
8

15
+ 9

∑
1≤j≤d

1

(4n2
j − 1)2(4n2

j − 9)2

)d

(22)

with |||g|||2 = (5/16)d. In Fig. 4(red solid line) is plotted the relative error (22) as a

function of N , in the case d = 6. The relative error |||f − SNf |||2 obtained originally

12



in (13) is represented as a blue solid line in Fig. 4. The change of variables technique

is clearly beneficial, whatever the required level of error. For instance, the minimum

rank N for obtaining a relative error below 10−5 drops from 35 to 4. The numerical

results suggest that |||f − SNf |||2 = O(1/N3) whereas |||g − SNg|||2 = O(1/N6). Note

that the error |||f − TNf |||2 cannot be calculated in closed form but is controlled by

|||g − SNg|||2. Using the change of variables x = Φ(y), we have indeed

|||f − TNf |||2 =

∫
[0,1]d
|f(x)− TNf(x)|2dx

=

∫
[0,1]d
|g(y)− SNg(y)|2| det(Φ′(y))|dy

≤ (sup[0,1] φ
′)d
∫

[0,1]d
|g(y)− SNg(y)|2dy

i.e. |||f − TNf |||2 ≤ (sup[0,1] φ
′)d|||g − SNg|||2. As a consequence, the rate of decrease

of |||f − TNf |||2 with N is the same as |||g − SNg|||2. In the present case, we thus have

|||f − TNf |||2 = O(1/N6).

In (21) a C1 change of variables has been used. It is tempting to repeat the

argument in a sequential fashion: from the expectation that a Cp+1 change of vari-

ables leads to a faster decrease of the error than a Cp change of variables, one is

led to use a change of variables that is as smooth as possible, i.e. with the same

regularity as the function f itself. There are, however, some practical limitations

to that reasoning as illustrated in Fig. 4. The relative error corresponding to the

C2 change of variables sin2(π(sin2 πx/2)/2) is shown as a yellow solid line in Fig.

4. For high values of N (or, equivalently, small values of the target error), a C2

change of variables yields a faster decrease of the relative error than a C1 change

of variables, as could be expected from (14). However, for a relative error above

10−6, a C2 change of variables actually turns out be detrimental compared to a C1

change of variables. For instance, the minimum rank N for reaching a relative error

13



below 10−4 is equal to 5 with a C2 change of variables, instead of 3 with a C1 change

of variables. Anticipating on the applications that will be presented later on, it is

worth pointing out that practical levels of required error fall in the range where a

C1 change of variables is preferable.

0 1 2 3 4 5 6 7 8 9 10 11
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

N

re
la

ti
ve

M
S
E

C0

C1

C2

Figure 4: Relative MSE between f(Φ(◦p)) and SNf(Φ(◦p)) as a function of the rank N , in the case

f(x1, · · · , xd) = (x1x2 · · ·xd)
3
2 , φ(x) = sin2 πx/2 with d = 6 and p = 0 (no change of variables),1

(C1 change of variables), 2 (C2 change of variables).

4. Hyperbolic crosses

Cubic partial sums have been considered so far, but one has to bear in mind

that there is not a unique way to reconstruct a given T−periodic function h from its

14



Fourier coefficients. For instance, one could consider the spherical partial sums∑
n∈Zd:‖n‖≤N

c(n,h)ei
2π
T
n·x.

More generally, one can consider the partial sum

SΛh =
∑

n ∈ Λ

c(n,h)ei
2π
T
n·x

over any given set Λ of multi-indices in Zd. For any sequence of sets {Λ(N)}N
such that Λ(N) → Zd as N → ∞, the error

∣∣∣∣∣∣SΛ(N)h− h
∣∣∣∣∣∣ converges towards 0 as

N →∞1.

Since the computational cost of calculating SΛ is proportional to the cardinality of

Λ, the question arises as to what is the best choice of sets Λ, i.e. the sets minimizing

|||SΛh− h||| over all sets of given cardinality. Formally, that problem can easily be

solved: since the Fourier coefficients c(n,h) tends to 0 as ‖n‖ → ∞, the sequence

{c(n,h)} can be ordered in such a way that

|c(n1, h)| ≥ |c(n2, h)| ≥ |c(n3, h)| ≥ · · · (23)

where j 7→ nj is the one-to-one mapping from N to Zd. Parseval’s identity gives

|||SΛh− h|||2 =
∑

n /∈ Λ

|c(n, h)|2. (24)

From (23) and (24) it can easily be seen that the set that minimizes |||SΛh− h||| for

a given cardinality N is

{nj : 1 ≤ j ≤ N} (25)

1Proof: For any given ε > 0, (3) and Parseval’s identity imply that
∑

n/∈[−N..N ]d |c(n, h)|2 < ε

for some N . Since Λ(M) −−−−→
M→∞

Zd, there exists some M such that [0 . . N ]d ⊂ Λ(M ′) for any

M ′ ≥ M . We have
∣∣∣∣∣∣SΛ(M ′)h− h

∣∣∣∣∣∣2 =
∑

n/∈Λ(M ′) |c(n,h)|2 ≤
∑

n/∈[−N..N ]d |c(n,h)|2 < ε for any

M ′ > M .

15



which corresponds to picking the N largest Fourier coefficients.

In practice, Eq. (25) is difficult to use because the ordering of the Fourier coeffi-

cients is not known beforehand. The main observation is that sets (25) may largely

differ from cubes (or spheres) because all the directions in Zd are not equivalent as

far as the distribution of |c(n,h)| is concerned. In other words, a given hypercube

(or hypersphere) in Rd typically contains a lot of Fourier coefficients that are very

small and are negligible for the reconstruction. This situation is especially critical as

the dimension d increases because the number of Fourier coefficients in a hypercube

of given length (or in a hypersphere of given radius) grows exponentially with d.

Such difficulties can be avoided by making use of a special family of sets, known as

hyperbolic crosses. A typical example of hyperbolic cross is the set H(N) defined for

N > 0 by

H(N) = {n ∈ Zd : π(n) ≤ N}

where

π(n) =
∏

1≤j≤d

max(1, |nj|). (26)

An example of hyperbolic cross is shown in Fig. 5 for d = 3. Hyperbolic crosses

have originally been introduced for T−periodic functions h satisfying some bounded

mixed derivative condition [7, 8]. Several conditions of such type can be considered.

For our purpose, it is sufficient to use the following definition: a T−periodic function

h has bounded mixed derivative if

∂d
′
h

∂xj1∂xj2 · · · ∂xjd′
is square-integrable on [0, T ]d (27)

for any d′ ∈ [0 . . d] and any distinct indices {j1, · · · jd′} in [1 . . d]. As an example, in

R2, T−periodic functions h with bounded mixed derivative are characterized by the

16



Figure 5: A smooth hyperbolic cross in R3, defined by
∏

1≤j≤3 max(1, |xj |) ≤ 1.

17



fact that

h,
∂h

∂x1

,
∂h

∂x2

,
∂2h

∂x1∂x2

are square-integrable on [0, T ]2.

For functions with bounded mixed derivative in the sense of (27), it can be proved

(see Appendix B) that

|c(n,h)| = O

(
1

π(n)

)
(28)

The function π(n) thus controls the magnitude of the Fourier coefficients for functions

with bounded mixed derivative, in the same fashion as the euclidean norm ‖n‖ (or

any other norm) controls the magnitude of the Fourier coefficients for functions of

class C1. For the purpose of approximating h, Eq. (28) suggests to use partial sums

over sets of the form {n ∈ Zd : π(n) ≤ N} (i.e. hyperbolic crosses), in the same way

as partial sums over the sets {n ∈ Zd : ‖n‖ ≤ N} (i.e hyperspheres or hypercubes,

depending on the choice of the norm) are used for functions of class C1. In that

regard, a salient feature of hyperbolic crosses H(N) is that (see Appendix C)

Card H(N) = O(N logd−1N) (29)

The cardinality of H(N) thus grows relatively slowly with the dimension. This is in

contrast with hyperspheres and hypercubes, whose cardinality grows as O(Nd) i.e.

exponentially with the dimension.

Results (28) and (29) are the main motivation for using partial sums over hyper-

bolic crosses: for a same accuracy, they tentatively allow one to build approximations

using less Fourier coefficients than cubic (or spherical) partial sums would require.

We wish to apply that idea to 2−periodic functions g̃ of the form (19). To do so,

a natural prerequisite is that g̃ has bounded mixed derivative in the sense of (27).

18



In that regard, it can easily be verified that g̃ satisfies condition (27) if

(i) the mixed derivatives of the target function f are bounded on [0, 1]d, i.e.

∂d
′
f

∂xj1∂xj2 · · · ∂xjd′
is square-integrable on [0, 1]d for any d′ ∈ [0 . . d]

and any distinct indices {j1, · · · jd′} in [1 . . d]

(ii) φ is of class C1

Crucially in (ii), the change of variables φ does not have to be of class Cd. This is

important because, as mentioned in Sect. 3, a C1 change of variable offers better

performances than a higher order change of variables for practical level of tolerance.

Partial sums over hyperbolic crosses will be referred to as hyperbolic partial sums

in the following. We have in particular

SH(N)
g̃(x) =

∑
n∈H(N)

c(n,g̃)eiπn · x (30)

Since the Fourier coefficients c(n, g̃) satisfy (11), the sum over n in (30) can be

restricted to positive values, as in (12). We obtain

SH(N)
g̃(x) =

∑
n∈H+

(N)

2σ(n)c(n, g̃)h(n,x) (31)

where

H+(N) = {n ∈ Nd : π(n) ≤ N} (32)

is the intersection of the hyperbolic cross H(M) with the positive orthant. We refer

to Appendix A for details on the derivation of (31).

Example: Consider the function g in (21) with d = 6. Fig. 6 provides some insight

on the computational efficiency of the hyperbolic partial sum SH(5)
g compared to

the cubic partial sum S3g. In blue is shown the MSE obtained by considering the

19



partial sum over the N ′ largest Fourier coefficients in the hypercube [0, 3]d, with

N ′ = 1, · · · ,Card ([0 . . 3]d). The obtained curve displays a large flat plateau, meaning

that a large proportion (about 70%) of the calculated Fourier coefficients are very

small and play a negligible role in the construction. In contrast, the analog curve for

the hyperbolic partial sum does not exhibit such a plateau. This illustrates the fact

that hyperbolic crosses are closer to the optimal sets (25) than hypercubes are.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−8

10−7

10−6

10−5

10−4

10−3

N ′/Card [0 . . 3]d

M
S
E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−8

10−7

10−6

10−5

10−4

10−3

N ′/Card H+(5)

M
S
E

Figure 6: Mean Squared Error obtained by keeping only the N ′ largest coefficients in the cu-

bic partial sum S3g (left) and in the hyperbolic partial sum SH(5)g (right). The function g is

g(x1, · · · , xd) = (sin πx1

2 · · · sin
πxd

2 )3 with d = 6.

Remark: For a C1 target function with bounded mixed derivative, combining the

estimates (14) and (28) gives

c(n, h) = O(
1

max(π(n), ‖n‖)
)

Instead of hyperbolic crosses H(N), one may therefore consider partial sums over

the sets

H̃(N) = {n ∈ Nd : max(π(n), ‖n‖) ≤ N}

20



which is the intersection of H(N) with a hypersphere of radius N .

5. Algorithm

Collecting the ideas presented so far, we choose to approximate the target function

f by considering functions Tf of the form

Tf(x) = SH(N)
g̃(Ψ(x)) =

∑
n∈H+

(N)

C(n, f)h(n,Ψ(x)) (33)

where

C(n, f) = 2σ(n)
∫

[0,1]d
f(Φ(x))h(n,x)dx. (34)

We recall from (10) and (16) that h(n,x) =
∏d

j=1 cosπnjxj and Φ(x) = ((φ(x1), · · · , φ(xd))

where φ is a given function satisfying (15). The hyperbolic cross H+(N) is the set

of multi-indices n ∈ Nd such that
∏d

j=1 max(1, nj) ≤ N . In (33), Ψ is the inverse

function of Φ.

In (33), all the information on the target function f is contained in the coefficients

C(n, f) defined by the integrals (34). Those integrals can be estimated from a

training database, i.e. from samples of the functions f . Let {xk, yk}1≤k≤M denote

the training database, where yk = f(Φ(xk)), M is the number of samples, and each

xk is a value in the unit hypercube [0, 1]d.

It is tempting to use regularly spaced sample points {xk}, such as (m1, · · · ,md)/M

where mk ∈ [−M . .M ] and M is given. This allows one to approximate the integral

in (34) by the Riemann sum

1

M

M∑
k=1

ykh(n,xk). (35)

For regularly space sample points, the coefficients (35) are essentially the d−dimensional

discrete Fourier transform of the sampled values {yk}. Hence one can take advantage

21



of Fast Fourier Transform (FFT) algorithms for calculating the coefficients (35) in an

efficient way. That approach, however, breaks down rapidly as the dimension d in-

creases because the number of sampling points in a regular grid is equal to (2M+1)d

and thus grows exponentially with d.

An alternative way to evaluate the integral in (6) is to use Monte-Carlo integra-

tion, which consists in using (35) with random sample points {xk}. One of the main

results in Monte Carlo integration ensures that

E

(
1

M

M∑
k=1

ykh(n,xk)

)
− C(n, f)

2σ(n)
= O

(
1√
M

)
(36)

where E denotes the statistical average [10]. The statistical error committed by the

Monte-Carlo approximation thus grows no faster that 1/
√
M where M is the number

of sample points. Most crucially, that result does not depend on the dimension

d. A related approach – that we favor in the following – consists in using low-

discrepancy sequences [11] instead of random sequences in (35). Loosely speaking,

low-discrepancy sequences are designed to cover the hypercube [0, 1]d in a more

uniform fashion than random sequences, thus allowing for a better approximation

of integrals. More precisely, taking {xk} as a low-discrepancy sequence ensures (see

e.g. [11]) that

1

M

M∑
k=1

ykh(n,xk)− C(n, f)

2σ(n)
= O

(
(logM)d

M

)
The obtained error estimate grows (slowly) with the dimension d, but is always better

than the error estimate (36) for the Monte-Carlo procedure. There are several known

algorithms for constructing low-discrepancy sequences. Some of the most widespread

ones are Sobol sequences [12] and Halton sequences [13].

The simplest version of the proposed machine-learning procedure, Algorithm 1,

consists in using (35) for calculating Tf for some given N . The output of Algorithm

22



1 is a list {nj, Cj}1≤j≤J that defines an approximation Tf of the target function f .

That approximation Tf can be evaluated at any new input x by the formula

Tf(x) =
J∑
j=1

Cjh(nj,Ψ(x)) (37)

Input : N, {xk,yk}1≤k≤M

Output: J , {nj, Cj}1≤j≤J

J ← 0;

for n ∈ H+(N) do

J ← J + 1;

nJ ← n;

CJ ←
2σ(n)

M

M∑
k=1

ykh(n,xk);

end

Algorithm 1: Learning procedure.

In Algorithm 1, the coefficients C1,· · · , CJ are calculated independently. In prac-

tice, better results are obtained by introducing a minimization procedure for identi-

fying C1,· · · , CJ simultaneously. For any given scalar c, note indeed that

|||g − c h(n, ·)|||2 = |||g|||2+c2

∫
[0,1]d

h(n,x)2dx−2c
∑
n′∈Nd

C(n′, f)

∫
[0,1]d

h(n,x)h(n′,x)dx

where the decomposition g(x) =
∑

n′∈Nd C(n′, f)h(n′,x) has been used. A simple

calculation from (10) gives

2σ(n)

∫
[0,1]d

h(n,x)h(n′,x)dx = δnn′

where δ is the Kronecker operator. It follows that

|||g − c h(n, ·)|||2 = |||g|||2 +
(c− C(n, f))2 − C(n, f)2

2σ(n)

23



so that

C(n, f) = arg min
c
|||g − c h(n, ·)|||2. (38)

In a similar fashion, for any given n1,· · · ,nJ we have

(C(n1, f), · · · , C(nJ , f)) = arg min
(c1,··· ,cJ )

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣g −

J∑
j=1

cj h(nj, ·)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

(39)

Algorithm 2 consists in using (39) for identifying all the coefficients C(n1, f),· · · ,

C(nJ , f). In more detail, the integral defining
∣∣∣∣∣∣∣∣∣g −∑J

j=1 cj h(nj, ·)
∣∣∣∣∣∣∣∣∣2 is approxi-

mated by the finite sum

1

M

M∑
k=1

(
yk −

J∑
j=1

cjh(nj,xk)

)2

.

The coefficients C(n1, f),· · · , C(nJ , f) are obtained by solving the quadratic problem

min
(c1,··· ,cJ )

M∑
k=1

(
yk −

J∑
j=1

cjh(nj,xk)

)2

.

Compared to Algorithm 1, Algorithm 2 was found to give better results because it

partially makes up for the approximation error of the Fourier integrals that comes

with the discrete formula (35). The downside is an increase in the computational

24



cost since an additional quadratic problem needs to be solved.

Input : N ,{xk,yk}1≤k≤M

Output: J, {nj, Cj}1≤j≤J

J ← 0;

for n ∈ H+(N) do

J ← J + 1;

nJ ← n;

{Xk
J}1≤k≤M ← {h(n,xk)}1≤k≤M ;

end

{Cj}1≤j≤J = arg min{cj}

M∑
k=1

(
yk −

J∑
l=1

ckX
k
l

)2

;

Algorithm 2: Learning procedure (variant).

5.1. Sensitivity analysis

In some applications, the partial derivatives ∂Tf/∂xi are required (an example

will be provided later in Sect. 6). Writing nj = (nj1, · · · , n
j
d), we note from (10) and

(37) that

∂Tf

∂xi
= −

J∑
j=1

πnjiCjψ
′(xi)h(ñj,Ψ(x̃)) sinπnjiψ(xi) (40)

where x̃ = (x1, · · · , xi−1, xi, · · · , xd) ∈ Rd−1, ñj = (nj1, · · · , n
j
i−1, n

j
i+1, · · · , n

j
d) ∈

Nd−1. Expression (40) can notably be used for global sensitivity analysis. In machine

learning, it is indeed common practice to introduce sensitivity indices for measuring

the influence of each variable xi on the target function. This provides some useful

information on the global behavior of the function under consideration. Sensitivi-

ties indices, here denoted by Si, are usually expressed as scalars in [0, 1] such that∑d
i=1 Si = 1. Among the possible choices for Si, we adopt a definition related to the

25



norm of the partial derivatives:

Si =

∣∣∣∣∣∣∣∣∣∣∣∣∂Tf∂xi

∣∣∣∣∣∣∣∣∣∣∣∣2
d∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∂Tf∂xi

∣∣∣∣∣∣∣∣∣∣∣∣2
(41)

The higher Si is, the bigger the influence of the variable xi. For a machine learning

model of the form (37), use of (40) leads to∣∣∣∣∣∣∣∣∣∣∣∣∂Tf∂x1

∣∣∣∣∣∣∣∣∣∣∣∣2 =
J∑

j,k=1

CjCkJ(nj1, n
k
1)I(nj2, n

k
2) · · · I(njd, n

k
d) (42)

where

I(n, n′) =

∫ 1

0

φ′(y) cosπny cosπn′ydy (43)

and

J(n, n′) = π2nn′
∫ 1

0

1

φ′(y)
sin πny sinπn′ydy. (44)

The expression of

∣∣∣∣∣∣∣∣∣∣∣∣∂Tf∂xi

∣∣∣∣∣∣∣∣∣∣∣∣2 for i 6= 1 is obtained from (42) by permutation of the

indices. For the function φ(y) = sin2 πy
2

, the integrals I(n, n′) and J(n, n′) can be

calculated in closed form. They are given by

I(n, n′) =


1

2

(
1

1− (n+ n′)2
+

1

1− (n− n′)2

)
if n+ n′ even

0 otherwise

and

J(n, n′) =



4nn′
n+n′−1∑

k = n′ − n+ 1

k odd

1

k
if n+ n′ even

0 otherwise.

In the above expression of J(n, n′), n and n′ are ordered in such a way that n ≤ n′.

26



5.2. Reconstruction of analytical functions in high dimension

Algorithms 1 and 2 were implemented in Matlab. An interior-point method [14]

was used to solve the quadratic programming problem in Algorithm 2. A natural

question is to investigate how the proposed machine-learning procedure compares

with neural networks. The latter has indeed become the most widespread machine-

learning techniques in a lot of applications. Comparing machine-learning techniques

is somewhat delicate because many factors are involved, such as ease of implementa-

tion, computational cost and robustness. A simple but critical performance indicator,

however, is the reconstruction error for a given number of samples in the training

dataset. In that regard, reconstruction errors of multilayer neural networks have

been studied in detail in [2] for the analytical functions

fA(x1, · · · , xd) = ‖x‖2 =
d∑
i=1

x2
i , fB(x1, · · · , xd) = exp(−

d∑
i=1

xi),

fC(x1, · · · , xd) = ‖x‖
(45)

with d=6, 8, 10. We used the proposed machine learning procedure to reconstruct

the 3 functions in (45) and compare the obtained reconstruction errors with the

results of [2]. The training datasets consisted of M =20 000 samples for all examples

at d=6, 50 000 samples for all examples at d=8, 100 000 samples for all examples

at d=10. Algorithm 2 was used with N = 16 for d=6, N = 12 for d=8, N = 8 for

d=10. Reconstruction errors were evaluated by calculating the Root Mean Squared

Error (RMSE) over a random set {x̃k} of M samples (independent from the samples

of the training dataset), e.g.√√√√ 1

M

M∑
k=1

(
TfA(x̃k)− fA(x̃k)

)2

where TfA denotes the machine learning model of fA. In Table 1 are reported the

reconstruction errors for all the cases considered. In Fig. 7, 8 and 9 are plotted the

27



exact functions fA, fB, fC and their reconstructions on the line segment x1 = · · · =

xd.

Table 1: Reconstruction errors

function d error (present) error (neural networks)

fA 6 5 10−15 ' 10−4

8 4 10−15 ' 2 10−5

10 4 10−15 ' 4 10−6

fB 6 5 10−3 ' 3 10−4

8 5 10−2 ' 3 10−3

10 5 10−1 ' 2 10−1

fC 6 3 10−3 ' 4 10−2

8 7 10−3 ' 2 10−2

10 9 10−3 ' 1

As mentioned earlier, multilayer neural networks have been used in [2] to recon-

struct functions fA, fB and fC in (45), testing several network architectures. The

best achieved reconstruction errors (for the same number of samples as used with the

Fourier-based technique) are reported in the last column of Table 1. For function fA,

we can observe in Table 1 that the proposed machine-learning technique performs

better than neural networks. For function fB, the situation is the opposite. Function

fC has the distinctive feature of being nonsmooth, which make the reconstruction

more difficult. The proposed machine-learning procedure gives a better reconstruc-

tion error than neural networks, even though the local error at the singularity point

is significant. The results of [2] suggest that neural networks give a better local error

at the singularity point.

28



Those examples suggest that overall the proposed machine learning procedure is

in the same ballpark as neural networks in terms of reconstruction errors. Interest-

ingly, we can observe that those two techniques perform differently depending on the

function considered. Therefore there might be an interest in combining those two

techniques, which will be the subject of future work.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1(= x2 = · · · = xd)

f A
(x

1
,·
··
,x

d
)/
f A

(−
1,
··
·,
−

1)

exact
ML d=6
ML d=8
ML d=10

Figure 7: Reconstruction of the function fA for x1 = · · · = xd with d=6,8,10. The exact function

fA is shown in blue. The red curves show the Machine Learning (ML) models for the several values

of the dimension d considered.

In the examples in (45), all the variables x1,· · · ,xd have the same importance.

It is interesting to also consider a function in which the variables have different

nonlinearities. A simple example is

fD(x1, · · · , xd) =
d∑
i=1

xii (46)

29



−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1(= x2 = · · · = xd)

f B
(x

1
,·
··
,x

d
)/
f B

(−
1,
··
·,
−

1)

d=6 exact
d=6 ML
d=8 exact
d=8 ML
d=10 exact
d=10 ML

Figure 8: Reconstruction of the function fB for x1 = · · · = xd with d=6,8,10. The exact function

fB is shown in solid lines for the several values of d considered. The Machine Learning (ML) models

are shown in dashed lines.

In Fig. 10 are plotted the values taken by the exact function fD and its reconstruction

on the line segment x1 = · · · = xd, in the case d = 8, M = 50000, N = 12. The

reconstruction RMSE is 7 10−4. Let us use the example (46) to discuss the influence

of the number of samples M and the rank N on the reconstruction error. The curves

in Fig. 11 show the reconstruction RMSE as a function of M , for several values

of N . For N = 12 and N = 16, we can observe that the RMSE is quite high for

M ≤ 5000: This corresponds to situations where the number of samples is too small

compared to the number of Fourier coefficients in the partial sum considered for

the reconstruction to be reliable. Each curve displays a decreasing behavior for M

large enough, meaning that increasing the number of samples tends to improve the

accuracy of the reconstruction. Also observe that the RMSE seems to reach a limit as

30



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1(= x2 = · · · = xd)

f C
(x

1
,·
··
,x

d
)/
f C

(−
1,
··
·,
−

1)

exact
ML d=6
ML d=8
ML d=10

Figure 9: Reconstruction of the function fC for x1 = · · · = xd with d=6,8,10. The exact function

fC is shown in blue. The red curves show the Machine Learning (ML) models for the several values

of the dimension d considered.

M becomes very large: This corresponds to the limit situation where all the Fourier

coefficients in the partial sum considered are calculated exactly. That limit RMSE

decreases as N increases (as could be expected). However, the convergence towards

that limit value gets slower as N increases. In the present case, 50 000 samples seem

to be enough to reach the limit RMSE for N = 8 and N = 12.

6. Application to a nonlinear homogenization problem

In this Section, we discuss the application of the proposed machine learning

procedure to a nonlinear homogenization problem in solid mechanics. Consider a

two-dimensional inhomogeneous electric conductor occupying a domain Ω (one could

alternatively consider thermal conductivity, magnetic permeability or diffusion since

31



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

7

8

x1(= x2 = · · · = xd)

f D
(x

1
,·
··
,x

d
)

f
Tf

Figure 10: Reconstruction of the function fD for x1 = · · · = xd (d = 8) The exact function fD is

shown in blue.

all those phenomenons are governed by the same equations). The electric field e and

the current density j are related by the local constitutive law

j =
∂w

∂e
(e,x) (47)

where the convex energy-density function w depends on the location x. Denoting

by ē (resp. ̄) the spatial average of e (resp. j), the effective constitutive law reads

as [15, 16]

̄ =
dweff

dē
(ē) (48)

32



103 104
10−4

10−3

10−2

10−1

100

101

M

R
M

S
E

N = 8
N = 12
N = 16

Figure 11: Influence of M and N on the reconstruction error (function fD with d = 8).

where weff is the effective energy function of the composite material, defined by

weff (ē) = inf
e∈K(ē)

1

|Ω|

∫
Ω

w(e,x)dω. (49)

In (49), K(ē) is the set of admissible electric fields, as defined by

K(ē) = {e : Ω 7→ R2|e = ∇V for some V : Ω 7→ R verifying V (x) = ē.x on ∂Ω}.

Determining weff (ē) formally amounts to solve the set of local equations

div j = 0, j =
∂w

∂e
(e,x), e = ∇V in Ω, V (x) = ē.x on ∂Ω (50)

where the field V is the electric potential.

For a n−phase composite, the energy-density function w in (47) specializes as

w(e,x) =
n∑
r=1

χr(x)wr(e) (51)

33



where χr is the characteristic function of phase r (χr(x) = 1 is x is in phase r,

χr(x) = 0 otherwise) and wr is the energy-density function of the constitutive mate-

rial in phase r. Assuming that the energy functions wr are known, the effective energy

weff depends on the microstructure of the composite, i.e. on the geometrical arrange-

ment of the phases. Various bounds and estimates have been proposed for obtaining

some information on weff when only limited information on the microstructure is

available. For linear composites with statically isotropic microstructures, Hashin

and Shtrikman [17] derived optimal lower and upper bounds on the effective energy.

Several approaches have been proposed to extend the Hashin-Shtrikman bounds to

nonlinear composites [18–21]. Here we consider the Hashin-Shtrikman-type lower

bound derived in [22], which is obtained by combining the so-called translation

method [23] with the idea of embedding the original problem in a problem of higher

dimension. In more detail, extended fields E(x) = (e1(x), e2, e3(x)) are introduced

by considering 3 electric fields e1(x), e2(x) and e3(x) written side by side. Extended

fields E = (e1, e2, e3) can be represented by 2× 3 matrices, i.e.

E =

 u1 u2 u3

v1 v2 v3


where ui and vi are the components of the electric field ei in a reference basis of R2.

Correspondingly are introduced the extended energy Wr(E) = wr(e1,x) + wr(e2) +

wr(e3) of phase r, as well as the extended effective energy

Weff (Ē) = weff (ē1) + weff (ē2) + weff (ē3), (52)

where Ē = (ē1, ē2, ē3). For any T ∈ R2×3 and any quasiconvex2 function U(E) it

2 i.e such that |Ω|U(Ē) ≤
∫

Ω
U(E(x))dω for any E verifying ei ∈ K(ēi) (i = 1, 2, 3)

34



can be proved [22] that

Weff (Ē) ≥ Ē · T + U(Ē)−
n∑
r=1

crfr (53)

where

fr = sup
E

E · T + U(E)−Wr(E) (54)

and cr is the volume fraction of phase r. In particular, consider Ē of the form

Ē = |ē|N with

N =
1

2

 1 −1 −2

−
√

3
√

3 0


i.e. the 3 loading directions ē1, ē2 and ē3 have the same norm and make a π/3 angle

(modulo π) between each other. For an isotropic composite, the effective energy

weff only depend on ē through its norm ‖ē‖, hence Weff (|ē|N ) = 3weff (ē). Eq.

(53) thus delivers a general lower bound on weff . The trick is to choose T and

the function U so that the corresponding lower bound is meaningful. The choice

explored in [22] consists in taking T of the form τN and U(E) = α(det(e1, e2) +

det(e2, e3) + det(e1, e3)) where (τ, α) are arbitrary scalar parameters. Eqs (53) and

(54) specialize as

weff (ē) ≥ ‖ē‖τ −
√

3

2
α‖ē‖2 − 1

3

n∑
r=1

crfr(α, τ) (55)

with

fr(α, τ) = sup
(ui,vi)1≤i≤3

τ

2
(u1−

√
3v1−u2−

√
3v2−2u3)−

3∑
i=1

wr(ui, vi)+α
3∑

i,j=1,i<j

(uivj−ujvi).

(56)

Eq. (55) holds for any parameters (α, τ). The best bound w−eff is obtained by

maximizing the right hand side of (55) with respect to (α, τ), i.e. we have

w−eff (ē) = sup
α∈R,τ∈R

{
‖ē‖τ −

√
3

2
α‖ē‖2 − 1

3

n∑
r=1

crfr(α, τ)

}
. (57)

35



The bound w−eff in (57) is the best available to date. One downside, however, is

that the numerical evaluation of w−eff is relatively tricky. Observe indeed from (57)

and (56) that w−eff is defined by nested nonlinear maximization problems. Moreover,

the 6-dimensional maximization problem defining fr in (56) is not concave (because

of the term uivj − ujvi). Special caution must thus be taken when solving (56) in

order to avoid converging towards a local stationary point that does not coincide with

a global maximum as needed (a strategy for avoiding such a pitfall is detailed in [22]).

For those reasons, the numerical evaluation of w−eff requires special care and may

become time-consuming when many evaluations are needed. In such circumstances,

machine learning techniques are relevant: Once the training stage is complete, they

allow one to have almost instant access to numerical values of w−eff .

In the following, we use the Fourier-based approach for learning w−eff in the case

of nonlinear composites whose constitutive materials have a power-law type behavior,

i.e. the energy function wr of phase r is of the form

wr(e) =
σr

mr + 2
‖e‖mr+2 (58)

where mr > 0 is a nonlinearity index and σr > 0 is a nonlinear conductivity param-

eter. Let us evaluate the dimensionality of the problem. For a n−phase composite

with power-law constitutive materials, the bound w−eff in (57) is a function of the

3n+ 1 scalar parameters (‖ē‖, σ1,m1, c1, · · · , σn,mn, cn). Those parameters are not

independent since the volume fractions {cr} need to satisfy the equality
∑
cr = 1.

Moreover, we can always normalize all the energy functions with respect to σ1 (for

instance), which amounts to assuming that σ1 = 1. The effective dimensionality of

the problem is thus equal to 3n− 1.

We used the presented technique to learn the energy function w−eff for 2− and

36



3−phase composites, corresponding to dimensionality equal to 5 and 8, respectively.

The machine learning models of w−eff for 2− and 3−phase composites are denoted

by T2weff and T3weff, respectively.

In order to deal with dimensionless parameters, it is convenient to introduce a

given reference value e0 of the magnitude of the electric field. For 2-phase compos-

ites, the 5 dimensionless parameters (‖ē‖/e0, c1,m1,m2, σ2/σ1) were restricted to the

domain [0, 1]2 × [0, 5]2 × [1, 10]. That domain is mapped into the unit hypercube of

R5 by defining (x1, · · · , x5) as

(x1, · · · , x5) =

(
‖ē‖
e0

, c1,
m1

5
,
m2

5
,
σ2/σ1 − 1

9

)
.

A Sobol sequence of 80 000 samples was generated to build the training database. The

machine learning model T2weff was constructed using a Matlab implementation of

Algorithm 2 with N = 32 (resulting in 8603 Fourier coefficients). The reconstruction

error, as evaluated by the relative Root Mean Square Error (rRMSE)√√√√ M̃∑
k=1

(
w−eff (x̃k)− T2weff(x̃k)

)2

√√√√ M̃∑
k=1

w−eff (x̃k)2

(59)

on a test database of M̃=10 000 randomly generated samples {x̃k}, was 0.16%.

For 3-phase composites, it is convenient to parameterize the volume fractions

using the parameter θ = c2/(1− c1) so that

c2 = θ(1− c1), c3 = (1− θ)(1− c1) (60)

where θ and c1 can take any value in [0, 1]. The parameterization (60) allows one to

automatically satisfy the constraint c1 +c2 +c3 = 1. The 8 dimensionless parameters

37



(‖ē‖/e0, c1, θ,m1,m2,m3, σ2/σ1, σ3/σ1) were restricted to the domain [0, 1]3×[0, 5]3×

[1, 10]2. That domain is mapped into the unit hypercube of R8 by using the linear

mapping

(x1, · · · , x8) =

(
‖ē‖
e0

, c1, θ,
m1

5
,
m2

5
,
m3

5
,
σ2/σ1 − 1

10
,
σ3/σ1 − 1

10

)
(61)

A Sobol sequence of 1 000 000 samples in the unit hypercube was generated to build

the training database. The machine learning model T3weff was generated using the

value N = 18 in Algorithm 2. The relative error, as evaluated on a random test

database with a formula similar to (59), was 0.54%.

Using the obtained machine learning models T2weff and T3weff, a global sensitiv-

ity analysis can first be performed to get some insight in the behavior of the target

function w−eff for 2− and 3−phase composites. In Fig 12 are shown the sensitivity

indices for the machine learning model T2weff corresponding to 2−phase composites.

Those sensitivities have been calculated using expressions (41) and (42) for each of

the 5 variables ‖ē‖/e0, c1, m1, m2, σ2/σ1. It is insightful to compare those results

with the sensitivity indices corresponding to the elementary Voigt bound w+

eff , which

for a n−phase composite is given by

w+

eff =
n∑
r=1

crwr(ē) (62)

Expression (62) is an upper bound on the effective energy weff . It applies to any

microstructure, without any assumption of isotropy. Expression (49) of w+

eff is simple

enough for the corresponding sensitivity indices to be calculated in closed-form. They

are shown in red in Fig. 12. Comparing the sensitivity indices of T2weff and w+

eff ,

we can observe that in both cases ‖ē‖/e0 is the primary parameter that has the most

influence. A similar observation was done in [3] for elasticity. The influence of the

other parameters c1, σ2/σ1, m1, m2 is shown more clearly in Fig. 12(right). For the

38



upper bound w+

eff , the volume fraction c1 dominates the parameters σ2/σ1, m1, m2.

Compared to w+

eff , the function T2weff gives more weight to the parameters m2 and

σ2/σ1. In particular, we can observe that m2 becomes the dominating parameter,

instead of c1 for the function w+

eff . Those results can be interpreted as a consequence

of the assumption of isotropy which is taken into account in the Hashin–Shtrikman-

type bound w−eff . Isotropy tends to reduce the influence of the volume fraction c1 in

favor of the other microstructural parameters.

c1 σ2

σ1

m1 m2 ‖ē‖
e0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.12

0.01

0.86

0.06
0.08

0.83

w+

eff
T2weff

c1 σ2

σ1

m1 m2
0.00

0.02

0.04

0.06

0.08

0.10

0.12 0.1194

0.0013 0.0004

0.0140

0.0582

0.0214

0.0041

0.0826

w+

eff
T2weff

Figure 12: Sensitivity indices of the energy functions w+

eff
and T2weff for 2-phase composites with

power-law constitutive materials.

For 3-phase composites, ‖ē‖/e0 is again found to be the most influential param-

eter, with a sensitivity index close to 0.85 for both the energy functions T3weff and

w+

eff . The sensitivity indices of the 7 remaining parameters (c1, θ,m1,m2,m3, σ2/σ1, σ3/σ1)

are shown in Fig. 13. For the energy function w+

eff , the volume fraction parameters

c1 and θ dominate the other ones. For the energy function T3weff, the influence of c1

and θ is mitigated in favor of the other parameters (mainly the nonlinearity indices

m2 and m3). Also observe that the sensitivity indices with respect to m2 and m3 are

equal. Similarly, the sensitivity indices with respect to the conductivity contrasts

39



c1 θ m1 m2 m3 σ2

σ1

σ3

σ1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

.1053

.0399

.0004
.0050 .0050

.0005 .0005

.0504

.0101
.0045

.0269 .0269

.0090 .0090

w+

eff
T3weff

Figure 13: Sensitivity indices of the energy functions w+

eff
and T3weff for 3-phase composites with

power-law constitutive materials.

σ2/σ1 and σ3/σ1 are equal. This results from the fact that phases 2 and 3 play a

symmetrical role.

6.1. Effective energies of microstructures

A possible application of the obtained machine learning models consists in test-

ing specific microstructures against the bounds. In Fig. 14(left) is represented a

two-phase matrix/inclusions microstructure that consists of 58 circular inclusions.

Dimensionless values are used for lengths, conductivities and electric fields. The

domain Ω is chosen as the unit disk. The matrix phase (phase 1) is occupied by a

power-law material with conductivity σ1 = 1 and nonlinearity index m1. The in-

40



clusions (phase 2) are occupied by a power-law material with conductivity σ2 = 10

and nonlinearity index m2. We limit our attention to the case m1 = m2. The blue

solid curve in Fig. 14 shows the values of the effective energy weff (ē) of the con-

sidered microstructure for ‖ē‖ = 1 and several values of the nonlinearity index m1.

Those values were obtained numerically by solving (50) with the finite-element code

Freefem [24]. In a preliminary stage, quasi-isotropy of the microstructure in Fig. 14

was checked by calculating weff (ē) for several values of ē and verifying that weff (ē)

only depends on ē through the norm ‖ē‖, i.e. does not vary with the direction of ē

(the relative variation was found to remain below 1%). In such conditions, the energy

weff needs to be above the Hashin-Shtrikman type lower bound w−eff . The solid red

line in Fig. 14 shows the values taken by the lower bound as provided by the ma-

chine learning model T2weff. We observe that weff ≥ T2weff, as expected. In more

detail, we can observe that the gap weff − T2weff is approximatively independent of

the nonlinearity index m1. Such type of comparison can be useful for assessing the

optimality of specific microstructures, i.e. measuring the gap with the lower bound.

As a validation of the machine learning model, the bound w−eff for the values of

(‖ē‖, c1,m1,m2, σ2) considered in Fig. 14 has been calculated by directly solving

(57). The results are shown as a green dotted line in Fig. 14. The rRMSE with

the values provided by T2weff is about 0.19%, which illustrates the fact that T2weff

delivers an accurate approximation of w−eff . The benefit of using T2weff instead of

w−eff lies in the computational cost: the average time of a numerical evaluation of

w−eff is about 2.6 s whereas the average time of a numerical evaluation of T2weff is

about 0.001 s (all the reported numerical simulations were performed on a mid-range

workstation equipped with an Intel i7-8700@3.2 GHz CPU).

The example considered can also be used to validate the machine learning model

T3weff. The two-phase microstructure shown in Fig. 14(left) can indeed viewed as a

41



special case of a 3−phase microstructure in which two phases (say phases 2 and 3)

are governed by the same energy function (i.e. w2 = w3). The solid orange line in

Fig. 14 shows the values of T3weff obtained using the same material parameters for

phases 2 and 3, i.e. m2 = m3(= m1), σ2 = σ3 = 10. The rRMSE with the values

provided by w−eff is about 0.74%. This is slightly higher than the error obtained

with the machine learning model T2weff, which could be expected since T3weff lives

in a higher dimensional space. The advantage of T3weff is that it allows one to

do energy comparisons for 3-phase microstructures. As an example, consider the

microstructure shown in Fig. 15(left). That microstructure consists of two families

of circular inclusions in equal volume fractions (set to 0.25). One family of inclusions

(phase 2) is occupied by a material with conductivity σ2 = 5, the other one (phase

3) is occupied by a material with conductivity σ3 = 10. The matrix (phase 1) has a

volume fraction set to 0.5 and a conductivity σ1 = 1. The nonlinearity index m is

the same in all 3 phases. The values of T3weff and w−eff for the considered 3−phase

microstructure are shown in Fig. 15. The blue curve shows the effective energy

weff (ē) of the considered microstructure for ‖ē‖ = 1, as obtained from finite element

simulations with several values of m. The red curve shows the values of the lower

bound as predicted by the machine learning model T3weff. Again we can observe

that the gap weff − T3weff does not vary significantly with m. The relative gap

(weff−T3weff)/T3weff is smaller than the gap obtained for the 2-phase microstructure

considered previously, which probably results from the smaller contrast between the

material conductivities in the 3-phase example considered.

6.2. Boundary-value problem

This next example illustrates how the Fourier-based machine learning model can

be utilized for solving a Boundary Value Problem (BVP). Consider a composite

42



-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

m1(= m2)

w
eff

FEM
T2weff
T3weff
w−eff

Figure 14: Effective energy of a 2-phase microstructure: Bounds and FEM simulations.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.6

0.7

0.8

0.9

1

1.1

1.2

m1(= m2 = m3)

w
eff

FEM
T3weff

Figure 15: Effective energy of a 3-phase microstructure: Bounds and FEM simulations.

43



x1

x2

Ω

Figure 16: Domain Ω in the considered boundary value problem.

conductor occupying the 2-dimensional domain Ω shown in Fig. 16. Dimensionless

values are used for lengths, conductivities and electric fields. The voltage on the left

border x1 = 0 is set to 0 and a prescribed voltage V0 is applied on the right border

x1 = 1. The top and bottom borders of Ω are insulated. The voltage V (x), electric

field e(x) and current density j(x) in Ω are obtained by solving the BVP

e ∈ Ke, j ∈ Kj, j(x) =
n∑
r=1

χrw
′
r(e(x)) (63)

where

Ke =
{
e : e = ∇V for some V (x) such that V (x) = V0x1 if x1 ∈ {0, 1}

}
Kj =

{
j : div j = 0 in Ω, j · n = 0 for x ∈ ∂Ω, x1 /∈ {0, 1}

}

44



By definition, the homogenized energy weff in (49) gives the effective energy of the

composite material at a mesoscopic scale that is much larger than the length scale of

the microstructure. If in turn that mesoscopic scale is much smaller than the length

scale of Ω, then problem (63) can be replaced by the BVP

e ∈ Ke, j ∈ Kj, j(x) =
∂weff

∂e
(e(x)) (64)

where V , e and j are to be understood as mesoscopic quantities. For a composite

material with a statistically uniform microstructure, the heterogeneous energy func-

tion in (63) is thus replaced in (64) by an effective uniform energy function. The

main obstacle in using (64), however, is that the exact expression of weff is gener-

ally not available. A possible approach for solving the problem is to use ’FE2’-type

methods, in which the mesoscopic constitutive relation at each point is obtained by

solving a BVP at the microscopic scale [25–27]. Such methods offer a lot of flexibility

but are generally computationally expensive. Here we choose to replace weff in (64)

by an estimate that does not require solving any BVP at the microscopic scale. The

bound w−eff can be used as such an estimate, leading to the problem

e ∈ Ke, j ∈ Kj, j(x) =
∂w−eff

∂e
(e(x)). (65)

Solving (65) remains extremely time intensive because many evaluations of w−eff

are needed. Problem (65) is indeed nonlinear and typically solved by FEM using

a Newton algorithm. This requires to evaluate the function w−eff at each Gauss

point and at each iteration. Since each evaluation of w−eff entails solving the nested

optimization problems in (57), the computational cost of solving (65) quickly gets

very high. Such difficulties can be avoided by replacing w−eff in (65) by a machine-

learning model(say T3weff to fix ideas), i.e. we consider the problem

e ∈ Ke, j ∈ Kj, j(x) =
∂T3weff

∂e
(e(x)). (66)

45



Solving (65) by FEM (with a Newton algorithm) requires to evaluate both the first

and second derivative of T3weff with respect to e. In that regard, we note from (40)

that

j = A
e

‖e‖
(67)

where

A = −
J∑
j=1

πnj1Cjψ
′(‖e‖)h(ñj,Ψ(x̃)) sinπnj1ψ(‖e‖)

and x̃ = (x2, · · · , x8) with xj defined as in (61). Differentiating (67) yields

∂j

∂e
=

A

‖e‖
I +

(
B − A

‖e‖

)
e

‖e‖
⊗ e

‖e‖
(68)

with

B =
J∑
j=1

πnj1Cjh(ñj,Ψ(x̃))
(
ψ′′(‖e‖) sinπnj1ψ(‖e‖) + πnj1(ψ′(‖e‖))2 cos πnj1ψ(‖e‖

)
)

V/V0 ‖e‖
IsoValue
0
0.033871
0.0677419
0.101613
0.135484
0.169355
0.203226
0.237097
0.270968
0.304839
0.33871
0.372581
0.406452
0.440323
0.474194
0.508065
0.541935
0.575806
0.609677
0.643548
0.677419
0.71129
0.745161
0.779032
0.812903
0.846774
0.880645
0.914516
0.948387
0.982258
1.00000

IsoValue
0
0.0227415
0.045483
0.0682245
0.090966
0.113707
0.136449
0.15919
0.181932
0.204673
0.227415
0.250156
0.272898
0.295639
0.318381
0.341122
0.363864
0.386605
0.409347
0.432088
0.45483
0.477571
0.500313
0.523054
0.545796
0.568537
0.591279
0.61402
0.636762
0.659503
0.682245

Figure 17: FEM simulations of the electric potential (left) and electric field (right) using the energy

function T3weff with parameters σ1 = σ2 = σ3 = 8, m1 = m2 = m3 = 3, c1 = c2 = c3 = 1/3.

Because of symmetry, only the upper half of Ω is shown.

46



V/V0 ‖e‖
IsoValue
0
0.033871
0.0677419
0.101613
0.135484
0.169355
0.203226
0.237097
0.270968
0.304839
0.33871
0.372581
0.406452
0.440323
0.474194
0.508065
0.541935
0.575806
0.609677
0.643548
0.677419
0.71129
0.745161
0.779032
0.812903
0.846774
0.880645
0.914516
0.948387
0.982258
1.00000

IsoValue
0
0.0227415
0.045483
0.0682245
0.090966
0.113707
0.136449
0.15919
0.181932
0.204673
0.227415
0.250156
0.272898
0.295639
0.318381
0.341122
0.363864
0.386605
0.409347
0.432088
0.45483
0.477571
0.500313
0.523054
0.545796
0.568537
0.591279
0.61402
0.636762
0.659503
0.682245

Figure 18: FEM simulations of the electric potential (left) and electric field (right) for a homo-

geneous material with energy w(e) = 2‖e‖4. Because of symmetry, only the upper half of Ω is

shown.

Pb (66) is an approximation of (65). To check the accuracy of that approximation,

it seems natural to consider an example for which the exact value of w−eff is known.

The simplest case is that of constitutive phases with the same energy functions wr, so

that weff = w−eff = w1 = · · · = wn. In Fig. 17 are represented the electric potential

V and the electric field e obtained by solving (66) in the case σ1 = σ2 = σ3 = 8,

m1 = m2 = m3 = 3, c1 = c2 = c3 = 1/3. Those results are to be compared with

the reference electric potential Vref and the electric field eref obtained by solving

(65) with the exact value of w−eff in the special case considered, i.e. w−eff (e) =

2‖e‖4. The potential Vref and electric field eref are shown in Fig. 18. The relative

error |||V − Vref |||‖/|||Vref ||| on the electric voltage is about 0.39%. The relative error

|||e− eref |||/|||eref ||| on the electric field is about 0.82 %.

In Fig 19 are represented the electric potential and the electric field obtained by

solving (66) for a 3-phase composite material. We used the values σ1 = 1, σ2 = 10,

σ3 = 5, m1 = 1, m2 = 3, m3 = 6, c1 = 0.5, c2 = c3 = 0.25. As a partial

47



validation, the values taken by e and j on the top border of Ω are plotted in Fig. 20

and compared with the references values jref obtained from a direct evaluation of

∂w−eff /∂e in (57). The rRMSE between the values of j and jref shown in Fig. 20 is

about 0.82%. A mesh with 17002 P2 triangular elements (34405 degrees of freedom)

has been used in the FEM simulations shown in Fig. 19. Ten Newton iterations

were needed to reach convergence, for a total running time of 16 s. This is much

lower than the expected running time for solving pb (65) using a direct evaluation

of w−eff instead of the machine-learning model. The average time of a numerical

evaluation of w−eff being 2.6 s, the expected running time for solving (65) is indeed

about 10×34405×2.6 ' 248 hours for the same mesh as used in Fig. 19. The benefit

of the machine learning approach is mitigated by the overhead cost of building the

training database and performing the learning procedure. In the present case, the

training database consists of 106 samples, i.e. required 106 evaluations of w−eff . The

computational time for building that database was about 2 106 s ' 722 h. The

running time for the learning procedure was about 10 h. Three FEM simulations of

the type reported in Fig 19 are thus sufficient to absorb the overhead cost of setting

up the machine-learning model.

7. Concluding remarks

This paper lays the foundations of a Fourier-base machine learning technique.

Combining various ideas such as periodic extension, regularization and the use of

hyperbolic crosses, it proved possible to tackle applications of interest in engineering.

An attractive feature of the proposed method is that the training stage reduces to

a quadratic programming problem. Future effort will be devoted to study other

applications of the proposed method, improve its performance, and investigate the

possible connections with neural networks. On that last point, it has been observed

48



V/V0 ‖e‖
IsoValue
0
0.033871
0.0677419
0.101613
0.135484
0.169355
0.203226
0.237097
0.270968
0.304839
0.33871
0.372581
0.406452
0.440323
0.474194
0.508065
0.541935
0.575806
0.609677
0.643548
0.677419
0.71129
0.745161
0.779032
0.812903
0.846774
0.880645
0.914516
0.948387
0.982258
1.000000

IsoValue
0
0.0241882
0.0483765
0.0725647
0.0967529
0.120941
0.145129
0.169318
0.193506
0.217694
0.241882
0.26607
0.290259
0.314447
0.338635
0.362823
0.387012
0.4112
0.435388
0.459576
0.483765
0.507953
0.532141
0.556329
0.580517
0.604706
0.628894
0.653082
0.67727
0.701459
0.725647

Figure 19: FEM simulations of the electric potential (left) and electric field (right) using the energy

function T3weff with parameters σ1 = 1, σ2 = 10, σ3 = 5, m1 = 1, m2 = 3, m3 = 6, c1 = 0.5,

c2 = c3 = 0.25. Because of symmetry, only the upper half of Ω is shown.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

j

T3weff
w−eff

Figure 20: Values of e and j on the top border of Ω. Case σ1 = 1, σ2 = 10, σ3 = 5, m1 = 1,

m2 = 3, m3 = 6, c1 = 0.5, c2 = c3 = 0.25.

49



that the proposed technique behaves differently than neural networks, so there might

be an interest in combining the two techniques to get ’the best of both worlds’. On

a related note, the concept of High Dimensional Model Representation [28,29] could

possibly be useful in the present setting.

Appendix A. Expressions of SNf and SH(N)f

Recall that SNf is defined by

SNf(x) =
∑

n∈[−N..N ]d

c(n, f̃)eiπn · x (A.1)

For any positive multi-indice a, let

Γ(a) = {n ∈ Zd : |nj| = aj ∀j}.

Property (11) shows that c(n, f̃) = c(a, f̃) for all n ∈ Γ(a). Expression (A.1) can

thus be rewritten as

SNf(x) =
∑

a∈[0..N ]d

c(a, f̃)(
∑

n∈Γ(a)

eiπn · x) (A.2)

Let us first consider values of a such that

aj 6= 0 for 1 ≤ j ≤ d′

aj = 0 for d′ < j ≤ d
(A.3)

for some d′. In such case, we have

Γ(a) = {(ε1aj, · · · , εd′ad′ , 0, · · · 0) : εj ∈ {−1, 1}, 1 ≤ j ≤ d′}

so that∑
n∈Γ(a)

eiπn · x =
∑

εj ∈ {−1, 1},

1 ≤ j ≤ d′

exp(iπ
d′∑
j=1

εjajxj) = 2d
′ ∏

1≤j≤d′
cosπajxj.

50



From expression (10) of h and the fact that aj = 0 for j > d′, we find∑
n∈Γ(a)

eiπn · x = 2d
′
h(a,x).

Let us now consider the general case where a is not of the form (A.3). Denoting by

σ(a) the number of non zero elements in a = (a1, · · · ,ad), there exists a permutation

ψ : [1 . . d] 7→ [1 . . d] such that

aψ(j) 6= 0 for 1 ≤ j ≤ σ(a)

aψ(j) = 0 for σ(a) < j ≤ d

It follows from the previous calculations that∑
n∈Γ(a′)

eiπn · x
′

= 2σ(a)h(a′,x′)

where a′ = (aψ(1), · · · , aψ(d)) and x′ = (xψ(1), · · · , xψ(d)). Observing that∑
n∈Γ(a′)

eiπn · x
′

=
∑

n∈Γ(a)

eiπn · x

and similarly that

h(a′,x′) = h(a,x),

we finally obtain ∑
n∈Γ(a)

eiπn · x = 2σ(a)h(a,x).

Substituting in (A.2) yields

SNf(x) =
∑

a∈[0..N ]d

c(a, f̃)2σ(a)h(a,x). (A.4)

An expression similar to (A.4) can be obtained for the hyperbolic partial sum SH(N)
f .

Recall that

SH(N)
f(x) =

∑
n∈H(N)

c(n, f̃)eiπn · x.

51



In a way similar to (A.2), we have indeed

SH(N)
f(x) =

∑
a∈H+

(N)

c(a, f̃)(
∑

n∈Γ(a)

eiπn · x)

from which it follows that

SH(N)
f(x) =

∑
a∈H+

(N)

2σ(a)c(a, f̃)h(a,x).

Appendix B. Magnitude of Fourier coefficients of functions with bounded

mixed derivative

Let d′ ∈ [1 . . d] and {j1, · · · jd′} be distinct indices in [1 . . d]. Differentiating the

Fourier decomposition

h =
∑
n∈Zd

c(n, h)ei
2π
T
n·x,

gives

∂d
′
h

∂xj1 · · · ∂xjd′
=
∑
n∈Zd

c(n, h)

(
i
2π

T

)d′
nj1 · · ·njd′e

i 2π
T
n·x.

Parseval’s identity implies that(
2π

T

)2d′ ∑
n∈Zd

|c(n, h)|2(nj1 · · ·njd′ )
2 <∞.

As a consequence, |c(n, h)|(nj1 · · ·njd′ ) is bounded independently of n, i.e. there

exists a constant A(j1, · · · , jd′) such that

|c(n, h)nj1 · · ·njd′ | ≤ A(j1, · · · , jd′) (B.1)

for all n ∈ Zd. We set

A = max
d′∈[1..d]

max
{j1,···jd′}

A(j1, · · · , jd′). (B.2)

52



Let now n = (n1, · · · , nd) be given in Zd. By (26), there exists d′ ∈ [1 . . d] and

distinct indices j1, · · · , jd′ such that

π(n) = |nj1 · · ·njd′ |.

The values nj1 ,· · · ,njd′ correspond to the non zero indices in (n1, · · · , nd). Eqs. (B.1)

and (B.2) imply that

|c(n, h))| ≤ A

π(n)

where A is independent of n.

Appendix C. Cardinality of hyperbolic crosses

Let H+(M) = {n ∈ Nd : π(n) ≤M}. As M grows to infinity, Card H+(M) is on

the order of the measure of the domain of Rd defined by the equation x1 · · ·xd ≤M

with x = (x1, · · · , xd) ∈ [0,M ]d, i.e.

Card H+(M) ∼
∫

x ∈ [0,M ]d

x1 · · ·xd ≤M

dx1 · · · dxd.

Let

Γ(M,R, d) = {x ∈ (0,M ]d :
d∏
j=1

xj ≤ R}

and

F (M,R, d) =

∫
x∈Γ(M,R,d)

dx1 · · · dxd.

Consider a given x = (x1, · · · , xd) in Γ(M,R, d). We have

0 ≤ xd ≤ min{M,
R

x1 · · ·xd−1

}.

53



Observe that min{M, R
x1···xd−1

} = M if and only if (x1, · · · , xd−1) ∈ Γ(M,R/M, d−1).

It follows that

F (M,R, d) = MF (M,
R

M
, d− 1) +

∫
[0,M ]d−1−Γ(M, R

M
,d−1)

R∏d−1
j=1 xj

dx1 · · · dxd−1. (C.1)

The integral in the right-hand side of (C.1) can be bounded from above by noting

that

[0,M ]d−1 − Γ(M,
R

M
, d− 1) ⊂ [

R

Md−1
,M ]d−1. (C.2)

For any (x1, · · · , xd−1) ∈ [0,M ]d−1−Γ(M, R
M
, d− 1) and any given j, we have indeed

R/M < x1 · · ·xd−1 ≤Md−2xj so that R/Md−1 < xj. It follows from (C.1) and (C.2)

that

F (M,R, d) ≤MF (M,
R

M
, d− 1) +

∫
[ R

Md−1 ,M ]d−1

R∏d−1
j=1 xj

dx1 · · · dxd−1.

Calculating the second integral on the right hand side gives

F (M,R, d) ≤MF (M,
R

M
, d− 1) +R logd−1 M

d

R
. (C.3)

Successive applications of (C.3) yields

F (M,M, d) ≤M(1 + logMd−1 + (logMd−1)2 + · · ·+ (logMd−1)d−1).

It follows that F (M,M, d) = O(M logd−1M) asM →∞. Recalling that Card H+(M) '

F (M,M, d), we thus obtain that Card H+(M) = O(M logd−1M).

References

[1] Jörg F Unger and Carsten Könke, Coupling of scales in a multiscale simulation using neural

networks, Computers & Structures 86 (2008), no. 21-22, 1994–2003.

[2] B.A. Le, J. Yvonnet, and Q.C. He, Computational homogenization of nonlinear elastic materials

using neural networks, Int. J. Numer. Meth. Engng 104 (2015), 1061–1084.

54



[3] M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, Daniel W. Apley, C. Brinson, W. Chen, and

Wing Kam Liu, A framework for data-driven analysis of materials under uncertainty: Coun-

tering the curse of dimensionality, Computer Methods in Applied Mechanics and Engineering

320 (2017), 633 –667.

[4] Zeliang Liu, CT Wu, and M Koishi, A deep material network for multiscale topology learning

and accelerated nonlinear modeling of heterogeneous materials, Computer Methods in Applied

Mechanics and Engineering 345 (2019), 1138–1168.

[5] Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and E Weinan, Deep potential molecular

dynamics: a scalable model with the accuracy of quantum mechanics, Physical review letters

120 (2018), no. 14, 143001.

[6] George Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of

control, signals and systems 2 (1989), no. 4, 303–314.

[7] Konstantin Ivanovich Babenko, Approximation of periodic functions of many variables by

trigonometric polynomials, Doklady Akademii Nauk 132 (1960), no. 2, 247–250.

[8] Dinh Dũng, Vladimir Temlyakov, Tino Ullrich, and Sergey Tikhonov, Hyperbolic cross approx-

imation, Springer, 2018.

[9] Loukas Grafakos, Classical Fourier analysis, Springer, 2008.

[10] George Fishman, Monte Carlo: concepts, algorithms, and applications, Springer Science, 2013.

[11] Harald Niederreiter, Random number generation and quasi-monte carlo methods, Vol. 63, Siam,

1992.

[12] Il’ya Meerovich Sobol’, On the distribution of points in a cube and the approximate evaluation

of integrals, USSR Computational Mathematics and Mathematical Physics 7 (1967), 86–112.

[13] John H Halton, Algorithm 247: Radical-inverse quasi-random point sequence, Communications

of the ACM 7 (1964), no. 12, 701–702.

[14] David G Luenberger and Yinyu Ye, Linear and nonlinear programming (fourth edition),

Springer, 2016.

[15] R. Hill, Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids

11 (1963), no. 5, 357–372.

55



[16] J. R. Willis, Variational estimates for the overall response of an inhomogeneous nonlinear

dielectric, Homogenization and effective moduli of materials and media, 1986, pp. 247–263.

[17] Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic

permeability of multiphase materials, J.Appl.Physics. 33 (1962), no. 10, 3125–3131.

[18] D. R. S. Talbot and J. R. Willis, Variational principles for inhomogeneous non-linear media,

IMA Journal of Applied Mathematics 35 (1985), no. 1, 39–54.

[19] P. Ponte Castañeda, The effective mechanical properties of nonlinear isotropic solids, J. Mech.

Phys. Solids 39 (1991), 45–71.

[20] V. Nesi, D. R. S. Talbot, and J.R. Willis, Translation and related bounds for the response of a

nonlinear composite conductor, Proc. R Soc. London A 455 (1999), no. 1990, 3687–3707.

[21] Michaël Peigney, On Hashin–Shtrikman-type bounds for nonlinear conductors, Comptes Ren-

dus Mécanique 345 (2017), no. 5, 353 –361.

[22] B.E. Peigney and M. Peigney, Bounds for nonlinear composite conductors via the translation

method, Journal of the Mechanics and Physics of Solids 101 (2017), 93 –117.

[23] G.W. Milton, The Theory of Composites, Cambridge University Press, 2002.

[24] F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012), no. 3-4, 251–265.

MR3043640

[25] F. Feyel, Multiscale FE2 elastoviscoplastic analysis of composite structures, Computational

materials science 16 (1999), no. 1-4, 344-354.

[26] K. and Kikuchi Terada N., A class of general algorithms for multi-scale analyses of heteroge-

neous media, Computer methods in applied mechanics and engineering 190 (2001), no. 40-41,

5427-5464.

[27] V. and Geers Kouznetsova M. G. D. and Brekelmans, Multi-scale constitutive modelling of

heterogeneous materials with a gradient-enhanced computational homogenization scheme, In-

ternational journal for numerical methods in engineering 54 (2002), no. 8, 1235-1260.

[28] Herschel Rabitz and Ömer F Aliş, General foundations of high-dimensional model representa-

tions, Journal of Mathematical Chemistry 25 (1999), no. 2-3, 197–233.

56



[29] Sergei Manzhos and Tucker Carrington Jr, A random-sampling high dimensional model repre-

sentation neural network for building potential energy surfaces, The Journal of chemical physics

125 (2006), no. 8, 084109.

57


	Introduction
	Periodic extension
	Regularization via a change of variables
	Hyperbolic crosses
	Algorithm
	Sensitivity analysis
	Reconstruction of analytical functions in high dimension

	Application to a nonlinear homogenization problem
	Effective energies of microstructures
	Boundary-value problem

	Concluding remarks
	Expressions of SN f and SH(N) f
	Magnitude of Fourier coefficients of functions with bounded mixed derivative
	Cardinality of hyperbolic crosses

