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Abstract

Stress-gradient materials are generalized continua with two generalized stress variables: the Cauchy stress field and its gradient.
For homogenization purposes, we introduce an extension to stress-gradient materials of the principle of Hashin and Shtrikman. The
variational principle is first stated within the framework of periodic homogenization, then extended to random homogenization.
Contrary to the usual derivation of the classical principle, we adopt here a stress-based approach, much better suited to stress-
gradient materials. We show that, in many cases of interest, the third-order trial eigenstrain may be discarded, leaving only one
(second-order) trial eigenstrain in the functional to optimize. For N-phase material, the bounds are very similar in structure to their
classical counterpart. One notable difference is the fact that, even in the case of isotropy, the bounds depend on some additionnal
microstructural parameters (besides the usual volume fractions).

Keywords: Stress-gradient, Homogenization, Variational methods, Bounds

1. Introduction

The complementary elastic energy of stress-gradient mate-
rials depends on the stress and its gradient. This class of gener-
alized materials was first introduced by Forest and Sab (2012)
as an alternative to strain-gradient materials. Since then, other
similar models have been proposed, which mostly differ by the
boundary conditions; see e.g. Polizzotto (2018) and references
therein. Such models are relevant for nanocomposites exhibit-
ing “negative” size-effect (Tran et al., 2018) and foams (Hütter
et al., 2020).

The model of Forest and Sab (2012) (including the bound-
ary conditions) was fully justified mathematically by Sab et al.
(2016). It was subsequently extended to finite strains by For-
est and Sab (2017). Homogenization of heterogeneous, stress-
gradient materials as homogeneous, Cauchy materials was then
considered in the work by Tran et al. (2018), where a simpli-
fied stress-gradient model, akin to the simplified strain-gradient
model of Altan and Aifantis (1992, 1997), was also proposed.
The converse homogenization problem (Cauchy material at the
microscale, stress-gradient material at the macroscale) has re-
cently been addressed by Hütter et al. (2020), who offer a mi-
croscopic interpretation of the generalized strain that is work-
conjugate to the gradient of the stresses.

The present paper builds upon the results obtained by Tran
et al. (2018). More specifically, we propose a variational frame-
work that allows the derivation of rigorous bounds on the macro-
scopic, classical stiffness of microscopically heterogeneous, stress-
gradient materials, within the framework of both periodic and
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random homogenization. The variational principle that we in-
troduce is an extension to stress-gradient materials of the cele-
brated principle of Hashin and Shtrikman (1962a). The classi-
cal version of this principle is usually presented within a strain-
based approach, where eigenstresses are used as trial functions.
A stress-based approach, where eigenstrains are used as trial
functions, was found to be much better suited to stress-gradient
materials and was therefore adopted. Both strain- and stress-
based approaches are known to be equivalent in the classical
case. For stress-gradient materials, we also verified this equiv-
alence, since in early versions of the work presented here, we
used a strain-based approach (Tran, 2016). Note that the varia-
tional principle of Hashin and Shtrikman was extended to strain-
gradient materials by Smyshlyaev and Fleck (1994).

This paper is organized as follows. Sec. 2 provides an overview
of the stress-gradient model of Forest and Sab (2012) and re-
calls how periodic, heterogenous stress-gradient materials can
be homogenized as Cauchy materials through the so-called cor-
rector problem (Tran et al., 2018). In the stress-based formula-
tion of the principle of Hashin and Shtrikman (1962a), the trial
function is an eigenstrain; we therefore discuss eigenstrained,
stress-gradient materials in Sec. 3. For homogeneous materials,
we then introduce in Sec. 4 the Delta operator that maps the
eigenstrains to the stresses. This operator is the key ingredient
of the Lippmann–Schwinger equation, which is introduced in
Sec. 5 as an equivalent, alternative formulation of the corrector
problem. Then, the principle of Hashin and Shtrikman (1962a)
is stated in Sec. 6, first as the weak form of the Lippmann–
Schwinger equation, then (under some conditions) as a varia-
tional principle.

These results, which are first introduced within the frame-
work of periodic homogenization, are then extended to random
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homogenization.
In Sec. 7, we define the apparent and effective compliances

of random composites. Then, in Sec. 8, we extend the princi-
ple of Hashin and Shtrikman (1962a) to the random case, and
derive an operational formula for the resulting bounds on the ef-
fective compliance. This formula is simplified in Sec. 9, where
it is shown that in some circumstances, it is possible to discard
the third-order eigenstrain, the minimization problem being re-
duced to one trial field only. In Sec. 10, we specialize the gen-
eral framework to N-phase materials with piece-wise constant
trial eigenstrains; the resulting bounds are very close in spirit to
the classical bounds of Hashin and Shtrikman (1962b). Finally,
these bounds are evaluated numerically in Sec. 11 for a simple
(boolean) microstructure.

2. Background

2.1. Nomenclature
The space of second-order, symmetric tensors is denoted

T2; I2 ∈ T2 is the second-order identity tensor and I4 is the
fourth-order identity tensor over T2

I2 = δi jei⊗e j and I4 = 1
2 (δipδ jq +δiqδ jp)ei⊗e j⊗ep⊗eq, (1)

in cartesian coordinates. The double contraction “:” defines a
scalar product over T2

a : b = ai jxi j for all a,b ∈ T2. (2)

It will be convenient to introduce the classical fourth-order
spherical and deviatoric projection tensors J4 = 1

3 I2 ⊗ I2 and
K4 = I4 − J4, such that

J4 : K4 = K4 : J4 = 0, J4 : J4 = J4 and K4 : K4 = K4. (3)

The space of third-order tensors that are symmetric with
respect to their first two indices is denoted T3: T ∈ T3 iff
Ti jk = T jik. The triple contraction “∴” defines a scalar prod-
uct over T3

a ∴ b = ai jkbi jk for all a,b ∈ T3. (4)

Note that for both double and triple contractions, we do not
reverse the order of indices in the right-hand side.

The trace of a second-order tensor is classically defined as
its double contraction with the second-order identity tensor I2.
Likewise, we define in this paper the trace of a third-order ten-
sor T ∈ T3 as the vector T : I2; in cartesian coordinates, this
quantity coincides with Ti j jei. A third-order tensor T ∈ T3 is
trace-free if its trace is null, T : I2 = 0, and we introduce the
space T ′3 of third-order, trace-free tensors: T ∈ T ′3 iff T ∈ T3
and T : I2 = 0; in index form

T ∈ T ′3 iff Ti jk = T jik and Ti j j = 0. (5)

Since T ′3 is a subspace of T3, it is possible to define the
orthogonal projection I′6 onto T ′3 : for all T ∈ T3, R = I′6 ∴ T ∈
T ′3 with

R : I2 = 0 and R ∴
(
T − R

)
=

(
T − R

)
∴ R = 0, (6)

orthogonality being here understood in the sense of the “∴”
scalar product. The projection tensor I′6 is a sixth-order tensor
which is fully defined by how it operates on third-order tensors
T ∈ T3 (Tran et al., 2018)

I′6 ∴ T = T − 1
2 I4 · T : I2. (7)

For isotropic, stress-gradient elasticity, it will be convenient
to introduce the following sixth-order, isotropic tensors J′6 and
K′6

J′6 = 2
5 I′6 ∴

(
I2 ⊗ ek ⊗ I2 ⊗ ek

)
∴ I′6 and K′6 = I′6 − J′6, (8)

with the simple multiplication rules (see also Tran et al., 2018)

J′6 ∴ J′6 = J′6, K′6 ∴ K′6 = K′6 (9a)

and

J′6 ∴ K′6 = K′6 ∴ J′6 = 0. (9b)

The domain Ω ⊂ R3 being fixed, T2(Ω) denotes the space
of second-order, symmetric tensor fields defined over Ω, with
square-integrable components. The spaces of third-order tensor
fields T3(Ω) and T ′3(Ω) are defined similarly.

The gradient of a tensor field T is denoted T ⊗ ∇; its diver-
gence is denoted T · ∇. In cartesian coordinates

T ⊗ ∇ = ∂iT ⊗ ei and T · ∇ = ∂iT · ei. (10)

Note that in this paper, the nabla operator is applied to the right
to recall that spatial derivation is operated with respect to the
last index. This is important, since the theory of stress-gradient
materials involves third-order tensors, which have by construc-
tion no symmetries with respect to the first and last indices. To
conclude this section, it is observed that the divergence of a
second-order tensor field σ ∈ T2(Ω) appears as the trace of its
gradient: σ · ∇ =

(
σ ⊗ ∇) : I2.

2.2. An overview of stress-gradient materials
Strain-gradient materials were introduced by Mindlin (1964)

as a class of generalized materials for which the elastic energy
depends on the strain and its gradient(s). Since their incep-
tion, they have grown in popularity (Askes and Aifantis, 2011).
In principle, it is quite natural to introduce stress-gradient ma-
terials as materials whose complementary elastic energy de-
pends on the stress and its first gradient. Quite surprisingly,
this small theoretical leap was performed only recently by For-
est and Sab (2012). This significant time-lapse is probably due
to the misconception that strain- and stress-gradient materials
where somehow equivalent, while it was shown by Tran et al.
(2018) that these two classes of materials were in fact comple-
mentary.

We consider a stress-gradient body occupying the domain
Ω ⊂ R3 and subjected to body forces b. The stresses σ are in
equilibrium with b in the classical sense: σ · ∇ + b = 0. It
would be natural to postulate the complementary energy of the
stress-gradient body as the following expression

Wc(σ) =

∫
x∈Ω

wc[σ(x),σ ⊗ ∇(x)
]
dV. (11)
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However, as was previously argued (Forest and Sab, 2012;
Tran et al., 2018), the trace of the gradient of the stresses, σ⊗∇:
I2 = σ·∇ = −b, is prescribed and plays the role of a prestress in
Eq. (11). The physical meaning of this prestress is unclear and
it was proposed, as a first step towards stress-gradient materials,
to ommit this contribution. This suggests to adopt the following
expression of the complementary elastic energy

Wc(σ) =

∫
x∈Ω

wc[σ(x), I′6 ∴ σ ⊗ ∇(x)
]
dV, (12)

where I′6 is the orthogonal projection onto the space of trace-
free tensors introduced in Sec. 2.1. In expression (12) which
will be adopted below, only the trace-free part of the gradient
of the stresses, which is not prescribed by equilibrium, is in-
volved. The mechanical model resulting from assumption (12)
was fully derived by Forest and Sab (2012) and mathematically
justified by Sab et al. (2016). The most unusual consequence
of the above modelling assumption is probably the fact that the
full stress tensor (rather than the traction vector) is continuous
at any point of a stress-gradient body; it is therefore in principle
possible to prescribe the full stress tensor at the boundary of a
stress-gradient body.

This paper is devoted to linearly elastic, stress-gradient ma-
terials, for which the volume density of complementary elastic
energy wc is given by the following expression

wc(σ,R) = 1
2σ : S : σ + 1

2 R ∴ M ∴ R, (13)

for all σ ∈ T2 and R ∈ T ′3 . The fourth-order tensor S is the
classical compliance; it has both major and minor symmetries.
The sixth-order tensor M is the generalized compliance; it has
the following symmetries

Mi jkpqr = Mpqri jk = M jikpqr = Mi jkqpr, (14)

furthermore

I′6 ∴ M = M ∴ I′6 = M (15a)

and

M ∴
(
I′6 ∴ σ ⊗ ∇) = M ∴ σ ⊗ ∇, (15b)

since the complementary energy density wc operates only on
the trace-free part of the gradient of the stresses (Tran et al.,
2018).

With these considerations in mind, it is possible to derive
the equations that govern the equilibrium of a linearly elas-
tic, stress-gradient material (Forest and Sab, 2012; Tran et al.,
2018)

σ · ∇ + b = 0, (16a)
e = S : σ, (16b)
φ = M ∴

(
σ ⊗ ∇), (16c)

e = φ · ∇ + sym(u ⊗ ∇), (16d)

where e ∈ T2(Ω) and φ ∈ T ′3(Ω) are the generalized strains
that are energy-conjugate to the stress field σ and its gradient

σ⊗∇, respectively. The vector field u has dimension of a classi-
cal displacement. For heterogeneous Cauchy materials that are
homogenized as stress-gradient materials, Hütter et al. (2020)
have recently shown that φ can be interpreted as the trace-free
part of the first moment of the microscopic strain-field.

The above field equations must be complemented with ap-
propriate boundary conditions

σ|∂Ωσ
= 0, (16e)[

φ · n + sym(u ⊗ n)
]|∂Ωu = 0, (16f)

where ∂Ωσ ∪ ∂Ωu = ∂Ω and ∂Ωσ ∩ ∂Ωu = ∅. More general
(mixed and non-homogeneous) boundary conditions are possi-
ble (Sab et al., 2016).

To close this section, we provide a brief discussion of lin-
early elastic, isotropic stress-gradient materials. Tran et al. (2018)
proved that the compliance S and generalized compliance M
are defined in general by five material parameters, namely: two
elastic constants (e.g. shear modulus and Poisson ratio) and
three material internal lengths. A simplified model with only
one material internal length was then introduced by analogy
with the simplified model of Altan and Aifantis (1992, 1997)
for strain-gradient materials. For this simplified model, the vol-
ume density of complementary elastic energy reads

wc(σ,R) =
1

4µ

(
σi jσi j − ν

1 + ν
σiiσ j j

)
+
`2

4µ

(
Ri jkRi jk − ν

1 + ν
RiikR j jk

)
, (17)

for all σ ∈ T2 and R ∈ T ′3 . In the above expression, µ and
ν are the shear modulus and Poisson ratio, while ` is the sole
material internal length. Identification with Eq. (13) delivers
the following expressions of the compliance S and generalized
compliance M

S =
1

2µ

(
I4 − 3ν

1 + ν
J4

)
, (18a)

M =
`2

2µ

(
I′6 −

5
2

ν

1 + ν
J′6

)
, (18b)

where J4 and J′6 were defined in Sec. 2.1.

Remark 1. Expressions (20) and (21) of the generalized com-
pliance M and generalized stiffness L = M−1 in the paper by
Tran et al. (2018) are not correct and should be replaced with
the following

M =
`2

2µ

[ 2 − 3ν
2
(
1 + ν

)J′6 + K′6
]
, (19a)

L =
2µ
`2

[2
(
1 + ν

)
2 − 3ν

J′6 + K′6
]
, (19b)

where J′6 and K′6 were defined in Sec. 2.1.

2.3. Periodic homogenization of heterogeneous, stress-gradient
materials

Homogenization of stress-gradient materials was discussed
by Tran et al. (2018). We only give a brief summary here, with
a focus on periodic homogenization.
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We consider a structure made of the periodic repetition of
the brick-like unit-cell Ω = (0, L1) × (0, L2) × (0, L3) with un-
equal sides L1 , L2 , L3. The material at point x ∈ Ω is a
linearly elastic, stress-gradient material, with compliance S(x)
and generalized compliance M(x). From the Ω-periodicity of
the structure, we have S(x + r) = S(x)

M(x + r) = M(x)
with r =

3∑
i=1

niLiei, (20)

n1, n2 and n3 being integers such that x ∈ Ω and x + r ∈ Ω.
It is assumed that separation of scales prevails. As dis-

cussed by Tran et al. (2018), this entails two conditions
1. L1, L2, L3 � LM, where LM denotes the macroscopic

length-scale (typical span of the structure),
2. ‖M‖/‖S‖ � L2

1, L
2
2, L

2
3 or ‖M‖/‖S‖ ∼ L2

1, L
2
2, L

2
3 for some

tensor norms.

The first assumption is classical: it states that the hetero-
geneities are small compared to the characteristic length scale
of the structure. The second assumption was discussed in (Tran
et al., 2018) and is specific to stress-gradient materials: it states
that all material internal lengths are at most of the same order
as the heterogeneities.

Under these assumptions of separation of scales, the com-
plex, heterogeneous, periodic microstructure can be replaced
with an effective, homogeneous material through a homoge-
nization process. More precisely, the effective material is ex-
pected to be linear elastic in the classical sense owing to the
second assumption (Tran et al., 2018).

The elastic properties of the effective material can be re-
trieved from the solution to the following boundary-value prob-
lem over the unit-cell Ω

σ · ∇ = 0, (21a)
e = S : σ, (21b)
φ = M ∴

(
σ ⊗ ∇), (21c)

e = φ · ∇ + sym(u ⊗ ∇), (21d)

which must be complemented with appropriate boundary con-
ditions that ensure that the generalized Hill–Mandel lemma holds,
namely 〈σ : e + R ∴ φ〉 = 〈σ〉 : 〈e〉, where 〈•〉 denotes the vol-
ume average over the statistical volume element (SVE) Ω. Tran
et al. (2018) have extended the classical static uniform, kine-
matic uniform and periodic boundary conditions. In the present
paper, we make exclusive use of periodic boundary conditions

σ and u − e · x are Ω-periodic, (22a)
φ · n is Ω-skew-periodic, (22b)

where e denotes the (prescribed) macroscopic strain, e = 〈e〉.
In the remainder of this paper, we will consistently use a

stress-based approach, for which it is more natural to prescribe
the macroscopic stress σ, rather than the macroscopic strain e.
The above boundary conditions are therefore replaced with

σ and u − 〈e〉 · x are Ω-periodic, (23a)
φ · n is Ω-skew-periodic, (23b)
〈σ〉 = σ, (23c)

where angle brackets 〈•〉 denote volume averages over the unit-
cell Ω.

Owing to the linearity of problem (21)∧(23), the strain field
e and its volume average 〈e〉 depend linearly on the loading
parameter σ. The effective compliance Seff is defined as the
linear operator that maps the prescribed macroscopic stress σ
onto the macroscopic strain 〈e〉
〈e〉 = Seff : σ = Seff : 〈σ〉. (24)

Our goal in this paper is to derive a Hashin–Shtrikman-like
variational principle for stress-gradient materials. In order to
do so, we must transform problem (21) ∧ (23), which is formu-
lated on a heterogeneous material, into an equivalent problem,
now formulated on a homogeneous material, where material
heterogeneities are accounted for by means of appropriate “po-
larizations”, which are eigenstresses/eigenstrains. While stress-
polarizations (eigenstresses) are usually considered for classical
materials, our experience shows that the derivations are sub-
stantially simpler with eigenstrains for stress-gradient materi-
als. In the next section, we therefore discuss eigenstrained,
stress-gradient materials and derive the associated complemen-
tary energy principle.

3. On eigenstrained stress-gradient materials

Deformation of stress-gradient materials is defined through
two strain measures, namely: e and φ. It is therefore a priori
possible to introduce two eigenstrains: the second-order eigen-
strain e∗ ∈ T2(Ω) and the third-order eigenstrain φ∗ ∈ T ′3(Ω).
In the present section, we first state the equilibrium of linearly
elastic, eigenstrained, stress-gradient as a minimization prob-
lem. We then extend Clapeyron’s theorem, that delivers the
value of the complementary energy.

3.1. Minimum complementary energy principle
The following problem states the equilibrium of a linearly

elastic, eigenstrained, stress-gradient body occupying the unit-
cell Ω = (0, L1) × (0, L2) × (0, L3)

σ · ∇ = 0, (25a)
e = S : σ + e∗, (25b)
φ = M ∴

(
σ ⊗ ∇) + φ∗, (25c)

e = φ · ∇ + sym(u ⊗ ∇), (25d)
σ and u − 〈e〉 · x are Ω-periodic, (25e)
φ · n is Ω-skew-periodic, (25f)
〈σ〉 = σ, (25g)

where e∗ ∈ T2(Ω) and φ∗ ∈ T ′3(Ω) are second- and third-order
tensor fields (“eigenstrains”), respectively; note that we require
φ∗ to be trace-free (see Remark 2 below).

The minimum complementary energy principle can be stated
as follows: the unique solution to Problem (25) minimizes the
total complementary energy

Πc(σ, e∗,φ∗) = Wc(σ) − Vc(σ, e∗,φ∗), (26)
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subject to σ ∈ σ + S0(Ω), where

Wc(σ) = 1
2 〈σ : S : σ +

(
σ ⊗ ∇) ∴ M ∴

(
σ ⊗ ∇)〉, (27a)

Vc(σ, e∗,φ∗) = −〈σ : e∗ +
(
σ ⊗ ∇) ∴ φ∗〉 (27b)

and S0(Ω) denotes the space of Ω-periodic, divergence-free
stress tensors with null average. It should be noted that, in line
with our ultimate homogenization goal, Wc, Vc and Πc thus
defined are rather volume densities of macroscopic energies,
since each of these energies is divided by the volume of the
body Ω. The minimum principle stated above extends the clas-
sical complementary energy principle to eigenstrained stress-
gradient materials; its proof can be found in Appendix A.

Remark 2. Eqs. (27a) and (27b) show why φ∗ is required to
be trace-free. Indeed, only the trace-free part of the gradient of
the stresses carries elastic energy (Forest and Sab, 2012; Tran
et al., 2018), as expressed by Eq. (15). On the other hand, if
φ∗ was not trace-free, then the whole gradient of the stresses
(rather than its trace-free part only) would contribute to Vc,
which would be inconsistent.

Remark 3. Note that the same variational result holds if the
periodic boundary conditions (25e)∧ (25f)∧ (25g) are replaced
with stress-boundary conditions σ|∂Ω = σ. It is again empha-
sized that for stress-gradient materials, the full stress tensor
can be prescribed at the boundary.

3.2. Clapeyron’s theorem
To close this section, we state the extension to eigenstrained,

stress-gradient materials of Clapeyron’s theorem, which gives
an expression of the minimum complementary energy (see deriva-
tion in Appendix B)

min
σ+S0(Ω)

Πc(•, e∗,φ∗) = 1
2σ:〈e〉+ 1

2 〈σ:e∗〉+ 1
2 〈

(
σ⊗∇) ∴ φ∗〉, (28)

where e = S : σ + e∗ and

σ = arg min
σ+S0(Ω)

Πc(•, e∗,φ∗). (29)

Note that in the above equations and in the remainder of
this paper, “•” is a placeholder that stands for the optimization
variable. In other words, minσ+S0(Ω) Πc(•, e∗,φ∗) should be un-
derstood as min

{
Πc(σ′, e∗,φ∗),σ′ ∈ σ + S0(Ω)

}
.

In particular, for e∗ = 0 and φ∗ = 0, Vc vanishes, and we
find that

min
σ+S0(Ω)

Wc = min
σ+S0(Ω)

Πc = 1
2σ : 〈e〉 = 1

2σ : Seff : σ, (30)

which provides a vartiational definition of the effective compli-
ance and extends a classical result of homogenization theory.

4. Homogeneous, eigenstrained materials – The Green op-
erator

We now consider a homogeneous stress-gradient material
with compliances S0 and M0, occupying the domain Ω = (0, L1)×

(0, L2) × (0, L3), subjected to second- and third-order eigen-
strains only. In other words, we specialize Problem (25) to
homogeneous materials

σ · ∇ = 0, (31a)
e = S0 : σ + e∗ (31b)
φ = M0 ∴

(
σ ⊗ ∇) + φ∗, (31c)

e = φ · ∇ + sym(u ⊗ ∇), (31d)
σ and u − 〈e〉 · x are Ω-periodic, (31e)
φ · n is Ω-skew-periodic, (31f)
〈σ〉 = σ. (31g)

The solution to the above problem is unique, and depends
linearly on the loading parameters, namely: σ, e∗ and φ∗. This
linear relationship is most conveniently expressed in Fourier
space. Owing to the periodic boundary conditions, all mechan-
ical fields are expanded in Fourier series

u(x) − 〈e〉 · x
φ(x)
σ(x)
e∗(x)
φ∗(x)


=

∑
n∈Z3


ûn

φ̂n
σ̂n

ê∗n
φ̂
∗
n


eikn·x, (32)

with
ûn

φ̂n
σ̂n

ê∗n
φ̂
∗
n


=

1
|Ω|

∫
Ω


u(x) − 〈e〉 · x

φ(x)
σ(x)
e∗(x)
φ∗(x)


e−ikn·xdV (33)

and

kn =
2πn1

L1
e1 +

2πn2

L2
e2 +

2πn3

L3
e3, (34)

which allow to write Problem (31) in Fourier space [note that
Eqs. (31e) and (31f) are automatically satisfied by the Fourier
expansions (32)]

σ̂n · kn = 0, (35a)
ên = S0 : σ̂n + ê∗n, (35b)

φ̂n = iM0 ∴
(
σ̂n ⊗ kn

)
+ φ̂

∗
n, (35c)

ên = iφ̂n · kn + i sym(ûn ⊗ kn). (35d)

Introducing the fourth order, frequency dependent tensor
Ŝ`0(k), with components

Ŝ `
0,i jpq(k) = S 0,i jpq + M0,i jmpqnkmkn (36)

and plugging Eq. (35c) into Eq. (35d), we find that

ên = −[Ŝ`0(kn) − S0
]

: σ̂n + i sym(ûn ⊗ kn) + iφ̂
∗
n · kn. (37)

Substituting Eq. (36) in Eq. (35b), it is finally found that the
Fourier coefficients σ̂n solve the following problem

σ̂n · ikn = 0, (38a)

ε̂n = Ŝ`0 : σ̂n + ê∗n − iφ̂
∗
n · kn, (38b)

ε̂n = i sym(ûn ⊗ kn). (38c)
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It results from the above analysis that for fixed n ∈ Z3, the
Fourier coefficient σ̂n depends linearly on the combination ê∗n −
iφ̂
∗
n · kn (same n ∈ Z3). We write formally

σ̂n = −∆̂0(kn) :
(
ê∗n − iφ̂

∗
n · kn

)
, (39)

where, for any vector k, ∆̂0(k) is a fourth order tensor with ma-
jor and minor symmetries. It is fully derived in Appendix C.1.
It should be noted that ∆̂0(0) = 0; from the condition (31g), we
find that σ̂0 = σ. Synthesis of the Fourier series expansion of
σ finally leads to

σ(x) = σ −
∑
n∈Zd

∆̂0(kn) :
(
ê∗n − iφ̂

∗
n · kn

)
eikn·x. (40)

The above result suggests to introduce two operators, ∆0
ant Λ0 that map second and third order tensors to second order
tensors as follows

∆0(e∗)(x) =
∑
n∈Z3

∆̂0(kn) : ê∗n (41a)

Λ0(φ∗)(x) =
∑
n∈Z3

−i
[
∆̂0(kn) ⊗ kn

]
∴ φ̂

∗
n. (41b)

Note that these operators are linear with respect to the ten-
sor fields e∗ and φ∗, respectively; besides ∆0(e∗) and Λ0(φ∗) are
both second-order tensor fields. Combining Eqs. (40) and (41),
we express the solution to Problem (31) as follows

σ = σ − ∆0(e∗) − Λ0(φ∗). (42)

The above identity extends to stress-gradient materials the
classical definition of the Delta operator (Korringa, 1973; Kröner,
1974; Zeller and Dederichs, 1973). It is recalled that the classi-
cal Delta operator is defined as the operatorσ = −∆0

0(e∗), where
σ solves the following problem

σ · ∇ = 0, (43a)
ε = S0 : σ + e∗, (43b)
ε = sym(u ⊗ ∇), (43c)
u − 〈e〉 · x is Ω-periodic, (43d)
σ · n is Ω-skew-periodic, (43e)
〈σ〉 = 0. (43f)

In particular, it is shown in Appendix C.3 that, for the sim-
plified model of Tran et al. (2018) introduced in Sec. 2.2

∆̂0(k) =
(
1 + k2`2

0
)−1
∆̂

0
0(k), (44)

where `0 denotes the sole internal material length of the refer-
ence material. Note that this remarkable connection between
classical and generalized Delta operators does not hold for the
Gamma operator (that maps eigenstresses onto total strains),
which largely explains why we adopted a stress-based approach
in this work.

Remark 4. In principle, Eq. (42) could also be written: σ =

σ−∆0(e∗ −φ∗ · ∇), since the expression φ̂
∗
n · ikn that appears in

Eq. (40) is the n-th Fourier coefficient of φ∗ ·∇. However, we will
refrain from using this compact expression, since φ∗ might not
have sufficient regularity for φ∗ · ∇ to be meaningful. Note that
the k2 in the denominator of Eq. (44) has a regularizing effect
that ensures the convergence of the series in Eq. (40) even if
φ∗ · ∇ is not defined.

The Delta operator enjoys the following elementary proper-
ties, the proof of which can be inferred from the work of Willis
(2001) (for the classical Gamma operator)

1. As a result of the Hill–Mandel lemma, ∆0 is self-adjoint:
for all η1, η2 ∈ T2(Ω)

〈η1 : ∆0(η2)〉 = 〈η2 : ∆0(η1)〉. (45)

2. For all η ∈ T2(Ω), 〈∆0(η)〉 = 0 (by construction).
3. “Square” of the Delta-operator: for all η ∈ T2(Ω),

∆0[S0 : ∆0(η)] = ∆0(η). (46)

4. If η is constant, then ∆0(η) = 0.

To close this section, we introduce the total complementary
energy Πc

0(σ, e∗,φ∗) of the homogeneous material. For constant
compliance and generalized compliance, Eq. (28) reads

min
σ+S0(Ω)

Πc
0(•, e∗,φ∗) = 1

2σ : 〈S0 : σ + e∗〉 + 1
2 〈σ : e∗〉

+ 1
2 〈

(
σ ⊗ ∇) ∴ φ∗〉

= 1
2σ : S0 : σ + σ : 〈e∗〉
+ 1

2 〈
(
σ − σ)

: e∗〉
+ 1

2 〈
(
σ ⊗ ∇) ∴ φ∗〉, (47)

where the stress-strain relationship (31b) has been used. The
last two volume averages are evaluated in Fourier space. From
Parseval’s identity and expression (39) of the Fourier coefficient
of σ

〈(σ − σ)
: e∗〉 =

∑
n∈Z3

n,(0,0,0)

conj(ê∗n) : σ̂n

= −
∑
n∈Z3

conj(ê∗n) : ∆̂0(kn) : η̂n, (48)

where conj denotes the complex conjugate and

η̂n = ê∗n − iφ̂
∗
n · kn. (49)

Similarly,

〈(σ ⊗ ∇) ∴ φ∗〉 =
∑
n∈Z3

conj(φ̂
∗
n) ∴

(
σ̂n ⊗ ikn

)
=

∑
n∈Z3

conj(− ˆiφ
∗
n · kn) : σ̂n

= −
∑
n∈Z3

conj(− ˆiφ
∗
n · kn) : ∆̂0(kn) : η̂n. (50)

Gathering the above results, we find

min
σ+S0(Ω)

Πc
0(•, e∗,φ∗) = 1

2σ : S0 : σ + σ : 〈e∗〉

− 1
2

∑
n∈Z3

conj(η̂n) : ∆̂0(kn) : η̂n. (51)
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In the previous section, we have introduced the Delta op-
erator ∆0. We have shown that this sole operator suffices to
construct the solution to problems with both second- and third-
order eigenstrains and general periodic boundary conditions,
since the Lambda operator that is also needed is related to the
Delta operator through Eq. (41b). This result can be used to ex-
tend the Lippmann–Schwinger equation (Korringa, 1973; Kröner,
1974; Zeller and Dederichs, 1973) to stress-gradient materials,
as discussed in Sec. 5 below.

5. The Lippmann–Schwinger equation

In the present section, we derive an integral equation that is
equivalent to Problem (21) ∧ (23). This integral equation can
be seen as an extension to stress-gradient materials of the clas-
sical Lippmann–Schwinger equation for linear elasticity (Ko-
rringa, 1973; Kröner, 1974; Zeller and Dederichs, 1973). We
first rewrite Problem (21) ∧ (23) as follows

σ · ∇ = 0, (52a)
e = S0 : σ + e∗, (52b)
φ = M0 ∴

(
σ ⊗ ∇) + φ∗, (52c)

e = φ · ∇ + sym(u ⊗ ∇), (52d)
σ and u − 〈e〉 · x are Ω-periodic, (52e)
φ · n is Ω-skew-periodic, (52f)
〈σ〉 = σ, (52g)
e∗ =

(
S − S0

)
: σ, (52h)

φ∗ =
(
M −M0

)
∴

(
σ ⊗ ∇), (52i)

where we have introduced two new unknowns (e∗ and φ∗), as
well as two supplementary equations, namely: Eqs. (52h) and
(52i). As shown in Sec. 4, Eqs. (52a) to (52g) lead to Eq. (42).
In other words, the stress field σ that solves Problem (21)∧(23)
is fully defined by

σ = σ − ∆0(e∗) − Λ0(φ∗), (53a)
e∗ =

(
S − S0

)
: σ, (53b)

φ∗ =
(
M −M0

)
∴

(
σ ⊗ ∇), (53c)

and, eliminating e∗ and φ∗, we find the integral equation

σ + ∆0
[(

S − S0
)

: σ
]
+ Λ0

[(
M −M0

)
∴

(
σ ⊗ ∇)] = σ. (54)

The classical Lippmann–Schwinger equation is retrieved when
M = M0 = 0.

Remark 5. In order to apply Eq. (42), we must check that φ∗

defined by (52i) is indeed trace-free, or, equivalently, that I′6 ∴
φ∗ = φ∗. This is readily verified, since I′6 ∴ M = M and
I′6 ∴ M0 = M0.

We are now ready to state the principle of Hashin and Shtrik-
man (1962a), extended to stress-gradient materials. The proof
of this principle can be found in Appendix D; it follows closely
that of Willis (1977, 1991).

6. The principle of Hashin and Shtrikman

We consider again the setting introduced in Sec. 2.3 for pe-
riodic homogenization. We further introduce a homogeneous,
reference stress-gradient material with compliance S0 and gen-
eralized compliance M0 and eliminate the stresses σ in Prob-
lem (53) (

S − S0
)−1 : e∗ + ∆0(e∗) + Λ0(φ∗) = σ, (55a)(

M −M0
)−1 ∴ φ∗ +

[
∆0(e∗) + Λ0(φ∗)

] ⊗ ∇ = 0. (55b)

Then, multiplying with the test functions δe∗ and δφ∗ and
averaging over the unit-cell Ω delivers the following weak form
of the Lippmann–Schwinger equation

〈σ : δe∗〉 = 〈e∗ :
(
S − S0

)−1 : δe∗〉
+ 〈φ∗ ∴ (

M −M0
)−1 ∴ δφ∗〉

+ 〈[∆0(e∗) + Λ0(φ∗)
]

: δe∗〉
+ 〈{[∆0(e∗) + Λ0(φ∗)

] ⊗ ∇} ∴ δφ∗〉, (56)

for all δe∗ ∈ T2(Ω) and δφ∗ ∈ T ′3(Ω). Again, the last two terms
are expressed in Fourier space by means of Parseval’s identity
(see Sec. 4)

〈σ : δe∗〉 = 〈e∗ :
(
S − S0

)−1 : δe∗〉
+ 〈φ∗ ∴ (

M −M0
)−1 ∴ δφ∗〉

+
∑
n∈Z3

conj(η̂n) : ∆̂0(kn) : δη̂n, (57)

for all δe∗ ∈ T2(Ω) and δφ∗ ∈ T ′3(Ω). In the above variational
equation, η̂n is defined by Eq. (49) and

δη̂n = δê∗n − iδφ̂
∗
n · kn. (58)

Eq. (57) suggests to introduce the functional of Hashin and
Shtrikman, HS, defined for all so-called trial strain-polarizations
e∗ ∈ T2(Ω) and φ∗ ∈ T ′3(Ω) as follows

HS(e∗,φ∗,σ) = 1
2σ : S0 : σ + σ : 〈e∗〉
− 1

2 〈e∗ :
(
S − S0

)−1 : e∗〉
− 1

2 〈φ∗ ∴
(
M −M0

)−1 ∴ φ∗〉
− 1

2

∑
n∈Z3

conj(η̂n) : ∆̂0(kn) : η̂n (59)

and it results from Eq. (57) that HS is stationary. This is the sta-
tionarity principle of Hashin and Shtrikman that will be stated
below. We first note that Eq. (51) leads to the following alter-
native expression of HS

HS(e∗,φ∗,σ) = min
σ+S0(Ω)

Πc
0(•, e∗,φ∗)

− 1
2 〈e∗ :

(
S − S0

)−1 : e∗〉
− 1

2 〈φ∗ ∴
(
M −M0

)−1 ∴ φ∗〉. (60)
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Critical point of the functional of Hashin and Shtrikman. The
functional of Hashin and Shtrikman has a unique critical point
e∗crit,φ

∗
crit defined by

e∗crit =
(
S − S0

)
: σ and φ∗crit =

(
M −M0

)
:
(
σ ⊗ ∇), (61)

where σ is the solution to Problem (21). At this point, the value
of the Hashin–Shtrikman functional is

HS(e∗crit,φ
∗
crit,σ) = 1

2σ : Seff : σ, (62)

see proof in Appendix D.1.
The above stationarity principle can be complemented with

an extremum principle, provided that the reference material is
less compliant or more compliant than all constituants of the
composite. This is discussed below.

Maximum of the functional of Hashin and Shtrikman. If S ≥ S0
and M ≥ M0 in the sense of quadratic forms1, then the critical
point of the functional of Hashin and Shtrikman is a maximum:
for all e∗ ∈ T2(Ω) and φ∗ ∈ T ′3(Ω)

1
2σ : Seff : σ ≥ HS(e∗,φ∗,σ). (63)

(The proof of this result is given in Appendix D.2).

Minimum of the functional of Hashin and Shtrikman. Conversely,
if S ≤ S0 and M ≤M0 in the sense of quadratic forms, then the
critical point of the functional of Hashin and Shtrikman is a
minimum: for all e∗ ∈ T2(Ω) and φ∗ ∈ T ′3(Ω)

1
2σ : Seff : σ ≤ HS(e∗,φ∗,σ). (64)

(The proof of this result is given in Appendix D.3).

The variational principle stated in the previous section al-
lows the derivation of rigorous bounds on the effective compli-
ance within the framework of periodic homogenization. In the
remainder of this paper, we extend this result to random homog-
enization. To do so, we take implicitly advantage of the for-
mal analogy between periodic and statistically homogeneous,
ergodic, media that was first put forward by Sab (1994).

7. Apparent and effective compliances of random compos-
ites

In the present section we show how the effective compli-
ance of a random heterogeneous, stress-gradient material can
be derived. Most symbols defined previously keep the same
meaning, except that now, the microstructure is no longer peri-
odic, but random: the heterogeneous properties of the compos-
ite S(x, ω) and M(x, ω) are random variables, indexed by the
realization ω (which fills the whole space R3). We emphasize
that Eq. (20) no longer holds. Separation of scales in the sense

1σ : (S − S0) : σ ≥ 0 and R ∴ (M − M0) : R ≥ 0 for all second-order,
symmetric tensor σ ∈ T2 and third-order, trace-free tensor R ∈ T ′3 .

of Sec. 2.3 does hold: the sides Li of the unit-cell Ω should be
replaced with the typical size L of the structure.

Determination of the effective properties of a random het-
erogeneous material in theory requires the solution to a correc-
tor problem defined over the whole space R3, which is highly
unpractical. It is however known in classical (cauchy) elastic-
ity that solving the corrector problem with periodic boundary
conditions on a large (but finite) microstructure to obtain a sat-
isfactory estimate of the effective properties. This is also true
for stress-gradient elasticity (Tran et al., 2018).

More precisely, let us define the apparent compliance. To
do so, we consider a fixed, cubic, unit-cell Ω = (0, L)3 ⊂ R3.
The restriction to Ω of any realization of the random heteroge-
neous material under consideration will be called a statistical
volume element (SVE) (Ostoja-Starzewski, 2006). For each of
these SVEs, we can solve Problem (21) ∧ (23) (same correc-
tor problem as before). The solution is now indexed by ω (the
realization) and depends on L (the size of the SVE). Owing to
the linearity of this problem, the strain field e and its volume
average 〈e〉 depend linearly on the loading parameter σ. The
apparent compliance Sapp(L, ω) of the SVE Ω is defined as the
linear operator that maps the prescribed macroscopic stress σ
onto the macroscopic strain 〈e〉

〈e〉 = Sapp(L, ω) : σ = Sapp(L, ω) : 〈σ〉, (65)

(note the similarity with Eq. (24) that defines the effective com-
pliance of a periodic microstructure). It is emphasized that Sapp

is a random variable that depends on the realization (the SVE).
Under the assumption of statistical homogeneity and ergodicity
of the microstructure, the apparent compliance converges to the
effective compliance as the size of the SVE Ω tends to infinity:
Seff = limL→+∞ Sapp(L, ω).

Although not necessary (owing to ergodicity), it is often
convenient to take in the previous limit the ensemble average
E[•] over all realizations, prior to letting the domain grow to
infinity: Seff = limL→+∞ Eω[Sapp(L, ω)].

8. The principle of Hashin and Shtrikman for random ho-
mogenization

We are now in a position to extend the variational princi-
ple of Hashin and Shtrikman presented in Sec. 6 to random
homogenization. We can first write this principle realization-
by-realization, for a fixed-size SVE:

1
2σ : Sapp(L, ω) : σ

≥≤ HS(e∗,φ∗,σ, L, ω), (66)

subjected to

S
≥≤ S0 and M

≥≤M0. (67)

In the above equation, HS(•, •,σ, L, ω) denotes the value
of the functional of Hashin and Shtrikman [see Eq. (59)], eval-
uated for the realization ω, on a unit-cell of size L. It is ob-
served that the critical strain polarizations e∗crit and φ∗crit are now
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also size-dependent, random fields. We will therefore use ran-
dom fields as trial strain-polarizations. More precisely, we con-
sider e∗(x, ω) and φ∗(x, ω) two random fields, defined over the
whole space R3 (of course, only their restriction to the unit-cell
Ω will be used to compute the functional of Hashin and Shtrik-
man). We assume that both fields are statistically homogeneous
(their ensemble averages and cross-correlations are translation
invariant) and ergodic. We introduce for further use the cross-
correlations

Ree(r) = E[e∗(x) ⊗ e∗(x + r)] − E[e∗] ⊗ E[e∗], (68a)
Rφφ(r) = E[φ∗(x) ⊗ φ∗(x + r)] − E[φ∗] ⊗ E[φ∗], (68b)
Reφ(r) = E[e∗(x) ⊗ φ∗(x + r)] − E[e∗] ⊗ E[φ∗], (68c)

which not depend on the observation point x ∈ Ω owing to
statistical homogeneity.

Then, the right-hand side of Eq. (66) owes its randomness
to the randomness of the microstructure and the trial strain-
polarizations. We can take in this inequality the ensemble aver-
age over all SVEs, which delivers the following bound

1
2σ : E[Sapp(L)] : σ

≥≤ Eω[HS(e∗,φ∗,σ, L, ω)], (69)

the size L of the SVE being fixed. Finally, taking the limit when
L→ +∞ delivers a bound on the effective compliance

1
2σ : Seff : σ

≥≤ HS∞(e∗,φ∗,σ), (70)

where we have introduced the following functional

HS∞(e∗,φ∗,σ) = lim
L→+∞

Eω[HS(e∗,φ∗,σ, L, ω)], (71)

which is evaluated in Appendix E using a technique similar to
the work of Sab and Nedjar (2005). In this appendix, it is shown
that

HS∞(e∗,φ∗,σ) = 1
2σ : S0 : σ + σ : E[e∗]

− 1
2 E[e∗ :

(
S − S0

)−1 : e∗]

− 1
2 E[φ∗ ∴

(
M −M0

)−1 ∴ φ∗]

− 1
2
(
2π

)−3
∫

k∈R3
∆̂0(k) � R̂ee(k) d3k

− 1
2
(
2π

)−3
∫

k∈R3
∆̂
′′
0 (k) � R̂φφ(k) d3k

− (
2π

)−3
∫

k∈R3

[
∆̂0(k) ⊗ k

] � =[R̂eφ(k)
]
d3k,

(72)

where “�” denotes the total contraction, R̂ee, R̂φφ and R̂eφ are
the (continuous) Fourier transforms of the cross-correlations

R̂ee(k)
R̂φφ(k)
R̂eφ(k)

 =

∫
r∈R3


Ree(r)
Rφφ(r)
Reφ(r)

 e−ik·rd3r, (73)

and the components of ∆̂
′′
0 are defined as follows

∆̂′′0,i jpmnq(k) = ∆̂0,i jmn(k)kpkq. (74)

In the previous section, we have shown that bounds on the
effective compliance of random, heterogeneous, stress-gradient
materials can be produced by means of statistically homoge-
neous and ergodic trial-strain fields e∗ and φ∗. The bounds are
given by Eqs. (70) and (72). In the next section, we show that,
under very mild assumptions, these bounds can be significantly
simplified.

9. Simplifications of the bounds

We assume in this section that Reφ(−r) = Reφ(r). At this
point, this assumption should be seen as purely mathematical;
it will be shown in Sec. 10 that, for N-phase, isotropic materi-
als and strain polarizations that are constant in each phase, this
assumption holds. Under this assumption, R̂eφ is real and the
last term in Eq. (72) vanishes

HS∞(e∗,φ∗,σ) = 1
2σ : S0 : σ + σ : E[e∗]

− 1
2 E[e∗ :

(
S − S0

)−1 : e∗]

− 1
2 E[φ∗ ∴

(
M −M0

)−1 ∴ φ∗]

− 1
2
(
2π

)−3
∫

k∈R3
∆̂0(k) � R̂ee(k) d3k

− 1
2
(
2π

)−3
∫

k∈R3
∆̂
′′
0 (k) � R̂φφ(k) d3k

= HS∞(e∗, 0,σ) + HS∞(0,φ∗, 0). (75)

The last identity shows that, under the assumption: Reφ(−r) =

Reφ(r), there is no coupling between e∗ and φ∗ in the bounds on
the effective compliance. To further simplify the bounds on the
effective compliance, we must discuss on the compliance and
generalized compliance of the reference material.

If the reference material is such that S ≥ S0 and M ≥ M0
at any point, then (see Sec. 6) for fixed SVE size L and for
each realization ω, the functional of Hashin and Shtrikman has
a maximum. In other words, the quadratic part of HS is neg-
ative; therefore, the quadratic part of HS∞ is also negative. In
particular, HS∞(0,φ∗, 0) ≤ 0. Therefore

HS∞(e∗,φ∗,σ) ≤ HS∞(e∗, 0,σ), (76)

which shows that, to maximize HS∞, it is possible to assume a
priori that φ∗ = 0.

Conversely, if the reference material is such that S ≥ S0 and
M ≥M0 at any point, then (see Sec. 6), the functional of Hashin
and Shtrikman has a minimum. In other words, the quadratic
part of HS is positive; therefore, the quadratic part of HS∞ is
also positive. In particular, HS∞(0,φ∗, 0) ≥ 0. Therefore

HS∞(e∗,φ∗,σ) ≥ HS∞(e∗, 0,σ), (77)

which shows that, to minimize HS∞, it is possible to assume
again a priori that φ∗ = 0.

As a conclusion, under the assumption: Reφ(−r) = Reφ(r),
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we have the following bound on the effective stiffness

1
2σ : Seff : σ

≥≤ 1
2σ : S0 : σ + σ : E[e∗]

− 1
2 E[e∗ :

(
S − S0

)−1 : e∗]

− 1
2
(
2π

)−3
∫

k∈R3
∆̂0(k) � R̂ee(k) d3k, (78)

where the simplification φ∗ = 0 does not cause any degradation
of the bound.

A final simplification results from the following assump-
tions: the reference material follows the simplified stress-gradient
model of Tran et al. (2018) and the random field e∗ is statisti-
cally isotropic (in the weak sense): Ree depends on the norm
r = ‖r‖ of the lag-vector r only: Ree(r) = Ree(r). Then its
Fourier transform depends on the norm k = ‖k‖ of the wave-
vector k only: R̂ee(k) = R̂ee(k) and∫

k∈R3
∆̂0(k)�R̂ee(k) d3k =

∫ +∞

0
4πk2∆̂

iso
0 (k)�R̂ee(k) dk, (79)

where

∆̂
iso
0 (k) =

1
4π

∫
‖n‖=1
∆̂0(kn) d2n. (80)

We have shown in Appendix C.3 that

∆̂
iso
0 (k) =

(
1 + k2`2

0
)−1Q0, (81)

where `0 denotes the material internal length of the reference
material. The fourth-order tensor Q0 is defined as follows

Q0 =
4µ0

3
1 + ν0

1 − ν0
J4 +

2µ0

15
7 − 5ν0

1 − ν0
K4, (82)

and is related to the classical Hill tensor P0 of spherical in-
clusions embedded in the homogeneous material C0 (Eshelby,
1957)

Q0 = C0 − C0 : P0 : C0. (83)

Gathering the above results, the bound given by Eq. (78)
reduces to

1
2σ : Seff : σ

≥≤ 1
2σ : S0 : σ + σ : E[e∗]

− 1
2 E[e∗ :

(
S − S0

)−1 : e∗]

− 1
2

∫ +∞

0

1
2π2

k2

1 + k2`2
0

Q0 � R̂ee(k) dk. (84)

In the next section, we show how the above general deriva-
tions can be specialized to N-phase materials. In the spirit of
the classical bounds of Hashin and Shtrikman (1962b), we se-
lect phase-wise constant trial strain-polarizations.

10. Specialization to isotropic, N-phase materials

We assume that the composite is a N-phase material; χα
denotes the indicator function of phase α = 1, . . . ,N: x ∈ Ω be-
longs to phase α if, and only if, χα(x) = 1 (note that χα depends
on the realization). The microstructure is statistically homoge-
neous, ergodic and isotropic; fα = E

[
χα

]
denotes the volume

fraction of phase α. Finally, S αβ denotes the cross-correlation

S αβ(r) = E
[
χα(x) χβ(x + r)

] − fα fβ, (85)

which depends on the norm r = ‖r‖ of the lag-vector only. The
compliance and generalized compliance of phase α are Sα and
Mα, respectively{

S(x)
M(x)

}
=

∑
α

χα(x)
{

Sα
Mα

}
(x ∈ Ω), (86)

where the sum runs over all phase indices α = 1, . . . ,N. Fol-
lowing Hashin and Shtrikman (1962b); Willis (1977), we use
phase-wise constant trial strain-polarizations to derive bounds
on the effective properties. More precisely, we consider the fol-
lowing trial strain-polarization{

e∗(x)
φ∗(x)

}
=

∑
α

χα(x)
{

e∗α
φ∗α

}
(x ∈ Ω), (87)

where e∗α ∈ T2 and φ∗α ∈ T ′3(α = 1, . . . ,N) are constant, deter-
ministic tensors, which are yet unknown. It is emphasized that
the only source of randomness in the trial strain-polarizations
thus constucted comes from the χα factors. For such trial strain-
polarizations, we have

Ree(r) =
∑
α,β

S αβ(r) e∗α ⊗ e∗β, (88a)

Reφ(r) =
∑
α,β

S αβ(r) e∗α ⊗ φ∗β, (88b)

which shows that Reφ(−r) = Reφ(r), while Ree is a function of
the norm of the lag-vector only. If we select a reference material
that follows the simplified model of Tran et al. (2018), then the
simplifications of the previous sections apply, and the trial field
φ∗ becomes superfluous. Using the following identities

E
[
e∗

]
=

∑
α

fαe∗α, (89a)

E
[
e∗ :

(
S − S0

)−1 : e∗
]

=
∑
α

fαe∗α :
(
Sα − S0

)−1 : e∗α, (89b)

we find for the bound given by Eq. (84)

1
2σ : Seff : σ

≥≤ 1
2σ : S0 : σ + σ :

∑
α

fαe∗α

− 1
2

∑
α

fαe∗α :
(
Sα − S0

)−1 : e∗α

− 1
2

∑
α,β

Fαβe∗α : Q0 : e∗β, (90)
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with

Fαβ =
1

2π2

∫ +∞

0

k2

1 + k2`0
Ŝ αβ(k) dk. (91)

This bound is then optimized with respect to the e∗α. The
stationarity conditions read

fα
(
Sα − S0

)−1 : e∗α + Q0 :
∑
β

Fαβe∗β = fα σ, (92)

and we find, for this choice of the e∗α

1
2σ : Seff : σ

≥≤ 1
2σ : S0 : σ + 1

2 σ :
∑
α

fαe∗α. (93)

Eqs. (92) and (93) extend to stress-gradient materials the
classical bounds of Hashin and Shtrikman (1962a,b). Unlike
the classical case, they cannot be expressed in closed-form in
general, and the linear system (92) must in general be solved
numerically. Two particular cases are examined below.

The classical bounds. When `0 = 0 (classical reference mate-
rial), we find from Eq. (91) that

Fαβ =
1

2π2

∫ +∞

0
k2Ŝ αβ(k) dk

=
1

8π3

∫
‖n‖=1

∫
k≥0

Ŝ αβ(k) k2 dk d2n

=
(
2π

)−3
∫

k∈R3
Ŝ αβ(‖k‖) d3k (94)

and we recognize the inverse Fourier transform of Ŝ αβ, evalu-
ated at r = 0. In other words, Fαβ = S αβ(0) = fα

(
δαβ − fβ

)
and

Eq. (92) reads[(
Sα − S0

)−1
+ Q0

]
: e∗α −Q0 :

∑
β

fβe∗β = σ, (95)

and the classical Hashin–Shtrikman bounds are retrieved [see
for example Eq. (3.12) in Willis (1977)].

Two-phase materials. For two-phase materials (N = 2) and
`0 , 0, we have S 11(r) = S 22(r) = −S 12(r). Therefore F11 =

F22 = −F12, and we introduce Ξ such that

F11 = F22 = −F12 = Ξ f1 f2. (96)

The stationarity conditions (92) then read[(
Sα − S0

)−1
+ Ξ Q0

]
: e∗α = σ + Ξ Q0 :

(
f1e∗1 + f2e∗2

)
, (97)

and the Hashin–Shtrikman bounds for stress-gradient materials
can be deduced from the bounds for classical materials by the
substitution: Q0 → Ξ Q0. Using for example Eq. (3.16) in
Willis (1977), we get

Seff
≥≤

(∑
α

fαSα : B∞α
)

:
(∑
α

fαB∞α
)−1
, (98)

where

B∞α =
[
I4 + Ξ Q0 :

(
Sα − S0

)]−1
. (99)

It is remarkable that the generalized bounds of Hashin–Shtrikman-
type obtained in the previous section depend explicitly on the
cross-correlations S αβ of the microstructure. This result was
expected, since stress-gradient materials introduce at least one
material internal length which must be compared to a typical
length-scale (e.g. the correlation length) of the microstructure.
Note that, for the same reason, such size-effects are also ob-
served with strain-gradient materials (Smyshlyaev and Fleck,
1994).

This size-effect is at odds with the classical bounds, for
which it is well-known that the S αβ disappear, provided that
the microstructure is isotropic (Willis, 1977). In that regard,
the generalized bounds are “less universal” than their classical
counterpart; they are arguably more sensitive to the fine details
of the microstructure. This is illustrated quantitatively in the
next section, where we consider a specific two-phase random
material.

11. Applications

We consider in this section two applications of the above re-
sults. Both microstructures are distributions of monodisperse,
spherical inclusions. The domain covered by the spheres will
be referred to as “the inclusions” (index “i”) while the comple-
mentary space will be referred to as “the matrix” (index “m”).
The total volume fraction of inclusions is f ; the radius of the
spheres is a and their volume is v = 4

3πa3.
In order to ease comparisons, we use the same numerical

values as in the previous study by Tran et al. (2018)

µi = 10µm, (100a)
νi = νm = 0.25, (100b)
`i = `m ∈ {

0.1a, 0.5a, a
}
. (100c)

Note that, in view of our assumption that scales are sep-
arated (see Sec. 2.3), we must ensure that ‖M‖/‖S‖ � L2 or
‖M‖/‖S‖ ∼ L2, where L is the size of the unit-cell (periodic
microstructures) or the correlation length. Typically, L is of the
order of a, while in the simplified model of Tran et al. (2018),
‖M‖/‖S‖ is of the order of `2. Therefore, we must ensure that
`i, `m � a or `i, `m ∼ a, which is consistent with the above
values.

We first consider in Sec. 11.1 a random microstructure re-
sulting from the random distribution of monodisperse overlap-
ping spheres [the so-called boolean model, see Jeulin (2000)],
as depicted in Fig. 1. This first model exhibits short-range cor-
relations (spatial correlations vanish for distances greater than
2a).

We then consider in Sec. 11.2 a periodic (cubic) array of
spherical inclusions (see Fig. 1, bottom-right). Owing to peri-
odicity, the correlation range is effectively infinite.
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𝑓 = 0.5 𝑓 = 0.3

𝑓 = 0.3𝑓 = 0.1

Figure 1: The microstructures considered in Sec. 11. Top-left, top-right and
bottom-left: random distributions of monodisperse overlapping spheres for var-
ious volume fractions. Note that although all spheres share the same radius a,
the radii of their intersections with a fixed plane are distributed in the range(
0, a

)
. Bottom-right: periodic (cubic) distribution of spheres. Note that the pe-

riodic microstructure seems more densely packed because the section is taken
through a plane that contains the centers of all the represented inclusions.

Comparing the bounds obtained for these two extreme cases
will allow to quantify the role played by the microstructural
cross-correlations. Note however that in the first application,
the effective compliance has isotropic symmetry, while in the
second application, the effective compliance has only cubic sym-
metry. Comparing the resulting bounds in both cases might
therefore seem questionable. This is the reason why the com-
parison will be restricted to the effective bulk modulus κeff , de-
fined as κeff = 1

9 I2 : Ceff : I2 (regardless of the symmetries of
Ceff). Note that, for classical elasticity, the bounds of Hashin
and Shtrikman (1962b) on the effective bulk modulus coincide
for periodic and random microstructures (this will again be ver-
ified below).

11.1. A random microstructure

For the random microstructure considered here, the results
of Sec. 10 (in particular, the last part on two-phase materials)
apply. Introducing the intensity ρ of the Poisson process (num-
ber of inclusions per unit volume), we have the classical identi-
ties (Jeulin, 2000)

f = 1 − exp(−ρv) S ii(r) = S mm(r) = f
(
1 − f

)
γ(r) (101)

with

γ(2ax) =
exp[ρvw(x)] − 1

exp(ρv) − 1
, (102)

0.0 0.2 0.4 0.6 0.8 1.0
r/(2a)

0.0

0.2

0.4

0.6

0.8

1.0

γ
(r

)

f = 0.1
f = 0.3
f = 0.5

Figure 2: Covariance function γ of the boolean model for various values of the
volume fraction f of inclusions.

where w(x) is the normalized volume of the intersection of two
spheres of unit diameter (x: center-to-center distance)

w(x) =

 1
2 x3 − 3

2 x + 1 if x ≤ 1,
0 otherwise.

(103)

Fig. 2 shows the covariance function γ for various values of
the volume fraction f . The coefficient Ξ is then given by the
following integral [see Eq. (91)]

Ξ =
1

2π2

∫ +∞

0

k2

1 + k2`0
γ̂(k) dk, (104)

where γ̂ is the rotation-invariant 3D Fourier transform of γ(r) =

γ(r)

γ̂(k) =

∫
r∈R3

γ(‖r‖) exp(−ik · r) d3r

=

∫
‖n‖=1

∫
r≥0

r2γ(r) exp(−irk · n) dr d2n

=

∫ 2a

0
4πr2γ(r)

sin kr
kr

dr, (105)

where the upper-bound in the last integral accounts for the fact
that γ(r) = 0 for r ≥ 2a. Numerical integration is used to
compute the Fourier transform γ̂ as well as the microstructural
parameter Ξ. The procedure is detailed in Appendix F.

Fig. 3 shows for various values of the volume fraction f
the variations of Ξ with respect to the internal length `0 of the
reference material. Clearly, Ξ is not very sensitive to the volume
fraction. It is however rather sensitive to the `0/2a ratio, that is
to the internal length to correlation length ratio.

Only the numerical values relating to the effective bulk mod-
ulus κeff are presentend in Figs. 4, 5 and 6; similar trends are ob-
served with the effective shear modulus. To obtain this bounds,
we selected first S0 = Si and M0 = Mi (upper bound), then S0 =

Sm and M0 = Mm (lower bound). It is observed that the Mori–
Tanaka estimate of Tran et al. (2018) is close, but not equal to
the lower bound. This is at odds with classical elasticity, but is
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Figure 3: The value of Ξ for various values of the volume fraction f and the
internal length `0 of the reference material.
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Figure 4: Upper and lower bounds on the effective bulk modulus κeff , for
`i = `m = 0.1a and various values of the volume fraction. Both random (see
Sec. 11.1) and periodic (see Sec. 11.2) microstructures are plotted on the same
graph. For comparison, the thick line represents the Mori–Tanaka estimate de-
rived by Tran et al. (2018).

readily explained by the fact that, for stress-gradient materials,
the solution to Eshelby’s inhomogeneity problem does not co-
incide with the solution to Eshelby’s inclusion problem (Tran
et al., 2018).

11.2. A periodic microstructure
For the periodic microstructure considered here, it is conve-

nient to consider that the unit-cell and the inclusion are centered
at the origin: Ω = (−L/2, L/2)3 and

χ(x) =

1 if ‖x‖ ≤ a,
0 otherwise,

(106)

where χ denotes the indicator function of the inclusion. We will
again consider phase-wise constant trial strain-polarizations:

e∗(x) = χ(x)e∗i +
[
1 − χ(x)

]
e∗m, (107a)

φ∗(x) = χ(x)φ∗i +
[
1 − χ(x)

]
φ∗m, (107b)

0.0 0.2 0.4 0.6 0.8 1.0
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κe
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/κ

m

`i = `m = 0.5a

Random
Periodic
Mori–Tanaka

Figure 5: Upper and lower bounds on the effective bulk modulus κeff , for
`i = `m = 0.5a and various values of the volume fraction. Both random (see
Sec. 11.1) and periodic (see Sec. 11.2) microstructures are plotted on the same
graph. For comparison, the thick line represents the Mori–Tanaka estimate de-
rived by Tran et al. (2018).
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Figure 6: Upper and lower bounds on the effective bulk modulus κeff , for
`i = `m = 0.5a and various values of the volume fraction. Both random (see
Sec. 11.1) and periodic (see Sec. 11.2) microstructures are plotted on the same
graph. For comparison, the thick line represents the Mori–Tanaka estimate de-
rived by Tran et al. (2018).
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where e∗i , e∗m, φ∗i and φ∗m are constant tensors. In the periodic
setting considered here, we need to optimize the functional of
Hashin and Shtrikman defined by Eq. (59).

We first prove that (as in the random case), the optimal
third-order eigenstrain is null. Indeed, the Fourier coefficients
of the trial strain-polarization e∗ are

ê∗n =

χ̂n
(
e∗i − e∗m

)
for n , (0, 0, 0),

〈e∗〉 = f e∗i +
(
1 − f

)
e∗m for n = (0, 0, 0),

(108)

with

χ̂n = f F(kna) with F(ξ) = 3
sin ξ − ξ cos ξ

ξ3 . (109)

Similar expressions hold for φ̂
∗
n and we find that ê∗n and φ̂∗n

are real. Therefore, ∆̂0(kn) being symmetric

conj(η̂n) : ∆̂0(kn) : η̂n

=
(
ê∗n + iφ̂

∗
n · kn

)
: ∆̂0(kn) :

(
ê∗n − iφ̂

∗
n · kn

)
= ê∗n : ∆̂0(kn) : ê∗n + φ̂

∗
n ∴

[
kn ⊗ ∆̂0(kn) ⊗ kn

]
∴ φ̂

∗
n (110)

and [see Eq. (59)]

HS(e∗,φ∗,σ) = HS(e∗, 0,σ) + HS(0,φ∗, 0). (111)

Stationarity with respect to φ∗i and φ∗m leads to φ∗i = φ∗m = 0
as announced. Then, recalling that ∆̂0(kn) = 0 for n = (0, 0, 0)
and using Eq. (108), we find that∑

n∈Z3

conj(η̂n):∆̂0(kn):η̂n = f
(
1− f

)(
e∗i −e∗m

)
:Q:

(
e∗i −e∗m

)
, (112)

with

f
(
1 − f

)
Q =

∑
n∈Z3

|χ̂n|2∆̂0(kn), (113)

where the f
(
1 − f

)
normalization will be justified below. We

are therefore left with the optimization of

HS(e∗, 0,σ) = 1
2σ : S0 : σ + fσ : e∗i +

(
1 − f

)
σ : e∗m

− 1
2 f e∗i :

(
Si − S0

)−1 : e∗i
− 1

2
(
1 − f

)
e∗m :

(
Sm − S0

)−1 : e∗m
− 1

2 f
(
1 − f

)(
e∗i − e∗m

)
: Q :

(
e∗i − e∗m

)
, (114)

with respect to e∗i and e∗m. This leads to the following stationar-
ity conditions[(

Si − S0
)−1

+ Q
]

: e∗i = σ + Q : 〈e∗〉, (115a)[(
Sm − S0

)−1
+ Q

]
: e∗m = σ + Q : 〈e∗〉, (115b)

with 〈e∗〉 = f e∗i +
(
1− f

)
e∗m. Observe the similarity with Eqs. (97)

corresponding to the random case: Eqs. (98) and (99) would
therefore apply with the substitution Ξ Q0 → Q.

However, in the present application, we seek a bound on
the effective bulk modulus only, for which a direct derivation
will deliver more simple expressions. We select a spherical

(hydrostatic) macroscopic stress σ. Since Q has cubic sym-
metry, it can be shown that the solution

(
e∗i , e

∗
m
)

to the system
(115a) ∧ (115b) must also be spherical

e∗i = e∗i I2 and e∗m = e∗mI2 when σ = σI2, (116)

where e∗i , e∗m and σ are scalars. Contraction of Eqs. (115a) and
(115b) with the second-order identity tensor then delivers the
two scalar equations[

3
(
κ−1

i − κ−1
0

)−1
+ q

]
e∗i = σ + q〈e∗〉 (117a)[

3
(
κ−1

m − κ−1
0

)−1
+ q

]
e∗m = σ + q〈e∗〉 (117b)

where we have introduced q = J4 :: Q = 1
3 I2 : Q : I2. We show

in Appendix C.3 that, for the simplified model of Tran et al.
(2018) and for n , (0, 0, 0)

J4 :: ∆̂0(kn) =
(
1 + k2

n`
2
0
)−1q0 with q0 = J4 :: Q0, (118)

while J4::∆̂0(kn) = 0 for n = (0, 0, 0). Combining with Eq. (113),
we find

f
(
1 − f

) q
q0

=
∑

n,(0,0,0)

|χ̂n|2
1 + k2

n`
2
0

=
∑
n∈Z3

|χ̂n|2
1 + k2

n`
2
0

− f 2, (119)

since χ̂(0) = 〈χ〉 = f . Note that when `0 = 0 (classical elastic-
ity), we find from Parseval’s identity that the sum in the right-
hand side coincides with f . In other words, q = q0 for `0 = 0,
which explains the f

(
1 − f

)
scaling in the definition (113) of Q

and leads us to define Ξper as the ratio Ξper = q/q0. The result-
ing bound on the effective bulk modulus then becomes formally
equivalent to expressions (98) and (99)

(
κeff)−1 ≥≤ f κ−1

i +
(
1 − f

)
κ−1

m

f bi +
(
1 − f

)
bm

, (120)

with

bα =
[
1 + 1

3 Ξperq0
(
κ−1
α − κ−1

0
)]−1 (α = i,m). (121)

Evaluation of the bounds on the effective bulk modulus there-
fore reduces to the evaluation of Ξper for various values of f
and `0. Note that the microstructural parameter Ξper thus in-
troduced is strictly equivalent to Ξ introduced in the random
case, albeit for spherical loadings only. Direct summation of
the lattice sum (119) was performed; convergence was found to
be fairly quick. Summing 1213 terms (n ∈ {−60, . . . , 60

}3) re-
sulted in about 1 % accuracy for Ξper, which was deemed suffi-
cient. Fig. 7 displays the values of Ξper; comparison with Fig. 3
shows that this microstructural parameter is more sensitive to
the value of the volume fraction than in the random case.

Bounds on κeff are again obtained by selecting first S0 = Si
and M0 = Mi (upper bound), then S0 = Sm and M0 = Mm
(lower bound). These bounds are plotted on Figs. 4, 5 and 6 for
three values of `0 = `i = `m and the whole range of volume
fractions 0 ≤ f ≤ π/6. For `0 → 0 (classical materials), we find
that the bounds for both random and periodic microstructures
coincide as announced, since both Ξ → 1 and Ξper → 1 in that
case. For finite values of `0, the bounds differ as expected for
both types of microstructures.
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Figure 7: The value of Ξper for various values of the volume fraction f and the
internal length `0 of the reference material.

12. Conclusions and perspectives

Adopting a stress-based approach, we have extended the
classical variational principle of Hashin and Shtrikman (1962a)
to stress-gradient materials, first for periodic homogenization,
then for random homogenization. In both cases, we assumed
that the material internal lengths were all of the order of the size
of the heterogeneities or smaller, which led to homogenization
as classical (rather than stress-gradient) materials.

The functional of Hashin and Shtrikman that we introduced
involves two trial fields: a second-order eigenstrain, and a third-
order eigenstrain. We have shown that in many cases of in-
terest, the latter can be discarded for random homogenization,
which significantly simplified the subsequent derivations. For
isotropic microstructures and isotropic stress-gradient materi-
als that follow the simplified model of Tran et al. (2018), we
adopted an approach similar to the re-derivation by Willis (1977)
of the classical bounds of Hashin and Shtrikman (1962b). Our
bounds are similar to the classical ones, but for the fact that a
microstructural parameter related to the covariance of the mi-
crostructure is involved. In that sense, the bounds that we ob-
tained are “less universal” than the classical bounds of Hashin
and Shtrikman (1962b).

We have identified two opportunities for improving the bounds
proposed in the present work.

We first observe that the simplification that eventually leads
to discarding the third-order eigenstrain is induced by the as-
sumption that the cross-correlation of the second- and third- or-
der eigenstrains is centro-symmetric. The price to pay for this
simplification is the fact that the resulting bounds no longer de-
pend on the the material internal lengths of the phases: they
depend on the compliance of the phases, the compliance of the
reference material and its material internal lengths. In those
cases where the reference material coincides with one of the
phases, the resulting bound may depend on the material inter-
nal lengths of this phase (but only this one).

Selecting trial fields such that their cross-corelations are not
centro-symmetric may therefore deliver improved bounds on

the effective compliance of heterogeneous, stress-gradient ma-
terials, since they would include more information on the mi-
crostructure (all material internal lengths would be accounted
for simultaneously).

Second, Tran et al. (2018) have shown that boundary layers
may arise at the interface between two phases of the compos-
ite. Clearly, adopting phase-wise constant trial fields as we did
in this paper cannot capture, even approximately, such bound-
ary layers. A natural extension to the present work would be
to apply the morphologically representative patterns method-
ology introduced by Bornert et al. (1996). It was with this ex-
tension in mind that we derived in Sec. 8 quite general bounds
with minimal assumptions on the random trial fields (the case
of phase-wise constant trial fields being seen in Sec. 10 as a
specialization of a much more general case).

These two perspectives will be explored in future work.
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Appendix A. Proof of the minimum complementary energy
principle

In this section, we prove that σ is the unique solution to
problem (25) if, and only if,σ is the unique minimizer of Πc(•, e∗,φ∗).
We consider two stress fields σ ∈ σ + S0(Ω) and δσ ∈ S0(Ω).
Without further assumptions on these fields, we have

Πc(σ + δσ, e∗,φ∗) = Πc(σ, e∗,φ∗) + Wc(δσ)
+ 〈e : δσ〉 + 〈φ ∴

(
δσ ⊗ ∇)〉, (A.1)

where we have introduced

e = S : σ + e∗ and φ = M ∴
(
σ ⊗ ∇) + φ∗. (A.2)

Integrating by parts in the last volume integral in Eq. (A.1),
we find

〈φ ∴
(
δσ ⊗ ∇)〉 =

1
|Ω|

∫
∂Ω

δσ : φ · n dS − 〈δσ :
(
φ · ∇)〉,

(A.3)

where n denotes the outer unit normal to the boundary ∂Ω of
the unit-cell Ω. Gathering the above results, we get

Πc(σ + δσ, e∗,φ∗) = Πc(σ, e∗,φ∗) + Wc(δσ)
+ 〈(e − φ · ∇) : δσ〉
+

1
|Ω|

∫
∂Ω

δσ : φ · n dS . (A.4)

Proof that any solution to problem (25) minimizes the com-
plementary energy. We first assume that σ is the solution to
problem (25). Observing that φ · n is Ω-skew-periodic [see
Eq. (25f)], it is found that the product δσ : φ · n is also Ω-skew-
periodic, since δσ is Ω-periodic by construction. Therefore, the
last term in Eq. (A.4) vanishes. Then, from Eq. (25d),

(
e−φ ·∇)

is the symmetric part of the gradient of a vector field, u, and

〈(e − φ · ∇) : δσ〉 = 〈sym(u ⊗ ∇) : δσ〉
=

1
|Ω|

∫
∂Ω

u · δσ · n dS − 〈u · (σ · ∇)〉,
(A.5)

and the last term vanishes, since δσ ∈ S0(Ω) is divergence-free
in Ω. Now, from Eq. (25e), u − 〈e〉 · x is Ω-periodic. Since δσ
is also Ω-periodic, we have∫

∂Ω

u · δσ · n dS =

∫
∂Ω

(〈e〉 · x) · δσ · n dS . (A.6)

Integrating again by parts, and using again the fact that, by
construction, δσ is divergence-free with null average

1
|Ω|

∫
∂Ω

(〈e〉 · x) · δσ · n dS = 〈[(〈e〉 · x) ⊗ ∇] : δσ〉
+ 〈(〈e〉 · x) · (σ · ∇)〉

= 〈〈e〉 : δσ〉
= 〈e〉 : 〈δσ〉 = 0. (A.7)

Gathering the above results, we finally find that, for all δσ ∈
S0(Ω)

Πc(σ + δσ, e∗,φ∗) = Πc(σ, e∗,φ∗) + Wc(δσ)
≥ Πc(σ, e∗,φ∗), (A.8)

since Wc is positive definite. Therefore, Πc(•, e∗,φ∗) is mini-
mum at the solution of problem (25).
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Proof that the minimizer of the complementary energy solves
problem (25). Conversely, we now assume that σ is a mini-
mizer of Πc(•, e∗,φ∗). Stationarity requires that the linear part
of Πc(σ + δσ, e∗,φ∗) − Πc(σ, e∗,φ∗) in Eq. (A.4) must vanish
for all δσ ∈ S0(Ω)∫

Ω

(
e − φ · ∇) : δσ dV +

∫
∂Ω

δσ : φ · n dS = 0. (A.9)

Considering first stress tensors δσ that vanish on ∂Ω and
using a classical result by Moreau (1979), we find the existence
of a vector field u such that

e − φ · ∇ = sym(u ⊗ ∇). (A.10)

Plugging into Eq. (A.9), we then have for all δσ ∈ S0(Ω)∫
∂Ω

δσ : φ · n dS = 0, (A.11)

which requires that φ · n be Ω-skew-periodic (since δσ is pe-
riodic). Substitution of Eqs. (A.10) and (A.11) in Eq. (A.9)
shows that, for all δσ ∈ S0(Ω)∫

Ω

sym(u ⊗ ∇) : δσ dV = 0, (A.12)

and, from a classical orthogonality result (Jikov et al., 1994,
§12.7), we find that u = F · x + uper, where F is a constant
tensor and uper is Ω-periodic. Comparing with Eq. (A.10) and
observing that 〈φ · ∇〉 = 0 (since φ · n is Ω-skew-periodic)

F = 〈e〉 − 〈φ · ∇〉 = 〈e〉, (A.13)

which proves that u − 〈e〉 · x is Ω-periodic. We have there-
fore proved that all equations of problem (25) are satisfied. In
other words, the minimizer of the complementary energy Πc

solves problem (25). From uniqueness of this solution (Sab
et al., 2016), it is further observed that this minimizer is unique,
and the proof is complete.

Appendix B. Critical value of the complementary energy –
Clapeyron’s theorem

In the present section, we derive a simplified expression of
the minimum value of the complementary energy Πc. Let σ ∈
σ + S0(Ω) denote the solution to Problem (25) [see Eq. (29)].
Then

Πc(σ, e∗,φ∗) = 1
2 〈σ : S : σ +

(
σ ⊗ ∇) ∴ M ∴

(
σ ⊗ ∇)〉

+ 〈σ : e∗〉 + 〈(σ ⊗ ∇) ∴ φ∗〉
= 1

2 〈σ :
(
e + e∗

)
+

(
σ ⊗ ∇) ∴ (

φ + φ∗
)〉, (B.1)

where we have introduced the constitutive relations (25b) and
(25c). Then, integrating by parts the second term

〈(σ ⊗ ∇) ∴ φ〉 = −〈σ :
(
φ · ∇)〉 + 1

|Ω|
∫
∂Ω

σ : φ · n dS , (B.2)

and the surface integral vanishes, since σ is Ω-periodic, while
φ·n is Ω-skew-periodic. Plugging into equation (B.1) and using
the compatibility equation (25d)

2Πc(σ, e∗,φ∗) = 〈σ:
[
sym(u⊗∇)+e∗

]〉+〈(σ⊗∇) ∴ φ∗〉. (B.3)

Integrating again by parts and observing that σ ∈ σ+S0(Ω)
is divergence-free, we find

2Πc(σ, e∗,φ∗) =
1
|Ω|

∫
∂Ω

u · σ · n dS + 〈σ : η〉
+ 〈(σ ⊗ ∇) ∴ φ∗〉, (B.4)

and the surface integral is evaluated as follows∫
∂Ω

u · σ · n dS =

∫
∂Ω

(
u − 〈e〉 · x) · σ · n dS

+

∫
∂Ω

(〈e〉 · x) · σ · n dS . (B.5)

The first term vanishes since
(
u − 〈e〉 · x) is Ω-periodic; be-

sides, the second term can again be integrated by parts

1
|Ω|

∫
∂Ω

(〈e〉 · x) · σ · n dS

=
1
|Ω|

∫
Ω

σ : 〈e〉 dV = 〈σ〉 : 〈e〉 = σ : 〈e〉. (B.6)

Equation (28) is then readily retrieved.

Appendix C. On the Delta operator

Appendix C.1. Expression in Fourier space of the Delta oper-
ator

In the present section, we derive an expression of the Fourier
components of the Delta operator. Our starting point is Prob-
lem (38), which is recalled below

σ̂ · ik = 0, (C.1a)

ε̂ = Ŝ`0 : σ̂ + ê∗ − iφ̂
∗ · k, (C.1b)

ε̂ = i sym(û ⊗ k), (C.1c)

where we have dropped the lower indices for convenience. This
problem is formally equivalent to the problem that defines the
Delta operator for classical elasticity. The derivation of the gen-
eralized Delta operator is therefore identical to that of the classi-
cal Delta operator as outlined below [more details can be found
in e.g. Suquet (1990)]. Problem (C.1) can be transformed

σ̂ · ik = 0, (C.2a)

σ̂ = Ĉ`

0 : ε̂ + τ̂, (C.2b)
ε̂ = i sym(û ⊗ k) = iI4 :

(
û ⊗ k

)
, (C.2c)

where Ĉ`

0 = (Ŝ`0)−1, τ̂ = −Ĉ`

0 : η̂ and η̂ = ê∗− iφ̂
∗ ·k. Note that in

Eq. (C.2c), we have used the fact that double contraction with
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I4 is equivalent with symmetrization. Plugging Eq. (C.2c) into
Eq. (C.2b), we find

σ̂ = i
(
Ĉ`

0 · k
) · û + τ̂, (C.3)

which, upon substitution in Eq. (C.2a) delivers the following
linear relationship between û and τ̂

Â`

0 · û = iτ̂ · k, with Â`

0(k) = k · Ĉ`

0(k) · k. (C.4)

Assuming that the “acoustic tensor” Â`

0 is non-singular (for
k , 0), we find from Eq. (C.4) (owing to the symmetry of τ̂)

û = iB̂`

0 ·
(
τ̂ · k)

= i
(
B̂`

0 ⊗ k
)

: τ̂ = i
[(

B̂`

0 ⊗ k
)

: I4
]

: τ̂, (C.5)

where we have introduced the inverse B̂`

0 of Â`

0. Then, using
Eq. (C.2c)

ε̂ = −Γ̂0 : τ̂ with Γ̂0 = I4 :
[
k ⊗ B̂`

0 ⊗ k
]

: I4. (C.6)

The above expression is the extension to stress-gradient ma-
terials of the classical Gamma operator that relates the eigen-
stress τ to the strain ε (Korringa, 1973; Kröner, 1974; Zeller
and Dederichs, 1973). The stresses are finally deduced from
Eq. (C.2b) and the definition of τ̂

σ̂ = Ĉ`

0 : ε̂ + τ̂ = −Ĉ`

0 : Γ̂0 : τ̂ + τ̂

= Ĉ`

0 : Γ̂0 : Ĉ`

0 : η̂ − Ĉ`

0 : η̂, (C.7)

and finally

∆̂0(k) = Ĉ`

0(k) − Ĉ`

0(k) : Γ̂0(k) : Ĉ`

0(k). (C.8)

Remark 6. The above derivation does not apply to the case k =

0, since the acoustic tensor Â`

0 is singular. Since the average
stress is required to vanish in the solution to Problem (31) when
σ = 0, we must prescribe ∆̂0(k) = 0.

Remark 7. Expressions (C.6) and (C.8) of the Gamma and
Delta operators are unchanged for boundary conditions at in-
finity. In this case, the Fourier coefficients ûn, φ̂n and σ̂n are
to be replaced with the Fourier transforms û, φ̂ and σ̂ and the
synthesis formula (40) reads

σ(x) = −(2π)−3
∫
R3
∆̂0(k) : η̂(k)eik·x dVk. (C.9)

Appendix C.2. The case of isotropic materials
In this section, we derive the expression of the Delta oper-

ator for isotropic stress-gradient materials. The tensors S0 and
M0 being in this case isotropic, the fourth-rank tensor Ŝ`0(k)
defined by Eq. (36) is transverse isotropic and is expanded in
Walpole’s basis (Walpole, 1984), which is recalled in Appendix
G. We will find, formally

Ŝ`0 = aEI +bEII +c
(
EIII +EIV)

+ f F+gG = {[ a c
c b

]
, f , g}, (C.10)

where we used the compact notation introduced in Appendix
G. In the above expansion, it is observed that the coefficients of

EIII and EIV are identical owing to major symmetry. Inversion
delivers the non-local stiffness

Ĉ`

0 = {d−1[ b −c−c a
]
, 1/ f , 1/g} with d = ab − c2. (C.11)

Then, the acoustic tensor Â`

0 defined by Eq. (C.4) is ob-
tained from Eq. (G.6)

Â`

0(k) = k2n · Ĉ`

0(k) · n = k2
(b
d

p +
1
2g

q
)
. (C.12)

For the inversion of the acoustic tensor, it is recalled that p
and q are two mutually orthogonal projectors, which results in

B̂`

0(k) =
1
k2

(d
b

p + 2gq
)

(C.13)

and

n ⊗ B̂`

0(k) ⊗ n =
d
b

n ⊗ p ⊗ n + 2gn ⊗ q ⊗ n. (C.14)

Finally, using Eq. (G.2)

Γ̂0 = I4 :
[
n⊗B̂`

0(k)⊗n
]
:I4 =

d
b

EI+gG =
{[ d/b 0

0 0
]
, 0, g

}
, (C.15)

from which it results, using Eq. (C.8)

∆̂0 = {d−1[ b −c−c a
]
, 1/ f , 1/g} − {d−1[ b −c

−c c2/b
]
, 0, 1/g}

= {[ 0 0
0 1/b

]
, 1/ f } =

EII

b
+

F
f
. (C.16)

In other words, to compute the Delta operator of isotropic
materials, it is sufficient to evaluate the EI and F coefficients of
the expansion in Walpole’s basis of the non-local compliance
defined by Eq. (36).

Appendix C.3. The simplified model of Tran et al. (2018)
In the present section, we compute the coefficients b and f

introduced above for the simplified model of Tran et al. (2018)
defined by Eq. (18). It results from Eq. (36) that, for all x, y ∈
T2

x : Ŝ`0(k) : y = x : S0 : y + k2(x ⊗ n
)
∴ M0 ∴

(
y ⊗ n

)
, (C.17)

with k = ‖k‖ and n = k/k. Since the generalized compliance
M0 is a linear combination of I′6 and J′6 [see Eq. (18)], evalua-
tion of Ŝ`0 requires the evaluation of (x ⊗ n) ∴ I′6 ∴ (y ⊗ n) and
(x ⊗ n) ∴ J′6 ∴ (y ⊗ n). From Eq. (7), we have

I′6 ∴
(
y⊗n

)
= y⊗n− 1

2 I4 ·(y⊗n
)
:I2 = y⊗n− 1

2 I4 ·y ·n, (C.18)

and(
x ⊗ n

)
∴ I′6 ∴

(
y ⊗ n

)
=

(
x ⊗ n

)
∴

(
y ⊗ n − 1

2 I4 · y · n)
= x : y − 1

2
(
x ⊗ n

)
∴ I4 · y · n

= x : y − 1
2 x : I4 :

[
n ⊗ (

y · n)]
= x : y − 1

2
(
x · n) · (y · n)

= x :
(
I4 − 1

2 n ⊗ I2 ⊗ n
)

: y.
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(C.19)

Since x and y are symmetric, we can perform the substitu-
tions x→ I4 : x and y→ I4 : y

x :
(
I4−n⊗ I2⊗n

)
: y = x :

[
I4− 1

2 I4 :
(
n⊗ I2⊗n

)
: I4

]
: y (C.20)

and finally, using Eqs. (G.2) and (G.3)(
x ⊗ n

)
∴ I′6 ∴

(
y ⊗ n

)
= x :

( 1
2 EI + EII + F + 3

4 G
)

: y. (C.21)

We now turn to the (x ⊗ n) ∴ J′6 ∴ (y ⊗ n) term. From
Eq. (7), we have

I′6 ∴
(
I2 ⊗ ek

)
= I2 ⊗ ek − 1

2 I4 · (I2 ⊗ ek
)

: I2

= I2 ⊗ ek − 1
2 I4 · ek (C.22)

and Eq. (8) shows that

J6 = 2
5δi j

(
I2 ⊗ ei − 1

2 I4 · ei
) ⊗ (

I2 ⊗ e j − 1
2 I4 · e j

)
. (C.23)

Then(
I2 ⊗ e j − 1

2 I4 · e j
)
∴

(
y ⊗ n

)
= n jI2 : y − 1

2 y :
(
e j ⊗ n

)
(C.24)

and

5
2
(
x ⊗ n

)
∴ J6 ∴

(
y ⊗ n

)
= δi j

[
niI2 : x − 1

2 x :
(
n ⊗ ei

)][
n jI2 : y − 1

2 y :
(
e j ⊗ n

)]
= x :

(
I2 ⊗ I2 − 1

2 I2 ⊗ n ⊗ n − 1
2 n ⊗ n ⊗ I2 + 1

4 n ⊗ I2 ⊗ n
)

: y
= x :

(
I2 ⊗ I2 − 1

2 I2 ⊗ p − 1
2 p ⊗ I2 + 1

4 n ⊗ I2 ⊗ n
)

: y.
(C.25)

Replacing I2 with p+q, observing again that the symmetric
tensors x and y can be replaced with I4 :x and I4 :y, respectively,
and using Eq. (G.3), we find that(

x ⊗ n
)
∴ J6 ∴

(
y ⊗ n

)
= 2

5 x :
(
q ⊗ q + 1

2 p ⊗ q + 1
2 q ⊗ p + 1

4 n ⊗ I2 ⊗ n
)

: y

= 2
5 x :

[
2EII + 1

2

√
2
(
EIII + EIV)

+ 1
4 n ⊗ I2 ⊗ n

]
: y

= 2
5 x :

[
2EII + 1

2

√
2
(
EIII + EIV)

+ I4 :
(
n ⊗ I2 ⊗ n

)
: I4

]
: y

= x :
[ 1

10 EI + 4
5 EII + 1

5

√
2
(
EIII + EIV)

+ 1
20 G

]
: y.

(C.26)

Gathering the above results, we get[
16µ0

(
1 + ν0

)](
x ⊗ n

)
∴ M0 ∴

(
y ⊗ n

)
= `2

0x :
[
2
(
2 + ν0

)
EI + 8

(
1 − ν0

)
EII − 4ν0

√
2
(
EIII + EIV)

+ 8
(
1 + ν0

)
F +

(
6 + 5ν0

)
G

]
: y

(C.27)

and the non-local elasticity operator Ŝ`0(k) reads

Ŝ`0(k) =
4 + k2`2

0
(
2 + ν0

)
8µ0

(
1 + ν0

) EI +

(
1 + k2`2

0
)(

1 − ν0
)

2µ0
(
1 + ν0

) EII

− ν0
√

2
(
2 + k2`2

0
)

4µ0
(
1 + ν0

) (
EIII + EIV)

+
1 + k2`2

0

2µ0
F

+
8
(
1 + ν0

)
+ k2`2

0
(
6 + 5ν0

)
16µ0(1 + ν0)

G (C.28)

and

b =

(
1 + k2`2

0
)(

1 − ν0
)

2µ0
(
1 + ν0

) and f =
1 + k2`2

0

2µ0
. (C.29)

Finally, Eqs. (C.16) and (C.29) deliver the closed-form ex-
pression of the Delta operator

∆̂0(k) =
2µ0

1 + k2`2
0

(1 − ν0

1 + ν0
EII + F

)
. (C.30)

Quite remarkably, for the simplified model of Tran et al.
(2018), the Fourier components of the generalized Delta opera-
tor are deduced from its classical counterpart by the substitution
µ0 → µ0/

(
1 + k2`2

0
)

[see Eq. (44)].
The total contractions of ∆̂0 with the tensors J4 and K4 will

also be used

J4 :: ∆̂0(k) =
4µ0

3
(
1 + k2`2

0
) 1 + ν0

1 − ν0
, (C.31a)

K4 :: ∆̂0(k) =
2µ0

3
(
1 + k2`2

0
) 7 − 5ν0

1 − ν0
. (C.31b)

It is recalled that the orthogonal (in the sense of the “:”
scalar product) projection iso T of a fourth-order tensor T ∈ T4
onto the space of isotropic, fourth-order tensors reads

iso T =
[(

J4 :: T
)
J4 + 1

5
(
K4 :: T

)
K4

]
(C.32)

and it is found from Eq. (C.31) that

iso ∆̂0(k) =
(
1 + k2`2

0
)−1Q0, (C.33)

where Q0 is defined by Eq. (82). Similarly, it can readily be ver-
ified that the angular average of ∆̂0 coincides with its isotropic
projection

1
4π

∫
‖n‖=1
∆̂0(kn) dVn =

(
1 + k2`2

0
)−1Q0, (C.34)

which extends the well-known expression of the isotropic aver-
age of the classical Green operator (Willis, 1977).

Appendix D. On the Hashin–Shtrikman principle

In the present section, we prove the results stated in Sec. 6.
We first show that the critical value of the functional of Hashin
and Shtrikman is given by Eq. (62). Then we address the maxi-
mum of the functional. Finally, we discuss its minimum.

Appendix D.1. Critical value of the functional of Hashin and
Shtrikman

In order to prove identity (62), we first plug Eq. (61) in
Eq. (59)

HS(e∗crit,φ
∗
crit,σ) = 1

2σ : S0 : σ + σ : 〈e∗crit〉 − 1
2 〈σ : e∗crit〉

− 1
2 〈

(
σ ⊗ ∇) ∴ φ∗crit〉

− 1
2

∑
n∈Z3

conj(η̂crit,n) : ∆̂0(kn) : η̂crit,n, (D.1)
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with η̂crit,n = ê∗crit,n − iφ̂
∗
crit,n · kn. We then observe that ∆̂0(kn) :

η̂crit,n is the n-th Fourier coefficient of −σ for n , (0, 0, 0) [see
Eq. (40)] and that, for n = (0, 0, 0), σ̂0 = σ and η̂crit,0 = ê∗crit,0 =

〈e∗crit〉 we rewrite the last sum in Eq. (59)∑
n∈Z3

conj(η̂crit,n) : ∆̂0(kn) : η̂crit,n

= −
∑
n∈Z3

conj(η̂crit,n) : σ̂n + η̂crit,0 : σ̂0

= −
∑
n∈Z3

[
conj(ê∗crit,n) : σ̂n + conj(φ̂

∗
crit,n) ∴

(
σ̂n ⊗ ikn

)]
+ σ : 〈e∗crit〉

= − 〈σ : e∗crit〉 − 〈
(
σ ⊗ ∇) ∴ φ∗crit〉 + σ : 〈e∗crit〉.

(D.2)

In the last line, we have again used Parseval’s identity, to-
gether with the fact that σ̂n ⊗ ikn is the n-th Fourier coefficient
of σ ⊗ ∇. Gathering the above results, we find

HS(e∗crit,φ
∗
crit,σ) = 1

2σ : S0 : σ + 1
2σ : 〈e∗crit〉

= 1
2σ : 〈S0 : σ + e∗crit〉 = 1

2σ : 〈e〉, (D.3)

which proves Eq. (62).

Appendix D.2. Maximum of the functional of Hashin and Shtrik-
man

In the present section, we show that if S ≥ S0 and M ≥ M0
at any point of the SVE, then the Hashin–Shtrikman functional
is maximum at the solution to problem (21), (23). The proof
follows closely that of Willis (1991). The arbitrary tensors e∗ ∈
T2 and φ∗ ∈ T ′3 being fixed, let

u(e∗,φ∗) = sup
σ,R

{
σ : η2 + R ∴ η3 − 1

2σ :
(
S − S0

)
: σ

− 1
2 R ∴

(
M −M0

)
∴ R

}
, (D.4)

where σ ∈ T2 and R ∈ T ′3 are fixed. Trivially,

u(e∗,φ∗) = 1
2 e∗ :

(
S−S0

)−1 :e∗+ 1
2φ
∗ ∴

(
M−M0

)−1 ∴ φ∗, (D.5)

and, for all σ, e∗ ∈ T2 and R,φ∗ ∈ T ′3
1
2σ : S : σ + 1

2 R ∴ M ∴ R ≥ 1
2σ : S0 : σ

+ 1
2 R ∴ M0 ∴ R + σ : e∗ + R ∴ φ∗ − u(e∗,φ∗). (D.6)

In the above inequality, all tensors but S0 and M0 can be
seen as tensor fields. In particular, for σ ∈ σ + S0(Ω) and
R = σ ⊗ ∇ ∈ T ′3(Ω), integration over the whole domain Ω

delivers

Wc(σ) ≥ Πc
0(σ, e∗,φ∗) − 〈u(e∗,φ∗)〉, (D.7)

with

〈u(e∗,φ∗)〉 = 1
2 〈e∗ :

(
S − S0

)−1 : e∗〉
+ 1

2 〈φ∗ ∴
(
M −M0

)−1 ∴ φ∗〉. (D.8)

Then, taking the infimum with respect to σ ∈ σ + S0(Ω)
1
2σ : Seff : σ ≥ min

σ+S0(Ω)
Πc

0(•, e∗,φ∗) − 〈u(e∗,φ∗)〉, (D.9)

and Eq. (63) is a direct consequence of Eq. (60).

Appendix D.3. Minimum of the functional of Hashin and Shtrik-
man

In the present section, we show that if S ≤ S0 and M ≤ M0
at any point of the SVE, then the Hashin–Shtrikman functional
is minimum at the solution to problem (21) ∧ (23). We follow
closely the proof presented by Willis in the Appendix of his
paper (Willis, 1977). We first observe that

S0 :
(
S − S0

)−1 : S0 =
(
C0 − C

)−1 − S0, (D.10a)

M0 ∴
(
M −M0

)−1 ∴ M0 =
(
L0 − L

)−1 −M0, (D.10b)

where inversion in Eq. (D.10b) is performed in the space T ′3 of
trace-free, third-order tensors. It results from Eqs. (D.10a) and
(D.10b) that

〈e∗ :
(
S − S0

)−1 : e∗〉 = 〈σ∗ :
(
C0 − C

)−1 : σ∗〉
− 〈e∗ : C0 : e∗〉 (D.11a)

〈φ∗ ∴ (
M −M0

)−1 ∴ φ∗〉 = 〈R∗ ∴ (
L0 − L

)−1 ∴ R∗〉
− 〈φ∗ ∴ L0 ∴ φ∗〉, (D.11b)

where σ∗ = −C0 : e∗ and R∗ = −L0 ∴ φ∗. Combining Eqs. (47)
and (60) with the above results, we find

2 HS(e∗,φ∗,σ) = σ : S0 : σ + σ : 〈e∗〉
+ 〈σ : e∗〉 + 〈e∗ : C0 : e∗〉
+ 〈(σ ⊗ ∇) ∴ φ∗〉 + 〈φ∗ ∴ L0 ∴ φ∗〉
− 〈σ∗ :

(
C0 − C

)−1 : σ∗〉
− 〈R∗ ∴ (

L0 − L
)−1 ∴ R∗〉, (D.12)

where σ = σ−∆0(e∗)−Λ0(φ∗) is the solution to Problem (31).
Introducing the associated strains e = S0 :σ+ e∗ and φ = M0 ∴(
σ ⊗ ∇) + φ∗, we find that the second line of Eq. (D.12) above

reduce to

〈σ : e∗〉 + 〈e∗ : C0 : e∗〉 = 〈(e − e∗
)

: C0 : e∗〉 + 〈e∗ : C0 : e∗〉
= 〈e : C0 : e∗〉
= 〈e : C0 :

(
e − S0 : σ

)〉
= 〈e : C0 : e〉 − 〈σ : e〉,

(D.13)

likewise
〈(σ ⊗ ∇) ∴ φ∗〉 + 〈φ∗ ∴ L0 ∴ φ∗〉 = 〈φ ∴ L0 ∴ φ〉

− 〈(σ ⊗ ∇) ∴ φ〉. (D.14)

Then, from the Hill–Mandel lemma,

〈σ :e〉+〈(σ⊗∇) ∴ φ〉 = 〈σ〉 :〈e〉 = σ :〈e〉 = σ :Seff :σ. (D.15)

Gathering the above results, we find the following expres-
sion of HS

2 HS(e∗,φ∗,σ) = σ : S0 : σ + σ : 〈e∗〉 + σ : Seff : σ
+ 〈e : C0 : e〉 + 〈φ ∴ L0 ∴ φ〉
− 〈σ∗ :

(
C0 − C

)−1 : σ∗〉
− 〈R∗ ∴ (

L0 − L
)−1 ∴ R∗〉, (D.16)

which shows that the quadratic part of HS (namely, the last
three lines of the above expression) is positive: therefore, the
critical point of HS is a minimum in this case.
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Appendix E. Ensemble average over SVEs of fixed size

In the present section, we derive Eq. (69). The size L of the
SVE is fixed; the trial strain-polarizations e∗ and φ∗ are statis-
tically homogeneous, ergodic random fields. We start from the
definition of HS [see Eq. (59)]

HS(e∗,φ∗,σ, L, ω) = 1
2σ : S0 : σ + σ : 〈e∗〉

− 1
2 〈e∗ :

(
S − S0

)−1 : e∗〉
− 1

2 〈φ∗ ∴
(
M −M0

)−1 ∴ φ∗〉
− 1

2

∑
n∈Z3

conj(η̂n) : ∆̂0(kn) : η̂n (E.1)

with η̂n = ê∗n − iφ̂
∗
n · kn. Expanding with respect to ê∗n and φ̂

∗
n in

the last sum, we find

HS(e∗,φ∗,σ, L, ω) = 1
2σ : S0 : σ + σ : 〈e∗〉

− 1
2 〈e∗ :

(
S − S0

)−1 : e∗〉
− 1

2 〈φ∗ ∴
(
M −M0

)−1 ∴ φ∗〉
− 1

2

∑
n∈Z3

∆̂0(kn) � [
conj(ê∗n) ⊗ ê∗n

]
− 1

2

∑
n∈Z3

∆̂
′′
0 (kn) � [

conj(φ̂
∗
n) ⊗ φ̂∗n

]
−

∑
n∈Z3

[
∆̂0(kn) ⊗ kn

] � =[conj(ê∗n) ⊗ φ̂∗n
]
,

(E.2)

Taking the ensemble average, and observing that e∗ and φ∗

are ergodic (which allows to replace volume averages 〈•〉 with
volume averages E[•])

Eω[HS(e∗,φ∗,σ, L, ω)] = 1
2σ : S0 : σ + σ : E[e∗]

− 1
2 E[e∗ :

(
S − S0

)−1 : e∗]

− 1
2 E[φ∗ ∴

(
M −M0

)−1 ∴ φ∗]

− 1
2

∑
n∈Z3

∆̂0(kn) � E[
conj(ê∗n) ⊗ ê∗n

]
− 1

2

∑
n∈Z3

∆̂
′′
0 (kn) � E[

conj(φ̂
∗
n) ⊗ φ̂∗n

]
−

∑
n∈Z3

[
∆̂0(kn) ⊗ kn

] � =E
[
conj(ê∗n) ⊗ φ̂∗n

]
.

(E.3)

We now need to evaluate the limit of the above quantity as L→
+∞. The first three terms are constant, while the three last sums
are of the same nature; we will therefore concentrate on the first
sum. At fixed L and ω, ê∗n is the n-th Fourier coefficient of e∗

ê∗n(L, ω) = L−3
∫

(0,L)3
e∗(x, ω) e−ikn·xd3x, (E.4)

where it is recalled that

kn =
2π
L

(
n1e1 + n2e2 + n3e3

)
. (E.5)

Then

E[conj(ê∗n) ⊗ ê∗n]

= L−6
∫

x,y∈(0,L)3
E[e∗(x) ⊗ e∗(y)]eikn·(x−y)d3x d3y

= L−6
∫

x,y∈(0,L)3
Ree(y − x)e−ikn·(y−x)d3x d3y

= L−6
∫

x∈(0,L)3

∫
x+r∈(0,L)3

Ree(r)e−ikn·rd3x d3y

∼ L−3R̂ee(kn) (L→ +∞), (E.6)

where R̂ee denotes the Fourier transform of the cross-correlation
Ree [see Eq. (68a)]. Then∑

n∈Z3

∆̂0(kn) � E[
conj(ê∗n) ⊗ ê∗n

]
∼ (

2π
)−3

∑
n∈Z3

∆̂0(kn) � R̂ee(kn)∆k3 (L→ +∞), (E.7a)

where ∆k = 2π/L denotes the spacing between to neighbouring
wave-vector kn in Fourier space. We recognize a Riemann sum,
and finally find∑

n∈Z3

∆̂0(kn) � E[
conj(ê∗n) ⊗ ê∗n

]
→ (

2π
)−3

∫
R3
∆̂0(k) � R̂ee(k) d3r (L→ +∞), (E.7b)

and, similarly∑
n∈Z3

∆̂
′′
0 (kn) � E[

conj(φ̂
∗
n) ⊗ φ̂∗n

]
→ (

2π
)−3

∫
R3
∆̂
′′
0 (k) � R̂φφ(k) d3r (L→ +∞), (E.7c)

∑
n∈Z3

[
∆̂0(kn) ⊗ kn

] � =E
[
conj(ê∗n) ⊗ ê∗n

]
→ (

2π
)−3

∫
R3

[
∆̂0(k) ⊗ k

] � =R̂eφ(k) d3r (L→ +∞),

(E.7d)

and expression (72) of HS∞ is retrieved.

Appendix F. On the numerical evaluation of theΞmicrostruc-
tural parameter

In the present section, we provide some details on the nu-
merical evaluation of the Fourier transform of the covariance
function γ and the microstructural parameter Ξ introduced in
Sec. 11.

The Fourier transform of the covariance function γ is eval-
uated as follows. For k ≤ kc (where the value of the cut-off

wave-number kc will be specified below), the integration in-
terval 0 ≤ r ≤ 2a is decomposed in sub-intervals where the
integrand has a constant sign

kγ̂(k) = 4π
m−1∑
i=0

∫ ri+1

ri

rγ(r) sin(kr) dr, (F.1)
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Figure F.8: Fourier transform γ̂ of the covariance function of the boolean model,
for various values of the volume fraction f of inclusions.

where rm = 2a and ri = iπ/k (i = 0, . . . ,m − 1). On each sub-
interval, we use the standard function scipy.integrate.quad2,
which is a Python wrapper around the Fortran library QUAD-
PACK. In order to minimize accumulation of rounding-off er-
rors, positive and negative terms are then summed separately
in increasing order of magnitude. Fig. F.8 shows γ̂ for various
values of the volume fraction of inclusions, f .

For k ≥ kc, the above method becomes impractical because
of the large number of terms in Eq. (F.1). We resort to high-
order asymptotic expansions

kγ̂(k) =

n∑
p=3

ap cos 2ka + bp sin 2ka + cp

kp + O(k−n−1), (F.2)

where the coefficients ap, bp and cp are obtained by successive
integrations by parts. The derivation is performed symbolically
with the SymPy3 computer algebra system. We find in particu-
lar the two-leading order terms of the expansion

a4 =
(
1 − f

)
c4 b4 = 0 c4 =

6πρv
a f

a5 = 0 b5 = −12πρv
a2 f

(
1 − f

)
c5 = 0.

The order of the expansion, and the cut-off value kc of k be-
yond which the asymptotic expansion is used are selected in or-
der to minimize the global relative error on γ̂ as follows. Since
kγ̂(k) behaves as k−3 as k → +∞ we expect the relative error for
this asymptotic expansion to behave as k−n+2

γ̂AE(k) − γ̂(k)
γ̂(k)

= O(k−n+2) (k → +∞), (F.3)

where γ̂AE denotes the asymptotic expansion (F.2). Since the
exact value of γ̂ is not known, we plot in Fig. F.9 the relative

2https://www.scipy.org/, last retrieved June 6, 2020.
3https://www.sympy.org/, last retrieved June 6, 2020.
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Figure F.9: The relative gap between the values of γ̂ obtained through numerical
integration and asymptotic expansion. For 2kca ∼ 20, an optimum is found be-
tween the truncation error of the asymptotic expansion and the round-off errors
of numerical integration.

gap ε between γ̂AE and the approximation γ̂NI of γ̂ obtained
through numerical integration [Eq. (F.1)]

ε = 2
γ̂AE(k) − γ̂NI(k)
γ̂AE(k) + γ̂NI(k)

. (F.4)

Fig. F.9 shows that the expected behavior ε = O(k−n+2) is in-
deed observed for “not-too-large” values of k. For large values
of k, this behavior desappears and ε increases. This is due to nu-
merical integration that becomes inaccurate, and ε is dominated
in this range of k-values by the numerical integration error. We
therefore set kc approximately at the location of the transition
between the two regimes. Obviously, increasing the order n of
the asymptotic expansion increases its accuracy and therefore
lowers the value of kc, which is beneficial in terms of execu-
tion times. In all subsequent applications, we set n = 20. We
then check that for 2kca ∼ 20, ε remains below 10−10, which is
much lower than the prescribed relative tolerance for numerial
integration (set here to 10−8).

In order to compute Ξ, its expression as an integral [see
Eq. (104)] is split in two terms, Ξ = Ξ1 + Ξ2, with

Ξ1 =
1

2π2

∫ kc

0

k2γ̂(k)
1 + k2`0

dk ' 1
2π2

∫ kc

0

k2γ̂NI(k)
1 + k2`0

dk (F.5)

and

Ξ2 =
1

2π2

∫ +∞

kc

k2γ̂(k)
1 + k2`0

dk ' 1
2π2

∫ +∞

kc

k2γ̂AE(k)
1 + k2`0

dk. (F.6)

We again use numerical integration to evaluate Ξ1. For Ξ2,
we need to evaluate integrals of the formAp

Bp

Cp

 =

∫ +∞

kc

1
kp−1(1 + k2`2

0
)
cos 2ka
sin 2ka

1

 dk, (F.7)

wich will be truncated to a yet unknown upper bound KAp

Bp

Cp

 '
∫ K

kc

1
kp−1(1 + k2`2

0
)
cos 2ka
sin 2ka

1

 dk, (F.8)
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so that the residual is bounded in all three cases from above∣∣∣∣∣∫ +∞

K

1
kp−1(1 + k2`2

0
)
cos 2ka
sin 2ka

1

 dk
∣∣∣∣∣ ≤ ∫ +∞

K

dk
kp+1`2

0

=
1

p`2
0K p

.

(F.9)

For the oscillatory integrals Ap and Bp, we therefore pro-
ceed as follows. The integration range (0,+∞) is divided in
subintervals where the integrand has a constant sign[Ap

Bp

]
=

+∞∑
i=0

∫ ki+1

ki

1
kp−1(1 + k2`2

0
) [

cos 2ka
sin 2ka

]
dk, (F.10)

where k0 = kc and 2a
(
ki+1−ki

)
= π. The above sum is computed

incrementally, one term at a time. Each time a new term is
added to the sum, the residual is estimated through Eq. (F.9)
and the iterations are stopped as soon as the residual is smaller
than a prescribed fraction of the sum. For the non-oscillatory
integrals Cp, we also proceed incrementally, using intervals of
length kcπ in that case.

Appendix G. On the decomposition of fourth-order, trans-
verse isotropic tensors

In the present section we gather the definition of the Walpole
(1984) basis for fourth-order, transverse isotropic tensors. We
also derive some expressions for the calculation of the acoustic
tensor. The direction of anisotropy is denoted n (unit vector).
We further introduce the two second-order projectors p = n⊗n
and q = I2−p. Walpole (1984) proposed the (EI,EII,EIII,EIV,F,G)
basis for fourth-order, transverse isotropic tensors, with

EI = p ⊗ p,
√

2EIII = p ⊗ q, (G.1a)

EII = 1
2 q ⊗ q,

√
2EIV = q ⊗ p (G.1b)

and

Fi jkl = 1
2
(
qikq jl + q jkqil − qi jqkl

)
, (G.1c)

Gi jkl = 1
2
(
pikq jl + pilq jk + p jkqil + p jlqik

)
, (G.1d)

or, in component-free form

G = 2I4 :
(
n ⊗ q ⊗ n

)
: I4 and F = I4 −EI −EII −G. (G.2)

It results from the above definitions that

I4 :
(
n ⊗ I2 ⊗ n

)
: I4 = I4 :

[
n ⊗ (

p + q
) ⊗ n

]
: I4

= I4 :
(
n ⊗ p ⊗ n + n ⊗ q ⊗ n

)
: I4

= I4 :
(
p ⊗ p + n ⊗ q ⊗ n

)
: I4

= EI + 1
2 G. (G.3)

The multiplication table for this table is best expressed through
the following symbolic representation (Walpole, 1984)

T = aEI + bEII + cEIII + dEIV + f F + gG
=

{[ a c
d b

]
, f , g

}
, (G.4a)

T′ = a′EI + b′EII + c′EIII + d′EIV + f ′F + g′G
=

{[ a′ c′
d′ b′

]
, f ′, g′

}
, (G.4b)

which leads to the compact multiplication formula

T : T′ =
{[ a c

d b
] · [ a′ c′

d′ b′
]
, f f ′, gg′

}
. (G.5)

To close this section, we present some contractions of the
Walpole tensors that will prove helpful for the derivation of the
acoustic tensor

n · EI · n = p, n · EIII · n = 0, n · F · n = 0,

n · EII · n = 0, n · EIV · n = 0, n ·G · n = 1
2 q.

(G.6)
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