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A Melan theorem in diffusion-induced plasticity: applications to lithium-ion batteries

We present a Melan-type theorem applying to cyclically loaded media in which plastic flow and diffusion of guest atoms are coupled, such as electrode materials in lithium-ion batteries. The presented theorem ensures that elastic shakedown occurs ( i.e. that the plastic strain stabilizes to a time-independent limit), independently of the initial state. Building on that theorem, a general two-step procedure is presented for designing any given structure against elastic shakedown. As an illustration, that procedure is applied to the model problem of a spherical electrode particle under time-harmonic lithiation.

INTRODUCTION

Electrode materials in lithium-ion batteries are an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such media, both elastic and plastic deformations are strongly coupled with diffusion. For a free-standing electrode particle, the yield limit can, for instance, be reached by applying a purely chemical loading at a sufficiently high charging rate [START_REF] Brassart | Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries[END_REF]. This raises the issue of studying how plasticity and diffusion evolve over consecutive loading cycles. For a certain range of cyclic loadings, numerical simulations reported on a spherical geometry show that elastic shakedown occurs, i.e. that the plastic strain stops evolving after a few cycles, so that the particle evolves elastically in subsequent cycles. Compared to other possible cyclic regimes such as alternate plasticity, elastic shakedown is arguably the most beneficial both with respect to fatigue [START_REF] Constantinescu | A unified approach for high and low cycle fatigue based on shakedown concepts[END_REF] and with respect to the electrochemical efficiency [START_REF] Brassart | Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries[END_REF].

In standard plasticity (without diffusion), Melan theorem gives a sufficient condition on the loading for ensuring that elastic shakedown occurs [START_REF] Melan | Theorie statisch unbestimmter systeme aus ideal-plastischen baustoff[END_REF][START_REF] Koiter | General problems for elastic solids[END_REF]. A salient feature of that theorem is that it is path-independent, i.e. independent of any residual stress that may exist in the initial state. Melan theorem has been extended to several more complex behaviors than perfect plasticity, see e.g. [START_REF] Peigney | Recoverable strains in composite shape memory alloys[END_REF][START_REF] Peigney | Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics[END_REF][START_REF] Peigney | On shakedown of shape memory alloys structures[END_REF][START_REF] Peigney | Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli[END_REF][START_REF] Pham | Consistent limited kinematic hardening plasticity theory and path-independent shakedown theorems[END_REF][START_REF] Klarbring | Shakedown of discrete systems involving plasticity and friction[END_REF][START_REF] Spagnoli | Non-linear programming in shakedown analysis with plasticity and friction[END_REF] for relatively recent examples.

This paper reports on an extension of Melan's theorem to continuous media in which plasticity and diffusion are coupled. The problem is formulated in the geometrically linear setting and appeals to the consistent thermodynamic framework originally introduced by [START_REF] Larché | A linear theory of thermochemical equilibrium of solids under stress[END_REF]. A Melan theorem for the considered media is presented, leading to a general two-step procedure for designing any given structure against elastic shakedown. An application to the model problem of a spherical electrode particle under cyclic lithitation-delithiation is presented. Explicit expressions are obtained. For the reader's convenience, a list of the main symbols is reported in Table I. 

DIFFUSION-INDUCED PLASTICITY IN A CONTINUUM

Constitutive equations

An elastic-plastic constitutive material is considered. The local state of the material is described by the total linearized strain ε, the (deviatoric) plastic strain ε p and the concentration c of guest atoms. The free energy w of the material is taken as a quadratic function of the form

w(ε, ε p , c) = 1 2 (ε -ε p ) : L : (ε -ε p ) + 1 2 kc 2 + cA : (ε -ε p ) + cµ 0 ( 1 
)
where L is the symmetric positive definite fourth-order elasticity tensor and A is a symmetric second-order tensor accounting for the coupling between the elastic strain εε p and the concentration c. The material parameter k is assumed to satisfy the relation k > A : L -1 : A which ensures that the function w in (1) is convex.

From (1) we obtain the expressions of the stress σ and the chemical potential µ as

σ = ∂ w ∂ ε = L : (ε -ε p ) + cA, µ = ∂ w ∂ c = µ 0 + kc + A : (ε -ε p ). (2) 
Observe that the concentration c has a linear influence on the stress, in a way similar to thermal stress. Similarly, the chemical potential µ depends linearly on the elastic strain εε p . The constitutive equations ( 2) are complemented by a law of diffusion and a plasticity flow rule. The flux j of guest atoms is assumed to obey the relation

j = -∂ ψ(∇µ). ( 3 
)
where ψ is differentiable and strictly convex. A normality flow rule is assumed for the plastic behavior, i.e.

ε p = λ ∂ f ∂ σ (σ ) with λ ≥ 0, f (σ ) ≤ 0, λ f (σ ) = 0. ( 4 
)
where f is a differentiable, strictly convex function of the deviatoric stress. We denote by C the elasticity domain of the material, i.e.

C = {σ : f (σ ) ≤ 0}.

Conservation equations

Consider a deformable continuum occupying a domain Ω, in which guest atoms diffuse. A flux J of guest atoms is prescribed on a part Γ J of the boundary. On Γ µ = ∂ Ω -Γ J , the chemical potential µ is prescribed to take a given value M. Tractions T are prescribed on a part Γ T of the boundary and displacements U are prescribed on

Γ u = ∂ Ω -Γ T .
The mass conservation leads to the diffusion equation

ċ + div j = 0 in Ω. (5) 
Equation ( 5) is complemented by the boundary conditions

µ = M on Γ µ , j • n = J on Γ J ( 6 
)
where n is the outward-pointing normal vector. Assuming deformation to be much faster than diffusion, the stress field σ satisfies the equilibrium equation

div σ + f = 0 in Ω ( 7 
)
where f is the body force. Eq. ( 7) is complemented by the boundary conditions

σ • n = T on Γ T , u = U on Γ u ( 8 
)
where u is the displacement field. The terms M, J, f , U and T are functions of the location x and time t. Similarly, the fields c, µ, u and σ are all functions of x and t. Unless in the case of possible ambiguities, the dependence in (x,t) will be omitted in the notations. The set of equations ( 2), ( 3), ( 4), ( 5), ( 6), ( 7) and ( 8) is denoted by (E ) in the following. It governs the evolution of the continuum starting from a given initial values of the plastic strain and concentration fields.

SHAKEDOWN DESIGN

From now on, attention is restricted to cyclic chemomechanical loadings, i.e. the functions M, J, f , U and T are all periodic in time (with the same period T ). Functions that are periodic in time with a period T are referred to as T -periodic in the following.

Let

(u E , σ E , c E , µ E ) denote a cyclic steady state elasto-diffusive solution, i.e. (u E , σ E , c E , µ E ) are T -periodic functions satisfying σ E = L : ε E + c E A, µ E = µ 0 + kc E + A : ε E , ε E = 1 2 (∇u E + ∇ t u E ), j E = -∂ ψ(∇µ E ), ċE + div j E = 0 in Ω, div σ E + f = 0 in Ω, (9) 
as well as the boundary conditions ( 6) and [START_REF] Peigney | Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli[END_REF]. Problem (9) amounts to discard plasticity in the constitutive laws. The existence of a T -periodic solution to (9) has been proved in [START_REF] Peigney | Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries[END_REF]. Regarding the original problem (E ) in which plasticity and diffusion are coupled, the following result can be proved [START_REF] Peigney | Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries[END_REF]:

If there exists a time-independent self-equilibrated [START_REF]ρ satisfies divρ = 0 in Ω and ρ • n = 0 on Γ T[END_REF] stress field ρ such that σ E (x,t) + ρ(x) is in the interior of C for all x ∈ Ω and all t ∈ [0, T ], then shakedown occurs whatever the initial state.

This theoretical result suggests a general two-step procedure for designing structures against elastic shakedown, in the framework of coupled plasticity-diffusion:

1. Calculate a T -periodic solution (u E , σ E , c E , µ E ) to the purely elasto-diffusive problem (9).
2. Check if there exists a time-independent self-equilibrated stress field ρ such that σ E (x,t)+ρ(x) is in the interior of C for all x ∈ Ω and all t ∈ [0, T ]

Even though the purely elasto-diffusive problem ( 9) is simpler to handle than the original problem (E ), performing Step 1. above is not entirely trivial in the general case of a nonlinear diffusion law. Optimal control strategies [START_REF] Peigney | Approche par contrôle optimal des structures élastoviscoplastiques sous chargement cyclique[END_REF][START_REF] Peigney | An optimal control approach to the analysis of inelastic structures under cyclic loading[END_REF][START_REF] Stolz | Optimal control approach in nonlinear mechanics[END_REF] could possibly be useful in that case. The situation simplifies significantly when the diffusion law is linear, i.e. Fick's law for diffusion is considered. This correspond to the case where the diffusion potential ψ is quadratic. In such case, the purely elasto-diffusive problem (9) is linear. A Fourier decomposition can be used for constructing a T -periodic solution to [START_REF] Pham | Consistent limited kinematic hardening plasticity theory and path-independent shakedown theorems[END_REF].

Regarding Step 2., the crucial observation is that it is identical to the application of Melan theorem in standard plasticity (without diffusion). All the existing algorithms proposed for standard plasticity [START_REF] Maier | Direct methods of limit and shakedown analysis[END_REF] can thus be used directly. In practice, Step 2. is performed by considering a finite dimensional space of self-equilibrated fields. This generally results in lower bounds on the loading parameters for which shakedown occurs.

Remark:

The aforementioned theorem can extended to viscoplasticity, i.e. to the case where the flow rule reads as ε p = ∂ g(s) where g is a differentiable, convex function of the deviatoric stress s. In such case, the condition that "σ E (x,t) + ρ(x) is in the interior of C " in the statement of the theorem can be relaxed as " σ E (x,t) + ρ(x) ∈ C ".

Step 2 is modified accordingly. 

APPLICATION: SPHERICAL ELECTRODE PARTICLE

We consider the model problem of a free-standing spherical electrode particle with radius R (Fig. 1). Cyclic lithiationdelithiation is achieved by applying a T -periodic flux

J(t) = - Rω 6 H sin ωt (10) 
on the boundary. In [START_REF] Klarbring | Shakedown of discrete systems involving plasticity and friction[END_REF], ω and H > 0 are given. The loading parameter H in [START_REF] Klarbring | Shakedown of discrete systems involving plasticity and friction[END_REF] is directly related to the maximum number of inserted lithium ions. More precisely, the maximum number of inserted lithium ions is given by -4πR 2 T /2 0 J(t)dt = 4 3 πR 3 H which corresponds to an average concentration equal to H. A hypothetical elastic-perfectly plastic material is considered. The free energy w is taken as

w(ε, ε p , c) = 1 2 K(tr ε) 2 + G(ε d -ε p ) : (ε d -ε p ) + 1 2 kc 2 + actr ε + cµ 0 ( 11 
)
where ε d is the deviatoric strain and c is the concentration of lithium. In [START_REF] Spagnoli | Non-linear programming in shakedown analysis with plasticity and friction[END_REF], K, G, a and µ 0 are material parameters. The constitutive relations [START_REF] Constantinescu | A unified approach for high and low cycle fatigue based on shakedown concepts[END_REF] are

σ m = Ktr ε + ac , s = 2G(ε d -ε p ), µ = µ 0 + kc + atr ε, (12) 
where σ m = (tr σ )/3 is the hydrostatic stress and s is the deviatoric stress. The scalar material parameter a in [START_REF] Spagnoli | Non-linear programming in shakedown analysis with plasticity and friction[END_REF] accounts for the chemo-mechanical coupling. In particular, for stress-free states in the elastic regime, Eq. ( 12) gives

tr ε = - a K c
hence the ratio -a/K can be interpreted as the volumetric expansion coefficient associated with the insertion of lithium.

Fick's law is adopted for diffusion, i.e.

j = D k ∇µ

where D is the diffusion coefficient.
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The elasticity domain C is of the von Mises type, i.e. defined by

1 2 s : s ≤ σ 2 Y ( 13 
)
where σ Y is the yield strength.

In the following, the two-step procedure presented previously is applied for finding the range of loading parameters (ω, H) for which shakedown occurs.

Purely elasto-diffusive response

The first step consists in finding a Tperiodic solution (σ E , µ E , u E , c E ) to the elasto-diffusive problem [START_REF] Pham | Consistent limited kinematic hardening plasticity theory and path-independent shakedown theorems[END_REF]. For the harmonic loading [START_REF] Klarbring | Shakedown of discrete systems involving plasticity and friction[END_REF], such a Tperiodic solution (σ E , µ E , u E , c E ) can be sought in the form

σ E (x,t) = ℜ( σ E (x)e iωt ), µ E (x,t) = µ 0 + ℜ( μE (x)e iωt ), j E (x,t) = ℜ( ĵE (x)e iωt ), u E (x,t) = ℜ(û E (x)e iωt ), c E (x,t) = ℜ(ĉ E (x)e iωt ), (14) 
Here and in the following, the superscript ˆis used to denote complex-values quantities. The real and imaginary parts of complex-valued quantities are denoted by ℜ and ℑ, respectively. In view of the spherical symmetry of the problem, we look for a solution in the form

û(x) = ûE (r)e r , ĉ(x) = ĉE (r)
where (e r , e θ , e φ ) is the local basis for the spherical coordinates (r, θ , φ ). The constitutive relations [START_REF] Larché | A linear theory of thermochemical equilibrium of solids under stress[END_REF] show that

ĵE = -(D/k) d μE dr e r , σ E = σ E r e r ⊗ e r + σ E θ (e θ ⊗ e θ + e φ ⊗ e φ ), (15) 
where

μE = kĉ E + a( d ûE dr + 2 ûE r ), σ E r = 4G 3 ( d ûE dr - ûE r ) + K( d ûE dr + 2 ûE r ) + aĉ E , σ E θ = 2G 3 ( ûE r - d ûE dr ) + K( d ûE dr + 2 ûE r ) + aĉ E . ( 16 
)
The functions ĉE and ûE are obtained by solving the partial differential equations

div σ E = 0, div ĵE + iω ĉE = 0 ( 17 
)
with the boundary conditions σ E r = 0 and e r • ĵE = iRωH/6 at r = R. The solution to this boundary value problem can be expressed in terms of the spherical Bessel functions j 0 and j 1 defined on C * by

j 0 (z) = sin z z , j 1 (z) = sin z z 2 - cos z z . Setting λ = e i 3π 4 ω D(1 -a ã/k) , ã = 3a 3K + 4G , ( 18 
)
the solution is indeed found to be given by ĉE = -H 6 R j 0 (r)

j 1 ( R) , ûE R = ã H 6 4G 3K r R + j 1 (r) j 1 ( R) (19)
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where r = λ r and R = λ R. Replacing in [START_REF] Peigney | An optimal control approach to the analysis of inelastic structures under cyclic loading[END_REF] gives the expression of the stress σ as

σ E r = 2G ãH 3 1 - R r j 1 (r) j 1 ( R) , σ E θ = 2G ãH 3 1 + R r j 1 (r) 2 j 1 ( R) - R j 0 (r) 2 j 1 ( R) , (20) 
as well as the expression of the chemical potential μ as

μE = H 6 (a ã -k) R j 0 (r) j 1 ( R) + 4G K a ã . ( 21 
)
Let s E be the deviatoric part of σ E . The obtained expressions for σ E show that

s E (x,t) = s E θ (r,t)(-2e r ⊗ e r + e θ ⊗ e θ + e φ ⊗ e φ ) (22) 
where s E θ (x,t) = ℜ( ŝE θ (r)e iωt ) and

ŝE θ (r) = GH ã 3 R j 1 ( R) j 1 (r) r - j 0 (r) 3 . ( 23 
)
As an illustration, | ŝE θ (r)| is shown in Fig. 2 as a function of r/R for several values of the dimensionless charging rate ω defined as

ω = ΩT 0 ( 24 
)
where

T 0 = R 2 D 1 - a ã k .
Since s E θ (x,t) = ℜ( ŝE θ (r)e iωt ), the function | ŝE θ (r)| corresponds to the time amplitude of the variation of s E θ (x,t) at any given location x. The relation ( 22) also shows that 1 2 s E :

s E = 3(s E θ : s E θ ) 2 .
Hence the function | ŝE θ (r)| in Fig. 2 is directly connected to the maximum value (with respect to time) of the von Mises stress.

Application of the shakedown condition

Having now found a T -periodic solution (σ E , µ E , u E , c E ) to (9), the second step consists in looking for a timeindependent stress-field ρ such that

1 2 (s E (x,t) + ρ d (x)) : (s E (x,t) + ρ d (x)) < σ 2 Y ( 25 
)
for all x and for all t. In (25), ρ d is the deviatoric part of ρ. For our purpose, it is sufficient to take ρ = 0, in which case the requirement (25) reduces to

3(s E θ (x,t)) 2 < σ 2 Y ( 26 
)
for all x and for all t. Since s

E θ (x,t) = ℜ( ŝE θ (r)e iωt ), we have sup t (s E θ ) 2 (x,t) = | ŝE θ (r)| so that condition (26) reduces to 3| ŝE θ (r)| 2 < σ 2 Y (27) for all r. An important observation is that | ŝE θ (r)| is maximum at r = R, see Fig. 2. Condition (27) thus reduces to | ŝE θ (R)| < 1 3 σ Y . From (23) we have | ŝE θ (R)| = GH| ã| 9 (ℜz -3) 2 + (ℑz) 2 020041-6 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.2 r/R | ŝE θ |/(GH ã/3) ω = 20 ω = 10 ω = 5 FIGURE 2.
Cyclic steady state for a spherical electrode particle in the elastic shakedown regime: Time amplitude of the hoop deviatoric stress as a function on the location r, for several values of the charging rate ω.

where

z = R j 0 ( R) j 1 ( R) .
Condition (25) finally reads as H < H SD (ω) where

H SD (ω) = 3 √ 3σ Y G| ã| (ℜz -3) 2 + (ℑz) 2 -1 2 Setting H 0 = 3 √ 3σ Y G| ã| ( 28 
)
the shakedown limit H SD /H 0 is shown in Fig. 3 in terms of the dimensionless charging rate ω. Whatever the initial state, shakedown occurs for any loading parameters ( ω, H) below the curve shown in Fig. 3. The charging rate ω has a detrimental effect on the shakedown behavior: the higher the charging rate, the lower the number of lithium ions that can be injected for the particle to remain in the shakedown regime. This behavior results from a stress concentration phenomenon: for high charging rate, the injected ions do not have time to diffuse in the whole particle and remain trapped in a spherical shell near the boundary. Such a concentration of those injected ions generates large swelling near the boundary, which in turns generates high stress as illustrated in Fig. 2. In contrast, in the limit ω → 0, the lithium ions diffuse uniformly in the whole particle, so that the particle experiences a uniform stress-free swelling. Accordingly, the shakedown limit H SD (ω) tends to infinity as ω tends towards 0.

For Li-ion batteries, a quantity of interest is the charge-voltage curve, showing the total charge C = Ω cdΩ (or the average concentration C/|Ω|) versus the voltage V = -(µµ 0 )e on the surface (here e = 1.602 × 10 -19 C is the elementary charge). If the loading parameters ( ω, H) respect the shakedown condition H ≤ H SD (ω), the particle reaches a cyclic steady state in which in particular the chemical potential µ and the local concentration c differ from the 020041-7 purely elasto-diffusive response only by constant fields depending on the initial state. Consequently, the corresponding charge-voltage curve in the cyclic steady state is directly obtained from the purely elasto-diffusive solution (c E , µ E ) (up to constants). Some example of such charge-voltage curves are shown in Fig. 4 for several values of the loading rate. The curves in Fig. 4 corresponds to the situation a ã k, in which case the chemical potential µ E (R,t) simplifies as µ E (R,t) = -Hk 6 ℜ(ze iωt ). Even though shakedown occurs and plastic dissipation vanishes in the cyclic steady state, the charge-voltage response in Fig. 4 shows some hysteresis (that increases with the charging rate-. This results from the dissipation due to diffusion.

CONCLUSION

Cyclically loaded media have been studied in the context of diffusion-induced plasticity. In the media considered, plasticity and diffusion act as two concurrent nonlinear and dissipative processes. Elastic shakedown corresponds to the situation in which plastic dissipation is bounded. Accordingly, the medium reaches a steady state cycle in which diffusion is the only active source of dissipation. For certain applications such as Li-ion batteries, elastic shakedown is of special interest both from mechanical and chemical considerations.

The presented Melan theorem gives a sufficient condition for elastic shakedown to occur, independently of the initial state. A general two-step procedure has been presented for applying that theorem in practice. The proposed two-step method allows one to estimate the set of loading parameters for which shakedown occurs -without resorting to stepby-step calculation of the chemo-mechanical evolution in elasto-plasticity. Interestingly, that two-step method allows for a decoupling between plasticity and diffusion. The first step is indeed completely disconnected from plasticity and consists in finding a cyclic steady-state (σ E , µ E , u E , c E ) for the purely elasto-diffusive problem. Once that elastodiffusive problem is solved, the second step is performed without any explicit reference to diffusion as it only makes use of the stress σ E . For the simple geometry considered, most of the needed calculations could be performed in closed-form. For more complex geometries, adequate numerical techniques would be necessary. In particular, Step 2 could be performed numerically by observing that it amounts to solve a convex programming problem, for which efficient algorithms (such as interior-point methods) are available.

In practice, Step 2. is performed by a considering a given set of self-equilibrated stress fields, resulting (in general ) on lower bounds on the set of loading parameters for which elastic shakedown occurs. Upper bounds could possibly 020041-8 be achieved by extending the kinematic shakedown theorem of Koiter [START_REF] Koiter | General problems for elastic solids[END_REF] to media coupling plasticity with diffusion.
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 3 FIGURE 3. Shakedown limit for a spherical electrode particle under cyclic lithiation.
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 4 FIGURE 4. Cyclic steady state for a spherical electrode particle in the elastic shakedown regime.

  

  

TABLE I .

 I List of symbols.

	Symbol	Description	Unit
	ε	total strain	-
	ε p	plastic strain	-
	σ	stress	Pa
	c	concentration of guest atoms	m -3
	j	flux of guest atoms	m -2 .s -1
	µ	chemical potential	J
	L	elasticity tensor	Pa
	A	coupling parameter	J
	C	elasticity domain	-
	ψ	diffusion potential	Pa.m
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