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Abstract. In this paper we are interested in a dynamic description of the collective pedestrian motion based on the kinetic
model of Bathnagar-Gross-Krook (BGK). In this model a pedestrians trend towards a state of equilibrium in a certain
relaxation time is modeled. An approximation of the Maxwellian function that represents this equilibrium state is determined.
A result of existence and uniqueness of the discrete velocity model is demonstrated. Thus the convergence of the solution to
the solution of the continuous BGK equation is proven. Numerical tests are developed to validate the proposed mathematical
model.
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1. Introduction

Mathematical representations of crowd motion from the microscopic to macroscopic scale have been an active field

of study for the last three decades. An overview of the most important models at microscopic, macroscopic, and

mesoscopic scale is reviewed in [1]. Indeed, the most popular crowd simulation models are the individual models,

namely the heuristic rule-based models [2], mechanical models [3, 4, 5], and cellular automate [6], continuous models5

are based on fluid dynamics [7, 8, 9], and the kinetic (Gas-kinetic) models are intermediate models between the

two discrete and continuous models [10, 11, 12]. Handerson was the first to apply this type of ”kinetic gas” model

to empirical pedestrian crowd data [13, 14].

In 2011 Bellomo et al. [15, 16, 17, 18, 19, 20] have developed the kinetic approach for crowds in a recent approach

called, the kinetic theory for active particles. This approach considers the crowd as a complex system. The10

microscopic state of each particle is characterized by a geometric variable, position x = (x, y) and a mechanical

variable velocity v = (vx, vy). In addition there is a microscopic state related to their socio-biological behavior,

called activity, it noted u. The representation of the system is defined by a distribution function noted f(t,x,v, u),

where f(t,x,v, u)dxdv represents the number of active pedestrians who at the moment t are in the elementary

volume [x,x+dx]×[v,v+dv] and who have activity u. Pedestrian movements are governed by the partial derivative15

equation (PDE) of transport applied to f , Γ characterizing the different interactions between pedestrians and their

environment

(1.1)
∂f(t,x,v, u)

∂t
+ v.∇xf(t,x,v, u) = Γ[f ](t,x).

In our previous work [21], we considered the model (1.1). The term Γ[f ](t,x) which models the interactions between

pedestrians with various obstacles, is treated from a probabilistic point of view.

1



In this paper, we are interested in one of the simplest ways to model the term Γ[f ](t,x). It consists of describing a20

pedestrian tendency to equilibrium similar to the BGK operator which replaces the collision operator of the Boltz-

mann equation. Specifically, the case where the pedestrian system is characterized by an equilibrium configuration

fe and a relaxation term τ [ρ]. In an emergency evacuation case, pedestrians try to achieve a desired velocity noted

vd to reach a target. τ [ρ] is the relaxation term describes the adaptation of the density f to the equilibrium density

feq (v). Therefore the interactions term takes the following simple form:25

(1.2) Γ[f ](t,x) =
1

τ [ρ]
(feq (v→ vd)− f) .

This paper develops a special theory for pedestrian motion and these interactions namely deceleration avoidance.

Consequently the BGK model (1.1), (1.2) proposed in this work does not use the assumptions of conservation

of momentum and energy. Only the conservation of mass must be verified in our study. The equilibrium state

function of pedestrians is developed and based on Henderson works [13, 14]. A mathematical framework for a

theoretical study of the proposed model is determined. The rest of this paper is organized as follows: section 230

provides the discrete velocity model derived from the continuous BGK equation. This model describes the motion

of pedestrians reaching an equilibrium configuration in a domain Ω. Then an approximation of the Maxwellian

discrete density representing this state of equilibrium is presented. In section 3, a result of existence and uniqueness

for the discrete velocity model is demonstrated. Then we prove the convergence of this solution to a solution of

the continuous BGK equation. Section 4 is devoted to numerical simulations to validate the proposed model, and35

to show its ability to describe the main features of the dynamics of pedestrians.

2. Mathematical model

2.1. Boltzmann equation: the BGK model for a crowd. We consider a system composed of N particles

(pedestrians) randomly distributed in a two-dimensional bounded domain Ω ⊂ R2.

At the moment t = t0, the pedestrians are distributed in a disk D0 of radius rD and center M0(x0, y0). The initial40

overall density is then ρ0 = N
πr2
D

(ped/m2).

This group of N pedestrians present in the domain Ω at the initial time t0. They are in a normal traffic situation,

i.e. they have the ability to direct themselves towards all possible directions. After, all pedestrians have the

tendency of a comfortable destination noted vd (state of equilibrium). The group of pedestrians wants to reach a

target located at the point xc ( see Fig.1).45

(a) Normal state (b) Equilibrium state

Figure 1. Density of pedestrians characterized by (a) normal state: pedestrians have the ability to direct
towards n possible directions. (b) the equilibrium state: all pedestrians look for a certain destination
comfortable noted vd to achieve the target located at the point xc .
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The state of the crowd is represented by the density f(t,x,v). They move with a velocity v ∈ Dv.

The average crowd quantities obtained by integrating f in the velocity space Dv:

• density:

ρ(t,x) =

∫
Dv

f(t,x,v)dv,

• average velocity:

ξ(t,x) =
1

ρ(t,x)

∫
Dv

vf(t,x,v)dv,

• total energy:

E =
1

2

∫
Dv

||v||2f(t,x,v)dv.

The evolution of the particle density f(t,x,v) is described by the following equation:

(2.1)
∂f(t,x,v)

∂t
+ v.∇xf(t,x,v) =

1

τ [ρ]
(feq (v)− f) .

The coefficient τ can depend on the density ρ(t,x), this term expresses that the distribution f would not go50

instantly to the desired velocity distribution feq, but would need some time called relaxation time τ . For reasons

of simplicity, we assume that this relaxation term is a constant i.e. τ [ρ] = τ . According to this hypothesis, the

model (2.1) takes the following form:

(2.2)
∂f(t,x,v)

∂t
+ v.∇xf(t,x,v) =

1

τ
(feq (v)− f(t,x,v)) .

We consider the model (2.1) with following initial data:

(2.3) f(t = 0,x,v) = f0(x,v), x ∈ Ω, v ∈ Dv.

The system defined by the two equations (2.2), (2.3) represents the Bhatnagar-Gross-Krook model. In this paper

it describes the temporal evolution of the distribution of particles (pedestrians). This model is less expensive than

the Boltzmann equation because it is sufficient to update the macroscopic fields at each time step. On the other

hand it provides qualitatively correct solutions for macroscopic moments. These two aspects, namely the relatively

low cost of calculation and the correct description of the hydrodynamic limit, explain the interest in the BGK

model during the last decades.

It also shares important features with Boltzmann’s original equation, such as the following conservation laws:

conservation of mass

∫
Dv

feq(v)dv =

∫
Dv

f(t,x,v)dv.(2.4)

Thus, the BGK equation is a kinetic collision equation that takes into account only the overall effect of pedestrian55

interactions.

Remark 1. The BGK model for pedestrian motion contains corrections due to interactions such as avoidance and

deceleration. Therefore this model does not obey the conservation of momentum and energy. In our case, the only

law of conservation which must be respected by the model is the conservation of the mass. It is expressed by the

following equation:60

(2.5)

∫
Dv

feq(v)dv =

∫
Dv

f(t,x,v)dv.
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2.2. Maxwellian approximation: equilibrium density feq (v). In 1971 L.F.Henderson [13], suggested that

the motion of people in a crowd represents a system similar to a gas molecule collection. Specifically, he suggested

that the classical Maxwell-Boltzmann theory of a molecular system could also describe the velocity distribution of

individuals.

Henderson measured the speed distribution function for 3 crowd categories: a crowd of university students walking65

from the library to the university, an adult crowd of all ages using a pedestrian crossing on a street, and children in

a playground air. Analyses and estimates are made under certain numbers of assumptions about the crowd, namely,

the movement is defined in every moment t by position (x, y) and the velocity v = (vx, vy). All the individuals in

the crowd have the same mass.

The two figures 2 (a), (b) show that Henderson’s empirical results agree with the classical Maxwell-Boltzmann70

theory. The distribution of the vx component of the velocity is given by the following equation:

(2.6) feq(vx) =
1

N

dNvx
dvx

=
1√

2πvm
exp

Å
−1

2

v2
x

v2
m

ã
,

where,

• vm is the square root of the average module value of speed.

• N the total number of pedestrians.

• Nvx is the number of pedestrians with speed vx.75

In a similar way for the equation of the vy component distribution of velocity, Henderson found the result for the

distribution of v = (vx, vy), is given by the following equation :

(2.7) feq(v) =
1

N

dNv

dv
=

1

2πv2
m

exp

Å
−1

2

v2

v2
m

ã
,

where Nv is the number of pedestrians with velocity v.

(a) (b)

Figure 2. The density function of the first component vx of the speed (a) for 693 students walking outside
the library at the University of Sydney. Curve a represents the measured distribution and curve b represents
the Maxwell-Boltzmann distribution, vx = 1.53m.s−1,vr,m,s = 0.201m.s−1, (b) for 628 pedestrians on a
pedestrian crossing in Sydney, vx = 1.44m.s−1,vr,m,s = 0.228m.s−1
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According to the above and the last remark, we define in our case the density of equilibrium for pedestrians, with

the following formulation:80

(2.8) feq(v, ρ) =
ρ(t,x)

2πv2
m

exp

Å
−1

2

||v − vd||2

v2
m

ã
,

where, vm =
»

1
2

∫
Dv
||v||2f(t,x,v)dv; vd is the desired direction.

feq models the equilibrium state that each pedestrian wishes to achieve. Indeed the tendency of all pedestrians to

reach a comfortable destination defined by the direction vd.

The density of equilibrium that we have defined satisfies the conservation of the mass defined by the equation (2.5),

indeed: ∫
Dv

feq(v)dv =

∫
Dv

ρ(t,x)

2πv2
m

exp

Å
−1

2

||v − vd||2

v2
m

ã
dv = ρ(t,x) =

∫
Dv

f(t,x,v)dv.

2.3. Model of discrete velocities. The number of pedestrians N is generally insufficient to justify the hypothesis

of continuity of the particle distribution function f(t,x,v) with respect to velocity. Thus for numerical simulations,

a discrete velocity approximation of the BGK equation is introduced. We refer to the discrete velocity models for

the Boltzmann equation developed by Rogier and Schneider [22], Buet [23], Heintz and Panferov [24], and Mieussens

[25]. The proposed approximation in this work has the same conservation properties as the continuous BGK model.85

Let K be a set of multi-indices of Z2, defined by K = {k = (k1, k2), |k| ≤ B}, with B is a scalar.

We define V ⊂ R2, a set of Nv discrete velocities, V = {vk = k∆v /k ∈ K}, where ∆v is a scalar.

The distribution f of the continuous velocities is then replaced by the following Nv vector, fK = (fk(t,x))k∈K
where each component fk(t,x) is an approximation of the function f(t,x,vk).

Thanks to the previous discretization of the velocity, we define the local density by the following equation:90

(2.9) ρ (t,x) =
∑
k∈K

fk (x, t) .

The discrete kinetic model associated with the equation BGK (2.2), is defined by the set of the following equations:

(2.10)
∂fk(t,x)

∂t
+ vk.∇xfk(t,x) =

1

τ
(feq,k (vk, ρ)− fk(t,x)) , k ∈ K vk ∈ V,

where feq,k is an approximation of the equilibrium density defined by (2.8) .

The main problem is to define this approximation of the discrete density feq,k such that the property of conservation

of mass is satisfied. We used the natural approximation used by Yang and Huang [26] and which has been developed95

by Luc [27]:

(2.11) feq,k (vk, ρ) = feq(vk), k ∈ K,

hence,

(2.12) feq(vk, ρ) =
ρ(t,x)

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
,

where

vm =

√
1

ρ(t,x)

∑
k∈K

||vk||2fk(t,x).

We considered the mathematical model (2.10) with an initial data defined by:

(2.13) fk(t = 0,x) = f0,k(x) k ∈ K. x ∈ Ω.
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Boundary condition on ∂Ω

In our study, we are interested in the adaptation of an equilibrium situation of the pedestrians inside the domain

Ω. We assume that their target is inside the domain. The disk diameter 2rD, occupied by pedestrians is always

less than the distance between the target in xc and the edge of the domain ∂Ω, i.e.

2rD < d (xc, ∂Ω) .

According to this hypothesis, the theoretical study of our problem is reduced to all plane R2 in places Ω.

3. Theoretical study of the proposed mathematical model100

Some important mathematical results concerning the BGK equation have been obtained during the last decade. For

example, Perthame has proved in [28] the existence and stability of a distribution solution throughout the space.

This result has been extended to a bounded domain with various boundary conditions by Ringeisen [29]. More

recently, Perthame and Pulvirenti have proved the existence and uniqueness of a ”mild” solution with weighted

estimates in L∞ [30]. We also mention the result of Issautier [31] which proved that the ”mild” solution of105

Perthame and Pulvirenti is strong, if certain assumptions of regularity on the initial condition are made. However,

it is important to note that in all these results, the authors assume the relaxation time is constant (i.e. τ = 1).

In our study we are interested in the existence and uniqueness of the BGK model with a different source or a

different equilibrium density to that defined in the case of fluid dynamics. Namely a density that is suitable for

pedestrian movement. In addition, we assume that τ = 1.110

It is interesting to study the convergence of such an approximation to the continuous BGK equation. We refer

to Mischler’s proof for the convergence of a discrete velocity model for the Boltzmann equation [32]. There are

essentially two distinct points to prove:

• The existence and uniqueness of a discrete velocity model solution.

• Convergence of the discrete kinetic equation towards the continuous equation.115

3.1. Existence and uniqueness of the model solution. To define a discrete velocity model of approximation

2.10, we consider the following notations:

We consider Vn a grid of Nn velocities defined by: Vn = {vnk = k∆vn /k ∈ Kn}.
where, Kn =

{
k = (k1, k2) ∈ Z2, |k| ≤ Bn

}
.

∆vn, Bn are two real suites, assumed such that:

∆vn −→
n→+∞

0 ∆vnBn −→
n→+∞

+∞.

We also define velocity’s cells Ink par Ink = [vnk1
, vnk1

+ 1
2∆vn[×[vnk2

, vnk2
+ 1

2∆vn[.

The discrete velocity model approximation 4.1 is then given by the following systems:

(3.1)


∂fnk (t,x)

∂t
+ vnk.∇xf

n
k (t,x) = fneq,k (vk, ρ)− fnk (t,x)) D

′ (
[0, T ]× R2

x

)
k ∈ K,

fnk (t = 0,x) = fn0,k(x) k ∈ K,

where fn0,k is an approximation of the initial density f0,

D
′ (

[0, T ]× R2
x

)
=

ß
W : D

(
[0, T ]× R2

x

)
−→ R, W continuous, linear

™
,(3.2)

D
(
[0, T ]× R2

x

)
=

ß
f ∈ C∞

(
[0, T ]× R2

x

)
: supp(f), compact

™
.(3.3)
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Our goal is to show the existence and uniqueness of the model 3.1.

We consider the characteristic curves associated with the problem 3.1, that are given by:

(3.4) γk(t) = (γk1(t), γk2(t)) =
(
x+ tvnk1

, y + tvnk2

)
, k = (k1, k2) ∈ K.

These curves are solutions of the following equations:120

(3.5)


dγk(t)

dt
= vnk k ∈ K,

γk(0) = (x, y)T k ∈ K.

with vnk =
(
vnk1

, vnk2

)
.

Along these curves, the system solution 3.1 satisfies the following system of ordinary differential equations:

(3.6)


dfnk (t,γk(t))

dt
= fneq,k (vk, ρ)− fnk (t,γk(t)) k ∈ K,

fnk (t = 0,x) = fn0,k(x) k ∈ K.

We pose f̂nk (t,x) = fnk (t,γk(t)) for k ∈ K, where, f̂nk is the value of fn along these characteristic curves.

We introduce the ”mild” form of the system (3.6) obtained by integration along the characteristic curves (3.4), for

k ∈ K,125

(3.7) f̂nk (t,x) = fn0,k +

∫ t

0

Ä
f̂neq,k (vk, ρ)− f̂nk (s,x)

ä
ds .

For a given time, we define the following functional space:

L1
(
R2

x

)
=

{
f(t) = (fk)k∈K , ||f(t)||1 =

∑
k∈K

∫
R2

x

||fk(t,x)||dx <∞

}
.

For a time T > 0, consider the following Banach space:

XT = C
(
[0, T ],L1

(
R2

x

))
, with the following norm: ||f ||XT = supt∈[0,T ]||f(t)||1.

Our theoretical study is based on the following theorem:130

Theorem 1. (Local existence)

Let fn0 =
Ä
fn0,k

ä
k∈K

∈ L∞
(
R2

x

)
∩ L1

(
R2

x

)
with fn0 ≥ 0, then there is a time T > 0 and a constant R such as

∀ t < T , the problem 3.1 admits a unique solution fn = (fnk )k∈K ∈ C
(
[0, T ],L1

(
R2

x

))
and which satisfies the

following estimates:

(3.8) supnsup[0,T ]

∫
R2

x

∑
k∈K

fnk (t,x) dx ≤ Θ (T ) ,

and135

(3.9) ρ(t,x) =
∑
k∈K

fnk (t,x) ≤ R.

If furthermore
∑

k∈K ||fn0,k||∞ < 1 then the solution of the model has a physical meaning i.e. :

(3.10) ρ(t,x) ≤ 1.
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Since this theorem is independent of n, for simplicity, the exponent n is omitted in this section.

Proof of the theorem

We introduce the following function:

ψ̂k(t,x) = f̂k (t,x) exp (λt) for k ∈ K λ > 0.

Therefore, the system 3.6 equivalent to the following system:

(3.11)


dψ̂k(t,x)

dt
= λψ̂k(t,x) + ψ̂eq,k (t,x)− ψ̂k(t,x) k ∈ K,

ψ̂k(t = 0,x) = f0,k(x) k ∈ K.

For all t ∈ [0, T ], we integrate the equation 3.11, we deduce the following ”mild” formulation:

ψ̂k(t,x) = f0,k(x) +

∫ t

0

Ä
λψ̂k(s,x) + ψ̂eq,k (s,x)− ψ̂k(s,x)

ä
ds ∀k ∈ K.

Consider the following operator A =
Ä
Âψk

ä
k∈K

:

Âψk(t,x) = f0,k(x) +

∫ t

0

Ä
λψ̂k(s,x) + ψ̂eq,k (s,x)− ψ̂k(s,x)

ä
ds ∀k ∈ K.

To show that the system (3.11) has a solution, it is enough to show that the operator A has a unique fixed point

in the Banach space XT . Indeed, we introduce the set defined by:

BT,a0,λ,R =

{“ψ =
Ä
ψ̂
ä
k∈K
∈ XT : ψ̂k ≥ 0, ||“ψ||XT ≤ a0||f0||1,

∑
k∈K

ψ̂k (t,x) ≤ Rexp(λt), t ∈ [0, T ], x ∈ R2
x

}
.

Lemma 1. Let “ψ ∈ BT,a0,λ,R,140

(1) There is λ0, such that ∀λ ≥ λ0, we have :
Ä
Âψ
ä
k∈K
≥ 0.

(2) If
∑

k∈K ψ̂k (t,x) ≤ Rexp(λt) then, there are two constant R0, T , such that: ∀R ≥ R0 and t ∈ [0, T ],

∑
k∈K

”Aψk (t,x) ≤ Rexp(λt).

(3) Let C2 =
(

1
2πv2

m
exp

(
− 1

2
||vk−vd||2

v2
m

)
− 1
)

such that (C2 + λ)T 6= 1, then there is a constant a0 such that:

(3.12) ||Âψ||XT ≤ a0||f0||1

(4) Let “ψ1, “ψ2 ∈ BT,a0,λ,R, then there exist C3 such that:

||’Aψ1(t)−’Aψ2(t)||1 ≤ (λT + C3T + T ) ||”ψ1 −”ψ2||XT

Proof of the lemma:
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(1) Since f0,k(x) ≥ 0 k ∈ K, then
Ä
Âψ
ä
k∈K
≥ 0 if,Ä

λψ̂k(s,x) + ψ̂eq,k (s,x)− ψ̂k(s,x)
ä
≥ 0 k ∈ K.

We have

λψ̂k(s,x) + ψ̂eq,k (s,x)− ψ̂k(s,x) = λψ̂k(s,x) +

∑
k∈K ψ̂k (s,x)

2πv2
m

exp

Å
−1

2

||v − vd||2

v2
m

ã
− ψ̂k(s,x)

=

Å
λ+

1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
− 1

ã
ψ̂k(s,x) +

∑
l∈K l6=k ψ̂l (s,x)

2πv2
m

exp

Å
−1

2

||v − vd||2

v2
m

ã
.

Since
∑

l∈K l6=k
“ψl(s,x)

2πv2
m

exp
(
− 1

2
||v−vd||2

v2
m

)
≥ 0 then λψ̂k(s,x) + ψ̂eq,k (s,x)− ψ̂k(s,x) ≥ 0 if:Å

λ+
1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
− 1

ã
≥ 0,

hence, if:

λ ≥ λ0 = 1− 1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
.

(2) we have
∑

k∈K ψ̂k (t,x) ≤ Rexp(λt), hence:

∑
k∈K

”Aψk (t,x) =
∑
k∈K

f0,k(x) +

∫ t

0

(∑
k∈K

λψ̂k(s,x) +
∑
k∈K

ψ̂eq,k (s,x)−
∑
k∈K

ψ̂k(s,x)

)
ds

=
∑
k∈K

f0,k(x) +

∫ t

0

∑
k∈K

ψ̂k(s,x)

(∑
k∈K

1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
− 1

)
+
∑
k∈K

λψ̂k(s,x)ds.

≤
∑
k∈K

||f0,k||∞ +
C1R

λ
(exp(λt)− 1) +Rexp(λt)−R.

with C1 =
(∑

k∈K
1

2πv2
m
exp

(
− 1

2
||vk−vd||2

v2
m

)
− 1
)

.145

Assuming that the choice of vk and vd, is made such that C1 > 0.

Hence
∑

k∈K
”Aψk (t,x) ≤ Rexp(λt) if,

∑
k∈K

||f0,k||∞ +
C1R

λ
(exp(λt)− 1)−R ≤ 0(3.13)

hence R ≥ R1 =
∑
k∈K

||f0,k||∞(3.14)

and, t ≤ T =
1

λ
ln

(
1 +

λ

C1R

(
R−

∑
k∈K

||f0,k||∞

))
(3.15)

(3) Since “ψ ∈ BT,a0,λ,R, we have ||“ψ||XT ≤ a0||f0||1, moreover,

∑
k∈K

∫
R2

x

|”Aψk (t,x) |dx =
∑
k∈K

∫
R2

x

|f0,k(x) +

∫ t

0

Ä
λψ̂k(s,x) + ψ̂eq,k (s,x)− ψ̂k(s,x)

ä
ds|dx

(3.16)

≤ ||f0||1 + λT ||“ψ||XT +

∫
R2

x

|
∫ t

0

∑
k∈K

ψ̂k(s,x)

Å
1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
− 1

ã
ds|dx(3.17)

≤ ||f0||1 + λT ||“ψ||XT + TC2||“ψ||XT(3.18)

≤ (1 + λa0T + Ta0C2) ||f0||1,(3.19)

9



with C2 =
(

1
2πv2

m
exp

(
− 1

2
||vk−vd||2

v2
m

)
− 1
)

.

Whence, ||Âψ||XT ≤ a0||f0||1,150

if (C2 + λ)T 6= 1, i.e. λ 6= 1
T −C2 and a0, satisfies the following equation: 1 +λa0T +Ta0C2 = a0. Indeed,

the constant a0 is given by:

(3.20) a0 =
1

1− (C2 + λ)T
where , (C2 + λ)T 6= 1.

(4)

||’Aψ1(t)−A”ψ2(t)||1 =
∑
k∈K

∫
R2

x

|‘Aψ1
k (t,x)−‘Aψ2

k (t,x) |dx

=
∑
k∈K

∫
R2

x

|
∫ t

0

λ
Ä
ψ̂1
k(s,x)− ψ̂2

k(s,x)
ä
ds+

∫ t

0

Ä
ψ̂1
eq,k(s,x)− ψ̂2

eq,k(s,x)
ä
ds

+

∫ t

0

Ä
ψ̂2
k(s,x)− ψ̂1

k(s,x)
ä
ds|dx.

By definition of the equilibrium density, we have,

ψ̂2
eq,k(s,x)− ψ̂1

eq,k(s,x) =
1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã(∑
l∈K

ψ̂1
l (s,x)−

∑
l∈K

ψ̂2
l (s,x)

)

We pose C3 =
∑

k∈K
1

2πv2
m
exp

(
− 1

2
||vk−vd||2

v2
m

)
Hence by a change of variable, we find:

||’Aψ1(t)−A”ψ2(t)||1 ≤ λT ||”ψ1 −”ψ2||XT + C3T ||”ψ1 −”ψ2||XT + T ||”ψ1 −”ψ2||XT
≤ (λT + C3T + T ) ||”ψ1 −”ψ2||XT .

Which ends the proof of the lemma.

According to 1, 2, 3 of the lemma, for any λ0 ≤ λ (λ 6= 1
T − C2), R ≥ R1, t ≤ T and a0 verifies (3.20), we have:

if “ψ ∈ BT,a0,λ,R then Âψ ∈ BT,a0,λ,R.

According to 4 of the lemma, we have

||’Aψ1 −A”ψ2||XT ≤ (λT + C3T + T ) ||”ψ1 −”ψ2||XT .

Moreover λ <
(

1
T − (C3 + 1)

)
:= λ1 then:

(λT + C3T + T ) < 1.

Hence the operator A : BT,a0,λ,R → BT,a0,λ,R is a contraction.

Banach’s fixed point theorem refers to the local existence of the model solution.

From the foregoing, there exist λ, (λ0 ≤ λ < λ1, λ 6= 1
T − C2), T , a0 and R, such that the problem 3.1 has a

unique positive solution fn = (fnk )k∈K ∈ C
(
[0, T ],L1

(
R2

x

))
and which satisfies :∫

R2
x

∑
k∈K

fnk (t,x) dx ≤ a0||f0||1 exp(−λt) ( since ||“ψ||XT ≤ a0||f0||1).

Hence,

sup[0,T ]

∫
R2

x

∑
k∈K

fnk (t,x) dx ≤ a0||f0||1.

10



Since a0||f0||1 does not depend on n and a0 = a0(T ), then:

supnsup[0,T ]

∫
R2

x

∑
k∈K

fnk (t,x) dx ≤ Θ (T ) .

where, Θ (T ) = a0(T )||f0||1, from where the estimation (3.8).

In addition the solution satisfies

ρ (t,x) ≤ R, t ∈ [0, T ] x ∈ Ω, R ≥ R1,

where

R1 =
∑
k∈K

||f0,k||∞.

Moreover if
∑

k∈K ||f0,k||∞ < 1, (R1 ≤ 1), then we choose R = R1 such that

ρ (t,x) ≤ 1, ∀ t ∈ [0, T ], ∀ x ∈ Ω,

Hence the estimation (3.10). That ends the proof of the theorem 1.155

Remark 2. In our proof we have demonstrated the local existence of problem 3.1, in [0,T]. Through an iteration

process. We can successively solve the equation 3.1 with initial conditions in t0 = 0 until T , t1 = T until t2 = 2T ,

...

By concatenation we build a maximum solution on [0, Tmax[, with Tmax = sup
j
tj . This solution belongs

C
(
[0, Tmax[,L1

(
R2

x

))
160

3.2. Convergence of the discrete kinetic equation towards the continuous one. According to the pre-

views section, we have shown the existence and uniqueness of the discrete model solution(3.1) fn = (fnk )k∈K ∈
C
(
[0, Tmax[,L1

(
R2

x

))
, moreover satisfies the following estimate:

(3.21) supnsup[0,T ]

∫
R2

x

∑
k∈K

fnk (t,x) dx ≤ Θ (T ) .

In order to prove the convergence of this solution, we define the following functions:

fn (t,x,v) =
∑
k∈K

fnk (t,x)1nk(v),(3.22)

fneq (t,x,v) =
∑
k∈K

fneq,k(t,x)1nk(v),(3.23)

Cn(v) =
∑
k∈K

vnk1
n
k(v)(3.24)

f0(0,x,v) =
∑
k∈K

f0,n
k (x)1nk(v)(3.25)

with 1
n
k the indicator function on the velocity cells Ink .165

Then the discrete model 3.1 can be linked to the BGK equation 2.1 by the following equation:

(3.26)


∂fn(t,x,v)

∂t
+ Cn(v).∇xf

n(t,x,v) = fneq (v)− fn(t,x,v) D
′ (

]0, Tmax[×R2
x × R2

v

)
,

f0(0,x,v) =
∑
k∈K

f0,n
k (x)1nk(v),

11



where,

D
′ (

]0, Tmax[×R2
x × R2

v

)
=

ß
W : D

(
]0, Tmax[×R2

x × R2
v

)
−→ R, W continuous, linear

™
,(3.27)

D
(
]0, Tmax[×R2

x × R2
v

)
=

ß
f ∈ C∞

(
]0, Tmax[×R2

x × R2
v

)
: supp(f), compact

™
.(3.28)

We now denote our convergence result in the following theorem:

Theorem 2. let vn such that ∆vn −→
n→+∞

0 ∆vnBn −→
n→+∞

+∞, and

Cn : R2
v → R2

v

v 7→ Cn(v)
such that:

(3.29) Cn is locally, uniformly bounded in
(
L∞loc

(
R2

v

))2
,

170

(3.30) Cn(v) −→
n→+∞

v simply.

Then we can extract a sub-sequence noted (fn)n which converges weakly in L1
(
]0, Tmax[×R2

x × R2
v

)
, ∀Tmax ≥ 0

to a solution of the equation (2.1).

Proof

We refer to the works of Perthame [28] and [25], we divide the proof into 4 steps:

step 1: weak convergence of fn175

According to (3.21), (3.22), it is clear that fn satisfies the following estimate:

(3.31) supnsup[0,T ]

∫
R2

x×R2
v

fn (t,x,v) dxdv ≤ Θ1 (T ) ,

which implies that the following (fn)n is equi-integrable.

According to Dunford-Pettis theorem [33], we can extract a subsequence noted (fn)n which converges weakly in

L1
(
]0, Tmax[×R2

x × R2
v

)
, towards f ∈ L1

(
]0, Tmax[×R2

x × R2
v

)
, i.e.:180

(3.32) fn ⇀
n→+∞

f in L1
(
]0, Tmax[×R2

x × R2
v

)
.

Hence

fn −→
n→+∞

f inD
′ (

]0, Tmax[×R2
x × R2

v

)
,

for all Tmax ≥ 0. We thus obtain the convergence of the transport term of (3.26) towards ∂f + v.∇f in

D′
(
]0, Tmax[×R2

x × R2
v

)
., i.e.:

(3.33) ∂fn + Cn(v).∇xf
n −→
n→+∞

∂f + v.∇xf in D
′ (

]0, Tmax[×R2
x × R2

v

)
.

Indeed, let ϕ ∈ D
(
]0, Tmax[×R2

x × R2
v

)
,∫

]0,Tmax[×R2
x×R2

v

(∂tf
n + Cn(v).∇xf

n)ϕdtdxdv = −
∫

]0,Tmax[×R2
x×R2

v

fn (∂tϕ+ Cn(v).∇xϕ) dtdxdv

= −
∫

]0,Tmax[×R2
x×R2

v

fn (∂tϕ) dtdxdv −
∫

]0,Tmax[×R2
x×R2

v

fn (Cn(v).∇xϕ) dtdxdv.
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We have :∫
]0,Tmax[×R2

x×R2
v

fn (Cn(v).∇xϕ) dtdxdv =

∫
]0,Tmax[×R2

x×R2
v

fn (Cn(v)− v) .∇xϕdtdxdv +

∫
]0,Tmax[×R2

x×R2
v

fnv.∇xϕdtdxdv

According to (3.29), (3.30)∫
]0,Tmax[×R2

x×R2
v

fn (Cn(v)− v) .∇xϕdtdxdv ≤ ||fn||L1(]0,Tmax[×R2
x×R2

v)||Cn(v)− v||L∞(R2
v)||∇xϕ||L∞(]0,Tmax[×R2

x×R2
v).

From (3.30), ||Cn(v)− v||L∞(R2
v) −→

n→+∞
0, consequently,

(3.34)

∫
]0,Tmax[×R2

x×R2
v

fn (Cn(v)− v) .∇xϕdtdxdv −→
n→+∞

0.

Moreover, since v.∇xϕ ∈ L∞
(
]0, Tmax[×R2

x × R2
v

)
, then

(3.35)

∫
]0,Tmax[×R2

x×R2
v

fnv.∇xϕdtdxdv −→
n→+∞

∫
]0,Tmax[×R2

x×R2
v

fv.∇xϕdt.

In addition, ∂tϕ ∈ L∞
(
]0, Tmax[×R2

x × R2
v

)
, then185

(3.36)

∫
]0,Tmax[×R2

x×R2
v

fn (∂tϕ) dtdxdv −→
n→+∞

∫
]0,Tmax[×R2

x×R2
v

f (∂tϕ) dtdxdv.

From, (3.34),(3.35) and (3.36), we have∫
]0,Tmax[×R2

x×R2
v

fn (∂tϕ+ Cn(v).∇xϕ) dtdxdv −→
n→+∞

∫
]0,Tmax[×R2

x×R2
v

f (∂tϕ+ v.∇xϕ) dtdxdv,

hence the result (3.33).

For the convergence of the non-linear part, we first have the convergence of ρn, according to (3.32):∫
R2

v

fn (t,x,v) dv −→
n→+∞

∫
R2

v

f (t,x,v) dv weakly in L1
(
]0, Tmax[×R2

x

)
,

i.e.

(3.37) ρn(t,x) ⇀
n→+∞

ρ(t,x) inL1
(
]0, Tmax[×R2

x

)
.

Step 2 : weak convergence of fneq
We need the following lemma:

Lemma 2. Suppose that fn = (fnk )k∈K satisfies the inequality (3.21), then

∀T ≥ 0, there is C (T ) such that190

(3.38) supnsup[0,T ]

∫
R2

x×R2
v

fneq (t,x,v) dxdv ≤ C (T ) ,

Proof of the lemma 2

We have

fneq (t,x,v) =
∑
k∈K

fneq,k(t,x)1nk(v),

13



with, fneq,k(t,x) = 1
2πv2

m
exp
(
− 1

2
||vk−vd||2

v2
m

)
, ρ (t,x) =

∑
k∈K fk (x, t) .

∫
R2

x×R2
v

fneq (t,x,v) dxdv =

∫
R2

x×R2
v

∑
l∈K

fl (x, t)
∑
k∈K

1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
1
n
k(v)dxdv

=

∫
R2

xR2
v

∑
l∈K

fl (x, t) dx

∫
R2

v

∑
k∈K

1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
1
n
k(v)dv

=

∫
R2

x

∑
l∈K

fl (x, t) dx

∫
Ink

∑
k∈K

1

2πv2
m

exp

Å
−1

2

||vk − vd||2

v2
m

ã
dv

from where,

supnsup[0,T ]

∫
R2

x×R2
v

fneq (t,x,v) dxdv ≤ supnsup[0,T ]

∫
R2

x

∑
l∈K

fl (x, t) dx.C (Ink )

according to (3.21) ≤ C (T ) ,

where C (T ) := Θ(T ).C (Ink ).

According to this lemma (fneq) is weakly compact in L1
(
]0, Tmax[×R2

x × R2
v

)
, so we can extract a subsequence

noted (fneq) such that fneq ⇀
n→+∞

g inL1
(
]0, Tmax[×R2

x × R2
v

)
, where from the step (1) and (2), the low limit of

fn satisfies the equation195

(3.39) ∂f + v.∇f = g − f in D
′ (

]0, Tmax[×R2
x × R2

v

)
.

The next step is to show that g = feq
Step 3: strong convergence of ρn.

According to the compactness lemma on averages obtained by Mischler [32], and [?], on sets of bounded velocities

fn is strongly compact therefore. Indeed, we have for any RC (extracting again subsequences):

(3.40)

∫
|v|≤RC

fn (t,x,v) dv −→
n→+∞

∫
|v|≤RC

f (t,x,v) dv,

strongly in L1
(
]0, Tmax[×R2

x

)
.200

From the uniform estimates (3.31), we thus obtain

(3.41) fn −→
n→+∞

f in L1
(
]0, Tmax[×Kx × R2

v

)
. ∀ Kx compact ofR2

x.

Hence from the above and the equation (3.37)

(3.42) ρn(t,x) =

∫
R2

v

fn (t,x,v) dv −→
n→+∞

ρ(t,x) =

∫
R2

v

f (t,x,v) dv L1 (]0, Tmax[×Kx) . ∀Kx compact.

Step 4: Passing to the limit

According to the step (3),

(3.43) ρn(t,x) −→
n→+∞

ρ(t,x) L1 (]0, Tmax[×Kx) ∀Kx compact,

then, we can extract a sub-sequence again, as205

(3.44) ρn(t,x) −→
n→+∞

ρ(t,x) a.e [0, Tmax[×R2
x.

14



On the other hand, by hypothesis we have:

(3.45) ||vnk − vd|| −→
n→+∞

||v − vd|| ∀k ∈ K.

Hence from (3.44), (3.45),

(3.46) fneq −→
n→+∞

feq a.e. [0, Tmax[×R2
x × R2

v.

Combine this results with those of the step (2) we have:

(3.47) g = feq.

As a result, the left side of the equation (3.26) converges to (feq − f) weakly in L1
(
]0, Tmax[×R2

x × R2
v

)
. We

conclude that f is solution of the equation BGK (2.1).210

4. Results and numerical simulations

4.1. Numerical method. The general idea of the semi-Lagrangian method used is to fix a grid in the velocity

space and to transform the kinetic equation into a set of linear hyperbolic equations with source terms. We refer

to [34, 35] for the detailed description of this numerical method. Here we recall only the basic principles.

We summarize the semi-Lagrangian numerical method used in this work as follows:215

(1) the discretization of the BGK model equation in the velocity space.

(2) A splitting procedure of time between transport and relaxation operators for each of the system evolution

equations (4.1).

(3) The exact resolution of the transport part which means without using a spatial mesh, the initial data of

this step are given by the solution of the relaxation operator.220

(4) The resolution of the relaxation part on the grid with initial data defined by the value of the distribution

function at the center of the cells after the transport step.

We introduce a Cartesian grid V in R2 in two-dimensional velocity space, and a set K multi−indices of Z2, such

that:

K = {(−1, 0); (−1, 1); (0, 1); (1, 1); (1, 0); (1,−1); (0,−1); (−1,−1)}
which means we discretize the square [−1, 1]× [−1, 1].

In what follows, all the simulations are done in a square space domain Ω = [0, 20]× [0, 20].

Thanks to the discrete velocity approximation above, the continuous distribution function f is replaced by 8 vector225

where each component is supposed to be an approximation of the distribution function f , i.e. fk(t,x) ≈ f(t,x,vk),

and the original kinetic equation (1.1) is replaced by a set of 8 evolution equations for fk of the following form:

(4.1)


∂fk(t,x)

∂t
+ vk.∇xfk(t,x) =

1

τ
(feq,k (vk)− fk(t,x)) k ∈ K,

fk(t = 0,x) = f0,k(x) k ∈ K.

We describe the first step of the [t0 → t1] method, starting from t0 = 0 and then we generalize at an arbitrary time

step.

With splitting, the first step is reduced to the Nv linear transport equation resolution of the form230

(4.2)
∂fk(t,x)

∂t
+ vk.∇xfk(t,x) = 0 k ∈ K.

In order to solve this part, we consider for each equation of the system (4.2), the initial data defined by:

(4.3) Ûfk(x, t = 0) = f0,k(x) x ∈ Ω, k ∈ K.

15



Thanks to this reconstruction, the exact system solution (4.2) at time t1 = t0 + ∆t = ∆t is given by:

(4.4) Ûf∗k(x) = Ûfk(x− vk∆t) x ∈ Ω, k ∈ K.

To complete a step of time, we must calculate the solution of the interaction part of the equation (4.1) on the

points of the grid,

(4.5) ∂tfk =
1

τ
(feq,k − fk) k ∈ K,

where the initial data is given by the resolution of the transport step to time t1 = t0 + ∆t,
Ä Ûf∗k(x)

ä
k∈K

.

To solve (4.5), we define the value of the equilibrium distribution at the instant t1 ,
Ä
f1
eq,k

ä
k∈K

,

f1
eq,k(vk) =

ρ(t,x)

2πv2
r,m,s

exp

Ç
−1

2

||vk − vd||2

v2
r,m,s

å
, k ∈ K,

with

ρ(t,x) =
∑
k∈K

Ûf∗k(x).

Finally, the solution of relaxation equation (4.5) is given by:235

(4.6) f1
k = e(−

∆t
τ ) Ûf∗k +

(
1− e(−

∆t
τ )
)
f1
eq,k, k ∈ K.

Given a density value
Ä Ûfnk (x)

ä
k∈K

at the moment tn for x ∈ Ω, k ∈ K, then the density at instant tn+1 can be

calculated as follows:

• Ûf∗k(x) = Ûfnk (x− vk∆t).

• fn+1
k = e(−

∆t
τ ) Ûf∗k +

(
1− e(−

∆t
τ )
)
fn+1
eq,k .

The local density at the instant tn+1 defined by:

ρ(tn+1,x) =
∑
k∈K

fn+1
k (x).

By Referring to [34, 36, 37, ?], this scheme is unconditionally stable , however for reasons of precision, the time240

step is chosen to satisfy the condition: ∆t
∆x < 1 because the maximum speed of the pedestrians is fixed at one.

In conclusion, we summarize the procedures where the steps of this scheme in the following algorithm:

Require:
(
f0
i (x)

)
i∈K: initial data.

for m = 0 : Nt− 1 do

• Resolution of the transport part the Nv equations of the system 4.2 with (fmi )i∈K the initial data, we getÄ Ûfmi äi∈K.

• Computation of equilibrium density
Ä
fmeq,i

ä
i∈K

.

• Relaxation term resolution (4.5) with
Ä Ûfmi äi∈K initial data.

end for

• (fmi (x))i∈K.

The output parameters of the algorithm are the numerical solution of the original problem defined by the two

equations (4.1) .

245
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4.2. Convergence test for the semi-Lagrangian scheme. Our goal in this paper is to validate the proposed

mathematical model for pedestrian motion. This choice is motivated by considering a small number of pedestrians

(N ≤ 100 pedestrians).

In order to analyze the convergence of the spatial discretization of the semi-Lagrangian method. We solve the

kinetic equation (4.1), with initial data that is a piecewise constant function in two-dimensional space. They are250

concentrated densities in a center disk x0 with radius Rd:

(4.7) ∀k ∈ K, fk (t = 0,x) =

®
f0
k (x) , ||x− x0|| ≤ Rd,

0

This initial data corresponds to a small number of pedestrians N = 100.

We performed the simulation with a temporal discretization step, ∆t = 2.10−2 .

In order to estimate the accuracy of the method, we used as a reference a solution f∗ computed with a space step255

∆x = ∆y = 1
26 = 0.0156, then we estimate the solution with different steps ∆x = 1

2n−1 , n = 1, ..., 5, with ∆x = ∆y.

To evaluate the convergence, we calculated the difference between the norm L1 of the reference solution and the

density ρ(x) estimated at time t = 2.5 s with different steps ∆x and ∆y,

(4.8) Error(∆x) =||ρ(∆x, t = 2.5)− ρ∗(∆x, t = 2.5)||L1 ,

with ρ∗(., t = 2.5) =
∑

k∈K fk,∗(., t = 2.5).

We illustrate the results obtained in Fig.3.260
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Figure 3. Precision of the schema in space with the error given by (4.8).

.

The Fig. 3, shows that the norm of error L1 decreases linearly with respect ∆x.

In order to demonstrate the convergence order, we compute the so called experimental order of convergence (EOC),

(4.9) EOC := log2
||ρ(∆x, t = 2.5)− ρ∗||L1

||ρ(∆x
2 , t = 2.5)− ρ∗||L1

,
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for considered spacial steps ∆x = 1
2n−1 , n = 1, ..., 5, the obtained results are given in the following table (see Table265

1 )

Table 1. Experimental order of convergence (EOC) for the semi-Lagrangian scheme.

n the order of refinement ∆x = 1
2n−1 Error(∆x) EOC

1 1 0.6138 −−
2 0.5000 0.2964 1.0502

3 0.2500 0.1450 1.0315

4 0.1250 0.0715 1.0200

5 0.0625 0.0362 0.9820

According to the results in Table 1, the experimental order of convergence EOC ≈ 1 showing that the method is

first order accurate in space.

Then, to show the possible directions for pedestrians

K =

ß
(−1,−1), (−1, 0); (−1, 1); (1,−1); (1, 0); (1, 1); (0, 1); (0,−1)

™
,

V = {vk = k∆v /k ∈ K, ∆v = 1} , we represented the solution at 6 different moments, with the same initial

condition defined by (4.7), and space step ∆x = ∆y = 5.10−2 and ∆t = 2.10−2, the results obtained are represented

in Fig.4 a-f.

(a) t = 0s (b) t = 2s (c) t = 2.44s

(d) t = 3.16s (e) t = 4.2s (f) t = 6s.

Figure 4. The evolution of the density ρ(x, y) during the instants, (a): t = 0s, (b): t = 2s, (c): t = 2.44s
(d): t = 3.16s, (e): t = 4.2s, (f): t = 6s.

We observe that pedestrian density diffuses into space and pedestrians point to the following directions:ß
(±1, 0); (1,±1); (−1,±1); (0,±1)

™
.
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4.3. Movement of a group of pedestrians towards a single desired direction vd. In this paragraph our aim

is to show the adaptation of all pedestrians to a desired configuration namely the movement in a desired direction

vd. We consider the BGK model (4.1) with the same initial condition (4.7) corresponding to 100 pedestrians. The270

equilibrium density modeling the trend towards the desired configuration is defined as follows:

(4.10)

feq,k(vk) =
ρ(t,x)

2πv2
r,m,s

exp

Ç
−1

2

||vk − vd||2

v2
r,m,s

å
, k ∈ K vd = [1, 1]T ,

K = {(−1, 0); (1,−1); (1, 0); (1, 1); (0, 1)} vk ∈ V = {vk = k∆v /k ∈ K, ∆v = 1} .

We assume that all pedestrians have the same speed v = 1.00 m /s. We considered the same time step as in the

first case ∆t = 2.10−2 ∆x = ∆y = 5.10−2.

We then represent the evolution of pedestrian density for 6 different instants and for two values of relaxation time

τ = 5.10−3 (see Fig.5) and τ = 5.10−2 (see Fig.6.)

(a) t = 0s (b) t = 1.04s (c) t = 1.76s

(d) t = 2.52s (e) t = 3.16s (f) t = 6s.

Figure 5. Evolution of the local density during the times : (a): t = 0s, (b): t = 1.04s, (c): t = 1.76s (d):
t = 2.52.16s, (e): t = 3.16s, (f): t = 6s, with a relaxation time τ = 5.10−3.
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(a) t = 0s (b) t = 1.04s (c) t = 1.76s

(d) t = 2.52s (e) t = 3.16s (f) t = 6s.

Figure 6. Evolution of the local density during the times : (a): t = 0s, (b): t = 1.04s, (c): t = 1.76s (d):
t = 2.52.16s, (e): t = 3.16s, (f): t = 6s, with a relaxation time τ = 5.10−2.

At the moment t = 0, we have the possible directions {(±1, 0); (1,±1); (−1,±1); (0,±1)} . Then all pedestrians

have the tendency to direct towards a desired direction vd = [1, 1]T . Firstly, the figures show the adaptation of the

desired direction vd = [1, 1]T by the pedestrian group, on the other hand the figure 5 shows that the time taken

by the group of pedestrians that they have a relaxation time τ = 5.10−3 to direct towards vd is minimal compared

to the time taken by the group who have τ = 5.10−2 fig. 6.280

4.4. Motion of a group of pedestrians towards 2 desired directions vd,1,vd,2. Consider a group of pedes-

trians defined by the same initial data. This initial density corresponds to a number of pedestrians equal to 100

pedestrians have the tendency to direct towards two desired directions vd,1 = [1, 1],vd,2 = [−1, 1], all pedestrians

have the same speed v = 1.00m/s.

The results obtained are given in the figure 7 for τ = 5.10−3 and the figure 8 for τ = 5.10−2.

(a) t = 0s (b) t = 1.12s (c) t = 2.08s

(d) t = 3.2s (e) t = 4.24s (f) t = 6s.

Figure 7. Evolution of local density during the times : (a): t = 0s, (b): t = 1.12s, (c): t = 2.08s (d):
t = 3.2s, (e): t = 4.24s, (f): t = 6s, with a relaxation time τ = 5.10−3.
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(a) t = 0s (b) t = 1.12s (c) t = 2.08s

(d) t = 3.2s (e) t = 4.24s (f) t = 6s.

Figure 8. Evolution of local density during the times : (a): t = 0s, (b): t = 1.12s, (c): t = 2.08s (d):
t = 3.2s, (e): t = 4.24s, (f): t = 6s, with a relaxation time τ = 5.10−2.

The figures show that the crowd is divided into two groups in order to reach their state of equilibrium. It consists

the movement of the two groups towards the two desired directions vd,1,vd,2.

5. Conclusion and looking forward

In this paper we have developed the kinetic approach for the dynamics of a crowd, based on the BGK equation.

The existence and uniqueness of the proposed discrete velocity model solution has been demonstrated thanks to290

the Banach fixed point theorem. Thus, the convergence of this discrete model towards the continuous BGK model

is proven. Numerical simulations using the semi-Lagrangian method are performed. The mathematical model

proposed is capable of describing the tendency of a crowd towards a situation of equilibrium, namely the tendency

towards a desired direction.

As already laid out in the introduction, it should be clear that the aim of this paper is only to adapt the BGK295

model in kinetic theory to the movement of a crowd. In other words, the derivation of the equilibrium function

feq describing a pedestrian tendency to achieve a desired direction. The most important perspective, is related to

the derivation of a equilibrium function describing the panic conditions, evacuation problems or lane formation.

The relaxation time τ is assumed constant this is a strong assumption considering the application. This coefficient

τ may depend on feq or on the density ρ.300
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