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Abstract. In the current paper, we investigate a nonlocal hyperbolic problem
with volume constraints. The main motivation of this work is to apply the

nonlocal vector calculus, introduced and developed by DU et al. [3] to such

problem. Moreover, based on some density arguments, some a priori estimates
and using the Galerkin approach, we prove existence and uniqueness of a weak

solution to the nonlocal wave equation.

1. Introduction. The study of nonlocal problems has gained great attention over
the last two decades. Nonlocal models involve integral equations and fractional
derivatives allowing nonlocal interactions, that is to say, the interaction may occur
even when the closures of two domains have an empty intersection. Such models are
effective in modeling material singularities and are widely considered in a variety
of applications, including image analyses [6]-[10], phase transition [4][11], machine
learning [12] and obstacle problem [5]...
In a major advance in 2013, Du et al. [3] introduced nonlocal vector calculus as a
nonlocal framework to understand and analyze nonlocal problems. It defines non-
local fluxes , nonlocal analogues of the gradient, divergence, and curl operators,
and presentes some basic nonlocal integral theorems that mimic the classical in-
tegral theorems of the vector calculus for differential operators, the authors have
also provided connection between the nonlocal operators and their usual differential
counterparts in a distributional sense then in a weak sense by introducing nonlocal
weighted operators.
The present paper was motivated by [2], where the authors threw light on the anal-
ogy between nonlocal and local diffusion problems with a convincing explanation
of the usefulness, in the nonlocal case, of volume constraints which represent the
nonlocal analogue of the boundary conditions of the classical theory. Our purpose
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is to discuss the well posedeness of a hyperbolic problem considering a nonlocal
diffusion operator instead of the Laplacian operator. Furthermore, the study of the
eigenvalue problem corresponding to the nonlocal Dirichlet problem is carried out.
The paper is divided into two main sections. The first part gives a brief overview
of the basic concepts of the nonlocal vector calculus and emphasises the existence
of an orthogonal basis of eigenfunctions associated to the considered nonlocal oper-
ator. In the second part, we formulate the nonlocal wave equation and exploit the
Galerkin method to prove existence and uniqueness of weak solution to the nonlocal
hyperbolic problem.

2. Statement of the elliptic nonlocal problem. In the present section we give
the position of the elliptic volume constrained problem and present the energy spaces
needed to study the nonlocal problem:{

D(ξ.D∗(u)) = f on Ω
u = 0 on ΩI

(1)

Where Ω is an open and bounded subset of Rn with piecewise smooth boundary
and satisfies the interior cone condition, ξ is a symmetric second-order tensor, and
f ∈ L2(Ω) is a given function.
Recall the definition of some nonlocal operators, see [3]. Given a vector function
ν(x, y) : Rn ×Rn → Rk and an antisymmetric vector function α(x, y) : Rn ×Rn →
Rk, the action of the nonlocal divergence operator D on ν is defined as

D(ν)(x) :=

∫
Rn

(ν(x, y) + ν(y, x)).α(x, y)dy for x ∈ Rn (2)

Given a scalar function u(x) : Rn → R, the adjoint of D is the operator D∗ whose
action on u is given by

D∗(u)(x, y) = −(u(y)− u(x))α(x, y) for x, y ∈ Rn (3)

The operator −D∗ is considered as a nonlocal gradient, also,

D(ξ.D∗u)(x) = −2

∫
Rn

(u(y)− u(x))α(x, y).(ξ(x, y).α(x, y))dy

Given positive constants γ0 and ε, we first assume that the symmetric kernel

γ(x, y) = α(x, y).(ξ(x, y).α(x, y))

satisfies, for all x ∈ Ω ∪ ΩI

1) γ(x, y) ≥ 0 ∀y ∈ Bε(x)
2) γ(x, y) ≥ γ0 > 0 ∀y ∈ Bε/2(x)
3) γ(x, y) = 0 ∀y ∈ (Ω ∪ ΩI) \Bε(x)
where Bε(x) := {y ∈ Ω ∪ ΩI : |y − x| ≤ ε}
4) There exist s ∈ (0, 1) and positive constants γ∗ and γ∗ such that, for all x ∈ Ω

γ∗
|y − x|n+2s

≤ γ(x, y) ≤ γ∗

|y − x|n+2s
for y ∈ Bε(x)

let us also recall the definition of the interaction domain corresponding to Ω:

ΩI := {y ∈ Rn\Ω : α(x, y) 6= 0 for some x ∈ Ω} (4)

To investigate the problem (1), the following nonlocal energy space will be used
constantly [2]. We adopt:

V (Ω ∪ ΩI) := {u ∈ L2(Ω ∪ ΩI) : |||u||| <∞} (5)
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equipped with the nonlocal energy norm

|||u||| :=
(

1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(u))dydx

) 1
2

(6)

we then introduce the nonlocal volume constrained energy space [2]:

Vc(Ω ∪ ΩI) := {u ∈ V (Ω ∪ ΩI) : u = 0 on ΩI}
the norm

|||f |||V ∗c (Ω∪ΩI) := sup
ϕ∈Vc(Ω∪ΩI)
|||ϕ|||≤1

∣∣〈f, ϕ〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI)

∣∣
denotes the norm for the dual space V ∗c (Ω ∪ ΩI) of Vc(Ω ∪ ΩI).
Next, using the nonlocal Green’s first identities [3], we state the following definition:

Definition 2.1. We say that u ∈ Vc(Ω ∪ ΩI) is a weak solution of the nonlocal
elliptic problem (1) if∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕ))dydx =

∫
Ω

fϕdx ∀ϕ ∈ Vc(Ω ∪ ΩI). (7)

Then, according to the definition of the nonlocal energy norm (6), we immediately
announce the following theorem:

Theorem 2.2. There exist two constants M1,M2 > 0 such that

|
∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕ))dydx |≤M1|||u||||||ϕ||| (8)

and

M2|||u|||2 ≤
∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(u))dydx (9)

for all u, ϕ ∈ Vc(Ω ∪ ΩI)

Theorem 2.3. For each f ∈ L2(Ω), there exists a unique weak solution
u ∈ Vc(Ω ∪ ΩI) of the nonlocal elliptic problem (1).

Proof. Using the previous theorem (2.2), we obtain the result of existence and
uniqueness via a direct application of the Lax-Milgram theorem.

2.1. The nonlocal Dirichlet eigenvalue problem. In this subsection, we focus
our attention on seeking the set of numbers µ such that the following eigenvalues
problem (10) corresponding to the Dirichlet nonlocal problem (1):∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕ))dydx = µ

∫
Ω

uϕdx ∀ϕ ∈ Vc(Ω ∪ ΩI), (10)

has a solution u ∈ Vc(Ω ∪ ΩI).
We state the following result:

Theorem 2.4. 1) Each eigenvalue of the problem (10) is real.
2) If we repeat each eigenvalue according to its multiplicity, we have that the set Σ
of the eigenvalues of the operator D(ξ.D∗(.)) is as follows:

Σ = (µj)j≥1 (11)

where 0 < µ1 ≤ µ2 ≤ ... ≤ µn ≤ ... and µj →
j→∞

∞.

3) There exists an orthonormal basis (vj)j≥1 of L2(Ω∪ΩI), where vj ∈ Vc(Ω∪ΩI)
is an eigenvector corresponding to µj for j ≥ 1.
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Proof. Let K be the mapping

K : L2(Ω ∪ ΩI) → Vc(Ω ∪ ΩI)

f 7→ uf

where u is the unique solution of (1) given by Theorem (2.3).
We claim that the operator K is bounded, indeed:

|||u|||2 =

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(u))dydx

≤ ‖ f ‖L2(Ω)‖ u ‖L2(Ω)

according to the nonlocal Poincaré inequality [2], there exists a positive constant C
such that:

|||Kf ||| ≤‖ f ‖L2(Ω∪ΩI)

since the embedding

I : Vc(Ω ∪ ΩI) → L2(Ω ∪ ΩI)

u 7→ u

is compact, we directly deduce that the mapping

I ◦K : L2(Ω ∪ ΩI) → L2(Ω ∪ ΩI)

f 7→ uf

is linear and compact.
On the other hand, if w is the unique solution of the problem:{

D(ξ.D∗(w)) = f on Ω
w = 0 on ΩI

and v if the solution of:{
D(ξ.D∗(v)) = g on Ω
v = 0 on ΩI

where f, g ∈ L2(Ω ∪ ΩI). We have:

((I ◦K)f, g)L2(Ω∪ΩI) =

∫
Ω

wgdx =

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(v).(ξ.D∗(w))dydx

((I ◦K)g, f)L2(Ω∪ΩI) =

∫
Ω

vfdx =

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(w).(ξ.D∗(v))dydx

which prove that the operator I ◦K is symmetric. In addition:

((I ◦K)f, f)L2(Ω∪ΩI) =

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(w).(ξ.D∗(w))dydx ≥ 0

We apply the theory of compact and symmetric operators from [13] to conclude
the existence of real eigenvalues of I ◦K, and that the corresponding eigenvectors
(vj)j≥1 form a complete orthonormal system in L2(Ω ∪ ΩI).
To conclude the proof, notice that:

(I ◦K)v = λv is equivalent to D(ξ.D∗(v)) =
1

λ
v = µv
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Theorem 2.5. Let (vj)j≥1 be the eigenvectors corresponding to (µj)j≥1 given by
Theorem (2.4), then (vj)j≥1 forms an orthogonal basis of Vc(Ω ∪ ΩI).

Proof. The orthogonality of the eigenvectors follows from:∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(vj).(ξ.D∗(vk))dydx = µj(vj , vk)L2(Ω)

= µjδi,j

On the other hand, for each u ∈ Vc(Ω ∪ ΩI) we have:

u =
∑
j≥1

(u, vj)L2(Ω∪ΩI)vj

=
∑
j≥1

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(vj))dydx
µj

vj

=
∑
j≥1

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(vj))dydx
|||vj |||2

vj

which concludes the proof.

Since (vj)j≥1 is an orthogonal basis of Vc(Ω ∪ ΩI) for any j ∈ N, we can define
the orthogonal projection on the j-dimensional subspace of Vc(Ω ∪ ΩI) spanned by
v1, v2, ..., vj .

Proposition 1. Let Pn, Qn be the orthogonal projections defined, for all n ∈ N,
by:

Pn(u) :=

n∑
j=1

(u, vj)L2(Ω∪ΩI)vj ∀u ∈ L2(Ω ∪ ΩI) (12)

Qn(u) :=

n∑
j=1

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(vj))dydx
|||vj |||2

vj ∀u ∈ Vc(Ω ∪ ΩI) (13)

Then

Pnu
L2(Ω∪ΩI)−−−−−−→ u ∀u ∈ L2(Ω ∪ ΩI)

Then

Qnu
Vc(Ω∪ΩI)−−−−−−→ u ∀u ∈ Vc(Ω ∪ ΩI)

These convergences come simply from the following result:

Proposition 2. Let Pn, Qn be the orthogonal projections defined by definitions (12)
and (13), then:

‖ Pn ‖L(L2(Ω∪ΩI),L2(Ω∪ΩI))=‖ Qn ‖L(Vc(Ω∪ΩI),Vc(Ω∪ΩI))= 1

If we set

Pn(u) =

n∑
j=1

< u, vj >V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) vj ∀u ∈ V ∗c (Ω ∪ ΩI)

then

‖ Pn ‖L(V ∗c (Ω∪ΩI),V ∗c (Ω∪ΩI))= 1
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Proof. Let u ∈ L2(Ω ∪ ΩI), then

‖ u ‖2L2(Ω∪ΩI)= lim
n→∞

n∑
j=1

(u, vj)
2
L2(Ω∪ΩI) = lim

n→∞
‖ Pn(u) ‖2L2(Ω∪ΩI)

subsequently

‖ Pn ‖L(L2(Ω∪ΩI),L2(Ω∪ΩI))= sup
u∈L2(Ω∪ΩI)

u 6=0

‖ Pn(u) ‖L2(Ω∪ΩI)

‖ u ‖L2(Ω∪ΩI)
≤ 1

to conclude the proof, note that: Pn(vj) = vj
Secondly, we have, for u ∈ Vc(Ω ∪ ΩI):

Qn(u) =

n∑
j=1

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(vj))dydx
|||vj |||2

vj

=

n∑
j=1

(u, vj)L2(Ω∪ΩI)vj

therefore

|||Qn(u)||| =

n∑
j=1

(u, vj)
2
L2(Ω∪ΩI)

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(vj).(ξ.D∗(vj))dydx
|||vj |||2

vj

≤
∞∑
j=1

(u, vj)
2
L2(Ω∪ΩI)|||vj |||

2

≤ |||u|||2

and as Qn(vj) = vj , we claim that ‖ Qn ‖L(Vc(Ω∪ΩI),Vc(Ω∪ΩI))= 1.
Furthermore, if we extend the projection Pn to V ∗c (Ω ∪ ΩI) we obtain:

| < Pn(u), ϕ >V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) | = |
n∑

j=1

< u, vj >V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) (ϕ, vj)L2(Ω∪ΩI)|

= | < u,Pn(ϕ) >V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) |
≤ ‖ u ‖V ∗c (Ω∪ΩI) |||ϕ|||

hence

‖ Pn(u) ‖V ∗c (Ω∪ΩI)≤‖ u ‖V ∗c (Ω∪ΩI)

3. The nonlocal wave equation.

3.1. statement of the problem. We denote by Ω an open set of Rn and ΩI

its corresponding interaction domain. We will always assume that Ω and ΩI are
bounded with piecewise smooth boundary and satisfy the interior cone condition.
The example of nonlocal hyperbolic equation that we consider is the following: we
seek a real valued function u = u(x, t), x ∈ Ω, t ∈]0, T ], solution to

utt +D(ξ.D∗(u)) = f in Ω×]0, T ]
u = 0 on ΩI×]0, T ]
u(x, 0) = g(x) on Ω
ut(x, 0) = h(x) on Ω

(14)
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Where D, D∗ are, respectively, the nonlocal divergence (2) and the nonlocal gradi-
ent (3), ξ(x, y) denotes a symmetric, positive definite second order tensor having el-
ements that are symmetric functions of x and y and f : Ω×]0, T [→ R, g, h : Ω→ R
are given.
First, we specify in which sense we want to solve the problem. (14)

Definition 3.1. If f ∈ L2(0, T ;L2(Ω)), g ∈ Vc(Ω ∪ ΩI) and h ∈ L2(Ω ∪ ΩI)

we say a function u ∈ L2(0, T ;Vc(Ω ∪ ΩI)) with u
′ ∈ L2(0, T ;L2(Ω ∪ ΩI)) and

u
′′ ∈ L2(0, T ;V ∗c (Ω ∪ ΩI)) is a weak solution of the nonlocal constrained problem

(14) if

〈u
′′
, ϕ〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) +

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕ))dydx =

∫
Ω

fϕdx

∀ϕ ∈ Vc(Ω ∪ ΩI) and a.e 0 ≤ t ≤ T , with u(0) = g, u
′
(0) = h

3.2. Galerkin approximation. Let (vj)j≥1 be the eigenvectors corresponding to
the eigenvalues (λj)j≥1 of the problem (10), given by Theorem (2.4).
For a fixed n ≥ 1, we are looking for a function un : [0, T ]→ Vc(Ω∪ΩI) of the form

un(t) :=

n∑
j=1

pjn(t)vj (15)

such that

j = 1, ..., n

〈u
′′

n, vj〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI)+

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(un).(ξ.D∗(vj))dydx=

∫
Ω

fnvjdx

un(0) =

n∑
j=1

(g, vj)L2(Ω)vj

u
′

n(0) =

n∑
j=1

(h, vj)L2(Ω)vj

(16)

where (fn)n ∈ D(Ω× (0, T )) such that fn
L2(Ω×(0,T ))−−−−−−−−→ f

with ‖ fn ‖L2(Ω×(0,T ))≤‖ f ‖L2(Ω×(0,T ))

Theorem 3.2. For each integer n ≥ 1 there exists a unique function un of the form
(15) satisfying (16).

Proof. To solve the problem (16), we shall find

pn(t) = (p1n(t), p2n(t), ..., pnn(t)) ∈ Rn

solution to

j = 1, ..., n

p
′′

jn +

n∑
k=1

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(vj).(ξ.D∗(vk))pkn(t)dydx=

∫
Ω

fnvjdx

pjn(0) = (g, vj)L2(Ω)

p
′

jn(0) = (h, vj)L2(Ω)

(17)

According to standard existence theory for ODE, there exists a unique function

pn(t) = (p1,n(t), p2,n(t), ..., pn,n(t)) (18)

satisfying (17) for a.e 0 ≤ t ≤ T .
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3.3. Energy estimates. In order to show that (un)n≥1 converges to a weak solu-
tion of (14) we will need some uniform estimates.

Theorem 3.3. There exists a positive constant M such that

max
0≤t≤T

(
|||un(t)|||+ ‖ u

′

n(t) ‖L2(Ω∪ΩI)

)
+ ‖ u

′′

n ‖L2(0,T ;V ∗c (Ω∪ΩI))

≤M
(
‖ f ‖L2(0,T ;L2(Ω)) +|||g|||+ ‖ h ‖L2(Ω)

)
for n ≥ 1

Proof. We multiply equation (16) by p
′

jn(t), sum for j = 1, ..., n, we find

〈u
′′

n, u
′

n〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) +

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(un).(ξ.D∗(u
′

n))dydx =

∫
Ω

fnu
′

ndx

for a.e 0 ≤ t ≤ T .
which give

d

dt

(
‖ u
′

n ‖2L2(Ω∪ΩI) +

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(un).(ξ.D∗(un))dydx

)
≤ 2 ‖ fn ‖L2(Ω)‖ u

′

n ‖L2(Ω)

≤ ‖ fn ‖2L2(Ω) + ‖ u
′

n ‖2L2(Ω∪ΩI) +|||un|||2

Gronwall’s inequality and the proposition (2) imply

‖ u
′

n ‖2L2(Ω∪ΩI) +|||un|||2 ≤ M
(
|||Pn(g)|||2+ ‖ Pn(h) ‖2L2(Ω∪ΩI) + ‖ fn ‖L2(0,T ;L2(Ω))

)
≤ M

(
|||g|||2+ ‖ h ‖2L2(Ω∪ΩI) + ‖ fn ‖2L2(0,T ;L2(Ω))

)
as 0 ≤ t ≤ T was chosen arbitrarily, we obtain:

max
0≤t≤T

(
‖ u
′

n(t) ‖2L2(Ω∪ΩI) +|||un|||2
)
≤M

(
|||g|||2+ ‖ h ‖2L2(Ω∪ΩI) + ‖ f ‖2L2(0,T ;L2(Ω))

)
(19)

To conclude, we fix any ϕ ∈ Vc(Ω ∪ ΩI) with

|||ϕ||| ≤ 1 and ϕ = Pn(ϕ) + ψ

where (ψ, vj)L2(Ω∪ΩI) = 0 for 1 ≤ j ≤ n, we get:

〈u
′′

n, ϕ〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) =

∫
Ω

fnPn(ϕ)dx−
∫

Ω∪ΩI

∫
Ω∪ΩI

D∗(un).(ξ.D∗(Pn(ϕ)))dydx

Consequently, since |||Pn(ϕ)||| ≤ 1

|〈u
′′

n, ϕ〉|V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) ≤M(‖ fn ‖2L2(Ω) +|||un|||)

finally, using (19) we get∥∥∥u′′n∥∥∥
L2(0,T ;V ∗c (Ω∪ΩI))

≤M(‖ f ‖2L2(0,T ;L2(Ω)) +|||g|||2 + ||h||2L2(Ω))
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3.4. Existence and uniqueness result.

Theorem 3.4. The nonlocal parabolic problem (14) admits a unique weak solution.

Proof. Using the previous Theorem (3.3), we conclude that (un)n≥1 is bounded in

L2(0, T ;Vc(Ω∪ΩI)), with (u
′

n)n≥1 is bounded in L2(0, T ;L2(Ω∪ΩI)), and (u
′′

n)n≥1

is bounded in L2(0, T ;V ∗c (Ω ∪ ΩI)).
Consequently, there exists a subsequence still denoted (un)n≥1 and a function

u ∈ L2(0, T ;Vc(Ω ∪ ΩI)) with u
′ ∈ L2(0, T ;L2(Ω ∪ ΩI)) and

u
′′ ∈ L2(0, T ;V ∗c (Ω ∪ ΩI)), such that:

un ⇀ u in L2(0, T ;Vc(Ω ∪ ΩI)

u
′

n ⇀ u
′

in L2(0, T ;L2(Ω ∪ ΩI)

u
′′

n ⇀ u
′′

in L2(0, T ;V ∗c (Ω ∪ ΩI)

(20)

next, fix an integer N and select n ≥ N , choose a function ψ ∈ L2(0, T ) and
ϕ ∈ Vc(Ω ∪ ΩI). We multiply (16) by Pn(ϕ)ψ, sum j = 1, ..., N and integrate with
respect to t to discover:∫ T

0

(
〈u
′′

n, Pn(ϕ)ψ(t)〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) +

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(un).(ξ.D∗(Pn(ϕ)ψ))dydx

)
dt

(21)

=

∫ T

0

∫
Ω

fnPn(ϕ)ψdxdt

by passing to weak limits, together with the fact that Pn(ϕ)
Vc(Ω∪ΩI)−−−−−−→ ϕ we obtain:∫ T

0

(
〈u
′′
, ϕ〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI)ψ(t) +

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕψ(t)))dydx

)
dt

(22)

=

∫ T

0

∫
Ω

fϕψ(t)dxdt

for all ψ ∈ L2(0, T ) and ϕ ∈ Vc(Ω ∪ ΩI). This terminates the proof.

It remains to prove that u(0) = g and u
′
(0) = h, For this purpose, we choose any

function ϕ ∈ Vc(Ω∪ΩI) and ψ ∈ C1([0, T ]) such that ψ(T ) = ψ
′
(T ) = 0. Integrating

by parts twice with respect to t in (22) yields:∫ T

0

(∫
Ω∪ΩI

uϕψ
′′
(t)dx+

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕψ(t)))dydx

)
dt (23)

=

∫ T

0

∫
Ω

fϕψ(t)dxdt−
∫

Ω

u(0)ϕψ
′
(0)dx+

∫
Ω

u
′
(0)ϕψ(0)dx

Similarly from (21) we get:∫ T

0

(∫
Ω∪ΩI

unPn(ϕ)ψ
′′
(t)dx+

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(un).(ξ.D∗(Pn(ϕ)ψ(t)))dydx

)
dt

(24)

=

∫ T

0

∫
Ω

fnPn(ϕ)ψ(t)dxdt−
∫

Ω

un(0)Pn(ϕ)ψ
′
(0)dx+

∫
Ω

u
′

n(0)Pn(ϕ)ψ(0)dx

by passing to the limit, we obtain:∫ T

0

(∫
Ω∪ΩI

uϕψ
′′
(t)dx+

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕψ(t)))dydx

)
dt (25)
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=

∫ T

0

∫
Ω

fϕψ(t)dxdt−
∫

Ω

gϕψ
′
(0)dx+

∫
Ω

hϕψ(0)dx

comparing those results, we conclude that u(0) = g and u
′

= h.

Finally, we announce the uniqueness of the weak solution to (14).

Theorem 3.5. A weak solution of (14) is unique.

Proof. Since the equation is linear, to show uniqueness it is sufficient to show that
the only solution u of (14) with zero data f = g = h = 0 is u = 0.
To verify this, fix 0 ≤ s ≤ T and set

ϕ(t) =

{ ∫ s

t
u(τ)dτ if 0 ≤ t < s

0 if s ≤ t ≤ T. (26)

Then ϕ(t) ∈ Vc(Ω ∪ ΩI) for each 0 ≤ t ≤ T , which allows to write∫ s

0

(
〈u
′′
, ϕ〉V ∗c (Ω∪ΩI),Vc(Ω∪ΩI) +

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕ))dydx

)
dt = 0

since u
′

= 0 and ϕ(s) = 0 by integrating by parts, we obtain:∫ s

0

(
−
∫

Ω∪ΩI

u
′
ϕ
′
dx+

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(u).(ξ.D∗(ϕ))dydx

)
dt = 0

now as ϕ
′

= −u(0 ≤ t ≤ s), we acquire:∫ s

0

(∫
Ω∪ΩI

u
′
udx−

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(ϕ
′
).(ξ.D∗(ϕ))dydx

)
dt = 0

then ∫ s

0

d

dt

(
‖ u ‖2L2(Ω∪ΩI) −

∫
Ω∪ΩI

∫
Ω∪ΩI

D∗(ϕ).(ξ.D∗(ϕ))dydx

)
dt = 0

here
‖ u(s) ‖2L2(Ω∪ΩI) +|||ϕ(0)||| = 0

Consequently u = 0 on [0, T ].
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