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ABSTRACT 

This contribution is addressing the ultimate limit state design of massive three-dimensional            
reinforced concrete structures based on the finite element implementation of both the upper             
and lower bound methods of yield design. The strength properties of plain concrete are              
modelled by means of a tension cut-off Mohr Coulomb condition, while the contribution of the               
reinforcing bars is taken into account by means of an extended homogenization method.             
Following a previous article [9], more specifically dedicated to the finite element            
implementation of the lower bound static approach, the present paper is focused on the upper               
bound kinematic approach. Similarly to what has been previously done for the lower bound              
static approach, the reinforced structure is discretized into ten-nodded tetrahedral finite           
elements, with a quadratic variation of the velocity fields inside each element and velocity              
jumps across the triangular facets separating any two adjacent elements. This discretization of             
the velocity fields used in the kinematic approach leads to the formulation of a convex               
minimization problem which can be solved by resorting to Semi-Definite Programming (SDP)            
optimization techniques. The whole computational procedure is applied to some illustrative           
examples, where the implementation of both the static and kinematic methods produces a             
relatively accurate bracketing of the exact failure load for this kind of structures. 

Keywords: reinforced concrete structures, yield design, tension cut-off Mohr-Coulomb         
strength condition, homogenization, upper bound kinematic approach, finite element,         
semi-definite programming.  
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1. INTRODUCTION 

Assessing the ultimate load bearing capacity of constructions involving massive          
three-dimensional reinforced concrete components requires a specific analysis, such as the           
widely acknowledged “strut-and-tie” model (see among many other references [1], [2], [3] or             
[4]) which can be related to the lower bound static approach of yield design. With a special                 
attention to assessing the ultimate shear capacity of reinforced concrete deep beams, both the              
lower and upper bound methods of yield design have been implemented in the context of a                
finite element formulation with the help of linear programming optimization techniques [5]. In             
the latter study, reinforced concrete was described according to a “mixed modelling” approach,             
in which plain concrete was modelled as a two-dimensional continuous medium subject to             
plane stress conditions, while the reinforcement bars were treated as one dimensional flexible             
beams embedded in the concrete material. 

The generalization to the more realistic situation of linear reinforcing inclusions embedded            
in three-dimensional concrete volumes is posing a somewhat serious difficulty as regards the             
possibility of treating such a situation by means of a 1D-3D mixed modelling approach. Some               
attempts to circumvent this problem have already been proposed either in the context of the               
finite element formulation [6] or making use of an implicit homogenization method [7] or              
multiphase model [8]. The problem has been quite recently addressed in a previous             
contribution [9] by resorting to an extended homogenization technique according to which            
each reinforcing inclusion with its surrounding concrete material is replaced by a homogenized             
reinforced concrete material. Following this procedure, the lower bound static approach can            
then be implemented numerically by means of a finite element discretization of the structure              
leading to a convex optimization problem to be solved by means of a Semi-Definite              
Programming (SDP) technique [10].  

The present contribution concerns the application of the same theoretical model and            
associated computational procedure, to the kinematic approach of yield design, with the            
objective to derive rigorous upper bound estimates for the ultimate load bearing capacity of              
massive three dimensional reinforced concrete structures. The paper is organized as follows. 

● The plain concrete strength properties being characterized by means of a tension cut-off             
Mohr-Coulomb condition, the implementation of the kinematic approach requires the          
preliminary calculation of its support functions relating to a three dimensional strain            
rate, as well as to a velocity jump across possible discontinuity surfaces. The             
expressions of these support functions are also established in the reinforced concrete            
homogenized zones around the rebars. 

● A finite element formulation of the upper bound kinematic approach of yield design is              
set up based on a discretization of the structure into ten-nodded tetrahedral elements             
with a quadratic variation of the velocities inside each element and velocity jumps             
across two adjacent elements. 
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● Under such conditions, it is shown that the implementation of the upper bound             
kinematic approach with such discretized velocity fields amounts to solving a convex            
minimization problem which can be treated by means of Semi-Definite Programming           
(SDP) techniques [10], in the same way as for the lower bound static approach to the                
same kind of problem [9]. 

The whole computational procedure is first illustrated and validated on the simple example             
of a uniformly loaded deep beam, where the calculated upper bound estimates are favourably              
compared to the previously derived lower bound estimates [9]. It is then applied to evaluating               

the ultimate bearing capacity of a reinforced concrete bridge pier cap subjected to concentrated              
vertical loads, on the one hand, a circular reinforced concrete foundation slab on the other               
hand, where in the latter case a semi-analytical design method has already been proposed [11]. 

2. THE ADOPTED STRENGTH CRITERIA AND THEIR SUPPORT FUNCTIONS 

Following the approach adopted in [9], a reinforced concrete structure such as the block              
shown in the left-hand side of figure 1, containing one single inclusion placed along the axis of                 

unit vector , is modelled as a block of same dimensions where the inclusion with the                
surrounding concrete is replaced by a homogenized reinforced concrete cylindrical zone, as            
shown in the right hand size of the same figure. The adopted strength conditions in the plain                 
concrete region and the homogenized reinforced concrete zones are the following. 

 

Figure 1. Construction of a homogenized reinforced zone around an individual inclusion of a 
reinforced concrete block 

2.1. Strength properties of plain concrete: a tension cut-off Mohr Coulomb condition 
The unreinforced or plain concrete is modelled as a 3D homogeneous continuous medium,             

the strength properties of which are described by means of a tension cut-off Mohr-Coulomb              
yield condition which may be formulated as: 

 (1) 
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where represent the major and minor principal stresses, respectively (tensile           

stresses are counted positive), denote the uniaxial tensile and compressive           

resistances and where ϕ is the internal friction angle which, in the             

absence of any complementary information, is usually taken equal to 37° (Kp≈4) [12].  

As a preliminary to the implementation of the kinematic approach of yield design, it is               
necessary to calculate the support functions of this criterion. 

✔ For a (virtual) strain rate d, the expression of the support function writes [13]: 

(2) 

where  are the principal strain rate components. 

✔Likewise, for a (virtual) velocity jump across any discontinuity surface Σ of unit              

normal n, the corresponding support function is: 

(3) 

Since: 

(4) 

the expression (3) of the latter support function may also be recovered from using the intrinsic                
curve which represents the strength condition (1) in the Mohr-plane, as shown in figure 2. 
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Figure 2. Intrinsic curve of the plain concrete strength condition in the Mohr-plane and 

calculation of the support function relative to a velocity discontinuity 

2.2. Reinforced concrete: a homogenized strength condition 

The (anisotropic) strength criterion in the homogenized reinforced zone defined around           
each reinforcing bar is the following (see [9] and [14] for more details): 

(5) 

where is a non-dimensional factor accounting for a reduction of the bar compressive              

strength due to potential buckling, is the unit vector parallel to the reinforcing bar, and                 

is defined as the tensile resistance of these bars per unit transverse area: 

(6) 

where n0 denotes the tensile resistance of each individual reinforcing bar, while s is the side of                 
the homogenized reinforced zone (Figure 1), so that : 

(7) 

In the above equation, denotes the uniaxial strength of the bar constituent material (steel               

for example) and the bar cross-sectional area, so that η represents the reinforcement              
volume fraction in the homogenized zone. 

5 

 



It is to be recalled that the validity of the above macroscopic strength criterion (5) is subject                 
to the verification of two important conditions (see [14] for more details): 

● The reinforcing bars are perfectly bonded to the surrounding concrete material, which            
means for instance that no slippage occurs at the bar/concrete interface. 

● The reinforcement volume fraction remains sufficiently small (η <<1), whereas the           
resistance of the reinforcing material is much higher than that of the concrete material              

and notably its tensile strength ( ). 

The support functions of the macroscopic strength condition (5) may be easily calculated as              
follows: 

(8) 

and  

(9) 

2.3. Implementing the upper bound kinematic approach 

This approach is, as usual, derived from the dualization of the static approach through the               
application of the virtual work principle [13]. Assuming for instance, without any loss of              
generality, that the reinforced concrete structure is subject to one single loading parameter Q,              
and given any kinematically admissible (K.A.) virtual velocity field U, the virtual work of              
external forces may be put in the following form: 

(10) 

while the maximum resisting work developed in the same velocity field is computed by using               

the previously calculated support functions: 

(11) 

with (respectively ) denoting the part of the structure occupied by the plain concrete               

material (respectively the velocity jump surfaces in ) and (respectively ) the set of               
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all the homogenized reinforced concrete zones (resp. the velocity jump surfaces in ).             

Making use of (8) and (9), the expression of the maximum resisting work may rewritten as: 

(12) 

where . 

Under these conditions, the upper bound kinematic theorem of yield design states that the              

ultimate load bearing capacity of the structure, denoted by , satisfies the following             
inequality, valid for any kinematically admissible velocity field: 

(13) 

thus leading to the following upper bound value for : 

(14) 

As it is clearly apparent from (14), obtaining the best upper bound estimate to amounts                

to solving a minimization problem over the set of K.A. velocity fields, which in the present                

case will be achieved through a finite element discretization of the structure in much the same                

way as for the lower bound static approach [9]. 

3. NUMERICAL IMPLEMENTATION OF THE UPPER BOUND KINEMATIC        
APPROACH [14] 

Similarly to the lower bound static approach which leads to a maximization problem and              

can be treated through SDP techniques (see [9]), the upper bound kinematic approach (14) is               

associated with a minimization problem which can also be solved by means of Semidefinite              

Programming, as briefly explained in the sequel. 

3.1. Formulation of the support functions as SDP minimization problems 

We start from the Mohr-Coulomb strength criterion (i.e. without the tension cut-off            

condition): 

(15) 
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which may be rewritten in terms on linear matrix inequalities as (see Eq. (18) of [9]): 

1 (16) 

where is an auxiliary variable. It follows that the corresponding support function may be               

calculated as follows: 

(17) 

Let us introduce the Lagrangian of this maximization problem defined as: 

(18) 

with its partial derivatives: 

(19) 

where are the Lagrange multipliers associated with the two SDP constraints of (17),              

which must verify .  

Finally, the support function can be computed as the result of the following minimization              
problem involving two linear constraints and two SDP constraints: 

(20) 

Following the same kind of approach, analogous SDP formulations are obtained for the             

support function of the tension cut-off Mohr-Coulomb criterion (1), as well as for that of the                

macroscopic strength condition of reinforced concrete (5). For instance the support function            

(2) of the tension cut-off (or truncated) Mohr-Coulomb criterion adopted here for describing             

the strength properties of plain concrete, can be calculated as (see [10],[15] for more details): 

1 Where  
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(21) 

where are two additional Lagrange multipliers associated with the tension cut-off            
condition. 

3.2. 3D finite element discretization 
In a similar way as it has been done for the lower bound static approach in [9], the 3D                   

geometrical domain occupied by the reinforced concrete structure is discretized into Ne             

ten-node tetrahedral finite elements , as shown in Figure 3. The virtual velocity fields used               

in the kinematic approach are quadratic functions of the position x inside each element, so that                

they can be expressed as: 

(21) 

where is the (virtual) velocity vector at point x, is the velocity at node number k of                   

the element and are the quadratic interpolation functions. It should be            

noted that the considered velocity fields may be discontinuous across the triangular facets             

separating two adjacent elements. 

 

Figure 3. Ten-node tetrahedral finite element used in the discretization of the reinforced 

concrete structure 
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The maximum resisting work developed in such a piecewise quadratic velocity field is             

evaluated from integrating the support functions over each element, then by summation over             

all such elements. Referring for instance to the simplest configuration of a structure made of               

plain concrete ( ) and to a continuous velocity field discretized according to (21), the              

total maximum resisting work is approximated as follows: 

(22) 

where is the number of finite elements and the Jacobian determinant of the               

transformation between the reference element and the real one. As shown by the above              

expression, the maximum resisting work relating to each tetrahedral element is evaluated             

by excess through the use of four integration points (with weighting coefficients )            

located at the vertices of the element, thus preserving the upper bound status of the numerical                

evaluation associated with the right hand member [15]. The generalization to the situation of              

reinforced concrete zones on the one hand, the presence of velocity discontinuities between             

adjacent elements on the other hand, is explained in more details in [15]. 

Finally, according to (14), the best numerical upper bound estimate of is obtained as the                

solution of a Semidefinite Programming optimization problem making use of a dedicated            

solver [16]. 

4. IMPLEMENTATION ON THREE ILLUSTRATIVE TEST EXAMPLES 

4.1. Reinforced concrete beam under uniform loading 

A first application of the above described upper bound numerical method is now performed              

on the same example as that previously analysed with the numerical lower bound static              

approach in [9]. The main geometrical characteristics of the problem are recalled in Figure 4               

below. 

10 

 



 

Figure 4. Reinforced concrete beam under uniform loading 

The beam is made of a homogeneous concrete material, with the following uniaxial tensile              

and compressive strength characteristics: 

(22) 

and an internal friction angle ϕ is taken equal to 37°. It is reinforced by two longitudinal rebars                  

of diameter equal to 2cm, made of a steel with a uniaxial strength equal to =400 MPa. They                  

are located at the lower part of the beam cross section as shown in Fig. 4.  

The beam-like structure is subjected to a uniform surface loading q applied on its top               

surface. Its left end (X=0) is perfectly clamped (velocity vector equal to zero: U=0), while the                

boundary conditions at its right end (X=L) are:  

(23) 

It is to be noted that the above 3D conditions correspond, in the framework of a 1D-beam                 

modelling of the structure, to a simple support free to move horizontally along the X-axis and                

rotate about the Y-axis (axial force N and bending moment M being set equal to zero). 

All the results obtained from the implementation of both the numerical static and kinematic              

methods have been gathered in Figure 5 for a beam of length equal to 4m. The corresponding                 

lower and upper bounds have been calculated for three different sizes of the homogenized              

zones (0.06mx0.06m, 0.08mx0.08m and 0.10mx0.10m) and increasing number of finite          
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elements along the horizontal axis. The horizontal solid line placed between the calculated             

upper and lower bounds represents the evaluation of the ultimate load bearing capacity of the               

structure modelled as a 1D-beam element [9].  

 

Figure 5. Numerical upper and lower bound estimates as functions of the homogenized 

zones size and number of finite elements for a 4m-long reinforced concrete beam. 

As can be seen from this figure, the upper (respectively lower) bound estimate is decreasing               

(resp. increasing) with respect to the size of the finite element mesh, while the size of the                 

homogenized reinforced zones has less and less influence on the bounds as the size of the mesh                 

is increasing. The optimal bounds have been reported in Table I below, which gives evidence               

of a very good agreement with the result of the 1D-beam analytical model detailed in [9], as                 

well as a fairly accurate bracketing of the exact ultimate load.  

Size of homogenized reinforced 
zones (m2) 

0.1x0.1 0.08x0.08 0.06x0.06 

Analytical:  
0.324 0.324 0.324 

 
0.316 0.313 0.305 
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0.334 0.334 0.335 

    

Table I. Optimal lower and upper bounds on the ultimate load bearing capacity of the 

4m-long reinforced concrete beam and comparison with analytical approach. 

Figure 6 displays the numerically optimized velocity and stress fields for the 4m-long             

longitudinally reinforced concrete beam. The results of the upper bound kinematic approach            

have been obtained for a mesh containing 17332 elements. Figures 5(a) and (b) represent the               

optimal velocity field and strain rate distribution, respectively. The corresponding failure           

mechanism involves two “plastic hinges” where the strain rate distribution is concentrated: the             

first one at the clamped left end of the beam, the other one around the middle section of the                   

beam.  

The optimized stress field resulting from the application of the numerical lower bound static              

approach [9] with a mesh of 23552 finite elements.is shown in Figure 5(c), where the principal                

components of stress, along with their orientation, are represented at any point of the mesh.               

Such an optimized stress field is of obviously reminiscent of classically used strut-and-tie             

models of reinforced concrete structures, with two inclined lateral compressive “struts” in the             

concrete connected to a bottom horizontal tensile “tie” in the reinforced concrete region. 

 

 

(a) 
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(b) 

 

(c)  

Figure 6. Optimal velocity field (a), strain rate distribution (b) and stress field (c) for a 4m-long 

reinforced concrete beam at failure 

 

Figure 7. Comparison between the 1D analytical and 3D numerical estimates as a function of 

the reinforced concrete beam slenderness 

The curves drawn in Figure 7 represent the variations of the 3D finite element bounds and                

the analytical estimate derived from a 1D beam model, equal to [9]: 

(24) 
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(where L[m] is the beam length, the depth H=0.5m and thickness b=0.2m being kept constant),               

as functions of the beam slenderness L/H ranging between 0.5 and 2, that is for “short” or                 

“deep” beams. It clearly appears from this graph that the 1D analytical value (18)              

overestimates the actual value of the ultimate load which is comprised between the 3D upper               

and lower bounds. This is obviously due to the fact that the 1D-model, which is based on the                  

notion of interaction diagram, does not take the limited shear strength capacities of the beam               

into account. 

4.2. Compression of plain concrete block 

In order to further validate the above described numerical procedure, at least for plain              

concrete structures, the comparison will now be made with the results obtained by [9] on the                

unconfined compression problem of a homogeneous concrete block, making use of the same             

numerical methods as that described in the paper. A perspective view of the entire square               

parallelepipedic block is shown in Figure 8(a). The block is submitted to a vertical              

compressive force applied onto both its lower and upper horizontal faces by means of rigid               

plates which are perfectly adherent to the faces. 

 

(a) (b) 

Figure 8. Homogeneous concrete block (a) with its 1/16th part (b) 

Thanks to the obvious symmetries of the problem with respect to the horizontal and vertical               

middle planes, the problem can be reduced to that of the 1/16th part of the structure shown in                  

Figure 8(b) with the following appropriate conditions: 

✔ uniform pressure p applied on top of the rigid plate; 
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✔ stress-free lateral side of the block; 

✔ the three remaining sides are in smooth contact with the fixed corresponding            

symmetry planes. 

The compressive strength of the block is evaluated by using both the numerical upper               

and lower bound methods with a sufficiently refined regular mesh made of tetrahedral             

elements. The homogenous constituent material obeys a Mohr-Coulomb strength condition          

with the same characteristics as those adopted in [9]: friction angle equal to and               

uniaxial compressive strength equal to .  

It is to be noted that in the case when the pressure is directly applied to the block or when                    

the contact between the rigid plate and the block is smooth, the solution to this problem is                 

immediate. It corresponds to a homogeneous uniaxial compressive stress field as regards the             

static approach and a homogenous strain rate field for the kinematic approach, leading to the               

exact limit load value, which nothing but the uniaxial compressive strength of the material:              

. 

Figure 9(a) represents the optimal velocity field (failure mechanism) and Figure 9(b) the             
optimized stress field (principal stresses) relative to the problem of perfectly adherent loading             
plates, leading to the following optimized lower and upper bounds: 

(25) 

or in non-dimensional form: 

(26) 
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(a) (b) 

Figure 9. Optimal failure mechanism (a) and stress field (b) 

Our results are now compared with those obtained by Martin and Makrodimopoulos [9] on              
exactly the same problem, which are expressed as follows: 

(27) 

where C is the material cohesion which is related to the its uniaxial compressive strength by                
the classical equation: 

(28) 

so that (27) can be rewritten as: 

(29) 

showing from comparing with (26) that our results are very close to those of [9]. 

Remark. In spite of its apparent simplicity, the problem at stake remains a challenging issue               
as concerns the efficiency of the finite element formulation of yield design approaches in              
providing accurate bounds, since in both cases the relative discrepancy between the bounds             
remains significant: 18.5% in (29) instead of 14.5% in (26). Of course, the use of a mesh                 
refinement procedure, would probably help improving the previous bounds. 

4.3. Ultimate bearing capacity of plain concrete bridge pier cap 

A third example of genuinely three-dimensional structure, where the present approach will            

be compared with otherwise available results, is the case of a bridge pier cap made, once again,                 

of unreinforced plain concrete, as shown in Figure 10. Such a relatively complex             
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three-dimensional structure is simply modelled here as a parallelepipedic block.           

It is vertically loaded by means of four square rigid pads place on its upper               

surface, while rigidly connected on its base to a rectangular bridge pier. The              

constituent material is a plain concrete, obeying a tension cut-off Mohr-Coulomb (TMC)            

strength condition with and . Once again, due to the symmetries of            

the problem with respect to the vertical middle-planes, the calculations are performed on a              

quarter part of the structure. 

 

Figure 10. Perspective and side views of a vertically loaded unreinforced bridge pier cap 

4.3.1. Results and comparison with the OptumG3 finite element code 

Table II below gives the optimized numerical bounds on the ultimate load calculated              
with our specific computer code and from using the available finite element code OptumG3              
[17] quite recently developed for dealing with three-dimensional limit analysis/yield design           
problems.  

 

 
   

OptumG3 3.85 4.38 4.11   
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Present approach 3.89 4.46 4.17  

Table II. Upper and lower bounds calculated by the OptumG3 software and the present 
approach 

Taking in each case the average value of the upper and lower bounds, the ultimate load is                 
equal to 4.17 MPa 6.8% according to the present approach and to 4.11 MPa 6.4% when              
using the OptumG3 code. As a consequence, a quite good agreement is observed between the               
two calculated estimates, since the relative difference is less than 1.5%. Adopting the same              
mesh refinement procedure as that used in OptumG3, the result of the present approach can be                
further improved, leading to the new estimated value of 4.15 MPa 3.5%. Figure 11(a) allows              
to visualize the corresponding optimal failure mechanism of the structure and Figure 11(b)             
represents the optimal stress field clearly showing four compressive struts converging from the             
loading pads to the supporting pier. 

 

(a) (b) 

Figure 11. Optimal failure mechanism and stress field of the unreinforced bridge pier cap 

4.3.2. TMC vs. Rankine criteria 

The Rankine criterion, often used in practice for modelling the resistance of plain concrete,              
is the simplest criterion based on the sole knowledge of the uniaxial tensile and compressive               
strengths of the material. It expression writes: 

 (30) 

This criterion is exactly coincident with the TMC criterion for plane stresses and , but              

significantly underestimates the same criterion in the domain of compressive stresses as clearly             

illustrated by its intrinsic curve in the Mohr-plane drawn in Figure 12 and to be compared with                 
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that relative to the TMC criterion shown in Figure 2. It notably appears that, unlike for the                 

MCT criterion, according to which the concrete is able to withstand any isotropic compressive              

stress, the Rankine criterion predicts a limited strength capacity (namely ) under this            

particular state of stress. 

The corresponding support functions relative to a strain rate and velocity jump may be              
easily calculated as follows ([15],[18]): 

(31) 

The Rankine criterion can be implemented in both the numerical static and kinematic             
methods leading to the formulation of SDP optimization problems ([15], [18]) in exactly the              
same way as it has been done for the TMC criterion.  

 

Figure 12. Intrinsic curve associated with the Rankine strength condition (24) 

As a result of the analysis, Table III compares the optimized lower/upper bound estimates              

calculated with the Rankine and TMC criteria, adopting the same values for the uniaxial tensile               

and compressive strengths.  

 
    

Rankine criterion 3.80 4.00 3.90   

TMC criterion 3.89 4.46 4.17 
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Table III. Upper and lower bound estimates using the Rankine and the TMC criterion with 
the same uniaxial tensile and compressive strengths. 

This table shows that the application of the numerical method leads to a more accurate               
estimate for the limit load when using the Rankine criterion ( 2.6% instead of 6.8% for               
the TMC criterion), but to a slightly lower value of the estimated limit load: 3.90 MPa against                 
4.17 MPa that is a relative difference of 6.5%. This may be explained by the fact that the                  
Rankine criterion tends to underestimate the strength of the plain concrete material, as             
compared to the TMC criterion, notably in the region of compressive stresses. 

4.4. Reinforced concrete bridge pier cap. 

The same bridge pier cap as that analysed in 4.3 is now considered, with a reinforcement                

system made of four steel rebars located just below the loading pads as shown in Figure 13.                 

The diameter of the reinforcing bars is equal to and the uniaxial tensile-compressive              

resistance of the steel is taken equal to . According to the homogenization            

procedure described at the beginning of the paper, each steel rebar with its surrounding              

concrete is replaced by a homogenized square cylindrical zone of side equal to s=0.10m at any                

point of which the macroscopic strength condition (5) is adopted with: 

(32) 

 

Figure 13. Bridge pier cap with its strengthening system of four steel rebars 
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Rankine criterion 5.20 5.51 5.35   

TMC criterion 5.28 6.21 5.75 
 

Table IV. Lower and upper bound estimates for the ultimate load bearing capacity of the 
reinforced bridge pier cap. 

The results in terms of numerical upper and lower bound estimates of the limit pressure P                
are reported in Table IV for the TMC as well as the Rankine criteria. The Rankine-based                

estimate is 5.35MPa , while the TMC-based one is 5.75MPa . From comparing           
with the results of Table III, one may thus conclude that the installation of the four rebars                 
system increases the structure bearing capacity by a multiplicative factor equal to 5.35/3.90            
1.373 when adopting the Rankine criterion and 6.21/4.17 1.376 when using the TMC            
criterion that is almost exactly the same value.  

This also confirms that the adoption of the Rankine instead of the TMC criterion for               
describing the strength properties of plain concrete on the base of the same uniaxial strength               
characteristics, tends to underestimate the strength of concrete under multiaxial compressive           
stresses. 

As a further illustration of the above results, Figure 14 displays the perspective and side               
views of the optimal stress field used in the numerical static approach. Both pictures reveal a                
clearly visible strut-and-tie scheme involving four compressive struts connecting the loading           
pads to the underlying central pier and equilibrated by four horizontal tensile ties along the               
rebars. 

 

Figure 14. Optimal stress field used in the lower bound static approach 

Finally, the failure mechanism associated with the optimal upper bound estimate is            

represented in Figure 15. 
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Figure 15. Optimal failure mechanism of the bridge pier cap 

5. LOAD BEARING CAPACITY OF A REINFORCED CONCRETE FOOTING 

The last example to be analysed with our approach concerns the load carrying capacity of a                
reinforced concrete circular slab used as a building or bridge foundation system. The results of               
our analysis will be compared to those established by Simões et al. [11] implementing in a                
semi-analytical way the kinematic approach of limit analysis/yield design.  

 

Figure 16. Geometrical characteristics and loading conditions of the reinforced concrete 
circular footing 

The structure to be investigated is shown in Figure 16, where the notations of [11] have                

been adopted. The footing is a circular slab of thickness equal to and radius equal to                  

rigidly connected in its central upper part to a column (bridge pier for instance) of radius                
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. The action of the underlying soil is simply modelled by means of a uniform pressure                

applied on the footing base equal to: 

(33) 

where is the total resulting force applied by the foundation to the soil. The concrete footing                 
has been reinforced in its lower part by a system of steel rebars placed along the radial and                  

circumferential directions at a distance from the upper face of the footing, so that the                
problem can be dealt with as an asymmetrical limit analysis/yield design problem. 

5.1. A semi-analytical method of analysis [11]. 

The semi-analytical method of analysis developed by Simões et al. [11] will now be briefly               
described. It is based upon the upper bound kinematic theorem of limit analysis/yield design              
making use of two families of simple failure mechanisms, called M1 and M2, represented in               
Figure 17 in any meridian plane passing through the symmetry axis, with the cylindrical              
coordinates (r-z). 

The first kind of mechanism (M1) is shown in Figure 17(a). Its trace in the meridian plane                 
corresponds to a rigid body motion of an external part of the slab separated from its central                 
part by a velocity discontinuity line, the instantaneous centre of rotation (ICR) being located in               
the upper left quarter of plane defined in the same figure. The second kind of mechanism (M2)                 
corresponds to the situation when the ICR is located in the lower right quarter of plane shown                 
in Figure 17(b).  
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Figure 17. Failure mechanisms M1 (a) and M2 (b) used in the kinematic approach of limit 

analysis by [11]. 

It should be emphasized that, except in the particular case when the ICR is located at                

infinity , which corresponds to a pure vertical translation of the rotating part, such             

mechanisms always involve non zero circumferential strain rates which must be accounted             

for in the calculation of the maximum resisting work developed in such mechanisms, in              

addition to the contribution of the velocity discontinuity axisymmetric surface. 

As usual, any failure mechanism of the above-described type leads to an upper bound              

estimate for the limit load . The minimal bound is then searched with respect to              

the position of the ICR on the one hand, the geometry of the velocity discontinuity surface on                 

the other hand. This minimization problem is performed numerically by discretizing the            

velocity discontinuity line in the meridian plane into segments.  

In order to avoid such a computational time consuming procedure, Simões et al. [11] have               

developed simplified analytical expressions for the limit load best upper bound estimates            

which accurately fit the numerical estimates in the following ranges of variation of             

non-dimensional geometrical parameters: . The results      

of such a simplified formulation will now be compared with those of our numerical finite               

element approach 

5.2. Implementation of the present approach 

In the problem addressed by Simões et al. [11], the steel rebars are placed according to the                 

layout shown in Figure 18(a) that is complying with the symmetry property about the central               

vertical axis. In the 3D approach developed in the present paper, the reinforcement layout will               

consist of a double array of perpendicular rebars as pictured in Figure 18(b), which represents               

a slight difference with the first configuration. The two problems may however be reasonably              

considered as equivalent, provided that the same global amount of reinforcement be used in the               

two configurations.  
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(a) (b) 

Figure 18. Reinforcement layout according to [11] (a) and the present approach (b) 

 

Figure 19. 45° angular portion of the reinforced concrete footing with its bottom 

homogenized layer of reinforced concrete 

Owing to the symmetry properties of the second configuration, the analysis of the problem              

will be focused on the 1/8th part of the structure shown in Figure 19. The reinforcement system                 

placed at the base of the slab is homogenized according to a procedure extended to the case of                  

a reinforcement in two orthogonal directions as that adopted in Figure 18(b). It can be proved                

(see [14] or [19] for more details) that the macroscopic strength condition at any point of the                 

homogenized layer of concrete reinforced in directions x and y, is given by: 

(34) 
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with 

(35) 

where, as in Eq.(7), is the reinforcement volume fraction in the direction α and               

the uniaxial strength of the constituent steel material. The corresponding support functions             

are: 

(36) 

These criteria, as well as their support functions, can be formulated as local SDP              

optimization problems and integrated in the global finite element SDP optimization procedure,            

as described in section 3. 

5.3. Analysis of results and comparison with other calculation models 

The objective of the analysis is to investigate, for a given geometry of the footing, the                

influence of the rate of reinforcement defined as  

(37) 

(where is the total cross sectional area of the steel rebars in the meridian plane x=0 or y=0)                   
on the value of the footing load bearing capacity expressed in non-dimensional form: 

(38) 

The numerical bounds obtained from the 3D yield design analysis are represented by the              
two red coloured (upper bound) and blue coloured (lower bound) dashed curves of Figure 20.               
These curves have been drawn for the following values of the strength parameters: 

(39) 

and a geometry of the footing defined by the following non-dimensional parameters: 

(40) 
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This figure provides a clear evidence of the improvement of the load carrying capacity as               

the rate of reinforcement is increased, even though both curves seem to reach an asymptotic               

value beyond a rate of reinforcement equal to 0.3.  

 

Figure 20. Comparison between different estimates of the footing load bearing capacity as 

functions of the rate of reinforcement 

The green-coloured dashed line obtained by Simões et al. [11], which predicts an increase              

of the structure bearing capacity proportional to the rate of reinforcement, corresponds to its              

“flexural” capacity. It represents an upper bound value which overestimates all the more the              

exact limit load value as the rate of reinforcement increases. The grey-coloured solid curve and               

the horizontal black-coloured solid line correspond to the “flexural-shear” and          

“punching-shear” failure regimes, respectively. They have been drawn according to the above            

mentioned simplified analytical approximations established in [11]. It is to be observed that,             

while the “flexural-shear” predictions are higher that the 3D predictions, the “punching-shear”            

prediction (which is independent of the rate of the rate of reinforcement) lies within the               

interval forms by the 3D upper and lower bound estimates. It should be kept in mind however,                 

that our 3D homogenized model of reinforcement is a rough approximation of the exact              

reinforcement layout used in [11]. 

In addition, upper and lower bound estimates produced by the 2D finite element limit              
analysis code OptumG2 [20], have been reported in the same figure in the form of two series of                  
triangular symbols. Using the axisymmetric version of this code, the bottom reinforcement            
system was replaced by a homogenous layer a purely cohesive material obeying a Tresca              
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strength condition so as to obtain the same global amount of reinforcement. Despite such an               
approximation, the results obtained from this axisymmetric model are in good agreement with             
the 3D calculations, except for higher rates of reinforcement where it produces moderately             
lower predictions. 

5.4. Analysis of failure mechanisms  

Figure 21 visualizes the optimal velocity fields obtained from implementing the upper            

bound kinematic approach for three increasing rates of reinforcement: .         

It deserves the following comments. 

✔ For the lowest rate of reinforcement ( ) where all calculation methods lead to             

very close estimates of the load bearing capacity, represented by the extreme left points of the                

different curves drawn in Figure 20, the observed velocity field corresponds to a pure              

“flexural” mechanism, in which the external part of the footing is given, in the median plane, a                 

rigid body motion with a centre of rotation located in the vicinity of the central supported                

column. 

✔ Conversely, for an intermediate value of the rate of reinforcement ( ) the            

optimal velocity field corresponds to a “punching-shear” mechanism, that is to a uniform             

vertical translation of an external ring-shaped part of the footing, while the central part around               

the column remains motionless. It should be noted that in such a situation the velocity               

discontinuity across the separating surface being perpendicular to the reinforcements ( =0 in            

(36)), the contribution of the latter to the maximum resisting work reduces to zero.  

✔ Finally, for the highest value of the rate of reinforcement ( : results points             

located at the right end of the curves of Figure 20), the optimal velocity field looks like a rigid                   

block failure mechanism (in the median plane) but, contrary to the first case, with a centre of                 

rotation located outside the footing. 
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Figure 21. Optimal failure mechanisms obtained for three different rates of reinforcement 

ω=0.05−0.20−0.375. 

 

6. CONCLUDING REMARKS 
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The present paper completes the previously published one [9], which was dedicated to the              

numerical implementation of the lower bound static approach, by setting up a finite element              

computer code producing rigorous upper as well as lower bound estimates to the ultimate              

failure loads of fully three dimensional reinforced concrete structures, whatever the           

geometrical layout of the linear reinforcing elements inside the plain concrete volumes. This             

fully operational yield design code relies on two recently achieved significant breakthroughs: 

1) The adoption of a homogenization method, developed within the yield design           

framework, making it possible to capture the yield strength properties of periodically            

distributed as well as isolated reinforcements, and incorporate them in both the static             

and kinematic approaches. The performance and efficiency of this method have been            

proved in this paper on the example of the uniformly loaded reinforced concrete beam              

(section 4.1).  

2) The finite element discretization of both the upper and lower bound methods, leading to              

the formulation and numerical resolution of the corresponding non-linear optimization          

problems using Semidefinite Programming techniques developed by [10] for         

three-dimensional Mohr-Coulomb criteria. 

As shown through the different applications of this paper, the results obtained from using              

this finite element code give upper and lower bound predictions which always remain             

relatively close to each other (less than when taking the mean value of the upper and                 

lower bound estimates). Moreover, comparisons with either analytical or numerical results           

previously obtained on some typical examples, clearly confirm the suitability of the present             

approach as an appropriate engineering design tool. 

Two further significant improvements of the proposed method and related numerical code            

can be expected and achieved in the very next future: 

✔ First, the numerical performance of both the kinematic and static finite element            

formulations could be upgraded by resorting to adaptive mesh refinement          

procedures, as classically done in many finite element codes [20]. This would            

undoubtedly contribute to narrowing the gap between the upper and lower bounds            
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and thus enhance the accuracy of the predictions, without it being necessary to             

increase the number of elements, keeping the computational times to reasonable           

levels. 

✔ On a more fundamental level, the introduction of a specific failure condition at the              

interface between the reinforcements and the surrounding concrete material, which          

appears to be more realistic than the perfect bonding condition adopted in this paper,              

should be considered. This would require the adoption of a so-called multiphase            

model, which may be perceived as an extension of the homogenization method [14],             

making it possible to take a specific interaction condition between the           

reinforcements and the concrete material, into account. 
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