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Linearly-constrained Linear Quadratic Regulator from the
viewpoint of kernel methods

Pierre-Cyril Aubin-Frankowski∗

June 28, 2020

Abstract

The linear quadratic regulator problem is central in optimal control and was investigated
since the very beginning of control theory. Nevertheless, when it includes affine state constraints,
it remains very challenging from the classical “maximum principle“ perspective. In this study
we present how matrix-valued reproducing kernels allow for an alternative viewpoint. We show
that the quadratic objective paired with the linear dynamics encode the relevant kernel, defining
a Hilbert space of controlled trajectories. Drawing upon kernel formalism, we introduce a
strengthened continuous-time convex optimization problem which can be tackled exactly with
finite dimensional solvers, and which solution is interior to the constraints. When refining a
time-discretization grid, this solution can be made arbitrarily close to the solution of the state-
constrained Linear Quadratic Regulator. We illustrate the implementation of this method on a
path-planning problem.

1 Introduction

In its simplest form, the problem of time-varying linear quadratic optimal control with finite horizon
and affine inequality state constraints writes as

min
x(·),u(·)

g(x(T )) +
∫ T

0
[x(t)>Q(t)x(t) + u(t)>R(t)u(t)]dt

s.t. x(0) = x0,

x′(t) = A(t)x(t) + B(t)u(t), a.e. in [0, T ],
ci(t)>x(t) ≤ di(t), ∀ t ∈ [0, T ], ∀ i ∈ {1, . . . , P},

(P0)

where the state x(t) ∈ RN , the control u(t) ∈ RM , A(t) ∈ RN,N , B(t) ∈ RN,M , C(t) =
[c1(t)>; . . . ; cP (t)>] ∈ RP,N (ci(t) ∈ RN ), d(t) = (di(t))i ∈ RP , while Q(t) ∈ RN,N and R(t) ∈
RM,M are positive semidefinite matrices.

Below, for q ∈ {1, 2,∞}, Lq(0, T ) denotes the Lq-space of functions over [0, T ] with integrable
norms of the function values (resp. square-integrable, resp. bounded). We shall henceforth assume
that, for all t ∈ [0, T ], R(t) < rIdM with r > 0, as well as A(·) ∈ L1(0, T ), B(·) ∈ L2(0, T ),
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Q(·) ∈ L1(0, T ), and R(·) ∈ L2(0, T ). To have a finite objective, it is natural to restrict our atten-
tion to measurable controls satisfying R(·)1/2u(·) ∈ L2(0, T ).

Without state constraints, under mild assumptions, the unconstrained Linear Quadratic Reg-
ulator (LQR) enjoys an explicit solution defined through the Hamiltonian matrix and the related
Riccati equation (see e.g. Speyer and Jacobson (2010)). With state constraints, little can be said as
Pontryagin’s Maximum Principle involves not only an adjoint vector but also measures supported
on the constraint boundary. A comprehensive review of this approach can be found in Hartl et al.
(1995). One has to guess beforehand when the state-constraint is active (at the so-called junction
times) in order to write the first-order necessary condition (Hermant, 2009). Secondly one has
to impose assumptions to derive the magnitude of the discontinuities of the adjoint vector. This
has proven to be intractable and made state-constrained continuous-time optimization a difficult
problem. Let us provide an intuition for the appearance of discontinuities. If one follows an optimal
trajectory of the LQR starting in the interior of state constraints, one may reach the boundary,
while the unconstrained Hamiltonian system of the Maximum Principle may incite to use a con-
trol leading to violate the constraint. One has then to apply a different control to remain in the
constraint set, possibly generating a discontinuity in the adjoint vector.

Although LQR problems stand at the origin of control theory, research is still active in the field,
not only for its numerous applications (see e.g. the examples of Burachik et al. (2014) and references
within), but also for the theoretical aspects, even without constraints (Bourdin and Trélat, 2017)
or just control constraints (Burachik et al., 2014). Many of these improvements are motivated by
model predictive control, considered for instance in a time-invariant discrete-time state-constrained
setting in (Grüne and Guglielmi, 2018) or continuous-time (van Keulen, 2020). In particular,
Kojima and Morari (2004) proved that the solutions of a time-invariant LQR with discretized
constraints converge to the solution of (P0), putting emphasis on function spaces of controls. As
a matter of fact, the aforementioned approaches focus on the control, used to parametrize the
trajectories. In the present study, trajectories are instead at the core of the analysis.

When seeking a continuous-time numerical solution, one has to face an infinite number of point-
wise constraints, and has either to relax the computationally intractable optimization problem or
tighten it. Relaxing means either enforcing the constraint only at a finite number of points, without
guarantees elsewhere (as with any time discretization method, e.g. (Kojima and Morari, 2004)), or
through soft penalties (Gerdts and Hüpping, 2012), such as approximations of barrier functions as
in Dower et al. (2019). Tightening usually implies either choosing u(·) in a convenient subspace of
L2(0, T ), such as the one of piecewise constant functions1 or splines with prescribed knots (Mercy
et al., 2016), or through hard penalties, such as logarithmic barriers (Chaplais et al., 2011). Let us
illustrate the difference between relaxing and tightening state constraints. Consider the problem
of a traffic regulator whose aim is to enforce a speed limit over a highway. The drivers for their
part want to go as far as possible in a given time. Deploying speed cameras ensures at best that
the speed constraint is satisfied locally (relaxing). However if a smaller maximum speed is imposed
at the camera level (tightening), then the cars cannot accelerate enough to break the speed limit
before reaching the next camera. In a nutshell, the kernel methods framework we advocate allows
to compute both a threshold and the resulting trajectories.

Kernel methods, being related to Green’s functions, belong to a branch of functional analysis.

1This is known as sampled-data or digital control (Ackermann, 1985), the sampled-data terminology does not refer
to machine learning techniques.
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Their history was already sketched by Aronszajn (1950), to whom we owe the modern formulation of
the theory. The regain of interest thanks to support vector machines (see e.g. Schölkopf and Smola,
2002) has reinstated kernel methods as the most principled technique in machine learning. There
have been many attempts since then at bridging kernel methods and control theory. The two are
already related in the works of Parzen (1970); Kailath (1971). More recently Steinke and Schölkopf
(2008); Marco et al. (2017) have considered kernels for control systems, mainly to encode the input
u(·) or for system identification purposes (see e.g. the reviews of Pillonetto et al. (2014); Chiuso
and Pillonetto (2019)). In most cases, the kernel is taken off-the-shelf, as with Gaussian kernels in
connection with Bayesian inference (Singh et al., 2018; Bertalan et al., 2019). Kernels have also been
applied to approximate the Koopman operator over observers of uncontrolled nonlinear systems,
in connection with spectral analysis (Williams et al., 2015; Fujii and Kawahara, 2019) or for given
controls (Sootla et al., 2018). Their kernel Hilbert spaces can be used to define suitable domains
for operators (Rosenfeld et al., 2019; Giannakis et al., 2019). On the contrary, departing from
the prevalent perspective of using kernel methods as nonlinear embeddings, this article rekindles
with a long standing tradition of engineering kernels for specific uses. This view has been mainly
supported by the statistics community, especially in connection with splines and Sobolev spaces
(Wahba, 1990; Heckman, 2012).2 For (P0), we show below that the quadratic objective paired
with the linear dynamics encode the relevant kernel, which defines the Hilbert space of controlled
trajectories. As kernel methods deal with a special class of Hilbert spaces, they are natural to
consider for linear systems or for linearizations of nonlinear systems. Nonetheless the interactions
run deeper. For instance we prove below that the controllability Gramian is directly related to
matrix-valued kernels, and we recover the transversality condition merely through a representer
theorem.

Our main result is to show that through the theory of kernel methods we can solve a novel
strengthened version of (P0), without changing the function spaces involved. This is achieved by
introducing a finite number of second-order cone constraints, stronger than the infinite number
of affine constraints. We furthermore show that the solution of the strengthened problem can
be made arbitrarily close to the solution of (P0), and that it enjoys a finite representation. One
can thus solve exactly the continuous-time problem using finite dimensional convex optimization
solvers. This computable trajectory, which is interior to the affine state constraints, can also foster
intuitions on the behavior of the optimal solution of (P0).

In Section 2 we present our strengthened problem and show how the LQR problem can be
expressed as a regression problem over a vector-valued reproducing kernel Hilbert space. Section 3
details the consequences of this framework and identifies the corresponding kernels. Our main result
on approximation guarantees is stated in Section 4. Section 5 discusses the implementation and the
numerical behavior of the strengthened constraints. The setting is also extended to intermediate
or terminal equality constraints, as in path-planning problems. The annex pertains to conditions
ensuring the existence of interior trajectories for (P0).

2Drawing inspiration from linear control theory, control theoretic splines were devised (Magnus Egerstedt, 2009;
Fujioka and Kano, 2013), in particular for path-planning problems (Kano and Fujioka, 2018). Possibly unbeknownst
to non-kernel users, kernel theory, sometimes known as abstract splines, is the natural generalization of splines (see
e.g. Aubin-Frankowski et al., 2020).
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2 Theoretical preliminaries and problem formulation

In this section, we present the tools from the theory of kernel methods that we shall apply. We
then introduce our strengthened problem with second-order cone constraints.

Notations: We use the shorthand [[1, P ]] = {1, . . . , P}. RN+ is the subset of RN of elements with
nonnegative components. BN denotes the closed unit ball of RN for the Euclidean inner product,
1N the vector of all-ones. For a matrix A ∈ RN,N , we write by ‖A‖ its operator norm. IdN is
the identity matrix of RN,N . We chose not to explicit the output space for the function spaces to
avoid cumbersome notations, as it can be always deduced from the context. The space of functions
with continuous derivatives up to order s is denoted by Cs(0, T ). For a function K(·, ·) defined
over a subset of R × R, ∂1K(·, ·) denotes the partial derivative w.r.t. the first variable. For a
Hilbert space (HK , 〈·, ·〉K), BK is the closed unit ball of HK , ‖ · ‖K denoting the corresponding
norm. Given a subspace V ⊂ HK , we denote by V ⊥ its orthogonal complement w.r.t. 〈·, ·〉K . A
µ-strongly convex function L : HK 7→ R is a function satisfying, for all f1, f2 ∈ HK , α ∈ [0, 1],
L(αf1 + (1− α)f2) + α(1− α)µ2‖f1 − f2‖2K ≤ αL(f1) + (1− α)L(f2).

Definition 1. Let T be a non-empty set. A Hilbert space (HK , 〈·, ·〉K) of RN -vector-valued func-
tions defined on T is called a vector-valued reproducing kernel Hilbert space (vRKHS) if there
exists a matrix-valued kernel K : T × T → RN,N such that the reproducing property holds: for all
t ∈ T, p ∈ RN , K(·, t)p ∈ HK and for all f ∈ HK , p>f(t) = 〈f ,K(·, t)p〉K .

Many properties of real-valued RKHSs have been known since Aronszajn (1950), the general
theory having been developed by Schwartz (1964). By Riesz’s theorem, an equivalent definition of
a vRKHS is that, for every t ∈ T and p ∈ RN , the evaluation functional f ∈ HK 7→ p>f(t) ∈ R
is continuous. There is also a one-to-one correspondence between the kernel K and the vRKHS
(HK , 〈·, ·〉K) (see e.g. (Micheli and Glaunès, 2014, Theorem 2.6)), so that modifying T or changing
the inner product changes the kernel. We shall use several classical properties: by symmetry of the
scalar product, the matrix-valued kernel has a Hermitian symmetry, i.e. K(s, t) = K(t, s)> for any
s, t ∈ T. Moreover, if the vRKHS can be written as HK = H0 ⊕ H1, then H0 and H1 equipped
with 〈·, ·〉K are also vRKHSs, as closed subspaces for ‖ · ‖K , and their kernels K0 and K1 satisfy
K = K0 +K1.

Let us define our candidate for a vRKHS, the space S of trajectories satisfying the dynamical
system of (P0):

S := {x(·) | ∃u(·) s.t. x′(t) = A(t)x(t) + B(t)u(t) a.e. and
∫ T

0
u(t)>R(t)u(t)dt <∞}. (1)

There is not necessarily a unique choice of u(·) for a given x(·) ∈ S (for instance if B(t) is not
injective for some t). Therefore, with each x(·) ∈ S, we associate the control u(·) having minimal
norm based on the pseudoinverse of B(t)	 of B(t) for the RM -norm ‖ · ‖R(t) := ‖R(t)1/2 · ‖:

u(t) = B(t)	[x′(t)−A(t)x(t)] a.e. in [0, T ]. (2)

The vector space S has then a natural scalar-product. As a matter of fact, the expression

〈x1(·),x2(·)〉K := x1(0)>x2(0) +
∫ T

0
[x1(t)>Q(t)x2(t) + u1(t)>R(t)u2(t)]dt (3)
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is bilinear and symmetric over S × S.3 It is positive definite over S as ‖x(·)‖2K = 0 implies that
u(·) a.e≡ 0 and x(0) = 0, hence that x(·) ≡ 0. Combining (2) and (3), we can express ‖ · ‖K as a
Sobolev-like norm split into two semi-norms ‖ · ‖K0 and ‖ · ‖K1

‖x(·)‖2K = ‖x(0)‖2︸ ︷︷ ︸
‖x(·)‖2

K0

+
∫ T

0
[‖x(t)‖2Q(t) + ‖B(t)	(x′(t)−A(t)x(t))‖2R(t)]dt︸ ︷︷ ︸

‖x(·)‖2
K1

. (4)

By Cauchy-Lipschitz theorem, ‖x(·)‖K0 = ‖x(0)‖ defines a norm over the finite-dimensional sub-
space S0 of trajectories with null quadratic cost (hence null control):

S0 := {x(·) |
∫ T

0
x(t)>Q(t)x(t)dt = 0 and x′(t) = A(t)x(t), a.e. in [0, T ]}. (5)

Let us define its (infinite-dimensional) orthogonal complement Su := (S0)⊥ in S w.r.t. ‖ · ‖K . From
now on we equip S (resp. S0, Su) with ‖ · ‖K (resp. ‖ · ‖K0 , ‖ · ‖K1). These will be shown to
all be vRKHSs. Suppose we identified the matrix-valued kernels spawning them (a procedure to
be found in Section 3). In a recent approach in kernel methods (Aubin-Frankowski and Szabó,
2020), developed for regression problems with constraints over derivatives, we suggested replacing
“C(t)x(t) ≤ d(t) (∀ t ∈ [0, T ])“ by the following strengthened second-order cone (SOC)4 constraints:

ηi(δm, tm)‖x(·)‖K + ci(tm)>x(tm) ≤ di(δm, tm), ∀m ∈ [[1, NP ]],∀ i ∈ [[1, P ]] (6)

where the (tm)m∈[[1,NP ]] ∈ [0, T ]NP are NP time points associated to radii δm > 0 satisfying [0, T ] ⊂
∪m∈[[1,NP ]][tm − δm, tm + δm]. The constants ηi(δm, tm) and di(δm, tm) are then defined as:

ηi(δm, tm) := sup
t∈ [tm−δm,tm+δm]∩[0,T ]

‖K(·, tm)ci(tm)−K(·, t)ci(t)‖K ,

di(δm, tm) := inf
t∈ [tm−δm,tm+δm]∩[0,T ]

di(t).

With the above notations, our strengthened time-varying linear quadratic optimal control problem
with finite horizon and finite number of SOC constraints is5

min
x(·)∈S,
x(0)=x0

g(x(T )) + ‖x(·)‖2K

s.t. ηi(δm, tm)‖x(·)‖K + ci(tm)>x(tm) ≤ di(δm, tm), ∀m ∈ [[1, NP ]], ∀ i ∈ [[1, P ]].
(Pδ,fin)

The introduction of (Pδ,fin) as an approximation of (P0) entirely stems from the vRKHS formalism
and does not result from optimal control considerations. It relies on an inner approximation of
a convex set in an infinite-dimensional Hilbert space. From a machine learning perspective, the
initial condition and the terminal cost act as a “loss“ function, whereas the quadratic cost is turned
into a norm over S and can thus be interpreted as a “regularizer“. Departing also from optimal

3The description by S of the optimization variables effectively pushes controls in the background while bringing
forth trajectories as the main object of study. This describes (P0) more as a regression problem than as an optimal
control problem.

4The "second-order cone" terminology is classical in optimization following the similarity between (6) and the
definition of the Lorentz cone {(z, r) ∈ RN+1 | ‖z‖ ≤ r}.

5Since ‖x(·)‖2
K0 = ‖x(0)‖2 and x(0) is fixed, we replaced the integral ‖x(·)‖2

K1 by ‖x(·)‖2
K in the objective.

5



control, the tightening is obtained by incorporating the quadratic part of the objective (4) in the
state constraints to form (6). As discussed in Aubin-Frankowski and Szabó (2020), introducing (6)
leads to a finite number of evaluations of the variable x(·) in (Pδ,fin) which allows for a representer
theorem (Theorem 1 in Section 3.1)

Our goal is to show that (Pδ,fin) is indeed a tightening of (P0), enjoying a representer theorem
providing a finite-dimensional representation of the solution of problem (Pδ,fin). We also bound the
distance between the trajectories solutions of (P0) and (Pδ,fin), and prove that it can be made as
small as desired by refining the time-discretization grid.

3 Revisiting LQ control through kernel methods

This section presents a step-by-step approach to identify the matrix-valued kernel K of the Hilbert
space S of solutions of a linear control system, equipped with the scalar product (3). This is done
independently from the state constraints which effect is only to select a closed convex subset of the
space of trajectories. In Section 3.1, we consider the case Q ≡ 0 which enjoys explicit formulas.
We also express a representer theorem (Theorem 1 suited for problems of the form (Pδ,fin). This
allows us to revisit, through the kernel framework, classical notions, such as the solution of the
unconstrained LQR problem, or the definition of the Gramian of controllability. In Section 3.2, we
consider the case Q 6≡ 0 and relate our solution to an adjoint equation over matrices. Furthermore,
the identification of kernels developed in Section 3 is by no means restricted to finite T , hence the
kernel formalism can also tackle infinite-horizon problems.6

Let us denote by ΦA(t, s) ∈ RN,N the state-transition matrix of x′(τ) = A(τ)x(τ), defined from
s to t. The key property used throughout this section is the variation of constants, a.k.a. Duhamel’s
principle, stating that for any absolutely continuous x(·) such that x′(t) = A(t)x(t) + B(t)u(t) a.e.
we have

x(t) = ΦA(t, 0)x(0) +
∫ t

0
ΦA(t, τ)B(τ)u(τ)dτ. (7)

Lemma 1. (S, 〈·, ·〉K) is a vRKHS.

Proof: We have to show that: i) (S, 〈·, ·〉K) is a Hilbert space, ii) for every t ∈ [0, T ] and p ∈ RN ,
the evaluation functional x(·) ∈ S 7→ p>x(t) ∈ R is continuous.
i) From (3) and the discussion of Section 2, it is obvious that 〈·, ·〉K is a scalar product. We
just have to show that S is complete. Let (xn(·))n be a Cauchy sequence in S, with associated
controls (un(·))n. Then (‖xn(·)‖K)n is a Cauchy sequence in R and thus converges, so (‖xn(0)‖)n
and (‖R(·)1/2un(·)‖L2(0,T ))n are bounded. Since R(t) < rIdM with r > 0, (‖un(·)‖L2(0,T ))n is
thus bounded too, and we can take a subsequence (uni(·))i weakly converging to some u(·). Let
s, t ∈ [0, T ],

xn(t)− xn(s) (7)= (ΦA(t, s)− IdN )xn(s) +
∫ t

s
ΦA(t, τ)B(τ)un(τ)dτ. (8)

Taking s = 0, as (‖xn(0)‖)n is bounded, A(·) ∈ L1(0, T ) and B(·) ∈ L2(0, T ), we have that ΦA(·, ·)
is continuous and {xn(·)}n is uniformly bounded in C(0, T ). Thus (8) implies that the sequence

6We need to assume T to be finite for the results of Section 4 to hold, as we use a procedure based on compact
coverings to tackle the state constraints.
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(xni(·))i is equicontinuous. By Ascoli’s theorem, we can take a (xnij (·))j uniformly converging to
some x(·) satisfying (7) for u(·), thus x(·) ∈ S.
ii) Let t ∈ [0, T ], p ∈ RN , and x(·) ∈ S. By (7) and Cauchy-Schwarz inequality,

p>x(t) = p>ΦA(t, 0)x(0) +
∫ t

0
p>ΦA(t, τ)B(τ)u(τ)dτ

|p>x(t)| ≤ sup
τ∈[0,T ]

‖p>ΦA(t, τ)‖ ·
(
‖x(0)‖+ ‖

∫ t

0
B(τ)u(τ)dτ‖

)

≤ sup
τ∈[0,T ]

√
2‖p>ΦA(t, τ)‖ ·

(
‖x(0)‖2 + ‖B(·)‖2L2(0,T )‖u(·)‖2L2(0,T )

) 1
2

≤ sup
τ∈[0,T ]

√
2‖p>ΦA(t, τ)‖ ·

(
1 +
‖B(·)‖L2(0,T )√

r

)(
‖x(0)‖2 + ‖R(·)

1
2 u(·)‖2L2(0,T )

) 1
2 .

Hence the linear map x(·) ∈ S 7→ p>x(t) ∈ R is continuous.
�

By Definition 1, we know that a matrix-valued reproducing kernel K(·, ·) exists. We now repeatedly
use (7) to identify it.

3.1 Case Q ≡ 0

The space S of controlled trajectories is defined as in (1) equipped with the quadratic norm

‖x(·)‖2K = ‖x(0)‖2 +
∫ T

0
u(t)>R(t)u(t)dt = ‖x(·)‖2K0 + ‖x(·)‖2K1 , (9)

where u(·) is defined as in (2). We can further specify its subspaces

S0 = {x(·) |x′(t) = A(t)x(t), a.e. in [0, T ]} Su = {x(·) |x(·) ∈ S and x(0) = 0}.

By uniqueness of the reproducing kernel, we only have to exhibit a candidate K(s, t) satisfying
p>x(t) = 〈x(·),K(·, t)p〉K (∀t ∈ [0, T ],x ∈ S, p ∈ RN ) and K(·, t)p ∈ S (∀t ∈ [0, T ], p ∈ RN ).
The space (S0, ‖ · ‖K0) being finite dimensional, we can right away identify its kernel7

K0(s, t) = ΦA(s, 0)ΦA(t, 0)>. (10)

As S = S0⊕Su, from the properties of sums of kernels, we derive that we should look for K of the
form K0 +K1 for which the reproducing property, with 〈·, ·〉K defined in (4), writes as follows, for
all t ∈ [0, T ], p ∈ RN , x(·) ∈ S,

p>x(t) = (K(0, t)p)>x(0) +
∫ T

0

[
(B(t)	(∂1(K(s, t)p)−A(t)K(s, t)p))>R(s)u(s)

]
ds. (11)

Setting ∂1K(s, t) : p 7→ ∂1(K(s, t)p), let us define formally Ut(s) := B(s)	(∂1K1(s, t)−A(s)K1(s, t)).
By the Hermitian symmetry of K and the fact that K0(·, t)p belongs to S0 and K1(0, t)p = 0, (11)
holds if and only if for all t ∈ [0, T ] and x(·) ∈ S

x(t) = K0(t, 0)x(0) +
∫ T

0
Ut(s)>R(s)u(s)ds.

7This is a classical result for finite dimensional vRKHSs. Fix any family {vj}j∈[[1,N ]] spanning S0, let V(s) :=
[vj(s)]j∈[[1,N ]] ∈ RN,N and Gv := (〈vi, vj〉K0 )i,j∈[[1,N ]]. The matrix Gv is invertible as ‖ · ‖K0 is a norm over S0 and
thus K0(s, t) = V(s)>G−1

v V(t). Here we have V(s) = ΦA(s, 0)> and Gv = IdN .
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This expression can be identified with (7) when defining Ut(s) as follows

Ut(s) :=
{

R(s)−1B(s)>ΦA(t, s)> ∀s ≤ t,
0 ∀s > t.

(12)

Consequently, to ensure that, for all t ∈ [0, T ], p ∈ RN , K1(·, t)p ∈ Su, K1 has to satisfy the
following differential equation for any given t ∈ [0, T ]:

∂1K1(s, t) = A(s)K1(s, t) + B(s)Ut(s) a.e. in [0, T ] with K1(0, t) = 0. (13)

Since A(·) ∈ L1(0, T ), B(·) ∈ L2(0, T ), and R(t) < rIdM with r > 0, we have that Ut(·) ∈ L2(0, T ).
By applying the variation of constants to (13), with Ut(·) defined in (12), we get an explicit
expression for K1, satisfying a Hermitian symmetry when permuting s and t,

K1(s, t) =
∫ min(s,t)

0
ΦA(s, τ)B(τ)R(τ)−1B(τ)>ΦA(t, τ)>dτ. (14)

Remark (Gramian): Formula (14) for K1(T, T ) corresponds to the Gramian of controllability.
The link is straightforward as the controllability problem of steering a point from (0,0) to (T,xT )
simply writes as, with u(·) defined as in (2) and R(·) ≡ IdM ,

min
x(·)∈S

∫ T

0
‖u(t)‖2dt

s.t. x(0) = 0,
x(T ) = xT ,

(15)

which set of solutions can actually be made explicit.8 As a matter of fact, in kernel methods,
it is classical to look for a “representer theorem“, i.e. a necessary condition to ensure that the
solutions of an optimization problem live in a finite dimensional subspace of S and consequently
enjoy a finite representation. Such theorems are usually stated without constraints and for real-
valued kernels (e.g. Schölkopf et al., 2001). Here we formulate a representer theorem for conic
constraints and matrix-valued kernels, as it will prove instrumental to derive a finite formulation
for the SOC-strengthening of (P0).

Theorem 1 (Representer theorem). Let (HK , 〈·, ·〉K) be a vRKHS defined on a set T. Let P ∈ N
and, for i ∈ [[0, P ]] and given Ni ∈ N, {ti,j}j∈[[1,Ni]] ⊂ T. Consider the following optimization problem
with “loss“ function L : RN0 → R ∪ {+∞}, strictly increasing “regularizer“ function Ω : R+ → R,
and constraints di : RNi → R, λi ≥ 0 and {ci,m}m∈[[1,Ni]] ⊂ RN ,

f̄ ∈ arg min
f∈HK

L
(
c>0,1f(t0,1), . . . , c>0,N0f(t0,N0)

)
+ Ω (‖f‖K)

s.t. λi‖f‖K ≤ di(c>i,1f(ti,1), . . . , c>i,Nif(ti,Ni)), ∀ i ∈ [[1, P ]].

Then, for any minimizer f̄ , there exists {pi,m}m∈[[1,Ni]] ⊂ RN such that f̄ = ∑P
i=0

∑Ni
m=1K(·, ti,m)pi,m

with pi,m = αi,mci,m for some αi,m ∈ R.

8When choosing the terminal cost g(·) to be equal to the indicator function of {xT }, (15) does correspond to (P0)
in the absence of state constraints.
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Proof: Let f̄ be an optimal solution and let V := span ({K(·, ti,m)ci,m}m≤Ni, i≤P ). Take v ∈ V and
w ∈ V ⊥ such that f̄ = v + w. As c>i,mw(ti,m) = 〈w(·),K(·, ti,m)ci,m〉K = 0, the terms appearing in
L and di are the same for f̄ and v. Moreover, ‖v‖K ≤ ‖f̄‖K , hence v belongs to the constraint set
since f̄ does. Furthermore Ω (‖v‖K) ≤ Ω

(
‖f̄‖K

)
, so, by optimality of f̄ , w = 0 which concludes

the proof.
�

In other words, Theorem 1 states that to each time t where the variable f is evaluated corresponds
a multiplier pt ∈ RN in the expression of the optimal solutions. Hence, if the number of such
evaluations is finite, then the representation of f̄ is finite.9 Besides, a representer theorem, like
Pontryagin’s Maximum Principle, is only a necessary condition on the form of the solutions. Theo-
rem 1 guarantees the existence or uniqueness of an optimal solution only when coupled with other
assumptions (e.g. that L and Ω are convex, and L is lower semi-continuous). This further high-
lights the analogy with the Maximum Principle in the quadratic case. Theorem 1 is instrumental
to obtain a finite-dimensional equivalent of (Pδ,fin).

Theorem 1 applied to (15) implies that any candidate optimal solution x̄(·) can be written
as x̄(s) = K(s, 0)p0 + K(s, T )pT , with p0,pT ∈ RN . As x̄(0) = 0, projS0(x̄(·)) = 0, and as
K1(·, 0) ≡ 0, x̄(s) = K1(s, T )pT . So x̄(T ) = xT is satisfied if and only if xT ∈ Im(K1(T, T ))
where the operator K1(T, T ) is defined by (13), setting R ≡ Id. Hence (15) has a solution for any
xT (i.e. the system is controllable) if and only if the Gramian of controllabilityK1(T, T ) is invertible.

Remark (LQR without state constraints): We derive also from the kernel framework the
transversality condition, as well as the classical solution of the LQR problem without state con-
straints, defined as follows, with u(·) again defined as in (2),

min
x(·)∈S

g(x(T )) + 1
2

∫ T

0
u(t)>R(t)u(t)dt

s.t. x(0) = 0.
(Puncons)

Similarly, through the representer theorem, we deduce that x̄(·) = K1(·, T )pT . Hence, by the
reproducing property,∫ T

0
ū>(t)R(t)ū(t)dt = ‖K1(·, T )pT ‖2K = p>TK1(T, T )pT .

Assume that g(·) ∈ C1(RN ,R) and that it is convex. Applying the first-order optimality condition,
we conclude that

0 = ∇
(

p 7→ g(K1(T, T )p) + 1
2p>K1(T, T )p

)
(pT ) = K1(T, T )(∇g(K1(T, T )pT ) + pT ). (16)

So it is sufficient to take pT = −∇g(K1(T, T )pT ) = −∇g(x̄(T )), i.e. to have the transversality con-
dition satisfied. However this formula says more than that, as it covers the problem of degeneracies
of the “controllability Gramian“ K1(T, T ) and gives an explicit equation (16) to be satisfied by pT .
Notice that we do not consider any adjoint equation, only adjoint vectors that are not explicitly
propagated. In our framework, the Hamiltonian is implicit.

9The property of having a finite number of evaluations is precisely what distinguishes the unconstrained control-
lability problem (15) or the SOC-constrained problem (Pδ,fin) from the original state-constrained problem (P0) which
has an infinite number of affine constraints.
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3.2 Case Q 6≡ 0

For the case with Q 6≡ 0, we have a more intricate formula. The reproducing property for K, with
Ut(·) to be explicited10, writes as follows, for all t ∈ [0, T ], p ∈ RN , x(·) ∈ S,

p>x(t) = (K(0, t)p)>x(0) +
∫ T

0
(K(s, t)p)>Q(s)x(s)ds+

∫ T

0
(Ut(s)p))>R(s)u(s)ds. (17)

By the Hermitian symmetry of K and the variation of constants (7), we can rewrite (17) as, for all
t ∈ [0, T ], x(·) ∈ S,

x(t) = K(t, 0)x(0) +
∫ T

0
K(t, s)Q(s)

(
ΦA(s, 0)x(0) +

∫ s

0
ΦA(s, τ)B(τ)u(τ)dτ

)
ds

+
∫ T

0
Ut(s)>R(s)u(s)ds.

After some regrouping of terms, a change of integration bounds and identification with (7), we get
the integral equations:

ΦA(t, 0) = K(t, 0) +
∫ T

0
K(t, s)Q(s)ΦA(s, 0)ds,

∀ s ≤ t, ΦA(t, s)B(s) = Ut(s)>R(s) +
∫ T

s
K(t, τ)Q(τ)ΦA(τ, s)B(s)dτ

∀ s > t, 0 = Ut(s)>R(s) +
∫ T

s
K(t, τ)Q(τ)ΦA(τ, s)B(s)dτ,

which can be summarized as

K(t, 0) = ΦA(t, 0)− K̃(t, 0) with K̃(t, s) :=
∫ T

s
K(t, τ)Q(τ)ΦA(τ, s)dτ,

Ut(s)>R(s) =
{

(ΦA(t, s)− K̃(t, s))B(s) ∀s ≤ t,
−K̃(t, s)B(s) ∀s > t.

(18)

Although not as explicit as formula (14) from the case Q ≡ 0, this integral expression for Q 6≡ 0
will still prove valuable to investigate the regularity of K(·, ·) (Lemma 2 below). To provide further
insight on this expression, again for fixed t, let us introduce formally an adjoint equation for a
variable Πt(s) ∈ RN,N ,

Π′t(s) = −A(s)>Πt(s) + Q(s)K(s, t) Πt(T ) = IdN .

Again, applying the variation of constants to Πt(s), taking the transpose and owing to the sym-
metries of K(·, ·) and Φ(·, ·), we derive that

Πt(s) = Φ(−A>)(s, T )Πt(T ) +
∫ s

T
Φ(−A>)(s, τ)Q(τ)K(τ, t)dτ

Πt(s)> = ΦA(T, s)−
∫ T

s
K(t, τ)Q(τ)ΦA(τ, s)dτ = ΦA(T, s)− K̃(t, s).

The difference of behavior between the two cases Q ≡ 0 and Q 6≡ 0 is classical in optimal control.
While the control equation runs forward in time, the adjoint equation runs backward. For Q ≡ 0,

10Recall that Ut(s) := B(s)	[∂1K(s, t)−A(s)K(s, t)].
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the adjoint equation can be solved independently from K, which is why Πt was not introduced.
For Q 6≡ 0, since ∂1K(s, t) = A(s)K(s, t) + B(s)Ut(s), by (18), for any given time t, we have
two coupled differential equations over K(·, t) and Πt(·). This system does not enjoy an explicit
expression, however its solutions can still be computed as a two-point boundary value problem.

4 Theoretical approximation guarantees

In this section, we show that the SOC-constrained problem (Pδ,fin) is a tightening of the original
problem (P0). We also provide bounds on the ‖ · ‖K-distance between the optimal trajectory of
(P0) and that of (Pδ,fin). This shows that the SOC-tightening is consistent in a numerical analysis
sense, as, for bounded kernels K, convergence in ‖ · ‖K is stronger than uniform convergence of the
states, and also implies convergence of the L2-norms of the controls. We prove that the kernels
K(·, ·) identified in Section 3 are indeed C0-continuous.

We shall manipulate various forms of state constraints. We thus write our generic problem (P∗),
with objective L and constraints defined through the constraint set V∗, as follows

x̄∗(·) ∈ arg min
x(·)∈V∗

L(x(·)) := g(x(T )) + ‖x(·)‖2K

s.t. x(0) = x0.
(P∗)

Existence and uniqueness of the solution for each (P∗) will be discussed below. Recall that S is
defined in (1). Let (tm)m∈[[1,N0]] ∈ [0, T ]N0 be N0 time points associated to radii δm > 0 chosen
so that they form a covering [0, T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm]. The vectors dm(δm, tm) :=
(di(δm, tm))i∈[[1,P ]] ∈ RP , −→η (δ, t) := (ηi(δ, t))i∈[[1,P ]] ∈ RP and −→ω (δ, t) := (ωi(δ, t))i∈[[1,P ]] ∈ RP are
defined component-wise:11

ηi(δ, t) := sup
s∈ [t−δ,t+δ]∩[0,T ]

‖K(·, t)ci(t)−K(·, s)ci(s)‖K , (19)

ωi(δ, t) := sup
s∈ [t−δ,t+δ]∩[0,T ]

|di(t)− di(s)|, (20)

di(δm, tm) := inf
s∈ [tm−δm,tm+δm]∩[0,T ]

di(s). (21)

For −→ε ∈ RP+, we shall consider the following constraints

V0 := {x(·) ∈ S |C(t)x(t) ≤ d(t), ∀ t ∈ [0, T ]},
Vδ,fin := {x(·) ∈ S |−→η (δm, tm)‖x(·)‖K + C(tm)x(tm) ≤ d(δm, tm), ∀m ∈ [[1, N0]]},
Vδ,inf := {x(·) ∈ S |−→η (δ, t)‖x(·)‖K +−→ω (δ, t) + C(t)x(t) ≤ d(t), ∀ t ∈ [0, T ]},
Vε := {x(·) ∈ S |−→ε + C(t)x(t) ≤ d(t), ∀ t ∈ [0, T ]}.

To these closed constraint sets correspond the problems (P0), (Pδ,fin) (Pδ,inf), and (Pε). In particular,
x̄0(·) denotes the optimal solution of (P0). When C(·) and d(·) are C0-continuous, we prove right
away that ηi(·, t) and ωi(·, t) converge uniformly in t to 0 as δ → 0+, so that the SOC inequalities
defining the set Vδ,inf converge to the original affine constraints.

11The computation of ηi can be performed using that, by the reproducing property, ‖K(·, t)ci(t)−K(·, s)ci(s)‖2
K =

ci(t)>K(t, t)ci(t) + ci(s)>K(s, s)ci(s) − 2ci(t)>K(t, s)ci(s). We chose to overload the notation of di to define the
constants di(δm, tm) in order to draw the parallel with the other perturbations of the constraints, ηi(δ, t) and ωi(δ, t).
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Lemma 2 (Uniform continuity of K). If A(·) ∈ L1(0, T ) and B(·) ∈ L2(0, T ), then K(·, ·) is
uniformly continuous. Assume furthermore that C(·) and d(·) are C0-continuous. Then for all
i ∈ [[1, P ]], the increasing functions ηi(·, t) and ωi(·, t) converge to 0 uniformly w.r.t. t as δ → 0+.

Proof: Since A(·) ∈ L1(0, T ), ΦA(·, ·) is uniformly continuous. Hence, for Q ≡ 0, through the
explicit formulas (10) and (14), we deduce that K(·, ·) is uniformly continuous. Consequently, for
any i ∈ [[1, P ]], and s, t ∈ [0, T ], recalling that BN denotes the closed unit ball of RN ,

‖K(·, t)ci(t)−K(·, s)ci(s)‖K ≤ ‖(K(·, t)−K(·, s))ci(t)‖K + ‖K(·, s)(ci(t)− ci(s))‖K
≤ ‖ci(t)‖ sup

p∈BN
‖(K(·, t)−K(·, s))p‖K + ‖ci(t)− ci(s)‖ sup

p∈BN
‖p>K(s, s)p‖1/2,

which proves the statement for ηi(·, t), whereas the result for ωi(·, t) stems directly from the uni-
form continuity of d(·). Obviously, the components ηi(·, t) and ωi(·, t) are increasing for any given t.

For Q 6≡ 0, we do not have explicit formulas such as (10) and (14). Nonetheless, the ‖·‖K-norm
(4) for Q 6≡ 0 is stronger than the ‖ · ‖K-norm for Q ≡ 0. Since, for Q ≡ 0, K is uniformly
continuous, owing to (Schwartz, 1964, Proposition 24), the topology induced by K over Sx is
stronger than the topology of uniform convergence over [0, T ]. Hence the topology induced by K
for Q 6≡ 0 is also stronger. Therefore, using again the result of Schwartz (1964), for Q 6≡ 0, K(·, ·)
is continuous w.r.t. each variable and locally bounded.12 Hence K(·, ·) is bounded on the compact
set [0, T ] × [0, T ]. Let us prove the continuity of t 7→ K(t, t). Since K is bounded, by (18), K̃ is
bounded, so Ut(·) ∈ L2(0, T ). Let p ∈ BN and t ∈ [0, T ], then, by definition of K, K(·, t)p ∈ S is
associated to the control Ut(·)p. Let δ > 0, then, by the variation of constants (7),

‖(K(t+ δ, t)−K(t, t))p‖ ≤ ‖ΦA(t+ δ, 0)− ΦA(t, 0)‖ · ‖K(0, t)p‖+
∫ t+δ

t
‖ΦA(t, s)B(s)Ut(s)p‖ds.

Let λ > 0. With a similar computation when permuting t and t + δ, taking the supremum over
p ∈ BN , one can find ∆ > 0 such that for any δ ∈ [0,∆],

max(‖K(t+ δ, t)−K(t, t)‖, ‖K(t, t+ δ)−K(t+ δ, t+ δ)‖) ≤ λ/2.

Hence, owing to the Hermitian symmetry of K, for any δ ∈ [0,∆],

‖K(t+ δ, t+ δ)−K(t, t)‖ ≤ ‖K(t+ δ, t)−K(t, t)‖+ ‖K(t, t+ δ)−K(t+ δ, t+ δ)‖ ≤ λ.

This shows that K is indeed continuous on the diagonal. As underlined by Laurent Schwartz,
showing the continuity of t 7→ K(t, t) is enough to conclude. We reproduce briefly his argument (see
Schwartz, 1964, p194): for any p ∈ RN , whenever t converges to t0,K(·, t)p weakly converges in S to
K(·, t0)p, however, by continuity on the diagonal, the norm p>K(t, t)p converges to p>K(t0, t0)p,
so K(·, t)p strongly converges in S and by extension in C0(0, T ), exactly showing that K(·, ·) is
continuous, hence uniformly continuous.

�

Generically, under the minimal assumptions of Lemma 2, one can apply the SOC-scheme to
obtain (Pδ,fin), which is equivalent to a finite dimensional problem owing to the representer theorem
(Theorem 1). By Lemma 2, the scheme is coherent since for δ decreasing to zero, the coefficients
of the SOC constraints converge uniformly in t to those of the original problem (P0). However,
ensuring that the solution x̄δ,fin(·) converges to x̄0(·) requires a more thorough analysis.

12This allows to derive the continuity of ηi(·, t) but does not provide a uniform bound w.r.t to t.
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Proposition 1 (Nested sequence). Let δmax := maxm∈[[1,N0]] δm. For any δ ≥ δmax, if, for a given
y0 ≥ 0, −→ε ≥ supt∈[0,T ][−→η (δ, t)y0 +−→ω (δ, t)], then we have a nested sequence

(Vε ∩ y0BK) ⊂ Vδ,inf ⊂ Vδ,fin ⊂ V0. (22)

Proof: The inclusion Vε ∩ y0BK ⊂ Vδ,inf stems from the definition of the sets. Since di(δm, tm) ≥
di(tm) − ωi(δm, tm), Vδ,inf ⊂ Vδ,fin. Recall that [0, T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm]. Let t ∈ [0, T ]
and x(·) ∈ Vδ,fin. Take m ∈ [[1, N0]] such that t ∈ [tm − δm, tm + δm]. For any i ∈ [[1, P ]], applying
the reproducing property and Cauchy-Schwarz inequality,

ci(t)>x(t) = ci(tm)>x(tm) + 〈x(·),K(·, t)ci(t)−K(·, tm)ci(tm)〉K
ci(t)>x(t) ≤ ci(tm)>x(tm) + ηi(δm, tm)‖x(·)‖K ≤ di(δm, tm) ≤ di(t),

di(δm, tm) being by definition the infimum of the i-th component di(t) of d(t) on [tm−δm, tm+δm].
So x(·) ∈ V0, hence Vδ,fin ⊂ V0.

�

Proposition 1 states that, on the one hand, enforcing a finite number of SOC constraints with −→η as
in (19) is more restrictive than enforcing an infinite number of affine constraints. On the other hand,
SOC constraints are less restrictive than shrinking the affine constraints by some −→ε > 0. The nested
property (22) is instrumental in our analysis. As a matter of fact, we shall focus on ε-perturbations
of affine constraints rather than SOC constraints to construct a trajectory xε(·) ∈ Vε close to x̄0(·).
We shall then resort to strong convexity arguments to derive bounds on ‖x̄δ,fin(·)− x̄0(·)‖K .

We now list the hypotheses used to prove our main result.

(H-gen) A(·) ∈ L1(0, T ) and B(·) ∈ L2(0, T ), C(·) and d(·) are C0-continuous.

(H-sol) C(0)x0 < d(0) and there exists −→ε > 0 such that Vε ∩ {x(·) |x(0) = x0} 6= ∅, i.e. there
exists a trajectory xε(·) ∈ S satisfying strictly the affine constraints, as well as the initial
condition, with x0 interior to the state constraints.

(H-L) There exists µ > 0 such that the objective function L : x(·) ∈ S 7→ g(x(T )) + ‖x(·)‖2K
is µ-strongly convex. The terminal cost g(·) is continuous over RN , Q(·) ∈ L1(0, T ), and
R(·) ∈ L2(0, T ). There exists r > 0 such that R(t) < rIdM for all t ∈ [0, T ].

Discussion of the Assumptions: Assumption (H-gen) ensures the C0-continuity of the kernel
K and of the functions ηi and ωi (Lemma 2). Assumption (H-L) concerns the objective function,
whereas (H-sol) ensures that the set of trajectories satisfying the state constraints is non-empty if
the latter are shrunk:
• The existence requirement in (H-sol) can be derived from assumptions on the existence of interior

viable trajectories. We provide in the Annex an example of such assumptions (Lemma 4) based
on inward pointing conditions on the boundary and on regularity assumptions on the constraints
and the dynamics.

• The strong convexity requirement in (H-L) is obviously satisfied whenever g(·) is convex.13 It
is required in order to bound the distance on solutions since the problems (P∗) share the same

13More generally, g could be µ0-semiconvex (i.e. g(·) + µ0
2 ‖ · ‖

2 is convex) with 2 > µ0 supp∈BN
‖p>K(T, T )p‖1/2.
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objective but different constraint sets. The terminal cost g(·) is supposed C0-continuous, but
could be taken merely locally continuous in a neighborhood14 of x̄0(T ) and lower bounded over
any compact subset of RN . By Lemma 3, (P0) has a unique optimal solution x̄0(·).

Lemma 3 (Existence and uniqueness of solutions). Under Assumptions (H-gen), (H-sol), and (H-
L), x̄0(·) exists and is unique. The same result holds true for (Pδ,fin), (Pδ,inf), and (Pε) for any
δ ∈ [0, δ0], where δ0 > 0 satisfies that −→ε ≥ supt∈[0,T ][−→η (δ0, t)‖xε(·)‖K + −→ω (δ0, t)] for −→ε as in
(H-sol).

Proof: The existence result is a consequence of Tonelli’s direct method, usually stated for lower
bounded and lower semi-continuous g(·). We detail the proof since our Assumptions are both
slightly different and stronger. Since by Assumption (H-sol), V0 6= ∅, let (xn(·),un(·)) be a minimiz-
ing sequence of (P0) converging to the optimal value m̄. As L(·) is µ-strongly convex, L(x(·))

‖x(·)‖K → +∞
as ‖x(·)‖K → +∞. Hence m̄ is finite, and (xn(·))n is a subset of a ballM0BK ⊂ S, for someM0 > 0.
Since x(·) ∈ S 7→ x(T ) is continuous, {x(T ) |x(·) ∈M0BK} is also bounded. By continuity of g(·),
let mg := − infx(·)∈M0BK g(x(T )) < +∞. Consequently, for n large enough,

r‖un(·)‖2L2(0,T ) ≤ ‖xn(·)‖2K ≤ m̄+ 1− g(xn(T )) ≤ m̄+ 1 +mg,

so (un(·))n is bounded in L2, and we can take a subsequence (uni(·))i weakly converging to some
u(·). Let s, t ∈ [0, T ]. By the variation of constants (7), we had derived (8). Since A(·) ∈ L1(0, T )
and B(·) ∈ L2(0, T ), and xn(s) is uniformly bounded in n and s by the reproducing property
and continuity of K (Lemma 2), (xni(·))i is equicontinuous. By Ascoli’s theorem, we thus have a
subsequence (xnij (·))j uniformly converging to some x(·) satisfying (7) for u(·), thus x(·) ∈ S. By
continuity of g(·), L(x(·)) = m̄. Since L(·) is strongly convex, the optimal trajectory is unique and
belongs to the closed set V0. To conclude, replace V0 with Vδ,fin (resp. Vδ,inf, and Vε), the inequality
satisfied by δ0 shows that xε(·) ∈ Vδ,fin, consequently the constraint sets are non-empty. The same
arguments as above yield the result.

�

Theorem 2 (Main result - Approximation by SOC constraints). Under Assumptions (H-gen), (H-
sol), and(H-L), for any λ > 0, there exists δ̄ > 0 such that for all N0 > 0 and (δm)m∈[[1,N0]], with
[0, T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm] satisfying δ̄ ≥ maxm∈[[1,N0]] δm, we have

1
γK
· sup
t∈[0,T ]

‖x̄δ,fin(t)− x̄0(t)‖ ≤ ‖x̄δ,fin(·)− x̄0(·)‖K ≤ λ (23)

with γK := supt∈[0,T ],p∈BN

√
p>K(t, t)p.

Proof: Let λ > 0. Consider any λ̃ > 0 such that

2λ̃+ λ̃(λ̃+ 2‖x̄0(·)‖L∞(0,T ))‖Q(·)‖L1(0,T ) ≤ λ. (24)

By Assumption (H-sol), pick xε(·) ∈ Vε such that xε(0) = x̄0(0). Denote by uε(·) the associated
control. Take α > 0 small enough such that xαε(·) := αxε(·) + (1 − α)x̄0(·) ∈ S and uαε(·) :=

14This neighborhood is considered with respect to the relative topology of the terminal constraint set {x ∈
RN |C(T )x ≤ d(T )}.
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αuε(·) + (1− α)ū0(·) satisfy

‖x̄0(·)− xαε(·)‖L∞(0,T ) = α‖x̄0(·)− xε(·)‖L∞(0,T ) ≤ λ̃

|‖R(·)1/2ū(·)‖2L2(0,T ) − ‖R(·)1/2uαε(·)‖2L2(0,T )| ≤ λ̃

and, by continuity of g(·), |g(x̄0(T )) − g(xαε(T ))| ≤ λ̃. Consequently xαε(0) = x̄0(0) and for all
t ∈ [0, T ], C(t)xαε(t) ≤ α(d(t)−−→ε ) + (1− α)d(t) = d(t)− α−→ε , so xαε(·) ∈ Vαε. Hence

L(xαε(·))− L(x̄0(·)) ≤ |g(x̄0(T ))− g(xαε(T ))|+
∣∣∣‖x̄0(·)‖2K − ‖xαε(·)‖2K

∣∣∣
≤ λ̃+

∫ T

0

∣∣∣(x̄0(t)− xαε(t))>Q(t)(x̄0(t) + xαε(t))
∣∣∣ dt+

∣∣∣‖R(·)1/2ū(·)‖2L2(0,T ) − ‖R(·)1/2uαε(·)‖2L2(0,T )

∣∣∣
≤ 2λ̃+ λ̃(λ̃+ 2‖x̄0(·)‖L∞(0,T ))‖Q(·)‖L1(0,T )

(24)
≤ λ.

Let δ0 > 0 such that α−→ε ≥ supt∈[0,T ][−→η (δ0, t)‖xαε(·)‖K +−→ω (δ0, t)]. Then xαε(·) ∈ Vδ0,inf ⊂ Vδ0,fin,
the sets thus being non-empty. Notice that, for any δ ∈ [0, δ0], as x̄∗(·) is optimal for (P∗), from
the nested property (22), we derive that

L(x̄δ,fin(·)) ≤ L(x̄δ,inf(·)) ≤ L(x̄δ0,inf(·)).

As L(·) is µ-convex, L−1(] − ∞,L(x̄δ0,inf(·))]) is a bounded set, contained in a ball M0BK for
some M0 > 0, and containing all the {x̄δ,inf(·)}δ∈[0,δ0]. Since S is a vRKHS, x(·) ∈ S 7→ x(T ) is
continuous. So {x(T ) |x(·) ∈M0BK} is also bounded. Hence, for any δ ∈ [0, δ0],

g(x̄δ,inf(T )) + ‖x̄δ,inf(·)‖2K ≤ L(x̄δ0,inf(·)) ≤ |g(x̄δ0,inf(T ))|+ ‖x̄δ0,inf(·)‖2K
‖x̄δ,inf(·)‖K ≤ ‖x̄δ0,inf(·)‖K +

√
|g(x̄δ0,inf(T ))|+ | inf

x(·)∈M0BK
g(x(T ))|

1
2 =: y0.

As ‖x̄δ0,inf(·)‖K ≤ y0, xαε(·) and x̄δ0,inf(·) are both admissible for the following problem,

min
x(·)∈Vδ0,inf

‖x(·)‖K≤y0+‖x̄αε(·)‖K

L(x(·))

with x̄δ0,inf(·) being optimal by definition, hence we have L(x̄δ0,inf(·)) ≤ L(xαε(·)). To conclude,
let δ̄ ∈]0, δ0] such that α−→ε ≥ supt∈[0,T ][−→η (δ̄, t)y0 + −→ω (δ̄, t)]. Then, for any δ ∈]0, δ̄], by strong
convexity of L(·), x̄0(·) being optimal for (P0),

µ

2 ‖x̄
δ,fin(·)− x̄0(·)‖2K ≤ L(x̄δ,fin(·))− L(x̄0(·)) ≤ L(xαε(·))− L(x̄0) ≤ λ.

Replacing λ by
√

2λ/µ, we deduced that ‖x̄δ,fin(·) − x̄0(·)‖K ≤ λ. By Cauchy-Schwarz inequality,
for any t ∈ [0, T ], ‖x̄δ,fin(t) − x̄0(t)‖ ≤ ‖x̄δ,fin(·) − x̄0(·)‖K sup p∈BN

√
p>K(t, t)p. By definition of

γK , taking the supremum over [0, T ], we derive the remaining inequality.

�

Theorem 2 states that, when the discretization steps (δm)m go to zero, then the solution x̄δ,fin(·) of
the SOC-approximation (Pδ,fin) can be made arbitrarily close to the solution x̄0(·) of the original
problem (P0), uniqueness being ensured by Assumption (H-L). Concerning the stability of solutions
under shrinking perturbation of the state constraints, the result of Theorem 2 actually also holds
when replacing x̄δ,fin(·) by x̄ε(·), showing that, when −→ε goes to zero, x̄ε(·) converges to x̄0(·).
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5 Finite-dimensional implementation and numerical example

In this section, we express the finite-dimensional equivalent of problem (Pδ,fin) owing to the repre-
senter theorem (Theorem 1) and discuss its implementation on a numerical example. In general,
the SOC transformation requires only the minimal hypotheses of Lemma 2 to be conceptually
grounded. Theorem 2 essentially states theoretical guarantees of convergence for small discretiza-
tion steps. For numerical applications, the problem can thus be extended to incorporate costs
or equality constraints at any finite number of intermediate times, as in path planning problems.
This situation was already met when discussing the controllability Gramian (15). We consequently
enrich (Pδ,fin) to optimization problems considered in Theorem 1, of the following form, with
‖x(·)‖2K = ‖x(0)‖2 + ‖x(·)‖2K1

,

min
x(·)∈S

L
(
c>0,1x(t0,1), . . . , c>0,N0x(t0,N0)

)
+ ‖x(·)‖2K

s.t. ηi(δi,m, ti,m)‖x(·)‖K + ci(ti,m)>x(ti,m) ≤ di(δi,m, ti,m), ∀m ∈ [[1, Ni]],∀ i ∈ [[1, P ]],
(PSOC)

for {c0,m}m∈[[1,N0]] ⊂ RN . The differences between (Pδ,fin) and (PSOC) are that g(·), which de-
pended only on the terminal point, is now replaced with a loss L : RN0 → R ∪ {+∞}, defined
on a finite number (t0,m)m∈[[1,N0]] of intermediate points (taken with repetition), and that different
discretization grids (δi,m, ti,m)i,m∈[[1,Ni]] are used for each constraint i ∈ [[1, P ]]. As no structural
assumptions are imposed on L, it may incorporate indicator functions to account for the initial
condition or for rendezvous points.15 In Section 4, the SOC constraints were introduced to turn an
infinite number of affine constraints over [0, T ] into a finite number of SOC constraints. The logic
is therefore to separate the discrete pointwise requirements (which go to L) from the constraints
that should hold on [0, T ] (which are approximated by SOC constraints). Since the constraints on
[0, T ] may apply to different components of the state, we may consider different grid steps for each
i.

In general, adding the SOC terms leads to more conservative solutions w.r.t. the one with
affine constraints. The definition (19) of ηi is however not the only possible formulation.16 Its
choice results from geometrical considerations on coverings17 of compact sets in infinite-dimensional
Hilbert spaces (see Aubin-Frankowski and Szabó (2020) for more details). Even for other values
of ηi than (19), considering SOC terms in the constraints proves to be beneficial in terms of
local satisfaction of the constraints on a neighborhood of ti,m. Moreover, the discretization grids
considered here are ’static’ in the sense that they are fixed before solving (PSOC). Extensions to
’dynamic’ grids, refined depending on the optimization steps, are still under investigation.

By Theorem 1, for x(·) = ∑P
j=0

∑Nj
m=1K(·, tj,m)pj,m and z = ‖x(·)‖K ,18 (PSOC) is equivalent

15To write (Pδ,fin) as (PSOC), take N0 = 2N , t0,1 = · · · = t0,N = 0, t0,N+1 = · · · = t0,N0 = T . Denoting by χx0 (·)
the indicator function of x0, set L

(
c>0,1x(t0,1), . . . , c>0,N0x(t0,N0 )

)
:= χx0 (x(t0,1)) + g(x(t0,N0 )).

16Using that x(·) = z0(·)+z1(·) ∈ S0⊕Su one could consider two η-terms instead of one to derive a less conservative
tightening. In the same spirit d(t) could be projected onto S, and the projection incorporated in the scalar products
of the left hand-side. For Q(·) 6≡ 0, ‖x(0)‖2 could be replaced in (4) by an S0-norm ‖S0x(0)‖2 with a surjective
S0 ∈ RN0,N where N0 = dim(S0). This would not change the formulation, but lead to a “tighter“ norm ‖x(·)‖K .

17Definition (19) corresponds to a covering obtained through balls in S.
18The reproducing property, 〈K(·, t1)p1,K(·, t2)p2〉K = p>2 K(t2, t1)p1, applied to x(·) allows to explicit z.
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to

min
z∈R+,

j∈[[0,P ]],m∈[[1,Nj ]],
pj,m∈RN , αj,m∈R

L


 P∑
j=0

Nj∑
m=1

K(t0,n, tj,m)pj,m


n∈[[1,N0]]

+ z2

s.t. z2 =
P∑
i=0

Ni∑
n=1

P∑
j=0

Nj∑
m=1

p>i,nK(ti,n, tj,m)pj,m,

pj,m = αj,mcj(tm), ∀m ∈ [[1, Nj ]],∀ j ∈ [[1, P ]],

ηi(δi,m, ti,m)z +∑P
j=0

∑Nj
m=1 ci(ti,m)>K(ti,m, tj,m)pj,m

≤ di(δi,m, ti,m),
∀m ∈ [[1, Ni]], ∀ i ∈ [[1, P ]].

This problem can be straightforwardly implemented in convex solvers or modeling frameworks
adapted for second-order cone programming (SOCP) such as CVXGEN (Mattingley and Boyd,
2012), SOCP being slightly more expensive computationally than the quadratic programs classi-
cally derived for LQR (Kojima and Morari, 2004). As the more time points, the more coefficients,
it is beneficial to define the grids as subsets of a ’master grid’. Furthermore when computing ηi or
K(s, t), one has to approximate the supremum in (19) or the integral in (14) through sampling.
For time-invariant dynamics and Q(·) ≡ 0, one can use the method proposed in Van Loan (1978)
to quickly compute K1(s, t) in (14). We refer to (Aubin-Frankowski and Szabó, 2020) for other
issues pertaining to the numerical implementation of a SOC-constrained kernel regression.

To highlight the behavior of the SOC-transformation (PSOC) of problem (P0), we consider the
problem (Ppend) of a ’linear’ pendulum with angle x(t) where we control the derivative u(t) of
a forcing term w(t), with state constraints both on w(t) and on ẋ(t), the full state being x :=
[x, ẋ, w] ∈ R3,

min
x(·),u(·)

− λT ẋ(T ) + λu‖u(·)‖2L2(0,T ) + ‖x(0)‖2

s.t. x(0) = 0.5, ẋ(0) = 0, w(0) = 0,
x(T/3) = 0.5, x(T ) = 0,
ẍ(t) = −10x(t) + w(t), ẇ(t) = u(t), a.e. in [0, T ],
ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0, T ].

(Ppend)

The objective of (Ppend) can be interpreted as trying to maximize the terminal velocity ẋ(T )
with an L2-cost over the control. This example underlines how (PSOC) effectively allows for more
possibilities than (Pδ,fin). We have both an initial, an intermediate and a final condition on x(·).
Since the full state x := [x, ẋ, w] is not fixed at the intermediate time T/3, the problem cannot
be split into independent problems over two time intervals. We take R(·) ≡ λu ∈ R in order to
have (Ppend) written as (PSOC). We identify the kernels K0 and K1 as in (10) and (14) and use
a uniform grid of NP points for the two affine constraints over ẋ(t) and w(t) and turn them into
SOC constraints

ηẋ‖x(·)‖K − ẋ(tm) ≤ −3, ηw‖x(·)‖K + w(tm) ≤ 10, ηw‖x(·)‖K − w(tm) ≤ 10, ∀m ∈ [[1, NP ]]

where ηẋ and ηw are defined as in (19) for C = [0 -1 0 ; 0 0 1 ; 0 0 -1]. For the experiment of Fig. 1,
we take T = 1, λT = 106 and λu = 104. All computations took less than 30 seconds.

We first compare SOC constraints with discretized constraints (ηw = 0) for a moderate value
of NP = 200. Whereas the SOC-constrained optimal trajectory is fairly conservative w.r.t. to
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the bounds over w(t), the optimal trajectory for discretized constraints suffers from chattering
and does not satisfy the w-constraints. This was already hinted at in the speed limit example of
the introduction: the control sticks to the w-constraints at the points (tm)m but violates them in
between. Hence the optimal value of ẋ(T ) = 3.18 is attained only by repeated violation of the
w-constraints. We then discuss the consequences of changing the number of grid points NP and of
lowering ηw w.r.t. to the value of its definition. The parameter ηẋ is kept fixed to its nominal value
as it has little influence on the optimal solutions. We first investigate the effect of changing NP

while keeping the guaranteed value of ηw, defined as in (19). We see that the threshold applied to
the w-constraints decreases, albeit slowly. Secondly, for NP = 200, we divide ηw first by a factor
5, then by a factor 10. The w-constraints threshold drastically diminishes and, for ηw = 0.001, the
inflexion at t = 0.5 appears, as a result of the constrained arc over ẋ(·). In the limit case, we would
recover the trajectory with discretized constraints (ηw = 0).

We conclude from this example that incorporating SOC terms in the constraints proves to be
beneficial, even for −→η chosen smaller than its nominal value. Nevertheless increasing NP leads, as
described in Theorem 2, to convergence to the optimal trajectory x̄0(·) with affine state constraints
through trajectories x̄δ,fin(·) that are always both feasible and interior. Moreover the shapes of the
SOC-optimal trajectories provide intuition on the times and properties of constrained arcs.

Annex: Existence of interior trajectories

We provide here conditions ensuring the existence of interior trajectories for (P0). For any −→ε ∈ RP+,
let Aε := {(t,x) | t ∈ [0, T ], −→ε + C(t)x ≤ d(t)} and Aε,t := {x |(t,x) ∈ Aε}. Below, for (t,x) ∈ Aε,
TAε(t,x) denotes the contingent cone to the set Aε at point (t,x) (see e.g. Haddad (1981)).

(H1) A(·) and B(·) are C0-continuous. C(·) and d(·) are C1-continuous and C(0)x0 < d(0).

(H2) There exists Mu > 0 such that, for all t ∈ [0, T ] and x ∈ RBN satisfying C(t)x ≤ d(t), with
R := (1 + ‖x0‖)eT‖A(·)‖L∞(0,T )+TMu‖B(·)‖L∞(0,T ) , there exists ut,x ∈MuBM such that

∀ i ∈ It,x := {i | ci(t)>x = di(t)}, C′i(t)>x− d′i(t) + ci(t)>(A(t)x + B(t)ut,x) < 0. (25)

The inward-pointing condition (H2) is a geometrical assumption on the boundary of the constraints.
In particular, (H2) implies that the constraint set is non degenerate, i.e. A0,t is the closure of its
interior at all times t.

Lemma 4 (Existence of interior trajectories). Under Assumptions (H1) and (H2), the following
properties are satisfied

i) there exists −→ε 0 > 0, Mv > 0, ξ > 0, and η > 0 such that for all −→ε ≤ −→ε 0 and all (t,x) ∈
(∂Aε + (0, ηBN )) ∩ Aε ∩ ([0, T ] × (R − 1)BN ), there exists ut,x ∈ MuBM such that v =
A(t)x + B(t)ut,x ∈MvBN and

y + δ(v + ξBN ) ⊂ Aε,t+δ (26)

for all δ ∈ [0, ξ] and all y ∈ x + ξBN such that y ∈ Aε,t. Hence v ∈ TAε(t,x), and

ii) there exists a trajectory in S satisfying strictly the affine constraints, as well as the initial
condition.
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Figure 1: Optimal solutions of (Ppend) for varying NP and ηw. The red circles indicate the equality-
constrained points, the grayed areas the constraints over [0, T ]. We report the values of ẋ(T ) and
of the maximum of w(·). Top: Comparison of SOC constraints (guaranteed ηw) versus discretized
constraints (ηw = 0) for NP = 200. Center: Comparison of SOC constraints for varying NP and
guaranteed ηw. Bottom: Comparison of SOC constraints for varying ηw and NP = 200.
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Proof: i) Define h(t,x) := C(t)x− d(t) and ξ(t,x,u) := C′(t)x− d′(t) + C(t)(A(t)x + B(t)u).

Step 1 : We claim that there exists −→e > 0, ρ > 0, and Mv > 0 such that for all t ∈ [0, T ] and
x ∈ RBN satisfying h(t,x) ≤ 0 with some active constraints (i.e. It,x 6= ∅), there exists ut,x ∈ RM
such that v = A(t)x + B(t)u ∈MvBN and

∀ i ∈ Iet,x := {i |hi(t,x) > −ei}, ξi(t,x,ut,x) ≤ −ρ. (27)

Let ut,x as in (25), and set

ρt,x := −max
i∈It,x

ξi(t,x,ut,x) > 0 et,x := −max
i/∈It,x

hi(t,x,ut,x) > 0.

Since ξ(·, ·,ut,x) and h(·, ·) are continuous, we can find ∆t,x > 0 such that

sup
δ∈[t−∆t,x,t+∆t,x]∩[0,T ],

w∈BN

‖h(t,x)− h(t+ δ,x + ∆t,xw)‖∞ ≤
et,x
2

sup
δ∈[t−∆t,x,t+∆t,x]∩[0,T ],

w∈BN , i∈It,x

|ξi(t,x,ut,x)− ξi(t+ δ,x + ∆t,xw,ut,x)| ≤ ρt,x
2 .

This implies that the index set of active constraints does not increase in size for points in the open
set Ωt,x := (t,x) + ∆t,x] − 1, 1[×B̊N , denoting by B̊N the open unit ball of RN . Moreover, for
any point in Ωt,x, ut,x satisfies our claim for the constants ρt,x/2 and (et,x/2) 1N . Since we are
considering a compact set, we can select a finite number of (tj ,xj)j∈[[1,J ]] such that

([0, T ]×RBN ) ∩ A0 ⊂
⋃

j∈[[1,J ]]
Ωtj ,xj .

To conclude, simply take19

ρ := min
j∈[[1,J ]]

ρtj ,xj
2 , e :=

(
min
j∈[[1,J ]]

etj ,xj
2

)
1N , Mv := R‖A(·)‖L∞(0,T ) +Mu‖B(·)‖L∞(0,T ).

Step 2 : Thanks to the uniform constants of the normal form (27), we derive the constants of the
tangent form (26). Let us choose ξ, η ∈]0, 1] such that for all (t,x) ∈ ∂A0 ∩ ([0, T ]×RBN ), setting
vt,x = A(t)x + B(t)ut,x ∈MvBN , for

et,x,δα,β,γ := (C(t+ δ)−C(t))(x + ηγ + ξα) + δC(t+ δ)(vt,x + ηA(t)γ + ξβ) + d(t)− d(t+ δ),

we have

e
2 > sup

δ∈[t−ξ,t+ξ]∩[0,T ]
α,β,γ∈BN

et,x,δα,β,γ ,
−δρ

2 > sup
δ∈[t−ξ,t+ξ]∩[0,T ]
α,β,γ∈BN , i∈Iet,x

(et,x,δα,β,γ)i. (28)

The first inequality can be derived from the C1-smoothness of C(·) and d(·), and from the fact
that both x, vt,x, A(·) and C(·) are uniformly bounded. The second inequality stems from (27),

19If A0 is bounded, take Mu := 1 + maxj∈[[1,J]] ‖utj ,xj‖.
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as limδ→0+
et,x,δ0,0,0
δ = ξ(t,x,ut,x). The two inequalities of (28) state that, for y := x + ηγ + ξα, if

y ∈ A0,t then

y + δ(v + ξBN ) ⊂ A0,t+δ with v := vt,x + ηA(t)γ = A(t)(x + ηγ) + B(t)ut,x.

Step 3 : There just remains to extend the result of Step 2 to the perturbed constraint sets Aε.
For any t ∈ [0, T ], let wt be an eigenvector of the largest eigenvalue µt of C(t)C(t)T satisfying
‖wt‖∞ = maxi∈[[1,P ]]wt,i = 1. Let µ̄ := mint∈[0,T ] µt > 0. Take any −→ε 0 > 0 such that

sup
t∈[0,T ]

2‖−→ε 0‖∞‖C(t)>wt‖
µ̄

≤ η

2 .

Let −→ε ≤ −→ε 0, take (t,x) ∈ ∂Aε ∩ ([0, T ]× (R− 1)BN ). Then

∃ i ∈ [[1, P ]], ci(t)>
(

x + 2‖−→ε 0‖∞C(t)>wt

µ̄

)
= di(t)−−→ε i + 2µt

µ̄
‖−→ε 0‖∞ > 0.

Since η ≤ 1, one can therefore find x̆ ∈ RBN ∩ ∂A0,t such that ‖x− x̆‖ = dA0,t(x) ≤ η/2, to which
the conclusions of Step 2 apply. So the set considered in (26) at x, taking as constants ξ/2 and
η/2, is a subset of the one defined by x̆, ξ and η. Since only differences of d(·) appeared in Step 2
and that x ∈ ∂Aε,t, adding −→ε has no effect on the computations, so it follows that (26) is satisfied.
For y = x, by definition of TAε(t,x), we have that (1,v) ∈ TAε(t,x).

ii) Let F(t,x) := {(1,A(t)x + B(t)u) |u ∈ MuBM}. Since A(·) and B(·) are C0-continuous, the
bounded set-valued map F(·, ·) is upper semicontinuous. Let Ω := Aε ∩ ([0, T ]× (R − 1)B̊N ). The
open ball B̊N being open in RN , Ω is locally compact in [0, T ] × RN . In i) we have shown that
the local viability condition is satisfied for Aε. The intersection with an open set does not add
boundary points, so, for (t,x) ∈ Ω, F(t,x) ∩ TΩ(t,x) 6= ∅. We may therefore apply (Haddad,
1981, Theorem 1) which provides a trajectory xε(·) satisfying xε(0) = x0, xε,′(t) ∈ F(t,xε(t)),
and h(t,xε(t)) + −→ε ≤ 0. Let [0, t1[ be the maximal interval of existence of xε(·). Since xε,′(·)
is measurable, by (Vinter, 1990, Theorem 2.3.13), we can find some measurable uε(·) with values
bounded by Mu, s.t. xε,′(·) = A(t)x + B(t)uε(t) a.e. in [0, T ] . The dynamics being sublinear
as A(·), B(·), and uε(·) are bounded, xε(·) can be continuously extended to (t1,xε(t1)) ∈ Ω. So
t1 ≥ T , otherwise the viability condition would allow to extend xε(·) beyond t1. Since uε(·) is
measurable and bounded, uε(·) ∈ L2(0, T ). Hence xε(·) ∈ S satisfies the required properties.

�
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