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Abstract

We tackle the problem of finding accurate and robust
keypoint correspondences between images. We propose a
learning-based approach to guide local feature matches via
a learned approximate image matching. Our approach can
boost the results of SIFT to a level similar to state-of-the-
art deep descriptors, such as Superpoint, ContextDesc, or
D2-Net and can improve performance for these descriptors.
We introduce and study different levels of supervision to
learn coarse correspondences. In particular, we show that
weak supervision from epipolar geometry leads to perfor-
mances higher than the stronger but more biased point level
supervision and is a clear improvement over weak image
level supervision. We demonstrate the benefits of our ap-
proach in a variety of conditions by evaluating our guided
keypoint correspondences for localization of internet im-
ages on the YFCC100M dataset and indoor images on the
SUN3D dataset, for robust localization on the Aachen day-
night benchmark and for 3D reconstruction in challenging
conditions using the LTLL historical image data.

1. Introduction
Image matching is a fundamental task in computer vision

and in particular a crucial step of Structure from Motion al-
gorithms. Local feature detectors and descriptors are an es-
sential tool for this task, providing both accuracy and high
robustness. However, relying exclusively on local informa-
tion to match images can be misleading in particular in the
case of repeated or nearly repeated structures. We thus pro-
pose to complement and guide local keypoint matching us-
ing learned image-level coarse correspondences.

This idea represents an important shift compared to the
dominant paradigm where global information and geomet-
ric constraints are usually introduced after keypoints have
been matched, typically by performing RANSAC [11] to
filter matches that are geometrically consistent. Indeed, re-

(a) The precise feature match (green) is disambiguated relative to concur-
rent ones (red) by the coarse matching.

(b) SIFT features matched with our method.

Figure 1: In challenging conditions, local information might not be
enough to disambiguate local feature matches. We thus propose to
guide the matches using coarse image-level deep correspondences.

cent work on applying deep learning to local feature corre-
spondences has mostly focused on improving keypoint de-
tection and description [5, 7, 21] or improving outlier re-
jection [30, 53]. To the best of our knowledge, we are the
first to propose a combination of learned coarse correspon-
dences and local keypoint matching, combining the benefits
of both approaches.

As illustrated in Figure 1 our approach is especially ben-
eficial in challenging conditions and in typical failure cases
of classical features. First, when there are repeated struc-
tures in the image, they are likely to be disambiguated by
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the coarse matching and can thus be identified reliably by
our guided keypoint matching. Second, when large appear-
ance variations make descriptor matching less reliable, for
example in the case of historical images, the number of can-
didate keypoint matches is reduced strongly by our method
and false matches are less likely to appear.

We demonstrate that our approach boosts the results ob-
tained with the standard SIFT descriptor to a level similar
to the most advanced state-of-the-art deep descriptors. Our
method can also be used with more advanced detectors and
descriptors and we demonstrate it also boosts their perfor-
mance, though by a smaller margin. This is a hint that a
large part of the improvement brought by modern deep key-
point descriptors comes actually from their ability to con-
sider global image information instead of exclusively at the
local level. Note that this is explicitly targeted in some ap-
proaches and deep architectures such as ContextDesc [21].

The main challenge for guided matching is to predict
coarse image correspondences. We build on an architec-
ture computing correlation between base deep features and
filtering them using a 4D convolutional network [38]. This
approach has the advantage to be able to handle any dis-
placement and to leverage geometric consistency via the
4D convolutions. It is possible to train it with only weak
image supervision, providing the network with matching
and non-matching image pairs. We introduce and study
two other levels of supervision: weak epipolar supervision
and point supervision. Indeed we can exploit large scale
databases of 3D models reconstructed via Structure from
Motion [15,18] that provide camera calibration, from which
we can infer epipolar constraints for all points as well as a
sparse set of reconstructed points that can be used as ground
truth matches. This data is, of course noisy and biased
since points could only be reconstructed when traditional
approaches succeeded, but we demonstrate it can still be
used to boost performances. Contrary to [38], both the weak
epipolar supervision and point supervision improved results
by fine-tuning the base features.
Our three main contributions are the following:

1. We propose the first learned guided correspondence
approach for local keypoint matching.

2. We study different possible levels of supervision to
learn coarse image matching, in particular weak su-
pervision from epipolar geometry.

3. We demonstrate our method benefits all the studied
keypoint descriptors. In some cases, it boosts the tradi-
tional SIFT descriptor to the performance of the latest
learned descriptors, hinting it is mainly due to their dis-
criminating power by considering global image char-
acteristics.

2. Related Work
Local features. There exist many local feature detectors
and descriptors [26, 27], SIFT [20] being likely the most
known and used. Recently, deep learning based methods
have gained popularity. Geodesc [22], ContextDesc [21],
HardNet++ [28] and HesAffNet [29] describe pre-extracted
patches using a neural network with different training pro-
cedures. LogPolarDesc [8] introduces a new patch repre-
sentation more adapted to neural networks. In LIFT [52],
LF-net [31], SuperPoint [5], D2-net [7] and R2D2 [35]
both extraction and description are learned. Our approach
can be used to match any of these local features. High
level semantic information can be learned by some descrip-
tors [5, 7, 21, 35]; our experiments indicate that even with
these descriptors our coarse image correspondence guid-
ance can lead to better performance.
Spatial verification. Classical image matching pipelines
perform keypoint matching then correspondence pruning
using a ratio test [20] or bidirectionnal check, allowing
to remove the ambiguous matches. More elaborate tech-
niques like CODE [19], GMS [1] and LPM [23] further
remove false matches with the observation that keypoint
matches should be consistent with their close neighbors.
Then a robust estimator is used for geometry estimation,
the most widely used being RANSAC [11]. Recent ap-
proaches [3, 30, 33, 53] learn outlier filtering by neural net-
works. They typically consider the matches as a 4D point
cloud. These point cloud networks can be supervised with
epipolar geometry [13]: if the fundamental matrix between
two images is available, each match can be assigned a la-
bel as inlier or outlier depending on its epipolar distance.
However, all these correspondence pruning techniques and
robust estimators cannot correct, but only discard, wrong
matches. On the contrary, our approach leverages spatial
information before the matching step and can help to iden-
tify correct matches.
Guided matching. Several works [9, 13, 24, 42] introduced
the idea of using an existing geometric model to guide key-
point matches. [13] proposes to use a homography model,
[42] a fundamental matrix model, [9] a combination of both
and [24] a specifically designed keypoint-based statistical
optical flow. However, all these methods require an accurate
initial keypoint based estimation of the geometric model in
order to get more keypoint matches. For challenging sce-
narios such as day-night matching this is not realistic and
adding guided matches from an incorrect geometry would
add even more false matches. Other approaches [46, 49]
match features of a pre-trained CNN in a hierarchical man-
ner by first matching coarse deep features then higher reso-
lutions features inside the receptive field of the matched fea-
tures. Although very intuitive, it also requires good initial
matches and we show that using pre-trained CNN features
does not lead to good matches.
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Figure 2: Guiding keypoint matching with a coarse match. The
orange match pB1 is the closest in term of descriptor distance, but
is not consistent with the coarse prediction. The correctly selected
match, pB2 (in green), is the closest in descriptor space being con-
sistent with the coarse prediction.

Learned matching. Independently from keypoints, Deep
Learning can be applied to image matching. It was first
applied on optical flow [6, 16, 34, 44] and homography es-
timation [4]. However, those methods are not able to han-
dle large geometry variation. Rocco et al. [36,37] deal with
this issue by using global image transformation models such
as affine transformation or thin-plate spline but such mod-
els are often not relevant for 3D scenes. Both [25, 44] try
to remedy this problem by using a coarse to fine or itera-
tive approach. Neighborhood Consensus Network [38] pro-
poses to use a 4D convolution network without any prior
image transformation model. Recently, SuperGlue [39] in-
troduced a graph neural network that learns to match local
features.

3. Guided Feature Matching

Local keypoints have clear advantages for robust image
matching. Indeed, they are naturally robust to occlusion of
part of the image, localized changes, and clutter. Keypoint
detectors are also designed to localize points with sub-pixel
accuracy and to be robust to changes of viewpoint. How-
ever, local image regions are insufficient to reliably match
keypoints in the presence of repetitive structures, which
only large scale image information can help disambiguate.
More generally, matches have to be identified among all
the keypoints in the target image, and thus good matches
have to be distinguished from a large number of false corre-
spondences. We propose to make keypoint matching easier
by first using a neural network to predict coarse correspon-
dences at image level, and using them to guide keypoint
matching, considering candidate matches only in a small
image region.

This idea is illustrated in Figure 2. Let us assume we
have access to an approximate match mA→B between im-
ages A and B. We want to match a keypoint at position pA

in image A, described by a feature fA to the keypoints de-
tected in imageB at positions pBi , described by features fBi ,

for i = 1 . . . N . We will leverage mA→B by comparing fA

only to features of keypoints close to its approximate match
mA→B(pA). The index j of the optimal match is given by:

j = argmin
i:‖mA→B(pA)−pB

i ‖<W

‖fA − fBi ‖, (1)

whereW > 0 is a parameter of our method. Note that using
W =∞ leads back to the standard matching. Similarly, the
matching can be performed from image B to image A and
the mutual matching test can remove outliers.

4. Learning coarse correspondences
In this section, we present our deep learning approach to

predict approximate correspondences between images. The
key elements of our approach are visualized in Figure 3. In
the following, we first discuss our architecture, then present
losses corresponding to three levels of supervision, and fi-
nally provide details of our implementation and training.

4.1. Architecture

We build on the NCNet [38] architecture. We first com-
pute feature maps fA and fB for both input images and ag-
gregate them in a 4D correlation volume cijkl = 〈fAij |fBkl〉
that contains the correlation between every feature in im-
age A and every feature in image B. We use a 4D convolu-
tional neural network to filter the correlation volume into a
new volume s, trained to have high values only in positions
corresponding to valid correspondences. [38] motivates this
architecture and the use of 4D convolutions by the idea of
neighborhood consensus: the quality of a match between
feature (i, j) in image A and (k, l) in image B should be
decided not only based on the correlation cijkl but also on
the correlation of the neighbor features.

The coarse matches between features in each direction
are extracted from s using an argmax over the target im-
age’s dimensions. Such matches can be interpolated at pixel
level: given a point in pixel coordinate (x, y) in image A,
its coarse match mA→B(x, y) in image B is computed us-
ing bilinear interpolation of the feature matches of its four
nearest features. Inversely, mB→A(x, y) denotes the coarse
match in image A of pixel (x, y) in image B.

4.2. Supervision

We now introduce three different levels of supervision
corresponding to different information about the ground
truth matches and the associated losses. First, we consider
an image level supervision, given in the form of pairs of
matching and non matching images. Second, we introduce
an epipolar supervision, which in addition leverages geom-
etry information to infer a line where positive matches can
lie. Third, we discuss a loss for point supervision, which
uses ground truth matches between images.
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Figure 3: Overview of our coarse matching network architecture and training: a shared CNN extracts coarse features from the two images.
These features are then combined via the dot product into a 4D correlation volume. This volume is finally filtered with a CNN based on
4D convolutions, which can be trained with weak epipolar supervision.

In the rest of the section, we assume we are given a set T
of training image pairs (Am, Bm)m=1...M and we minimize
the loss:

L =
∑

(A,B)∈T
lA→B(sA→B) + lB→A(sB→A) (2)

where sA→B (resp. sB→A) is the result of applying a soft-
max to s in the dimensions corresponding to imageB (resp.
A) and lA→B and lB→A are the losses associated to the
matches in both directions. For simplicity we only explain
lA→B(sA→B) in the following subsections.

4.2.1 Weak image level supervision

For image level supervision, we use the same loss as [38].
For each pair (A,B) of images, we write yAB = 1 if both
images represent the same scene and yAB = −1 otherwise.
We then define the loss by:

lA→B
image = −yAB

∑
(i,j)

max
(k,l)

sA→B
ijkl . (3)

This loss encourages the maxima of sA→B to be 1 for as
many features as possible when the image pair is positive,
which amounts to making the maxima in s sharper, and on
the contrary when the pair is negative encourages the max-
ima of sA→B to be small, which amounts to having almost
constant values in s. In order to balance the influence of
negative and positive examples, the training batch consists
of one half positive and one half negative image pairs. This
supervision has been shown to achieve good results for se-
mantic matching when image pair label is typically the only
supervision available. However, we argue that additional in-
formation provided by 3D reconstruction datasets improve
the matches.

4.2.2 Weak epipolar supervision

We propose to leverage epipolar geometry [13] to better su-
pervise the matches. Given a position (i, j) in imageA, it is
possible to use the camera calibrations (internal parameters
and 6D pose) to predict the epipolar line on which the corre-
sponding point in image B will lie. The distance between a
position (k, l) in imageB and this line is called the epipolar
distance

dF ((i, j), (k, l)) =
|(k, l, 1)F (i, j, 1)>|√

(F (i, j, 1)>)2[1] + (F (i, j, 1)>)2[2]
,

(4)
where t[i] denotes the ith coordinate of vector t and F is
the fundamental matrix associated to the image pair, com-
puted from the full calibration. We design a loss to leverage
this information. Instead of trying to increase all maxima in
positive image pairs, we try to increase only the ones con-
sistent with epipolar geometry. Let PA→B be the subset
of features in image A whose matches are consistent with
epipolar geometry,

PA→B =

{
(i, j)|dF

(
(i, j), argmax

(k,l)

sA→B
ijkl

)
< λ

}
,

(5)
where λ is a threshold on the epipolar distance, andNA→B

the complementary set of PA→B , which correspond to
matches that are not consistent with epipolar geometry. We
propose to use as loss:

(6)

lA→B
epipolar =

1

2|NA→B |
∑

(i,j)∈NA→B

max
kl

sA→B
ijkl −

1

|PA→B |
∑

(i,j)∈PA→B

max
kl

sA→B
ijkl



As in the previous section, we use images from different
scenes for half the batch. We consider that all the points for
such image pairs are in NA→B and that the second term is
zero. The division by 2 of the negative part of the loss then
balances the positive and negative parts.

4.2.3 Point supervision

Point supervision is the strongest form of supervision we
consider. It relies on sparse ground truth match labels. Let
us assume that we are given a set of N ground truth cor-
respondences between images (pA1 , p

B
1 ) . . . (p

A
N , p

B
N ). Let

MA→B(i, j) be the set of features in image B that have a
ground truth match with feature at (i, j) in image A. The
loss we use for point supervision is

lA→B
points = −

∑
ij

max
(k,l)∈MA→B(i,j)

sA→B
ijkl . (7)

This loss simply encourages sA→B to be as close to 1 as
possible for the best corresponding feature. Note that we
could also use negative contributions as for the image level
and epipolar supervision, or inversely consider only posi-
tive contributions for the epipolar supervision. We exper-
imented with these variations and found that they lead to
results worse than the losses we have discussed.

4.3. Implementation and training details

Similar to D2-Net [7] we train the coarse matching net-
work on MegaDepth dataset [18]. This dataset consists
of 196 sets of images collected from the same physical
scene. COLMAP [41] was run on these scenes to obtain
a sparse 3D reconstruction. We removed from the training
set all the scenes that are used in the evaluation: the Tanks
and Temples scenes from FM benchmark [2], the 4 YFCC
scenes [15,47] evaluated in OANet [53], the 6 YFCC scenes
of Image Matching Workshop [48] and the buildings from
LTLL [10]. This reduces the training set to 175 scenes. We
use the provided calibration for our weak supervision and
choose as positive image pairs the ones that see at least 30
common 3D points in the reconstruction.

We use Resnet101 [14] Conv4 features pretrained on Im-
ageNet to extract feature maps from the input images. The
4D CNN is composed of three successive 4D convolutions
layers with 16 channels and kernel of size 3. Similar to
NCNet we ensure the output volume is independent of the
image order by feeding the images in both orders succes-
sively and by taking the average of the outputs. The net-
works are trained with the Adam optimizer, an initial learn-
ing rate of 10−3, and a batch size of 8 for 25000 iterations.
For the epipolar supervision, λ is set to the distance between
two consecutive features. The networks are initially trained
with frozen feature extractors. Then after convergence, the

Frozen features Finetuned features
Threshold 8 16 32 8 16 32
Image [38] 34.5 55.0 65.36 36.3 57.8 68.7
Epipolar 43.1 62.4 70.7 47.7 67.6 75.8

Point 40.3 58.5 67.8 45.0 63.5 72.5

Table 1: Proportion of ground truth SfM points from MegaDepth
correctly predicted by the coarse matcher. The threshold is in pixel
units in the resized image coordinates. Here, 16 pixels is the dis-
tance between two consecutive features. Guiding with epipolar
supervision leads to the highest proportion of matches in the guid-
ance.

feature extractors can be fine-tuned with a smaller learn-
ing rate. We limit the image resolution at 401 pixels at
training time and keep the original aspect ratio with zero
padding. At test time we limit the resolution to 497, which
gives a feature resolution of at most 32 × 32. For a typical
1600 × 1600 image, each feature will correspond approxi-
mately to a 50 pixels square.

5. Experiments
In this section, we compare our approach with other

guided matching methods, correspondence filtering tech-
niques and state of the art features. First we validate and
analyse the performance of our coarse matching network.
Second, we compare our approach to other guided match-
ing and correspondence pruning techniques. Third, we use
our guided matching with different keypoint detectors and
descriptors and show that our method consistently improves
their results. Finally, we show that our method can help 3D
reconstruction on challenging scenes.

5.1. Coarse matching

We first evaluate our coarse matching using the 3D
points provided by MegaDepth as ground truth matches for
a set of 1600 test image pairs. For each ground truth match
(pA, pB), we compute the distance ‖mA→B(pA) − pB‖.
The proportion of distances below a threshold is used for
evaluation. We use as threshold 8, 16 and 32 pixels since
the distance between two nearby coarse matches is 16 pix-
els.

We report in Table 1 the results obtained with our dif-
ferent supervisions as well as fine-tuning or not the ResNet-
101 feature extractor, which was reported to degrade perfor-
mances in the test database of [38]. However, in our experi-
ments finetuning the feature extractor leads to better match-
ing, its effect being stronger with the epipolar and point su-
pervisions. As can be expected, image supervision leads to
the worst results. Although it is trained with a stronger su-
pervision, point supervision has worse performances than
epipolar supervision. This may be because point supervi-
sion is sparse and biased, providing information on specific



Matches Pre-filtering YFCC (internet) Sun3D (indoor)
5° 10° 20° 5° 10° 20°

Raw

None 8.45 13.80 22.4 2.34 4.70 9.61
Bidirectional check 27.70 36.43 47.73 6.96 11.72 19.89

Ratio test 41.75 51.63 62.23 13.48 20.93 31.48
Ratio test + bid. check 46.80 57.41 67.80 14.52 22.74 34.22
Ratio test + GMS [1] 30.43 38.30 48.16 11.49 17.89 27.46

Raw

CNNet [30, 53] 47.98 58.13 68.67 15.98 - -
N3Net [32, 53] 49.13 - - 15.38 - -
DFE [33, 53] 49.45 - - 16.45 - -
OANet [53] 52.08 62.38 72.66 17.25 26.60 39.50

Guided epipolar [42] Ratio test + bid. check 45.88 55.59 65.20 15.86 24.52 36.31
Guided homography Ratio test + bid. check 46.00 55.65 65.46 15.15 23.55 35.36

Guided VGG4 [46, 49] Ratio test + bid. check 31.23 40.49 51.51 3.97 7.23 13.16
Ours image guided Ratio test + bid. check 43.50 52.99 63.24 15.45 23.84 35.81
Ours point guided Ratio test + bid. check 47.43 57.71 68.59 15.61 24.24 36.37

Ours epipolar guided Ratio test + bid. check 49.60 60.36 71.37 15.72 24.35 36.40

Table 2: Comparison with various correspondence filtering and guided matching methods on 2-view geometry estimation. We report
the AUC for a given tolerance for rotation and translation direction. The matches are computed from 2000 SIFT keypoints. “Ours
Image/Point/Epipolar guided” is our guided matching with the different supervisions. A final RANSAC filtering follows any used pre-
filtering.

areas of the image only. With a window size W = 16, the
performance of epipolar supervision is close to 70%, which
seems acceptable for guiding keypoint matching; we use
this threshold to filter our matches in the rest of the experi-
ments.

5.2. Comparison with guided matching and corre-
spondence pruning

There is no direct benchmark for sparse matching. How-
ever, as mentioned earlier, sparse matching is the backbone
of many 3D related tasks for which datasets exist and allow
to indirectly evaluate the quality of matches. We compare
our method for matching SIFT features with a posteriori fil-
tering techniques and traditional guided matching on 2-view
geometry estimation, both outdoor and indoor.

First, we use the setup of [53] to evaluate 2-view ge-
ometry accuracy on pairs of images from the YFCC100M
and Sun3D datasets. The YFCC100M dataset [47] is a very
large collection of internet images that was used for Struc-
ture from Motion in [15]. Four scenes and 1000 image pairs
per scene are used for evaluation. Sun3D [51] data come
from RGBD indoor videos. 15 indoor scenes and 1000 im-
age pairs per scene are used for the evaluation. On both
datasets, for each image pair, the matches provided by dif-
ferent approaches are used to estimate the essential matrix
with RANSAC, which in turn is used to compute the rela-
tive pose (rotation and translation) [13].

Our results are reported in Table 2. We compare our
method for matching 2000 SIFT features with several cor-
respondence pruning methods after classical nearest neigh-

bor matching (raw matching). We also report the results for
traditional guided matching baselines. Following [42] the
top 20% features in term of scale are first matched in order
to estimate a geometric model. The model is then used to
guide feature matching. We evaluate two geometric models:
homography and fundamental matrix [42].We also compare
with the pretrained VGG4 guided matching of [46, 49]: for
each mutual match between VGG4 features, we match the
SIFT features located inside the receptive field of the corre-
sponding VGG features. For clarity purpose, we only report
the results for the ratio that performed the best among 0.8,
0.9 and 0.95 for the ratio test experiments. More details
can be found in supplementary material. Our method ranks
second for two view geometry estimation after OANet. In-
terestingly, as noted in [45], the ratio test is very important
for SIFT matching; combined with bidirectional check, it is
a very strong baseline. We note again that the epipolar su-
pervision performs clearly better than the point supervision.

Second, we evaluate on the FM Benchmark [2], a
combination of scenes of Tanks and Temple (T&T) [17],
TUM [43], KITTI [12] and Community Photo Collection
(CPC) [50] datasets. Similar to the previous setup, the
sparse matches are used to estimate the fundamental ma-
trix that is compared with the ground truth. Each method
is compared using the recall: the proportion of fundamental
matrices correctly estimated. This metric is very sensitive to
the inlier threshold chosen for RANSAC so we show in Fig-
ure 4 the recall of raw matches, our method and GMS [1]
for various inlier thresholds. We also show results of the
benchmark at the default threshold of 0.01 for CODE [19]



Figure 4: FM benchmark results for a varying RANSAC threshold. A different RANSAC threshold must be carefully chosen for every
dataset and every method for fair comparison. The compared methods perform similarly on KITTI and TUM but our guided matching
performs the best on the wide baseline datasets.

Features Matching
YFCC two-view

geometry estimation
Sun3D two-view

geometry estimation
Aachen day/night
visual localization

5° 10° 20° 5° 10° 20° (0.25m,
2°)

(0.5m,
5°)

(5m,
10°)

SIFT
Raw 46.80 57.41 67.80 14.52 22.74 34.22 38.8 51.0 58.2

Ours Epip. 49.60 60.36 71.37 15.72 24.35 36.40 66.3 84.7 96.9
Contex-
xtdesc

Raw 55.40 66.58 77.38 16.83 25.77 37.99 60.2 74.5 87.8
Ours Epip. 51.95 62.60 73.33 16.50 25.43 37.56 75.5 85.7 98.0

Super-
point

Raw 32.48 42.84 54.25 15.39 24.27 36.37 70.4 77.6 85.7
Ours Epip. 38.10 49.06 61.48 15.60 24.23 36.33 75.5 89.8 99.0

D2-Net Raw 25.20 35.63 49.43 13.52 22.67 35.61 78.6 85.7 100
Ours Epip. 24.68 35.30 49.55 14.10 22.87 35.63 76.5 87.8 99.0

Table 3: Comparison with state of the art keypoint detectors and descriptors. We report AUC on several localization thresholds for YFCC
and Sun3D, and the proportion of image sucessfully localized for Aachen benchmark. Raw descriptor denotes classical matching with
mutual test and RANSAC. Ours Epip. is our guided matching with epipolar supervisions, mutual test, and RANSAC. We only show the
best results for several ratio test thresholds (including no ratio test at all) before the other outlier filtering steps. Note that D2-Net’s training
set intersects YFCC100M test set.

and LPM [23]. Since TUM dataset is an indoor dataset with
short baseline, the difficulty lies more in the keypoint de-
tection than on the matching and it is not surprising that
all methods provide similar results. For KITTI, the results
seem saturated and every method also performs similarly.
On the two wide baseline scenes, our method shows a large
improvement on raw SIFT matching and outperforms GMS
by a significant margin.

5.3. Validation on learned keypoint detectors and
descriptors

In this section, we show that our guided matching bene-
fits to many features, including the most recent learned deep
features, by improving their results for 2-view geometry es-
timation and visual localization. In addition to the two-view
geometry estimation results on YFCC100M and SUN3D,
we report visual localization results on the local feature
challenge from the Aachen day/night benchmark [40]. The

challenge provides a list of image pairs to match, from day-
time to daytime, and from nighttime to daytime. The day-
time to daytime matches are used to build a 3D point cloud.
Then the nighttime to daytime matches are used to register
the nighttime images to this model. The evaluation measure
is the mean average precision (mAP) of the localization of
all the query nighttime images. Note that since the evalu-
ation is performed on 98 images only, small differences in
performance should not be over-interpreted.

Our results on Aachen daynight as well as YFCC100M
and SUN3D are reported in Table 3. Most features are
improved by our method. Our guidance does not benefit
Contextdesc on YFCC and Sun3D, hinting that this method
is effective in adding global context. However, its perfor-
mance is still improved on the harder Aachen day/night
benchmark. The results for D2-net are inconclusive on the
Aachen day/night benchmark but improvements are visible
on SUN3D. We show qualitative examples in supplemen-
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Figure 5: 3D reconstruction results on challenging image sets [10]. We show the average proportion of image registered in each scene
of the historic sets in (a) and a comparison of the 3D reconstructions of scene “Sacre Coeur” for Superpoint raw descriptor (b) and our
method (c). We show the projection of the reconstructed point cloud on every image added into the model. Our matching not only helps
incorporate more images in the reconstruction but it also make it more dense.

tary material and results of traditional guided matching on
this dataset.

5.4. Application to challenging 3D reconstruction

We demonstrate that our approach can help 3D recon-
struction in its most challenging cases by performing 3D
reconstruction on the LTLL dataset [10]. This dataset con-
tains 25 sets of historical and recent pictures of the same
scene. We tried to reconstruct the scenes both using his-
torical images only and using recent and historical images.
Many scenes are either too small or too complicated for 3D
reconstruction with any method. We focus our analysis on
the 5 scenes that D2-Net could reconstruct from historical
images only, and the 8 scenes it could reconstruct from all
photographs.

In Figure 5a, we report the average proportion of regis-
tered images for the historical set using 4 different features
with and without guidance from our network trained with
epipolar supervision. For every feature the guided match-
ing helps registering more images. In particular, guiding
SIFT features with our methods registers the most images.
Similar results for the reconstruction that uses all images
are provided in supplementary material. In Figure 5, we
show the example of reconstruction of the old set of “Gare
de Lyon” scene for SuperPoint with and without guidance.
Guiding SuperPoint features helps registering one more im-
age and the obtained point cloud is way more complete.

5.5. Limitations

Our method has two main drawbacks. First, it has a
small but non negligible computational cost since the coarse
matching adds an extra 70ms of computation time per im-
age pair, to compare to the 30ms necessary to match 10000
SIFT keypoints. However it is dominated by the time of
the 4D convolutions, which is currently based on loops of
3D convolution and could be made much faster by a di-

rect CUDA implementation. Second, similar to traditional
guided matching methods, it cannot be used to compute im-
age visibility graphs for large scenes. Indeed, since they are
trained on matching images, the coarse matches tend to be
geometrically consistent even for input images represent-
ing different scenes. This limitation is not specific to our
method : we provide quantitative evaluation and compari-
son with other methods in supplementary material.

6. Conclusion
We have presented a new paradigm to perform local fea-

ture matching. Our key idea is to use a deep learning model
to predict coarse matches between images and use them
to guide classical feature matches. We discussed several
possible supervisions for this coarse matching model, and
demonstrated the benefits of a weak epipolar supervision.
Our method boosts the performances that can be obtained
with SIFT features to the level of recent learning-based fea-
tures. We also showed it leads to state of the art results in
3D tasks such as visual localization and 3D reconstruction
in challenging conditions.
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