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Outline of this talk

Mechanics in a (tiny) nutshell

Homogenization in a nutshell

The case of continuum mechanics: the homogenization problem
and full-field simulations

Intermezzo # 1: on linear systems

Intermezzo # 2: on eigenstrains

The Lippmann–Schwinger equation and its discretization
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From position to displacement to strain

𝐿

ℓ
𝐹

𝐹 = 𝑘𝑥 ⟶ 𝐹 = 𝑘(ℓ − 𝐿) ⟶ 𝜀 = ℓ − 𝐿
𝐿
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From forces to stresses

𝑃 = 𝑀𝑔
Giacometti exhibition in Washington

(SIPANY/SIPA)
(reproduced from francetvinfo.fr)

Footprint of a prehistoric child, Pech Merle cave
(reproduced from

http://www.pechmerle.com)

𝜎 = Δ𝐹
Δ𝐴
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Strains and stresses are tensors
𝐿 𝑦

𝐿𝑥

𝐴

ℓ
𝑦

ℓ𝑥

𝐹 = 𝜎𝑥𝑥𝐴

𝜀𝑥𝑥 = ℓ𝑥 − 𝐿𝑥
𝐿𝑥

𝜀𝑦𝑦 =
ℓ𝑦 − 𝐿𝑦

𝐿𝑦
𝜀𝑥𝑦 = ???
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What is homogenization?

The launch of the Normandie ocean liner (1935)
Le Journal, num. 15565. Downloaded from Gallica
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What is homogenization?
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What is homogenization?

Three length-scales
𝐿𝜇: microscopic length-scale (size of dots, dot spacing)

𝐿m: mesoscopic length-scale (size of patches)

𝐿M: macroscopic length-scale (screen-to-eye distance)

Separation of scales
𝐿𝜇 ≪ 𝐿m ≪ 𝐿M
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What is homogenization?

In the present context
Homogenization is the process of replacing the complex distribution of
dots with an equivalent, homogeneous patch of gray.
The goal is to establish the (quantitative) rule that relates the dot pattern
(size and spacing of dots) to the gray level.

More generally
Homogenization is the process of replacing the complex microstructure
with an equivalent, homogeneous mesostructure.
The goal is to establish the (quantitative) rule that relates the physical
properties of the microstructure to the macroscopic property.
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Homogenization of mechanical properties

Macrostructure

𝐿M ∼ 1m

Mesostructure

𝐿m ∼ 10 cm

Microstructure

𝐿𝜇 ∼ 1 cm
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Homogenization of linear elastic properties
The goal
At the scale of the structure (the towers of the suspension bridge), ma-
terial heterogeneities (aggregates, …) are ignored. The response of the
structure is computed as if it was homogeneous.
Effective (macroscopic) linear elastic properties

𝞂(𝐱) = 𝗖(𝐱) ∶ 𝝴(𝐱) ⇒ ⟨𝞂⟩ = 𝗖eff ∶ ⟨𝝴⟩

The homogenization problem
Effective properties are found at the mesoscopic scale

from experimental characterization (top-down approach)
or from numerical simulation (bottom-up approach)
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The top-down approach

Rigid plate, no friction

𝛿 (prescribed displacement)

Stress-free boundary

Rigid, fixed plate, no friction

𝐹

𝐿

Macroscopic variables
Macro. stress: 𝐹 /𝐴
Macro. strain: 𝛿/𝐿

0 2 4
 [mm/m]

0

20

40

60

 [M
Pa

]

axial
radial

Compression test on a concrete sample
(Courtesy S. Bahafid, S. Ghabezloo)
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Modelling the axial compression test
Field equations

Self-weight is negligible ⇒ no body-forces
Loading comes from boundary conditions only!

Boundary conditions
Stress-free lateral surface
Upper & lower faces: no friction, prescribed vertical displacement

Macro-homogeneity condition — This is essential!

⟨𝞂 ∶ 𝝴⟩ = ⟨𝞂⟩ ∶ ⟨𝝴⟩ = 𝐹
𝐴

𝛿
𝐿 = macro. stress × macro. strain

The axial compression test is effectively
a strain-driven experiment!
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The bottom-up approach
The need for a bottom-up approach

Experimental approach is not predictive
How microstructural features affect macroscopic properties cannot
be understood

What is the bottom-up approach?
Physical exp. replaced with thought exp.
Essential features of physical exp. are kept

– “large” sample (a.k.a. statistical volume element)
– no body-forces
– suitable boundary conditions
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“Full-field” simulations
Physical exp.: macro. stress and strain aremeasured
Thought exp.: they are computed a posteriori
Solve the homogenization problem to find local stresses and strains
Compute macro. variables as volume averages of local variables
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The homogenization problem is hard
Standard problem of continuum mechanics
FE analyses are possible
There are a lot of interfaces
Creating the mesh is a tedious procedure
The FE model is large (many degrees of freedom)

Reproduced from www.gmsh.info
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Intermezzo #1: on linear systems
The initial linear system (complex LHS, simple RHS)

{
2𝑥 − 𝑦 = 1

−5𝑥 + 3𝑦 = 1
solution: 𝑥 = 4 𝑦 = 7

Let’s rewrite this linear system (𝛼: arbitrary number)

{
𝛼𝑥 + (2 − 𝛼)𝑥 − 𝑦 = 1

𝛼𝑦 − 5𝑥 + (3 − 𝛼)𝑦 = 1

The equivalent linear system (simple LHS, complex RHS)

{
𝛼𝑥 = 1 − (2 − 𝛼)𝑥 + 𝑦
𝛼𝑦 = 1 + 5𝑥 − (3 − 𝛼)𝑦
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Iterative solution of transformed system

Remember transformed system:
{

𝛼𝑥 = 1 − (2 − 𝛼)𝑥 + 𝑦
𝛼𝑦 = 1 + 5𝑥 − (3 − 𝛼)𝑦

Start from e.g. 𝑥0 = 0, 𝑦0 = 0

Compute 𝑥1 and 𝑦1: {
𝛼𝑥1 = 1 − (2 − 𝛼)𝑥0 + 𝑦0
𝛼𝑦1 = 1 + 5𝑥0 − (3 − 𝛼)𝑦0

Compute 𝑥2 and 𝑦2: {
𝛼𝑥2 = 1 − (2 − 𝛼)𝑥1 + 𝑦1
𝛼𝑦2 = 1 + 5𝑥1 − (3 − 𝛼)𝑦1

…iterate until convergence (or the absence of it)
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Iterations with 𝛼 = 10
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Slow convergence!
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Iterations with 𝛼 = 2

𝑥10 = 1.67285156 𝑦10 = 7.46191406
𝑥20 = −24.7685709 𝑦20 = 85.29713631
𝑥30 = −790.49446901 𝑦30 = 2223.99702253
𝑥40 = −22267.97299532 𝑦40 = 62174.26642779
𝑥50 = −624455.17753026 𝑦50 = 1743052.24003351

No convergence at all!
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Back to homogenization
Summary

Start from linear system with complex LHS (+ simple RHS)
Build transformed systemwith simple LHS (+more complex RHS)
Solve transformed system iteratively (pray for convergence!)

The homogenization problem
Is a set of partial differential equations
After suitable discretization, it reduces to a linear system
LHS relates to the material; complex for heterogeneous materials
RHS relates to the loading
Idea: introduce a homogeneous reference material (≃ 𝛼)
to transform linear system
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Intermezzo #2: on eigenstrained materials
Thermoelasticity

Most materials tend to expand upon heating
Notable exception: water
Order of magnitude (steel, concrete): Δ𝐿/𝐿 = 1.2 ⋅ 10−5 m/m/K

Example: a bridge deck
span = 30m width = 6m thickness = 25 cm

temp. diff. = 50∘C Young mod. = 30GPa

Unrestrained ends: Δ𝐿 = 1.2 ⋅ 10−5 × 30 × 50 = 1.8 cm

Fixed ends: 𝐹 = 30 ⋅ 109 × 1.2 ⋅ 10−5 × 50 × 6 × 0.25
= 27MN ≡ 2700 t
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Complex eigenstrain distributions
Temp. elevation across deck of J. Verne bridge, Amiens, Fr.

Credits J. Mossot via Wikimedia Reproduced from Hadjeb [Had91]

Discretization of PDEs
Eigenstrains affect the RHS of the system!
Finding the effect of eigenstrains in a homogeneous material
is relatively easy! See [Kor73; ZD73; Krö74]
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The Lippmann–Schwinger equation

= +

Initial
homogenization problem

Homogenization problem
on homogeneous reference material

Corrections
as eigenstrains

𝝴 = 𝝴 − 𝝘0[(𝗖 − 𝗖0) ∶ 𝝴] see [Kor73; ZD73; Krö74]
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What did we gain?
New system has an extremely nice structure

Block-diagonal: efficient “matvec” product in the real space
Block-circulant: efficient “matvec” product in the Fourier space
Globally: efficient, matrix-free “matvec” product
Need for iterative linear solvers (GC and the likes)
Straightforward implementation
Parallelization rather simple

S. Brisard An overview of “FFT-based techniques” for numerical homogenization — 30 sept. 2020 25



Introducing “FFT-based” methods
A very unfortunate name: FFT is just a means to the end
Better: “Lippmann–Schwinger solvers”
Even better (credit where credit is due): “Moulinec–Suquet solvers”

(Sketchy) Historical outline
Seminal papers: Moulinec, Suquet (and Michel)
[MS94; MS98; MMS01]
Early contribution from Eyre and Milton [EM99]
New contributions started in late 2000: [WP08; Zem+10; BD10]
Other groups joined soon afterwards: Fraunhöfer ITWM(Germany),
CEA (France), Eindhoven University (The Netherlands)…
Small but vibrant community:
mini-symposium at each Eccomas Congress
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State-of-the art FFT-based methods

Discretization: [BD10; BD12; SOK15; SMK17; Wil15]
Fast solvers

– polarization-based: [EM99; MB12; MS14; SWB19]
– krylov based: [BD10; Zem+10; BD12; BS18; Sch20;WSB20]
– fast-gradients: [KBS14; Sch17; Sch19]

Convergence, stopping criteria: [MMS01; BD12; MS14; SWB19]
Multiscale simulations (FEM × FFT): [GK18]
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State-of-the art FFT-based methods

Material non-linearities: [MS94; MS98; GM13]…
Geometric non-linearities: [KBS14; KFS16; dGeu+17]
Multiphysical couplings

– piezoelectricity: [BBL12]
– phase fields for crystal plasticity: [Che+15]…
– phase fields for cracking: [Che+19; Cao+20]

Challenges
Preconditioning
Adaptative mesh refinement
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Closure

Introduction to homogenization
The homogenization problem for continuum mechanics
The Lippmann–Schwinger equation for full-field simulations

What we did not cover
Variational formulation of the Lippmann–Schwinger equation:
the principle of Hashin and Shtrikman [HS62b; Wil77]
Theoretical results using this principle [HS62a; Wil77]…
and many, many, many more!
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Thank you for your attention

sebastien.brisard@univ-eiffel.fr
https://cv.archives-ouvertes.fr/sbrisard

https://sbrisard.github.io
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Box 1866, Mountain View, CA 94042, USA.

mailto:sebastien.brisard@univ-eiffel.fr
https://cv.archives-ouvertes.fr/sbrisard
https://sbrisard.github.io


References
[BBL12] R. Brenner et al. “Investigation of the Effective Response of 2-1-2 Piezoelectric Com-

posites.” In: Procedia IUTAM. IUTAM Symposium on Linking Scales in Computa-
tions: From Microstructure to Macro-Scale Properties 3 (2012), pp. 292–300.

[BD10] S. Brisard and L. Dormieux. “FFT-Based Methods for the Mechanics of Composites:
AGeneral Variational Framework.” In:ComputationalMaterials Science 49.3 (2010),
pp. 663–671.

[BD12] S. Brisard and L. Dormieux. “Combining Galerkin Approximation Techniques with
the Principle of Hashin and Shtrikman toDerive aNewFFT-BasedNumericalMethod
for the Homogenization of Composites.” In:ComputerMethods in AppliedMechanics
and Engineering 217–220 (2012), pp. 197–212.

[BS18] C. Bellis and P. Suquet. “Geometric Variational Principles for Computational Ho-
mogenization.” In: Journal of Elasticity (2018).

[Cao+20] Y. J. Cao et al. “A Novel FFT-Based Phase Field Model for Damage and Cracking
Behavior of Heterogeneous Materials.” In: International Journal of Plasticity 133
(2020), p. 102786.

[Che+15] L. Chen et al. “An Integrated Fast Fourier Transform-Based Phase-Field and Crystal
Plasticity Approach to Model Recrystallization of Three Dimensional Polycrystals.”
In: Computer Methods in Applied Mechanics and Engineering 285 (2015), pp. 829–
848.

S. Brisard An overview of “FFT-based techniques” for numerical homogenization — 30 sept. 2020 31



[Che+19] Y. Chen et al. “A FFTSolver for Variational Phase-FieldModeling of Brittle Fracture.”
In: Computer Methods in Applied Mechanics and Engineering 349 (2019), pp. 167–
190.

[dGeu+17] T. W. J. de Geus et al. “Finite Strain FFT-Based Non-Linear Solvers Made Simple.”
In: Computer Methods in Applied Mechanics and Engineering 318 (2017), pp. 412–
430.

[EM99] D. J. Eyre and G. W. Milton. “A Fast Numerical Scheme for Computing the Response
of Composites Using Grid Refinement.” In: The European Physical Journal - Applied
Physics 6.01 (1999), pp. 41–47.

[GK18] F. S. Göküzüm and M.-A. Keip. “An Algorithmically Consistent Macroscopic Tan-
gent Operator for FFT-BasedComputational Homogenization.” In: International Jour-
nal for Numerical Methods in Engineering 113.4 (2018), pp. 581–600.

[GM13] L. Gélébart and R. Mondon-Cancel. “Non-Linear Extension of FFT-Based Methods
Accelerated by Conjugate Gradients to Evaluate the Mechanical Behavior of Com-
posite Materials.” In: Computational Materials Science 77 (2013), pp. 430–439.

[Had91] A. Hadjeb. “Analyse Des Actions Thermiques Sur Les Ouvrages d’art En Béton.”
Thèse de doctorat. Université des Sciences et Techniques de Lille-Flandre-Artois,
1991.

[HS62a] Z. Hashin and S. Shtrikman. “A Variational Approach to the Theory of the Elastic
Behaviour of Polycrystals.” In: Journal of the Mechanics and Physics of Solids 10.4
(1962), pp. 343–352.

S. Brisard An overview of “FFT-based techniques” for numerical homogenization — 30 sept. 2020 32



[HS62b] Z. Hashin and S. Shtrikman. “On Some Variational Principles in Anisotropic and
Nonhomogeneous Elasticity.” In: Journal of the Mechanics and Physics of Solids 10.4
(1962), pp. 335–342.

[KBS14] M. Kabel et al. “Efficient Fixed Point and Newton–Krylov Solvers for FFT-Based
Homogenization of Elasticity at Large Deformations.” In: Computational Mechanics
54.6 (2014), pp. 1497–1514.

[KFS16] M.Kabel et al. “MixedBoundary Conditions for FFT-BasedHomogenization at Finite
Strains.” In: Computational Mechanics 57.2 (2016), pp. 193–210.

[Kor73] J. Korringa. “Theory of Elastic Constants of Heterogeneous Media.” In: Journal of
Mathematical Physics 14.4 (1973), pp. 509–513.

[Krö74] E. Kröner. “On the Physics and Mathematics of Self-Stresses.” In: Topics in Applied
Continuum Mechanics. Ed. by J. L. Zeman and F. Ziegler. Vienna: Springer Verlag
Wien, 1974, pp. 22–38.

[MB12] V. Monchiet and G. Bonnet. “A Polarization-Based FFT Iterative Scheme for Com-
puting the Effective Properties of Elastic Composites with Arbitrary Contrast.” In:
International Journal for Numerical Methods in Engineering 89.11 (2012), pp. 1419–
1436.

[MMS01] J. C. Michel et al. “A Computational Scheme for Linear and Non-Linear Composites
with Arbitrary Phase Contrast.” In: International Journal for Numerical Methods in
Engineering 52.1-2 (2001), pp. 139–160.

S. Brisard An overview of “FFT-based techniques” for numerical homogenization — 30 sept. 2020 33



[MS14] H. Moulinec and F. Silva. “Comparison of Three Accelerated FFT-Based Schemes
for Computing the Mechanical Response of Composite Materials.” In: International
Journal for Numerical Methods in Engineering 97.13 (2014), pp. 960–985.

[MS94] H. Moulinec and P. Suquet. “A Fast Numerical Method for Computing the Linear and
Nonlinear Mechanical Properties of Composites.” In: Comptes rendus de l’Académie
des sciences. Série II,Mécanique, physique, chimie, astronomie 318.11 (1994), pp. 1417–
1423.

[MS98] H. Moulinec and P. Suquet. “A Numerical Method for Computing the Overall Re-
sponse of Nonlinear Composites with Complex Microstructure.” In: Computer Meth-
ods in Applied Mechanics and Engineering 157.1–2 (1998), pp. 69–94.

[Sch17] M. Schneider. “An FFT-Based Fast Gradient Method for Elastic and Inelastic Unit
Cell Homogenization Problems.” In: Computer Methods in Applied Mechanics and
Engineering 315 (2017), pp. 846–866.

[Sch19] M. Schneider. “On the Barzilai-Borwein Basic Scheme in FFT-Based Computational
Homogenization.” In: International Journal for Numerical Methods in Engineering
118.8 (2019), pp. 482–494.

[Sch20] M. Schneider. “A Dynamical View of Nonlinear Conjugate Gradient Methods with
Applications to FFT-Based Computational Micromechanics.” In: Computational Me-
chanics 66.1 (2020), pp. 239–257.

[SMK17] M. Schneider et al. “FFT-Based Homogenization for Microstructures Discretized by
Linear Hexahedral Elements.” In: International Journal for Numerical Methods in
Engineering 109.10 (2017), pp. 1461–1489.

S. Brisard An overview of “FFT-based techniques” for numerical homogenization — 30 sept. 2020 34



[SOK15] M. Schneider et al. “Computational Homogenization of Elasticity on a Staggered
Grid.” In: International Journal for Numerical Methods in Engineering (2015), n/a–
n/a.

[SWB19] M. Schneider et al. “On Polarization-Based Schemes for the FFT-Based Computa-
tional Homogenization of Inelastic Materials.” In: Computational Mechanics 64.4
(2019), pp. 1073–1095.

[Wil15] F. Willot. “Fourier-Based Schemes for Computing the Mechanical Response of Com-
posites with Accurate Local Fields.” In: Comptes Rendus Mécanique 343.3 (2015),
pp. 232–245.

[Wil77] J.Willis. “Bounds and Self-Consistent Estimates for theOverall Properties of Anisotropic
Composites.” In: Journal of theMechanics and Physics of Solids 25.3 (1977), pp. 185–
202.

[WP08] F. Willot and Y.-P. Pellegrini. Fast Fourier Transform Computations and Build-up
of Plastic Deformation in 2D, Elastic-Perfectly Plastic, Pixelwise Disordered Porous
Media. arXiv e-print 0802.2488. 2008.

[WSB20] D. Wicht et al. “On Quasi-Newton Methods in Fast Fourier Transform-Based Mi-
cromechanics.” In: International Journal for NumericalMethods in Engineering 121.8
(2020), pp. 1665–1694.

[ZD73] R. Zeller and P. H. Dederichs. “Elastic Constants of Polycrystals.” In: Physica Status
Solidi (B) 55.2 (1973), pp. 831–842.

S. Brisard An overview of “FFT-based techniques” for numerical homogenization — 30 sept. 2020 35



[Zem+10] J. Zeman et al. “Accelerating a FFT-Based Solver for Numerical Homogenization
of Periodic Media by Conjugate Gradients.” In: Journal of Computational Physics
229.21 (2010), pp. 8065–8071.

S. Brisard An overview of “FFT-based techniques” for numerical homogenization — 30 sept. 2020 36


