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Abstract
Interior-point methods are well suited for solving convex non-smooth optimization prob-
lems which arise for instance in problems involving plasticity or contact conditions. This
work attempts at extending their field of application to optimization problems involving
either smooth but non-convex or non-smooth but convex objectives or constraints. A typ-
ical application for such kind of problems is finite-strain elastoplasticity which we address
using a total Lagrangian formulation based on logarithmic strain measures. The pro-
posed interior-point algorithm is implemented and tested on 3D examples involving plas-
tic collapse and geometrical changes. Comparison with classical Newton-Raphson/return
mapping methods shows that the interior-point method exhibits good computational per-
formance, especially in terms of convergence robustness. Similarly to what is observed for
convex small-strain plasticity, the interior-point method is able to converge for much larger
load steps than classical methods.
Keywords: non-linear optimization, interior-point method, finite-strain elastoplasticity,
logarithmic strain measure

1. Introduction

In the field of non-smooth mechanics, interior-point methods (IPM) have recently
emerged as interesting alternative resolution strategies e.g. for problems involving con-
tact [1–6], elastoplasticity [1, 7–9], limit analysis [10–14], granular materials [15, 16] or
even viscoplastic fluids [17, 18]. They are indeed well suited to model optimization prob-
lems involving non-smooth constraints [19], in particular when they can be expressed using
self-dual second-order Lorentz cone or positive semi-definite matrix cones, yielding, respec-
tively, problems belonging to the class of Second-Order Cone Programming (SOCP) [20, 21]
or Semi-Definite Programming (SDP). Initially, interior-point methods have been devel-
oped for solving Linear Programming (LP) problems [22], offering much better complexity
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than the simplex algorithm [23]. Interestingly, robustness and efficiency observed in the
LP case can be transferred to the non-linear setting provided that the problem can be
reformulated in the SOCP or SDP format [24–26]. Quite recently, extensions of the IPM
towards problems involving non self-dual convex cones (e.g. the exponential and power
cones) showed extremely promising results [27]. Off-the-shelf interior point solvers usually
impose a standard input format so that mechanical problems must be reformulated into the
required form [19]. This usually induces the introduction of additional auxiliary variables,
thereby increasing the problem size [17]. However, such reformulations may not always be
needed in a custom dedicated interior point solver [9, 18]. For instance, elastoplastic or
viscoplastic problems contain a smooth term (related to the elastic or viscous part) and a
non-smooth term (the plastic part). The latter can be treated using non-smooth SOCP
constraints whereas the former can be kept as such in the objective function, its gradient
and Hessian matrix entering the residual and tangent KKT system computation.

The present work aims at exploring one step further in the direction of extending
IPM to other mechanical problems by tackling the case of finite-strain plasticity. Building
upon previous works on a custom IPM solver including smooth convex terms [9, 18], we
investigate the case of problems containing smooth but non-convex terms. Obviously,
proofs of convergence of the IPM algorithm will necessarily be lost in the non-convex case.
However, our heuristic reasoning is that we will restrict to a case in which difficulties will
be decoupled. On the one hand, non-smoothness is present only in conic constraints which
we still consider to be convex, while, on the other hand, non-convexity of some objective
terms or constraints will concern only terms which we assume to be smooth. Since the
IPM can be seen as a Newton method with continuation along the so-called central path,
we hope that smooth terms will be properly handled by the Newton method and that
continuation along the central path will sill handle properly the non-smooth but convex
conic constraints. Our proposed algorithm is therefore a simple extension of a classical
IPM to the previously mentioned non-convex case.

We apply the proposed framework to the specific case of logarithmic strain elastoplas-
ticity [28]. As it will be discussed later, the use of the logarithmic strain setting enables a
simple extension of classical small-strain elastoplastic constitutive laws to the finite-strain
setting. In particular, the additive decomposition between elastic and plastic strain is pre-
served and elastic energy densities and plastic dissipation potentials are still convex with
respect to the corresponding strains. Non-convexity only arises due to the non-linear rela-
tion between displacement and total strain. Using such a framework, we indeed obtain a
problem in which non-smoothness (due to the plastic dissipation) can still be expressed us-
ing convex constraints whereas non-convexity involves smooth terms (strain/displacement
relation). Benchmark 3D examples will validate our implementation. Comparison is made
against standard Newton-Raphson methods based on a return mapping inner procedure
enabling to assess the computational cost and convergence robustness of the IPM solver.

The main contributions of the present manuscript can be summarized as follows:

• classical IPM implementation can be easily adapted to the proposed non-convex
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setting without much difficulty;

• logarithmic strain elastoplasticity perfectly fits into the considered framework;

• numerical results show that finite-strain logarithmic elastoplasticity can be efficiently
solved using the proposed IPM solver;

• more precisely, although the total number of iterations per load steps is usually larger
than Newton-type methods, the IPM exhibits much better robustness properties,
enabling to converge for much larger load steps.

The manuscript is organized as follows: section 2 is devoted to presenting the con-
sidered optimization problem setting and the proposed IPM algorithm; section 3 details
the logarithmic strain plasticity formulation, the corresponding variational principle and
some practical implementation details; section 4 is dedicated to the validation on numerical
examples.

2. Primal-dual interior point method for nonlinear optimisation problems with
cone constraints

2.1. Nonlinear optimisation problems with second-order cone constraints
Let us consider the following constrained nonlinear optimization problem with second-

order cone constraints:

min
x

f(x)
s.t. Ax = b

g(x) = 0
x ∈ K

(2.1)

where x ∈ Rn, f(x) is a scalar-valued and g(x) ∈ Rp a vector-valued function, both
functions are assumed to be sufficiently smooth. Linear equality constraints are modelled
using matrix A ∈ Rm×n of rank m ≤ n and non-linear second-order cone constraints
(SOC) are represented by K, a Cartesian product of self-dual second-order cones i.e. K =
K1 × . . .×Kq, such as:

• the positive orthant:

Rm
+ = {z ∈ Rm s.t. zj ≥ 0 ∀j = 1, . . . ,m} (2.2)

• the Lorentz second-order cone:

Qm+1 =
{
z = (z0, z̄) ∈ R× Rm s.t. z0 ≥ ‖z̄‖

}
(2.3)

• the rotated Lorentz second-order cone:

Qm+2
r =

{
z = (z0, z1, z̃) ∈ R× R× Rm s.t. 2z1z0 ≥ ‖z̃‖2

}
(2.4)
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Note that standard second-order cone programming problems correspond to the par-
ticular case of (2.1) in which f is linear and g is absent (or linear, in such a case it can be
appended to matrix A).

One important feature of problem (2.1) is that non-linear constraints appear in two
very different forms: general but smooth non-linear constraints via g and non-smooth but
specific SOC constraints via K. In particular, both types of constraints will be treated dif-
ferently in the solution algorithm by extending classical primal-dual interior point methods
(IPM) dedicated to tackling non-smooth conic constraints to the case of additional smooth
non-linear constraints. Similarly, the objective function is assumed to be smooth. Mod-
eling the presence of non-smooth terms such as ‖x‖2 would require appropriate conic
reformulation to treat it using SOC constraints.

2.2. Optimality conditions
Let w = (x,y, z, s)T be the concatenation of all variables and the constraints Lagrange

multipliers. The Lagrangian function of problem (2.1) is defined as follows:

L(w) = f(x) + yT (Ax− b) + zTg(x)− sTx (2.5)

Then Karush-Kuhn-Tucker (KKT) first-order conditions for optimality of problem (2.1)
are given by the following:

r(w) =


∇xL
∇yL
∇zL
xTs

 =


∇xf + ATy + GTz − s

Ax− b
g(x)
xTs

 =


0
0
0
0


and x ∈ K, s ∈ K∗

(2.6)

where K∗ is the dual cone and G(x) ∈ Rp×n being the collection of the gradients of the
nonlinear constraints:

G(x) =


∇xg1

...
∇xgp

 (2.7)

The main idea of the IPM consists in finding a solution to the KKT conditions given by
(2.6) by following the neighbourhood of a curve called the central path which consists of a
sequence of iterates w(η) = (x(η),y(η), z(η), s(η)) parameterized by a barrier parameter
η ≥ 0. These iterates are interior points i.e. they satisfy the conic constraints x ∈ K
and s ∈ K∗. The central path is defined as the solution to the perturbed KKT system or
barrier KKT system (BKKT) defined as follows:

r(w, η) =


∇xL
∇yL
∇zL

xTs− ηe

 =


∇xf + ATy + GTz − s

Ax− b
g(x)

x ◦ s− ηe

 =


0
0
0
0


and x ∈ K, s ∈ K∗

(2.8)
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in which the operator ◦ and e depend on the types of the cones defining K (see for instance
appendix A where e = (1,0) of dimension m+ 1 is defined for a second order cone Qm+1).

The introduction of the perturbed KKT system, the main idea of the IPM, is designed
in order to tackle the complementarity constraint xTs = 0. All other constraints, especially
those involving g, remain unchanged. As it will be discussed later, the proposed algorithm
will therefore be similar to a Newton-method on the smooth non-linear residuals and a
modified Newton-method on the conic residuals, exactly as in the standard SOCP case.

2.3. Solving the perturbed KKT system
As mentioned earlier, the aim of the IPM is to find a series of iterates w(η) =

(x(η),y(η), z(η), s(η)) while driving η to 0, yielding, at convergence, a solution to the
original unperturbed KKT system (2.6). For that, a primal-dual method will be used in
which both primal and dual variables remain unknown.

At each iteration (k), a Newton step on the perturbed KKT system (2.8) is computed
towards the central path for a fixed value of η(k). The solution is updated after a step-length
calculation and the barrier parameter is reduced by some amount. The process is repeated
until the residuals fall under a certain tolerance. This will result in a series of iterates
w(k) = (x(k),y(k), z(k), s(k)) which remain feasible with respect to the conic constraints.

2.3.1. The Newton system
Given an iteration (k) at which a point w(k) satisfying the conic constraints is known

and a value for the barrier parameter η(k) has been chosen, the next iterate is calculated by
computing a new point near the central path. This is obtained by performing one iteration
of the Newton method when linearising the residual equations such as:

r(k+1)(w, η) = r(k)(w) + r′(k)(w, η).∆w = 0 (2.9)

thus solving the system J (k).∆w = −r(k)(w) with the jacobian matrix J (k) = r′(k)(w)
and where ∆w = (∆x,∆y,∆z,∆s) is a descent direction. More precisely, one has:

J (k).∆w =


H(k) AT (G(k))T −I

A 0 0 0
G(k) 0 0 0
S(k) 0 0 X(k)




∆x
∆y
∆z
∆s

 =


−r

(k)
d

−r(k)
p

−r′(k)
p

−r(k)
c

 = −r(k)(w, η) (2.10)

in which H(k) is the Hessian of the Lagrangian with respect to x given by:

H(k) = ∇2
xxL(k) = ∇2

xxf
(k) −

p∑
i=1

z
(k)
i ∇2

xxg
(k)
i (2.11)

and X(k) = diag(. . . ,mat(x(k)
i ), . . .) and S(k) = diag(. . . ,mat(s(k)

i ), . . .) and the vector
r(k) corresponding to the vector of residuals for the linearized equations of the KKT system:
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r
(k)
d = ∇xf

(k) + ATy(k) + (G(k))Tz(k) − s(k) (2.12a)
r(k)
p = Ax(k) − b (2.12b)

r′
(k)
p = g(x(k)) (2.12c)

r(k)
c = η(k)e−X(k)S(k)e (2.12d)

2.3.2. Reduced linear system
Most IPM implementations further reduce the system size by eliminating the conic

variables. A specific rescaling procedure on the primal-dual pair (x, s) is usually adopted
to yield a symmetric reduced system and to improve the algorithm convergence. In the
following, we use the Nesterov-Todd rescaling which has been described at length in [25,
29],.

The final obtained reduced system is of the following form:
 H(k) + (F (k))2 AT (G(k))T

A 0 0
G(k) 0 0




∆x
∆y
∆z

 =


−r′

(k)
d

−r(k)
p

−r′(k)
p

 (2.13)

where:
r′

(k)
d = ∇xf

(k) + ATy(k) + (G(k))Tz(k) − s(k) − (F V −1)(k)r(k)
c (2.14)

2.4. Interior-point method implementation details
2.4.1. Step-length calculation

The next iterate wk+1 is obtained by performing a line-search on the maximum allow-
able step length α in direction ∆w, i.e. wk+1 = wk + α∆w with α ∈ [0, 1]. This step
should be chosen such that the iterate still satisfies the conic constraints. Practically, α is
chosen such as α ≤ αmax < 1 with αmax = 0.995 typically, ensuring that the next iterate
does not fall exactly on the feasible region boundary.

2.4.2. Choice of the barrier parameter
Following standard IPM implementations, the barrier parameter ηk+1 is chosen using

the average value of the complementarity gap gk+1
i = (sk+1

i )T · xk+1
i for each cone:

ηk+1 = γ

(
1
m

m∑
i=1

gk+1
i

)
= γgk+1 (2.15)

where m is the total number of cones and γ ∈ [0, 1] is a centering parameter.

2.4.3. Predictor-corrector scheme and adaptive choice of the centering parameter
Our implementation also adopts the predictor-corrector scheme proposed by Mehrotra

[30] which greatly improves the IPM convergence. The predictor-corrector scheme amounts
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to computing two different directions, taking advantage of having to factorize the KKT
matrix J only once:

1. the first step, called affine step, corresponds to solving (2.8) with η = 0 (unperturbed
KKT system), and its solution is denoted ∆wa. The maximum step length for this step
is noted αamax.

2. The centering parameter is then chosen using the following heuristic [31]:

γ = (1− αamax)3 (2.16)

therefore allowing full centering steps in order to quickly attain the central path if the
affine step is small.

3. the final step direction ∆w is then computed using the value of ηk calculated using the
equation (2.15) and a reduced residual vector depending on γ, ensuring that residuals
and complementarity gaps are reduced at the same rate.

Further details about the choice of the parameters and the reduced residual expressions
can be found in [30, 32, 33].

2.5. The complete primal-dual interior point algorithm

Algorithm 1 Predictor-corrector primal-dual interior point algorithm
1: Initialization (k = 0): all variable are
2: while ‖r′(k)

d , r(k)
p , r′(k)

p ‖ ≥ ε and ḡ(k) ≥ ε do
3: compute scaling matrices F and V . Appendix B
4: form reduced Newton system J (k) . Section 2.3
5: form affine residual vector ra = r(k)(w, η = 0) . Section 2.4.3
6: solve affine step J (k).∆wa = −ra and calculate the affine solution ∆wa

7: compute maximum affine step length αamax . Section 2.4.1
8: estimate centering parameter γ using equation (2.16)
9: set new barrier parameter η(k) = γḡ(k) . Section 2.4.2
10: form corrector residual vector r(k)

c using equation (2.12d) and reduced residuals
11: solve corrector step J (k).∆w = −r(k) by reusing the factorisation of J (k)

12: compute maximum step length α . Section 2.4.1
13: update variables w(k+1) = w(k) + α∆w
14: compute new complementarity gap ḡ(k+1)

15: if k > Niter,max or α ≤ ε then
16: break . Algorithm failed
17: end if
18: k ← k + 1
19: end while
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3. Application to logarithmic strain elastoplastic problems

3.1. Kinematics
Let B0 be an elastoplastic body that occupies the space Ω0 in the reference configura-

tion. Its external boundary Γ0 := ∂B0 is split into two distinct parts Γ0 = Γ0
u ∪ Γ0

t and
Γ0

u ∩ Γ0
t = ∅ where:

– displacements u are imposed to ud on Γ0
u ;

– surface tractions are imposed to td on Γ0
t .

The deformation process maps every point X ∈ Ω0 in the reference configuration to a
point x(t) = X + u(X,t) in the equilibrium configuration. The deformation gradient is then
given by F (u) = ∇X x = I + ∇X u with J = det(F ) > 0. The right polar decomposition
of the deformation gradient F = RU allows the definition of two fundamental tensors:
the material stretch tensor U and the rotation tensor R with RTR = RRT = I.

Figure 1: Reference model

3.2. The logarithmic strain measure and its work-conjugate stress
In this work, we will adopt the logarithmic strain framework proposed in [28] which has

been shown to be well suited for describing finite-strain metal plasticity. In this framework,
the chosen total strain measure is the Hencky logarithmic strain:

E = 1
2 ln(F TF ) = ln(U) (3.1)

An attractive feature of using logarithmic strain measures is that classical small strain
constitutive relations can be naturally extended to a finite-strain setting. In particular,
the total (Hencky) strain can be split additively into many contributions (elastic, plastic,
thermal, swelling, etc.). Its trace is also linked with the volume change J = exp(tr(E)).
Classical von Mises plasticity can therefore be used in the space of logarithmic strains, in
particular the total strain will still be assumed to consist of the sum of an elastic and a
plastic part:

E = Ee + Ep (3.2)
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We will denote by T the stress measure associated with E with respect to the power
density of internal forces i.e. pint = T : Ė. This pair of variables can be expressed to
other classical stress/strain measures such as the Green-Lagrange strain measure EGL =
1
2(U 2 − I) and its work-conjugate stress, the second Piola-Kirchhoff stress tensor S. One
has for instance:

pint = S : ĖGL = T : Ė = T :
(
M : ĖGL

)
(3.3)

where
M = ∂E

∂EGL

(3.4)

is a fourth order geometrical tensor mapping both strain rate measures. We, therefore,
also have:

S = T : M (3.5)

or equivalently:
T = S : M−1 (3.6)

Constitutive tangent stiffness operators can also be expressed using the two different
stress/strain pairs and are related as follows:

DGL = M : D : M + T : L (3.7)

where DGL is the tangent operator in the Green-Lagrange setting i.e. such that Ṡ = DGL :
ĖGL, D is the tangent operator in the logarithmic setting i.e. such that Ṫ = D : Ė and
finally L is sixth-order mapping tensor defined as:

L = ∂2E

∂EGL∂EGL

(3.8)

In fact both Green-Lagrange and Hencky strain measures belong to the more general
family of Seth-Hill strain measures. General details concerning these strain measures and
the geometric mappings existing between them, especially the general expression for M
and L, can be found in appendix C and in [28, 34, 35]. Although our focus is mostly on
the use of the Hencky strain measure, our implementation has been based on the Seth-
Hill framework, allowing to change easily the chosen strain measure (keeping in mind
that choosing another strain measure than the Hencky strain for describing finite-strain
plasticity may not be appropriate).

3.3. The global incremental variational problem for elastoplastic media
We place ourselves in the framework of standard generalized materials [36, 37], namely

we postulate the existence of a Helmholtz free energy function of the following form:

ψ(E,Ep, p) = ψe(Ee) + ψp(p) (3.9)

where ψe is the stored elastic energy density and ψp(p) the hardening energy density with
p being an internal state variable. In this decomposition, it is assumed ψp is convex and ψe
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polyconvex [38]. Besides, we postulate the existence of a convex positively-homogeneous
plastic dissipation potential φ(Ėp).

We now focus on an incremental formulation over [tn, tn+1] among the total time interval
[0, T ], assuming that all mechanical fields are known at time tn. Following [28], and in the
same spirit as in previous works [6, 9], the unknown fields at time tn+1 can be obtained
from the solution to the following incremental variational formulation [28]:

(un+1,E
p
n+1, pn+1) = arg min

u,Ep,p

∫
Ω0

∫ tn+1

tn
(ψ̇(E,Ep, p) + φ(Ėp))dtdΩ−

∫ tn+1

tn
Pext(u̇)dt (3.10)

where Pext is the power of external loads.
Restricting the above minimization to radial evolutions (see [9]) of Ėp(t) over the time

interval, we obtain the following incremental minimization principle:

(un+1,E
p
n+1, pn+1) = arg min

u,Ep,p

∫
Ω0

Ψn+1
n (E,Ep, p)dΩ− Pext(un+1 − un) (3.11)

in which we assumed that external forces are constant and where the incremental pseudo-
energy density is given by:

Ψn+1
n (E,Ep, p) = ψe(E,Ep) + ψp(p)− ψe(En,E

p
n)− ψp(pn) (3.12)

+ φ(Ep −Ep
n)

3.4. The case of von Mises plastic with linear isotropic hardening
We now particularize the problem to von Mises plasticity with linear isotropic harden-

ing. In this case:

ψ(E,Ep, p) = ψe(E,Ep) + ψp(p) = 1
2(E −Ep) : D : (E −Ep) + 1

2Ehp
2 (3.13)

where D is the elastic modulus tensor of small-strain isotropic linear elasticity:

D = λI ⊗ I + 2µI (3.14)

Eh is the hardening modulus and p(t) =
∫ t

0

√
2
3‖Ė

p‖dt is the accumulated plastic strain
where ‖a‖ = √aijaij.

The plastic dissipation potential is here:

φ(Ėp) =


√

2
3σ0‖Ėp‖ if tr(Ėp) = 0

+∞ otherwise
(3.15)

Introducing the notation ?̄ = ?− ?n to denote the variable increment over the current
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time step, (3.12) becomes:

Ψn+1
n (E,Ep, p) = 1

2(Ē − Ēp) : D : (Ē − Ēp) + Tn : (Ē − Ēp) (3.16)

+ 1
2Eh(p̄)

2 + Ehpnp̄+
√

2
3σ0‖Ēp‖

with tr(Ēp) = tr(Ep) = 0.
Since ṗ =

√
2
3‖Ė

p‖, we also have p̄ =
√

2
3‖Ē

p‖ therefore

Ehpnp̄+
√

2
3σ0‖Ēp‖ =

√
2
3σY,n‖Ē

p‖

with σY,n = σ0 +Eh.pn being the yield stress at the previous time step. The minimization
problem (3.11) therefore reads as:

min
u,Ep,p

∫
Ω0

(1
2(Ē − Ēp) : D : (Ē − Ēp) + Tn : (Ē − Ēp)

+1
2Eh(p̄)

2 +
√

2
3σy,n‖Ē

p‖

 dΩ− Pext(ū)
(3.17)

under the following constraints:

Ē + En = 1
2 ln

(
F T · F

)
(3.18a)

F = Fn +∇Xū (3.18b)
ū + un = ud,n+1 on Γ0

u (3.18c)
tr(Ēp) = 0 (3.18d)

Following [8], the traceless constraint tr(Ēp) = 0 can be removed by introducing directly
in the elastic energy every occurrences of Ēp by dev(Ēp) = K : Ēp where K is the projector
over deviatoric tensors.

Moreover, in the objective function of (3.17), the only non-smooth term is
√

2
3σy,n‖Ē

p‖
which can be transformed into a second-order cone constraint by introducing an additional
variable γ̄ such that ‖Ēp‖ ≤ γ̄. Replacing also the quadratic term 1

2Eh(p̄)
2 with this new

variable, one finally obtains:
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minimize
ū,Ēp,γ̄

∫
Ω0

1
2(Ē −K : Ēp) : D : (Ē −K : Ēp) + Tn : (Ē −K : Ēp) (3.19a)

+ 1
3Eh(γ̄)2 +

√
2
3σY,nγ̄

dΩ− Pext(ū)

subject to Ē + En = 1
2 ln

(
F T · F

)
in Ω0 (3.19b)

F = Fn +∇Xū in Ω0 (3.19c)
ū + un = ud,n+1 on Γ0

u (3.19d)
‖Ēp‖ ≤ γ̄ in Ω0 (3.19e)

which fits into the non-linear second-order cone programming format of (2.1) where the
last constraint is expressed as a second-order Lorentz cone constraint (γ̄, Ēp) ∈ Q7. Let
us finally remark that constraints (3.19b) and (3.19c) can be eliminated and that one can
replace Ē by its non-linear expression as a function ū:

Ē = Ē(ū) = 1
2 ln

(
(Fn +∇Xū)T · (Fn +∇Xū)

)
−En (3.20)

so that the final problem expressed in the format of (2.1) involves the unknowns x =
(ū, Ēp, γ̄), linear constraints associated with the kinematic boundary condition (3.19d)
later expressed as Aū = b, no non-linear constraints g(x) and the non-linear smooth
objective function:

f(x) = 1
2(Ē(ū)−K : Ēp) : D : (Ē(ū)−K : Ēp) + Tn : (Ē(ū)−K : Ēp) (3.21)

+ 1
3Eh(γ̄)2 +

√
2
3σY,nγ̄ − Pext(ū)

3.5. Residuals and KKT system
Let us now detail the expression of the residuals and the associated KKT around a

current iterate k. We will denote by ?(k) the value of a quantity ? at this iterate e.g.
F (k) = Fn + ∇X ū(k). First, the variation of the total logarithmic strain in direction δū is
given by:

δĒ = M(k) : δĒGL = M(k) : sym((F (k))T ·∇X δū) (3.22)

The variation of the objective function f(x) in direction δx is given by:

(∇xf, δx) = (∇ūf, δū) + (∇Ēpf, δĒp) + (∇γ̄f, δγ̄) (3.23)
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where:

(∇ūf, δū) =
∫

Ω0

(
D : (Ē(k) −K : Ēp,(k)) + Tn

)
: δĒdΩ− Pext(δū)

=
∫

Ω0

T (k) : M(k) : sym((F (k))T ·∇X δū)dΩ− Pext(δū) (3.24)

(∇Ēpf, δĒp) =
∫

Ω0

(
−D : (Ē(k) −K : Ēp,(k))− Tn

)
: K : δĒpdΩ

=
∫

Ω0

− dev(T (k)) : δĒpdΩ (3.25)

(∇γ̄f, δγ̄) =
∫

Ω0

2
3Ehγ̄

(k) +
√

2
3σY,n

 δγ̄dΩ (3.26)

where we introduced T (k) the value of the stress tensor at iterate k given by T (k) = Tn+D :
(Ē(k) −K : Ēp,(k)).

The global conic constraints x ∈ K correspond here to ū ∈ Rn (free variable) and
(γ̄, Ēp) ∈ Q7 so that the dual conic variable s = (sū, sĒp , sγ̄) ∈ K are such that sū = 0
and (sγ̄, sĒp) ∈ Q7. As a result, one obtain the following expressions for the first two
residuals of (2.6):

r
(k)
d =


r

(k)
d,ū

r
(k)
d,Ēp

r
(k)
d,γ̄

 =


∇ūf

(k) + ATy(k) − s
(k)
ū

∇Ēpf (k) − s
(k)
Ēp

∇γ̄f
(k) − s

(k)
γ̄

 (3.27)

r(k)
p = Aū(k) − b (3.28)

Expressing that the residuals should be zero for the solution, the three blocks r
(k)
d respec-

tively yield:∫
Ω0

T (k) : M(k) : sym((F (k))T ·∇X δū)dΩ− Pext(δū) +
∫

Γ0
u

y(k) · δūdS = 0 ∀δū (3.29)

s
(k)
Ēp = − dev(T (k)) (3.30)

s
(k)
γ̄ =

√
2
3σY,n + 2

3Ehγ̄
(k) (3.31)

The first block expresses the virtual work principle whereas the last two, combined with
the conic constraint ‖sĒp‖ ≤ sγ̄ express the plastic yield criterion:√

3
2‖dev(T (k))‖ ≤ σY,n +

√
2
3Ehγ̄

(k) (3.32)
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One can also easily check that, combined with the complementarity condition xTs = 0 of
the Lorentz cone (A.6), these relations are equivalent to the plastic consistency condition
and plastic flow rule:

γ̄(k)


σY,n +

√
2
3Ehγ̄

(k)

2

− 3
2‖dev(T (k))‖2

 = 0 (3.33)

Ēp,(k) =

√
3
2 γ̄

(k)

σY,n +
√

2
3Ehγ̄

(k)

dev(T ) (3.34)

where it is clear that γ̄(k) = ‖Ēp,(k)‖ =
√

2
3 p̄

(k) during a plastic evolution.
Finally, the jacobian system (2.10) reads in this case as:

J (k) =

H(k) AT −I
A 0 0

S(k) 0 X(k)

 (3.35)

in which the Hessian H(k) is obtained using the chain rule resulting in a sum of five
different contributions, the first four corresponding to the material contribution to the
stiffness matrix and the fifth being the geometrical stiffness matrix:

∆x̄ ·H(k) · δx̄ =
∫

Ω0

[
sym((F (k))T ·∇X ∆ū) : D(k)

GL : sym((F (k))T ·∇X δū)
]
dΩ

−
∫

Ω0

[
∆Ēp : (K : D : M(k)) : sym((F (k))T ·∇X δū)

]
dΩ

−
∫

Ω0

[
sym((F (k))T ·∇X ∆ū) : (M(k) : D : K) : δĒp

]
dΩ

+
∫

Ω0

[
∆Ēp : (K : D : K) : δĒp

]
dΩ

+
∫

Ω0

[
T (k)
n : M(k)

n : ((∇X δū)T ·∇X ∆ū)
]
dΩ

(3.36)

with the tangent Green-Lagrange stiffness D(k)
GL being given by (3.7):

D(k)
GL = M(k) : D : M(k) + T (k) : L(k) (3.37)
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3.6. Finite-element implementation
The finite-element discretization of (3.19) is quite standard and very close to the kine-

matic approach discussed in [9]. In particular, we used 10-noded quadratic tetrahedra for
the displacement field interpolation. The logarithmic plastic strain unknowns correspond
to its six components expressed at all quadrature points (4 Gauss points per tetrahedron
in the present case) and similarly to the additional scalar variable γ̄. As discussed in [9],
the equations involving Ēp and γ̄ in the KKT system are all of local nature i.e. they are
expressed at the quadrature point level and are all uncoupled. They can therefore be easily
condensed when forming system (B.4) yielding a further reduced system involving only the
displacement variables and the boundary condition Lagrange multipliers as final unknowns.
As a consequence, the proposed primal-dual IPM exhibits the same computational cost as
regards linear system resolutions as a standard Newton-Raphson method.

3.7. Initialization points of the IPM
Because of the incremental aspect of the mechanical problem, once the solution of the

incremental problem for a specific load step, say, tn, is obtained, loading conditions as
well as state variables, e.g. σY,n are updated before solving the new incremental problem
for the next step tn+1. It is usual that the change in data of these problems is small so
that solutions are often close from each other between consecutive time steps. Exploiting
a good initial guess of the solution, also known as warm-start, is a current challenge for
interior point methods due to the fact that conic variables should initially be feasible and
ideally far from the feasible region boundary.

In our implementation, all variables are initialized with the converged values of the
previous load step, except the conic variables (x, s). Indeed, in order to have a starting
point located far from the feasible region boundary, the initial value for the next load step
is taken as follows:

(x0, x̄)(0)
n+1 = (x0, βx̄)n

(s0, s̄)(0)
n+1 = (s0, βs̄)n

}
with β = 0.7 typically (3.38)

4. Illustrative applications

4.1. Membrane effect in a fully-clamped elastoplastic beam
In this example, we consider a fully clamped rectangular beam of length L = 2.0 m

oriented in direction x and of height h = 0.1 m and width b = 0.04 m. The beam consists
of a von Mises plastic material with no hardening and is subject to a uniformly distributed
body force b = −fez. The material parameter values are summarized in table 1.

The present implementation results have been compared with computations using the
commercial finite-element software Abaqus [39] and also using the open-source finite-
element platform FEniCS [40–42] coupled with MFront [43] for the constitutive behaviour
integration.

The FEniCS/MFront implementation consists in a total-Lagrangian implementation of
logarithmic plasticity using a standard Newton-Raphson/return mapping procedure. The
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Table 1: Beam material properties

Material parameter
Young modulus E = 210 GPa
Poisson’s ratio ν = 0.30
Initial yield stress σ0 = 250 MPa
Hardening modulus h = 0.00 MPa

coupling between both libraries relies on the MFrontGenericInterfaceSupport project
[43].

The Abaqus implementation relies on an updated-Lagrangian formulation using the
Cauchy stress tensor and its work-conjugate rate of deformation. The integration technique
for the total deformation gives the logarithmic strains (LE in Abaqus notation) which is
used in the case of metal plasticity. For more details, one can refer to sections 1.4 and 1.5
in the Abaqus theory manual [39].
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Figure 2: Evolution of the mid-span deflection u and the horizontal support reaction H

We monitor the evolution of the mid-span deflection u and the horizontal support
reaction H when increasing the body force up to f = 50 MN/m3. The evolutions of u
and H have been represented in Figure 2. It can first be observed that all three different
implementations yield very similar results, the slight difference observed with respect to
the FEniCS/MFront computations can be attributed to the fact that a different mesh,
although of similar element size, was used. The obtained results clearly exhibit a first
elastic then plastic stage (for a load factor below 0.5) when geometrical non-linear effects
do not play an important role. A secondary stiffening stage (for load factor larger than
0.5) is then observed due to membrane catenary effect (see the increase of the horizontal
reaction force) when geometrical non-linear effects become more and more important. This
is further confirmed when inspecting the normal stress diagram along the mid-span cross-
section (Figure 3) showing an elastic stage solution (Fig. 3a), the onset of cross-section
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(a) Load factor = 0.33 (b) Load factor = 0.50

(c) Load factor = 1.0

Figure 3: Generalised normal stress component TXX in the middle-section for different load factors

yielding in pure bending (Fig. 3b) and finally a membrane-dominated plastic stage (Fig.
3c). The final deformed configuration has also been represented in Figure 4.

In order to assess the numerical solution procedure, we will compare the FEniCS so-
lution with the proposed IPM solution since both approaches rely on a total-Lagrangian
formulation. In particular, we compared the number of iterations per load step to reach
convergence using the same relative residual tolerance. It must be recalled that, apart from
the way boundary conditions are handled, the linear system size, and hence the cost per
iteration, is similar for both methods.

Results are reported in figure 5 where it can be observed that the required number of
iterations is much larger for the IPM than for the Newton method used in FEniCS for 30
load steps. This is by no means surprising due to the quadratic convergence of the Newton
method close to a solution. It can also be observed that the required number of iterations
increases in the second stage of the problem where plasticity and geometrically non-linear
effects become much more dominant.

However, an extremely interesting feature of the IPM is its robustness over large load
steps. Indeed, the Newton method was unable to converge with less than 20 load steps
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Figure 4: Deformed configuration and displacement isovalues in m (Load factor = 1.0)
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Figure 5: Number of iterations per load step

whereas the IPM method could converge using only 5 load steps. Besides, this robustness
does not seem to deteriorate the convergence quality since roughly the same number of
iterations is required for the same load level when using smaller load steps. Overall, the
total number of iterations (table 2) using 5 load steps becomes competitive compared with
the Newton method, whereas the Newton method is more efficient than the IPM with
similar load-stepping. Moreover, figure 6 clearly shows that using fewer load steps yields
similar values for the displacement and reaction forces.

4.2. Necking of a rod
We consider the rod-necking problem, a standard benchmark problem of finite plastic-

ity that have been used by various authors [28, 44, 45]. The goal of this example is to
compare the results given by the IPM algorithm with reference results of [28] and using
an Abaqus implementation. The initial length of the rod is l = 53.34 mm, the radius
r0 = 6.4135 mm. The necking is triggered by an initial imperfection of the rod in the
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Figure 6: Comparison of the evolution of the mid-span deflection u and the horizontal support reaction H
using 5 load steps

Table 2: Total number of iterations for the different methods and load-stepping

Method Total iterations
FEniCS (30 steps) 128
IPM (30 steps) 385
IPM (15 steps) 192
IPM (5 steps) 70

middle section represented by a continuous decrease of the radius to r = 0.982r0 over a
length of 8.98 mm.

The constitutive response of the material is characterized by the logarithmic strain plas-
ticity formulation using a von Mises yield criterion and isotropic hardening. The following
saturation-type non-linear isotropic hardening is considered:

σY (p) = hp+ (σ∞ − σ0)(1− exp[−ωp]) (4.1)

As a first approach, this non-linear hardening model has been represented in our linear
hardening model implementation by a piecewise-linear model. Namely, at each time step,
the new value of the elastic yield limit is calculated, and the linear hardening modulus Eh
is set to:

Eh = dσY (p)
dp

∣∣∣∣∣
p=pn

= h+ (σ∞ − σ0)ω exp[−ωpn] (4.2)

Note, however, that it would have been possible to model directly the non-linear hardening
law in format (2.1).

The material parameter values are summarized in table 3.
Due to the problem symmetry, we consider only one sixteenth of the specimen, dis-
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Table 3: Rod material properties

Material parameter
Young modulus E = 207.9 GPa
Poisson ratio ν = 0.29
Initial yield stress σ0 = 450 MPa
Infinite yield stress σ∞ = 715 MPa
Hardening modulus h = 129.24 MPa
Saturation parameter ω = 16.93

cretized with 44 000 quadratic tetrahedra. Boundary conditions consist of symmetry con-
ditions and a displacement-driven condition ux = u(t) where a total imposed displacement
of u = 4.5 mm applied in 65 uniform load increments (approximately 0.07 mm per incre-
ment).

Figures 7a and 7b depict two deformed meshes for u = 2.0 mm and u = 4.50 mm
with the equivalent plastic strain isovalues. One can clearly see in the first figure the
accumulation of plastic strain on the top of the reduced section where the necking will
onset. Figure 8b represents the load-deflection curve as well as the radial contraction
at the center section and the end sections of the rod. The reference model, the Abaqus
model and the IPM solution all provide very similar results, especially for u ≤ 3.0 mm,
i.e. before necking occurs. In the necking stage, small differences are observed which may
be attributed to different algorithm tolerances or the incrementation process. However,
the difference remains less than 1% which is clearly very satisfying. Figure 9a shows a
number of iterations for the IPM ranging from 7 to 15 per increment. Iteration number
slightly increases with increasing geometrical non-linearities but remains at a reasonable
level. This result further confirms the robustness of the IPM with problem complexity.
This aspect is one of the main advantages of the classical IPM when applied to convex
problems which seems to be conserved in the present non-convex case.

Finally, we further tested the robustness of the IPM with respect to large load steps.
Obviously, one can expect that this problem is challenging for any solver due to the striction
regime occurring around 3 mm. We were able to obtain a converged solution using only
5 load steps for u ≤ 2.5 mm, 10 load steps for u between 2.5 mm and 3.5 mm and 2 load
steps between 3.5 mm and 4.5 mm. Figure 9b shows the number of iterations for each of
these 17 load steps. Interestingly, the number of iteration is quite similar to those of Figure
9a with smaller load steps. The total number of iterations in this case is 166 against 543
for the initial load-stepping using 65 load steps. This further confirms that the IPM is
particularly robust in terms of convergence properties to large load steps.
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(a) u = 2.0 mm

(b) u = 4.5 mm

Figure 7: Deformed geometry and equivalent plastic strain isovalues for different elongation values u
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(a) Load displacement curve
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(b) Radial reduction ∆r of the mid and end section

Figure 8: Comparison of the results
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Figure 9: Number of iterations per displacement increment
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5. Conclusion

In this work, we investigated the use of a primal-dual interior-point algorithm for solv-
ing second-order cone programming (SOCP) problems involving non-convex objectives or
constraints. A key assumption in our method relies on the fact that the additional non-
convex terms are smooth, inducing additional contributions to the KKT system tangent
matrix and residuals. In particular, the non-smooth terms, i.e. the conic constraints, are
still assumed to be convex as for standard convex SOCP problems. Our proposed algorithm
is therefore a straightforward extension to the standard primal-dual IPM.

The resolution of such non-convex optimization problems has been illustrated in the
case of finite-strain elastoplasticity problems relying on a logarithmic strain framework.
Indeed, in such models the elastoplastic constitutive law exhibits the same expression as in
the small strain-case whereas only the total strain/displacement relationship is modified.
The non-smooth characteristic of the plastic law can therefore still be reformulated as conic
constraints whereas the non-convex strain/displacement expression is smooth. As a result,
the corresponding incremental variational problem of logarithmic strain plasticity fits into
the considered optimization problem format.

Implementation has been validated on numerical benchmarks and compared to standard
Newton-type procedures. Since both approaches require the resolution of a Newton system
of similar size, computational efficiency can be assessed by comparing the required number
of iterations. Our results show that the IPM exhibits a good convergence behaviour with
respect to the problem complexity and the load step size. Indeed, convergence robustness
and relative stability of the number of iterations is one of the key interesting features
which are classically observed with IPM in the convex setting. Our results seem to extend
this observation in the present non-convex setting. As a result, it was possible to compute
elasto-plastic solutions with only a few large load steps when Newton-type methods failed to
converge in such situations. The total number of iterations of the IPM became competitive
with respect to Newton methods when increasing the load step size, without impairing too
much the solution quality.

Nevertheless further work is needed to improve the efficiency of the solution procedure.
First, it is known that IPM cannot fully exploit the knowledge of points close to the
solution. More efficient warm-start strategies than the simple strategy taken here could
therefore improve the method convergence, especially when considering small load steps.
Second, our results indicate that Newton-type method become more interesting with small
load-stepping discretization but exhibit less robustness than IPM for larger load steps. A
potentially effective strategy would then to use an IPM algorithm in the first iterations
and switch to a Newton-type method for the final iterations, thereby benefiting from the
Newton-method quadratic convergence near the solution. Some implementation details
may also be worth investigating for improving the solver efficiency. For instance, some IPM
implementations use merit functions to measure the quality of the next iterate. Finally, in
Mehrotra’s predictor-corrector scheme the complementarity gap linearization accuracy is
improved by taking advantage of the affine step solution. Investigating if a similar approach
can be used for improving the other non-linear terms would also be interesting to explore.
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Appendix A Second-order cones

General results concerning Jordan algebra over the Lorentz second-order cone following
the paper of Alizadeh and Goldfrab [20] are given here. For a vector v = (v0,v) ∈ Qm+1,
we define:

mat(v) =
[
v0 vT

v v0Im

]
∈ R(m+1)×(m+1) (A.1)

det(v) = det(mat(v)) = (v0)2 − ‖v‖2 (A.2)
Q = diag(1,−Im) (A.3)
v̂ = Qv = (v0,−v) (A.4)

(mat(v))−1 = 1
det(v)

 v0 −vT

−v
det(v)Im + vvT

v0

 (A.5)

The last equation is valid only if v is located strictly inside Qm+1, i.e. v ∈ int(Qm+1),
which is equivalent to det(v) > 0.

Let X = mat(x) and S = mat(s), the complementarity condition xTs = 0 for the
second-order Lorentz cone can be rewritten as:

x ◦ s =
{
x0s0 + xTs
x0s + s0x

}
= Xs = Sx = XSe (A.6)

with e = (1,0) of dimension m+ 1.

Appendix B Nesterov-Todd scaling and system reduction

Starting from the linearized form of the complementarity condition written as:

(x ◦ s)(k+1) 'X(k)S(k)e + X(k)∆s + S(k)∆x (B.1)

It can be shown that for x, s ∈ int(Qm+1), there exists a unique matrix F , depending on
x and s, such that

F x = x̃ = s̃ = F−TS and x ◦ s = x̃ ◦ s̃ (B.2)

Let V = mat(x̃) = mat(s̃) the associated matrix for the scaled point x̃ = s̃. Using
this symmetrical Nesterov-Todd scaling, the linearized complementarity condition can be
rewritten as

(x ◦ s)(k+1) ' (x ◦ s)(k) + V F−T∆s + V F ∆x (B.3)

In the specific case of the second-order Lorentz cone, F−T = F−1. Further details and
the expression for matrix F can be found in [20, 25, 29, 46]. The linearized KKT system
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(2.10) can then be efficiently reduced:

J (k)∆w =


H(k) AT GT (k) −I

A 0 0 0
G(k) 0 0 0

(V F )(k) 0 0 (V F−T )(k)




∆x
∆y
∆z
∆s

 =


−r(k)

d

−r(k)
p

−r′(k)
p

−r(k)
c

 = −r(k)(w, η)

(B.4)
The next step to reducing the system is to eliminate all conic slack variables ∆s using
static condensation:

∆s = −(F V −1)(k)r(k)
c − (F TF )(k)∆x (B.5)

one finally obtains the following reduced KKT system combining only the primal variables
and the Lagrange multipliers for the equality constraints:

J (k)∆w =

 H(k) + (F TF )(k) AT GT (k)

A 0 0
G(k) 0 0




∆x
∆y
∆z

 =


−r′(k)

d

−r(k)
p

−r′(k)
p

 (B.6)

where:

r′
(k)
d = ∇xf

(k) + ATy(k) + GT (k)z(k) − s(k) − (F V −1)(k)r(k)
c (B.7a)

r(k)
p = Ax(k) − b (B.7b)

r′
(k)
p = g(x(k)) (B.7c)

Appendix C Geometrical tensors

C.1 The generalised strain measure
Within an infinitesimal neighbourhood of a generic material particle, pure rotations can

be distinguished from pure stretching by means of the polar decomposition of the deforma-
tion gradient. Under the action of pure rotations, the distances between particles within
this neighbourhood remain fixed. Under stretching, we say that the region surrounding p
is strained. To quantify straining, i.e. to evaluate how much U departs from I being a
rigid deformation, some kind of strain measure needs to be defined.

Since U is symmetrical, it follows that they admit a unique spectral decomposition

U =
3∑
i=1

λiNi ⊗Ni =
3∑
i=1

λiMii (C.1)

where {λ1, λ2, λ3} are the eigenvalues and the triad {N1,N2,N3} the Lagrangian triad
or Lagrangian principle directions. The same triad can be expressed using Mij which
defines the full-symmetric spectral basis tensors:

Mij =
{

Ni ⊗Ni if i = j
1
2(Ni ⊗Nj + Nj ⊗Ni) if i 6= j

(C.2)
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The generalised Lagragian strain measure is defined through an isotropic function of
the pure stretching tensor U defined in its spectral space along the principal Lagrangian
directions:

E∗ = f ∗(U ) =
3∑
i=1

f ∗(λi)Ni ⊗Ni =
3∑
i=1

f ∗(λi)Mii (C.3)

One of the most common families of strain measures is the Seth-Hill family defined as
follows:

E(m) =
3∑
i=1

1
m

(λmi − 1)Mii (C.4)

This family contains the most common strain measures used in literature:

EGL = E(2) =
3∑
i=1

1
2(λ2

i − 1)Mii The Green-Lagrange deformation tensor (C.5)

E(0) =
3∑
i=1

1
2 ln(λi)Mii The material Hencky deformation tensor (C.6)

C.2 Fourth and sixth order mapping tensors
Since all strain measures given by the generalised definition, or more specifically by

the Seth-Hill family, are unique for a given deformation gradient, there is a one-to-one
mappings that allows the passage between the different measures [28, 34, 35]. Let E∗ and
E† be two different generalised material strain measures as functions of the material stretch
tensor U . The fourth order geometrical mapping tensor ME∗

E† such as E∗ = ME∗

E† : E† is
given by:

ME∗

E† =
3∑
i=1

f ∗(λi)
f †(λi)

Mii ⊗Mii (C.7)

one can easily verify that E† = ME†
E∗ : E∗ = (ME∗

E† )−1 : E∗ with:

ME†

E∗ = (ME∗

E† )−1 =
3∑
i=1

f †(λi)
f ∗(λi)

Mii ⊗Mii (C.8)

In a similar way, there is a one-to-one mapping between the rates of each measure such
that

Ė∗ = MĖ∗

Ė†
: Ė† (C.9)

MĖ∗

Ė†
= ∂E∗

∂E†
=

3∑
i=1

df ∗(λi)/dλi
df †(λi)/dλi

Mii ⊗Mii +
3∑
i=1

3∑
j 6=i

f ∗(λj)− f ∗(λi)
f †(λj)− f †(λi)

Mij ⊗Mij (C.10)

In most cases, the reference strain measure used is the Green-Lagrange measure Ė† =
ĖGL, and the geometrical mapping tensor taken according to this measure:
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MĖ∗

ĖGL
=

3∑
i=1

df ∗(λi)/dλi
λi

Mii ⊗Mii +
3∑
i=1

3∑
j 6=i

2(f ∗(λj)− f ∗(λi))
λ2
j − λ2

i

Mij ⊗Mij (C.11)

Note that all the defined geometrical tensors verify both the major and the minor
symmetry conditions:

Mijkl = Mklij and Mijkl = Mjikl = Mijlks (C.12)

and that
MĖGL

Ė∗
=
(
MĖ∗

ĖGL

)−1
(C.13)

In a general constitutive equation, the constitutive tangent moduli D∗ relating the
generalised strain increments and the generalised stress increments is required. Note that
time derivatives for Lagrangian measures are always objective. This tangent moduli can
also be written in terms of the classical tangent moduli DGL relating the Green-Lagrange
strain increments and the second Piola-Kirchhoff stress increments using the geometric
mapping tensors. Assuming that we have derived the constitutive tangent moduli D∗ for
a generalised strain measure E∗ and its work conjugate stress tensor T ∗ such that:

Ṫ ∗ = D∗ : Ė∗ (C.14)

the equivalent tangent moduli DGL such that Ṡ = DGL : ĖGL can be calculated as follows:

Ṡ = Ṫ ∗ : MĖ∗

ĖGL
+ T ∗ : ṀĖ∗

ĖGL

Ṡ =
(
∂T ∗

∂E∗
: ∂E∗

∂EGL

: ĖGL

)
: MĖ∗

ĖGL
+ T ∗ :

∂MĖ∗

ĖGL

∂EGL

: ĖGL


Ṡ = D∗ :

(
MĖ∗

ĖGL
: ĖGL

)
: MĖ∗

ĖGL
+ T ∗ :

(
LĖ∗

ĖGL
: ĖGL

)
Ṡ =

(
MĖ∗

ĖGL
: D∗ : MĖ∗

ĖGL
+ T ∗ : LĖ∗

ĖGL

)
: ĖGL (C.15)

Thus we have
DGL = MĖ∗

ĖGL
: D∗ : MĖ∗

ĖGL
+ T ∗ : LĖ∗

ĖGL
(C.16)

The previous relation is found using the major symmetry of MĖ∗

ĖGL
and the introduction

of the sixth-order geometric tensor LĖ∗

ĖGL
relating the rate of MĖ∗

ĖGL
= ∂E∗/∂EGL and the

rate of EGL:
LĖ∗

ĖGL
= ∂2E∗

∂EGL∂EGL

(C.17)

Both geometrical tensors are required in order to formally map the tangent moduli associ-
ated to one strain measure to the tangent moduli associated to the other strain measure.
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In practice, computing the six-order tensor LĖ∗

ĖGL
then doing the double contraction is not

efficient therefore formulas for calculating directly the double contraction T ∗ : LĖ∗

ĖGL
have

been derived:

T ∗ : LĖ∗

ĖGL
=

3∑
i=1

F (λi)T ∗iiMii ⊗Mii

+
3∑
i=1

∑
j 6=i

G(λi, λj)T ∗iiMij ⊗Mij

+
3∑
i=1

∑
j 6=i

G(λi, λj)T ∗ij (Mii ⊗Mij + Mij ⊗Mii)

+
3∑
i=1

∑
j 6=i

∑
k 6=j 6=i

H(λi, λj, λk)T ∗ik (Mij ⊗Mjk + Mjk ⊗Mij)

(C.18)

where

T ∗ij = T ∗ : Mij (C.19)

F (λi) = − 2
λ4
i

(C.20)

G(λi, λj) = 8(f ∗(λj)− f ∗(λi))− 4Λij/λi
Λ2
ij

(C.21)

H(λi, λj, λk) = 8−Λjkf
∗(λi)− Λkif

∗(λj)− Λijf
∗(λk)

ΛjkΛjkΛij

(C.22)

Λij = λ2
j − λ2

i (C.23)

Note that H(λi, λj, λk) = H(λi, λk, λj) = H(λk, λi, λj) but G(λi, λj) 6= G(λj, λi). Also,
when two or three principal stretches converge to the same value we have:

H(λi, λj, λk → λj) = G(λi, λj) (C.24)
H(λi, λj → λi, λk → λi) = G(λi, λj → λi) = F (λi) (C.25)

Note that all the corresponding formulas for the logarithmic strain measure and their
geometrical mapping tensors can be found by replacing f ∗(λi) with ln(λi).
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