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Abstract

By studying the intrinsic polyhedral structure of multistage stochastic linear problems
(MSLP), we show that a MSLP with an arbitrary cost distribution is equivalent to a MSLP
on a finite scenario tree. More precisely, we show that the expected cost-to-go function, at
a given stage, is affine on each cell of a chamber complex i.e., on the common refinement of
the complexes obtained by projecting the faces of a polyhedron. This chamber complex is
independent of the cost distribution. Furthermore, we examine several important special cases
of random cost distributions, exponential on a polyhedral cone, or uniform on a polytope,
and obtain an explicit description of the supporting hyperplanes of the cost-to-go function,
in terms of certain valuations attached to the cones of a normal fan. This leads to fixed-
parameter tractability results, showing that MSLP can be solved in polynomial time when
the number of stages together with certain characteristic dimensions are fixed.

1 Introduction

Stochastic programming is a powerful modeling paradigm for optimization under uncertainty that
has found many applications in energy, logistics or finance (see e.g. [WZ05]). Linear stochastic
programs constitute an important class of stochastic programs. They have been thoroughly studied,
see e.g. [BL11, Pré13]. One reason for this interest is the availability of efficient linear solvers and
the use of dedicated algorithms leveraging the special structure of linear stochastic programs
([VSW69, Bir85]).

In this paper, we study the polyhedral structure of cost-to-go functions of MSLP. This leads
to explicit representations of these functions and to new complexity results.

1.1 Polyhedrality of cost-to-go function

We consider the multistage stochastic linear program (MSLP), in which several decisions are taken,
based on successive observations of random events.

Given a sequence of independent random variables ct and ξt = (Tt,Wt,ht), indexed by t ∈
[tmax] := {1, . . . , tmax}, we define the cost-to-go function Vt inductively as follows. We set Vtmax+1 ≡
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0 and for all t ∈ [tmax]:

Vt(x) := E
[
V̂t(x, ct, ξt)

]
V̂t(xt−1, ct, ξt) := min

xt∈Rnt
c>t xt + Vt+1(xt)

s.t. Ttxt−1 +Wtxt 6 ht

where xt−1 ∈ Rnt−1 , ct ∈ Rnt and ξt = (Tt,Wt, ht) ∈ Rqt×nt−1 × Rqt×nt × Rqt .
The multistage stochastic linear problem (MSLP) is the minimisation problem (1) specialized

to t = 1, with value V̂1(x0, c1, ξ1), where x0 ∈ Rn0 , c1 ∈ Rn1 , ξ1 ∈ Rq1×n0 × Rq1×n1 × Rq1 are given.
In this paper, we choose to distinguish the random cost c from the noise ξ affecting the

constraints. Indeed our results require ξ to be finitely supported (see Examples 1 and 2) while c
can have a continuous distribution. This separation does not preclude correlation between ct and ξt.
However, we require {(ct, ξt)}t∈[tmax] to be a sequence of independent random variables to leverage
Dynamic Programming, even though some results can be extended to dependent (ξt)t∈[tmax].

In order to solve the MSLP, the irreducible difficulty is perhaps the study and the representation
of the cost-to-go function V , defined as the expectation of the optimal cost of a linear program
with random data, and affine constraints in the variable x:

V (x) = E

[
min
y∈Rm

c>y

s.t. Tx+W y 6 h

]
. (2)

The cost vector c ∈ Rm, the constraint matrices T ∈ Rq×n and W ∈ Rq×m and the vector h ∈ Rq

are random variables.
If (c, ξ) have a finite support, it is known that V is polyhedral, meaning that it takes value in

R∪ {+∞} and its epigraph is a (possibly empty) polyhedron. Indeed, for each (c, ξ) ∈ supp(c, ξ),
Qc,ξ : (x, y)→ c>y+ ITx+Wy6h is polyhedral. Thus, V̂ (·, c, ξ) = miny∈Rm Q

c,ξ(·, y) is polyhedral as

epi V̂ (·, c, ξ) is a projection of epiQc,ξ (see [JKM08]). Finally, V , being a positive linear combination
of polyhedral functions, is also polyhedral.

Our results show that V is polyhedral without any finite support condition on the distribution
of c. More precisely, we show that we can replace c by a finitely supported č that yields the same
expected cost-to-go function, V . Moreover, there exists a finite polyhedral partition of the space
that does not depends on the distribution of c, such that V is affine on each of its elements.

As shown by the following examples, this theorem is tight: if T , W or h have an arbitrary
distribution, V may not be polyhedral. Let u be a uniform random variable on [0, 1].

Example 1 (Stochastic h). If T =

(
0
1

)
, W =

(
−1
−1

)
, c = 1 and h =

(
−u
0

)
, then

V (x) = E


min
y∈Rm

y

s.t. u 6 y

x 6 y

 = E
[

max(x,u)
]

=


1
2

if x 6 0
x2+1

2
if x ∈ [0, 1]

x if x > 1 .

Example 2 (Stochastic T ). If T =

(
u
0

)
, W =

(
−1
−1

)
, c = 1 and h =

(
0
−1

)
, then

V (x) = E


min
y∈Rm

y

s.t. ux 6 y

1 6 y

 = E
[

max(ux, 1)
]

=

{
1 if x 6 1
x
2

+ 1
2x

if x > 1
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1.2 Contribution and literature review

Most results for MSLP with continuous distributions rely on discretizing the distributions. The
Sample Average Approximation (SAA) method (see e.g. [SDR14, Chap. 5]) samples the costs and
constraints. It relies on probabilistic results based on a uniform law of large number to give statis-
tical guarantees. Obtaining a good approximation requires a large number of scenarios. In order to
alleviate the computations, we can use scenario reduction techniques (see [DGKR03, HR03]). Latin
Hypercube Sampling and variance reduction methods are also used to produce scenarios. Finally
one generate heuristically “good” scenarios, representing the underlying distribution (see [KW07]).
Alternatively, we can leverage the structure of the problem to produce finite scenario trees (see
[Kuh06, MAB14, MP18]) that yields bounds for the value of the true optimization problem.

In each of these approaches, one solves an approximate version of the stochastic program, with
or without statistical guarantee. In contrast, our approach aims at solving exactly the original
problem.

We rely on a geometric approach, which enlightens the polyhedral structure of MSLP. In
particular, Theorem 11 gives an explicit representation of the expected cost-to-go value starting
from a given point, as a sum over all the cones of the normal fan of a polyhedron defined by
the constraints. The probability distribution of the cost determines a valuation associated to
each of these cones. We deduce that the MSLP is equivalent to a problem with finitely many
scenarios, that can be characterized through common refinement of certain polyhedral complexes,
see Theorem 17. The “master formula” of Theorem 14 shows that the expected cost-to-go function
is piecewise affine, and that it is affine on every cell of a specific chamber complex. A chamber
complex [BS92, RZ96] is a polyhedral complex defined as the common refinement of the projections
of faces of a polyhedron. Theorem 14 yields an explicit formula for the expected cost-to-go function,
using conic coordinates and active constraints. We refer to [Zie12, Grü13, Fuk16]for background
on polyhedral complexes, fans.

In order to evaluate the “master formula” of Theorem 14, we need to compute certain valuations
associated to the cones of a polyhedral fan (see Lemma 13). Leveraging adapted triangulations,
computing these valuations is reduced to computing expectation over simplices. In particular, when
the costs have exponential distributions, we can rely on Brion’s formula [Bri88] for the exponential
valuation of polyhedra. When the cost has a uniform measure supported by a polyhedron, we also
derive an explicit formula, involving volumes and centroids. In both cases, when the coefficients of
the inputs are rational, the epigraph of the cost-to-go function is a rational polyhedron, meaning
that the defining halfspaces have rational coefficients. Other remarkable cases include distributions
with a special symmetry (rotational symmetry after an affine transformation), like the Gaussian
distribution or the uniform distribution on an ellipsoid. Then, we are reduced to computing solid
angles and spherical centroids.

This polyhedral approach leads to new complexity results. Indeed, Dyer and Stougie [DS06]
proved that 2 stage stochastic programming is ]P -hard in the discrete case, by reducing the
problem of graph reliability to the discrete distribution case. They stated that the computation
of the volume of a polytope can be reduced to the continuous distribution case, a result which
was subsequently proved in [HKW16]. Computing the volume of a polytope, as well as graph
reliability, is ]P -complete. Hanasusanto, Kuhn and Wiesemann [HKW16] showed that computing
an approximate solution to the 2-stage linear programming (2SLP) with continuous distribution
with a sufficiently high accuracy is also ]P -hard. Other papers [SN05] studied the complexity of
2-stage linear programming 2SLP and MSLP. Most complexity results there are hardness results.
In contrast, we prove that 2SLP and MSLP are fixed parameter tractable: when the dimension of
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the recourse space is fixed, 2SLP is polynomial-time. Moreover, when the dimensions of the first
stage decision space and of the recourse space are both fixed, the whole cost-to-go function can be
determined in polynomial time. Furthermore, when all the dimensions of the decision spaces are
fixed, as well as the horizon (so that the number of constraints is the only free parameter), MSLP
is polynomial time.

In summary, our main contributions are the following:

1. MSLP with arbitrary cost distribution and finitely supported constraints are equivalent to
MSLP with discrete cost distribution;

2. the cost-to-go functions of such MSLP are polyhedral and they are affine on regions that are
independent of the cost;

3. new algebraic insights on the polyhedral structure of MSLP;

4. analytical formulas for exponentially or uniformly distributed costs on a polytope;

5. fixed-parameter versions of 2SLP and MSLP are polynomial time.

The rest of the paper is laid out as follows.
In Section 2, we recall notions from the theory of polyhedra: polyhedral complexes, normal

fans and chamber complexes. Section 3 is the workhorse of the paper, in which we leverage the
polyhedral tools to construct an equivalent finitely distributed cost č thus proving the polyhedrality
of V . In Section 4, we show that the study of the cost-to-go function with deterministic constraints
carry over to finitely supported constraints and to the multistage case. In Section 5, we show that
the expectations, probabilities and conic coordinates used in the expression of V in Section 3 can
be made explicit for usual distributions of c. In Section 6, we apply our approach to an illustrative
example. Finally, in Section 7, we draw the consequences of our results in terms of computational
complexity.

1.3 Notation

As a general guideline bold letters denote random variables, normal scripts their realisation. Cap-
ital letters denote matrices or sets, calligraphic (e.g. N ) denote collections of sets. The indicator
function IP (resp. 1P) takes value 0 (resp. 1) if P is true and +∞ (resp. 0) otherwise. We set
[k] := {1, . . . , k}, and we denote by ]E the cardinal of a set E. We denote by AI the submatrix
of a matrix A, composed of the rows of indices i ∈ I. We denote by Cone(A) := ARn

+ the cone
hull of the columns of A. x 6 y is the standard partial order, given by ∀i, xi 6 yi, F C G if F is a
subface of G. P 4 Q if P is a refinement of the polyhedral complex Q. supp C :=

⋃
C∈C E is the

support of a collection of sets C, Cmax : the sets of maximal elements of a collection of sets C. rc(P )
is the recession cone of a polyhedron P . For a polyhedron P , we denote F(P ) its faces, Vert(P )
its vertices and Ray(P ) a set with vectors each representing one extreme rays (for example the
normalized extreme rays). Pψ is the face of P given by arg minx∈P ψ

>x. NP (x) is the normal cone
of P at x, and N (P ) the normal fan of P . IA,b(x) := {i | Aix = bi} the set of active constraints in
x for an H-representation {z | Az 6 b}, and I(A, b) the collection of these sets {IA,b(x) | Ax 6 b}.
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2 Polyhedral tools

Our proofs rely on the notions of normal fan and chamber complex of a polyhedron recalled here.
These polyhedral objects reveal the geometrical structure of MSLP. Both the normal fan and the
chamber complex are special polyhedral complexes.

2.1 Polyhedral complexes

Polyhedral complexes are finite collections of polyhedra satisfying some combinatorial and geo-
metrical properties. In particular the relative interiors of the elements of a polyhedral complex
(without the empty set) form a partition of their union. We refer to [DLRS10] for a complete
introduction to polyhedral complexes and triangulations.

Definition 1 (Polyhedral complex). A finite collection of polyhedra C is a polyhedral complex if
it satisfies i) if P ∈ C and F is a non-empty1 face of P then F ∈ C and ii) if P and Q are in C,
then P ∩Q is a (possibly empty) face of P .

We denote by supp C :=
⋃
P∈C P the support of a polyhedral complex. Further, if all the elements

of C are polytopes (resp. cones, simplices, simplicial cones), we say that C is a polytopal complex
(resp. a fan, a simplicial complex, a simplicial fan).

We recall that a simplex of dimension d is the convex hull of d + 1 affinely independent point
and that a simplicial cone of dimension d is the conical hull of d linearly independent vectors.

Proposition 2. For any polyhedral complex C, the relative interiors of its elements (without the
empty set) form a partition of its support: supp(C) =

⊔
P∈C ri(P ).

For example, the set of faces F(P ) of a polyhedron P is a polyhedral complex.

Definition 3 (Refinements and triangulation). Let C and R be two polyhedral complexes, we say
that R is a refinement of C, denoted R 4 C, if suppR = supp C and for all cell R ∈ R there exists
a cell C ∈ C containing R: R ⊂ C.

Note that 4 define a partial order of polyhedral complexes, and the meet associated to this order
is given by the common refinement of two polyhedral complexes C and C ′ defined as the polyhedral
complex of the intersections of cells of C and C ′:

C ∧ C ′ := {R ∩R′ |R ∈ C, R′ ∈ C ′}

A triangulation T of a polytope Q is a refinement of F(Q) such that the cells of dimension
0 of T are the vertices of Q and T is a simplicial complex. A triangulation T of a cone K is a
refinement of F(K) such that the cells of dimension 1 of T are the rays of K and T is a simplicial
fan.

2.2 Normal fan

The normal fan is the collection of the normal cones of all faces of a polyhedron. See [LR08] for a
review of normal fan properties.

Recall that the normal cone of a convex set C ⊂ Rm at the point x is the set NC(x) := {α ∈
Rm | ∀y ∈ C, α>(y − x) 6 0}. More generally, for a set E ⊂ C, NC(E) :=

⋂
x∈E NC(x).

1For some authors, a polyhedral complex must contain the empty set. We do not make this requirement.
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Figure 1: Two normally equivalent polytopes P and P ′ and their normal fan N (P ) = N (P ′).

Definition 4 (Normal Fan). The normal fan2 of a convex set C is the collection of polyhedral
cones

N (C) := {NC(x) | x ∈ C}

We say that two convex sets C and C ′ are normally equivalent if they have the same normal fan
: N (C) = N (C ′).

Recall that the polar of a convex set C is the set C◦ := {α | ∀x ∈ C, α>x 6 0} = NC(0) and
the recession cone of a convex set C is given by rc(C) := { r ∈ C | ∀µ ∈ R+, ∀x ∈ c, x+µr ∈ C}.
In particular, for a polyhedron, the recession cone and its polar are given by

rc
(
{x | Ax 6 b}

)
= {x | Ax 6 0} rc

(
{x | Ax 6 b}

)◦
= Cone(A>) . (3)

Examples of these definition can be found in Fig. 2.

Proposition 5 (Basic properties of normal fan (see e.g. [LR08])). If P is a polyhedron, the normal
fan N (P ) is a finite collection of polyhedral cones (and in particular a polyhedral complex).
Further, the support of N (P ) can be expressed geometrically as the polar of the recession cone of
P , i.e.

suppN (P ) =
(

rc(P )
)◦

(4)

2.3 Active constraints

We introduce in this subsection the collection of active constraints which we use to obtain explicit
formulas and make computations in practice. This notion is algebraic and depends on the matrix
A and vector b used to defined a polyhedron, which we call H-representation (sometimes called
external representation).

For any matrix A ∈ Rq×p and a subset I ⊂ [q], we denote by AI the submatrix composed of
the rows of indices in I of A

AI := AI,· = (Ai,j)i∈I,j∈[p]

For i ∈ [q] , we also denote Ai := A{i} the ith row of A. To avoid confusion, we use the parenthesis
rule A>I := (AI)

>.

2Sometimes called outer normal cones and fan, as opposed to inner cones obtained either by inverting the
inequality in the definition of the normal cone or by taking the opposite cones respect to the origin.
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(a) A polytope P and its normal fan N (P )

•

(b) The recession cone of rcP = {0} in red and its
normal fan N (P ) in green. supp(N ) = R2 = {0}◦

(c) The epigraph E = epi(f) of a polyhedral function
with a bounded domain and its normal fan N (E).

•

(d) The recession cone of rcE = {0}×R+ in red and
its normal fan N (E) in green. supp(N ) = R×R− =
({0} × R+)◦

(e) A polyhedron P and its normal fan.

•

(f) The recession cone of P in red and its normal fan
N (P ) in green.

Figure 2: Examples of polyhedra and their normal fans and recession cones.

Definition 6 (Active constraints). For a polyhedron P = {x | Ax 6 b}, we denote by IA,b(x) the
set of active constraints of P in x ∈ Rd, with the H-representation (A, b) ∈ Rq×d × Rq:

IA,b(x) := {i ∈ [q] | Aix = bi}

More generally, for a set E ⊂ P , we set IA,b(E) :=
⋂
x∈E IA,b(x).

We denote by I(A, b), the collection of sets of active constraints of P with the external repre-
sentation (A, b):

I(A, b) := {IA,b(x) | Ax 6 b}

For a polyhedron P , we will denote by Pψ the face of P given by arg minx∈P ψ
>x.

Proposition 7. If P is a polyhedron, its normal fan N (P ), its set of non-empty faces F(P ) \ {∅}
and its collection of sets of active constraints I(P ) are in one-to-one correspondence. Furthermore,
the orders are preserved or inverted by the correspondences as indicated by figure 4.

The proofs of such correspondences can be found in [LR08].
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H1

H2

H3

H4

H5

•

•

•

Figure 3: An example of a polyhedron P = {x | Ax 6 b} with an H-representation (A, b). Each
Hi corresponds to the hyperplane {x | Aix = bi} and the label Hi is located in the halfspace
{x | Aix > bi}. We have I(A, b) =

{
∅, {1}, {1, 3}, {3}, {3, 4, 5}, {5}, {1, 5}

}
. Constraint 2 is never

active (2 /∈ supp I(A, b)), and constraint 4 is redundant with constraints 3 and 5.

F ∈ F(P )\{∅},B

NP (F )

&&

IA,b(F )

xx

I ∈ I(A, b),⊂
Cone(A>I )

..

{x∈P |AIx=bI}

88

N ∈ N (P ),C
{i∈supp I(A,b) |A>i ∈N}

nn

⋂
ψ∈−N Pψ

ff

Figure 4: Monotonous one-to-one correspondences between normal fan, collection of active con-
straints sets and set of faces of a polyhedron P = {x | Ax 6 b}. For example, the downward arrow
on the right reads F1 C F2 is equivalent to NP (F1) B NP (F2).

2.4 Chamber complex

The affine regions of the cost-to-go function will correspond to cells of a chamber complex. The
problems of projection of polyhedra, fibers and chambers complexes are studied in [BS92, RZ96,
Ram96].

Definition 8 (Chamber complex). Let P ⊂ Rn be a polyhedron and π a linear projection of Rn.
For x ∈ π(P ) we define the chamber of x for P along π as

σP,π(x) :=
⋂

F∈F(P ) s.t. x∈π(F )

π(F ).

The chamber complex C(P, π) of P along π is defined as the (finite) collection of chambers, i.e.

C(P, π) := {σP,π(x) | x ∈ π(P )} .

Further C(P, π) is a polyhedral complex such that supp C(P, π) = π(P ). In particular,
{

ri(σ) |σ ∈
C(P, π)

}
is a partition of π(P ).

More generally, the chamber complex of a polyhedral complex P is

C(P , π) := {σP,π(x) | x ∈ π
(

supp(P)
)
} .

with σP,π(x) :=
⋂

F∈P s.t. x∈π(F )

π(F ).
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Im π

Ker π

• • • ••••
C(P, π)

x

π
−

1
(x

)
∩
P

•

Px

•

•
F

•

•
π(F )

•
•

π(P )
•

Figure 5: A polytope P in light green, its chamber complex in red on the x-axis and a fiber Px in
blue on the y-axis, for the orthogonal projection π on the horizontal axis.

Lemma 9 (Chamber complex monotonicity with respect to refinement order). Consider two poly-
hedral complexes of Rd and a projection π. If R 4 S then C(R, π) 4 C(S, π).

Proof. For any R ∈ R, there exist SR ∈ S such that R ⊂ SR. Let x ∈ supp C(R, π) = π(suppR) =
π(suppS) = supp C(S, π)

σR,π(x) :=
⋂

R∈R s.t. x∈π(R)

π(R) ⊂
⋂

R∈R s.t. x∈π(R)

π(SR)

⊂
⋂

S∈Ss.t. x∈π(S)

π(S) =: σS,π(x) ∈ C(S, π)

Recall that the fiber Px of P along π at x is the projection of P ∩ π−1({x}) on the space
Ker(π) (see figure 5). An important property of a chamber complex is that all fibers are normally
equivalent in each relative interior of cells of the chamber complex. More precisely, let σ ∈ C(P, π)
be a chamber, and x and x′ two points in its relative interior, then (see [BS92]), Px and Px′ are
normally equivalent, i.e. they have the same normal fan N (Px) = N (Px′). Thus we define the
normal fan Nσ above3 σ ∈ C(P, π) by :

Nσ := N (Px) for an arbitrary x ∈ ri(σ)

Part of the literature [CL98, LW97] uses the terms parameterized polyhedron for fiber and validity
domain for chambers.

3The normal fan Nσ ⊂ 2R
m

above σ should not be confused with N (σ) ⊂ 2R
n

the normal fan of σ which will
never appear in this paper.
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3 Preserving polyhedrality with general cost distribution

Let (Ω,A,P) be a probability space, and c ∈ L1(Ω,A,P;Rm) be an integrable random vector, and
ξ = (T,W, h) be deterministic. We study the cost-to-go function of Problem (2), which we recall
here

V (x) := E
[
V̂ (x, c)

]
with V̂ (x, c) := min

y∈Rm
c>y

s.t. Tx+Wy 6 h
(5)

We denote the coupling constraint polyhedron of Problem (5) by

P := {(x, y) ∈ Rn+m | Tx+Wy 6 h} (6)

and π the projection of Rn×Rm onto Rn such that π(x, y) = x. The projection of P is the following
polyhedron :

π(P ) = {x ∈ Rn | ∃y ∈ Rm, Tx+Wy 6 h} (7)

and for any x ∈ Rn, the fiber of P along π is

Px := {y ∈ Rm | Tx+Wy 6 h} (8)

3.1 Conditions for a well defined cost-to-go function

We want to find hypotheses under which V is defined without ambiguity and does not take value
−∞.

Proposition 10. For every x ∈ Rn and c ∈ Rm,

V̂ (x, c) < +∞ ⇐⇒ x ∈ π(P ) (9a)

V̂ (x, c) > −∞ ⇐⇒ x /∈ π(P ) or − c ∈ rc(Px)
◦ (9b)

Furthermore, for all x ∈ π(P ),

rc(Px)
◦ = suppN (Px) = Cone(W>) .

Moreover the expectation in the definition of V is defined and takes value in R ∪ {+∞} if and
only if supp c ⊂ −Cone(W>) or π(P ) = ∅.

Proof. Eq. (9a) comes from the definitions of π(P ) in (7) and V̂ (x, c) in (5). We now show Eq. (9b).
(⇒) Let x ∈ π(P ) and −c /∈ rc(Px)

◦. By definition of the polar cone, there exists r ∈ rc(Px)
such that −c>r > 0. By definition of the recession cone, there exists y0 ∈ Px, such that, for any
µ ∈ R+, y0+µr ∈ Px. Thus, we have limµ→+∞ c

>(y0+µr) = −∞, and V̂ (x, c) = infy∈Px c
>y = −∞.

(⇐) If x /∈ π(P ), by Eq. (9a), −∞ < V̂ (x, c). Let x ∈ π(P ) and −c ∈ rc(Px)
◦. Then for all

r ∈ rc(Px), −c>r 6 0, and minr∈rc(Px) c
>r = 0. By Minkowski Weyl theorem (see e.g. [Zie12, 1.2]),

there exists a polytope Q such that Px = Q+ rc(Px). Thus, V̂ (x, c) = miny0∈Q,r∈rc(Px) c
>(y0 + r) =

miny0∈Q c
>y0 is finite as Q is bounded.

We have that rc(Px)
◦ = supp(N (Px)) by Eq. (4). Further, by Eq. (3) all non empty fibers have

the same recession cone {y | Wy 6 0} whose polar is Cone(W>).
Note that V̂ (x, ·) is Borel-measurable as the value function of a linear program (see [SDR14,

2.1.3]). Moreover, let M = maxy0∈Q ‖y0‖∞ < ∞, then for c ∈ −Cone(W>), V̂ (x, c) > −M‖c‖1.
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Thus, if supp c ⊂ −Cone(W>), then E
[
(−V̂ (x, c))+

]
< +∞ and the expectation E

[
V̂ (x, c)

]
is

well defined with value in R ∪ {+∞}.
Conversely if π(P ) 6= ∅ and supp c 6⊂ −Cone(W>), let x ∈ π(P ), then there exists a set

E ⊂ Rm\ rc(Px)
◦ such that P

[
− c ∈ E

]
> 0. By Eq. (9b), V̂ (x, c) = −∞ for all c ∈ E so

E
[
V̂ (x, c)

]
is either undefined or takes the value −∞.

With this property in mind, we make the following assumption:

Assumption 1. The cost c ∈ L1(Ω,A,P;Rm) is integrable with supp c ⊂ −Cone(W>).

3.2 Reduction to a finite number of scenarios

We now show that the expectation in V (x) can be reduced to a finite sum.
Recall that for any x, x′ ∈ ri(σ), Px and Px′ are normally equivalent i.e. they have the same

normal fan that we denote Nσ. By the correspondences of proposition 7, for any x and x′ ∈ ri(σ),
Px and Px′ also have the same collection of sets of active constraints I(W,h−Tx) = I(W,h−Tx′).
Thus, we define the collection of sets of active constraints of a chamber σ by :

Iσ := I(W,h− Tx) for an arbitrary x ∈ ri(σ) (10)

Theorem 11. Under Assumption 1, V is well-defined on Rn with value in R∪ {+∞}. Moreover,
if σ ∈ C(P, π) is a chamber and x ∈ ri(σ) we have,

V (x) =
∑

F∈F(Px)\{∅}

E
[
1c∈− riNPx (F )c

>]yF (11a)

=
∑
N∈Nσ

E
[
1c∈− riNc

>]yN(x) (11b)

=
∑
I∈Iσ

E
[
1c∈− ri Cone(W>I )c

>]yI(x) (11c)

where, if F is a face, yF denotes an arbitrary point in F ; if N is a cone, yN(x) denotes an arbitrary
point in ∩c∈−NP c

x ; and, if I is an active constraints sets, yI(x) denotes an arbitrary point in Px
verifying TIx+WIy = hI .

Proof. If x /∈ π(P ), V (x) is well defined and equals E
[
V̂ (x, c)

]
= E

[
+∞

]
= +∞.

Let x ∈ π(P ) and c ∈ suppN (Px). If −c ∈ ri(NPx(F )) then −c ∈ NPx(F ) which is equivalent
to c>yF 6 c>y for all yF ∈ F and y ∈ Px, i.e. F ⊂ arg miny∈Px c

>y = P c
x , thus V̂ (x, c) = c>yF for

any yF ∈ F . By Proposition 5 the normal fan is a polyhedral complex and thanks to the partition
property of Proposition 2, we know that c belongs to one and only one relative interior of a normal
cone, leading to

V̂ (x, c) =
∑

F∈F(Px)\{∅}

1−c∈riNPx (F )c
>yF

By Assumption 1, c is integrable and supp c ⊂ −Cone(W>) = −N (Px), thus V is well defined
and (11a) holds.

The other formulas are deduced from the correspondences of Proposition 7 applied to a fiber
noting that, thanks to the normal equivalence property, the collection of active constraints and
the normal fan depend only on the chamber σ whose relative interior contains x.

11



Note that when c is absolutely continuous respect to the Lebesgue measure of Rm, in Eq. (11),
we can restrict the sum on vertices, maximal cones or maximal active constraints sets and take
the whole sets instead of their relative interiors. Fig. 9 illustrates this theorem.

The next lemma shows that we can replace a general random cost by a cost with finite support.

Lemma 12 (Quantization of the cost distribution). Under Assumption 1, let R be a refinement
of
∧
σ∈C(P,π)−Nσ, then

V (x) =
∑
R∈R

p̌RV̂ (x, čR) with V̂ (x, čR) := min
y∈Rm

č>Ry + ITx+Wy6h (12)

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
if p̌R > 0 and čR := 0 if p̌R = 0.

Note that
∧
σ∈C(P,π)Nσ equals the chamber complex C(N (P ), πx,yy ) of the normal fan N (P ) of

the coupling constraint polyhedron along the projection πx,yy : (x, y) 7→ y. Moreover, it is also the

normal fan of the fiber polyhedron Σ
(
P, π(P )

)
defined in [BS92].

Proof. Let σ ∈ C(P, π) and x ∈ ri(σ). For R ∈ R, consider the set {N ∈ −Nσ| ri(R) ⊂ ri(N)}.
As R is a refinement of −Nσ, this set is non empty. As −Nσ is a polyhedral complex, this set
contains exactly one element that we denote N(R). By Eq. (11b),

V (x) =
∑

N∈−Nσ

E
[ ∑
R∈R| ri(R)⊂ri(N)

1c∈riR c
>]yN(x) by the partition property

=
∑
R∈R

E
[
1c∈riRc

>]yN(R)(x) by linearity

=
∑
R∈R

p̌Rč
>
RyN(R)(x)

=
∑
R∈R

p̌R min
y∈Rm

č>Ry + ITx+Wy6h

by definition of yN(R)(x) and as čR ∈ N(R), which leads to Eq. (12).

Note that R =
∧
σ∈Cmax(P,π)−Nσ satisfies the condition of Lemma 12 since if τ is a face of σ in

the chamber complex, Nσ refines Nτ by [RZ96, Lemma 2.2].

3.3 Explicit formula with barycentric coordinates

We define a coefficient µ(I) which can be interpreted as barycentric (conical) coordinates of the
expectation of c in −Cone(W>

I ). This section shows that the knowledge of the set Iσ of active
constraints at σ (see (10)) and the µ(I) for I ∈ Iσ is sufficient to compute V .

Lemma 13. Let σ be a chamber of C(P, π). For each set of active constraints I ∈ Iσ, there exists
a vector of positive coefficient µ(I) ∈ RI

+ which satisfies

−W>
I µ(I) = E

[
c1c∈− ri Cone(W>I )

]
(14)

For x ∈ riσ, under Assumption 1, the formula (11c) can be rewritten as:

V (x) =
∑
I∈Iσ

µ(I)>(TIx− hI) (15)

12



Proof. Note that E
[
c1c∈− ri Cone(W>I )

]
∈ −Cone(W>

I ) = −W>
I RI

+, thus there exists µ(I) which

verifies (14). For x ∈ riσ, (11c) becomes :

V (x) =
∑
I∈Iσ

−µ(I)>WIyI(x) =
∑
I∈Iσ

µ(I)>(TIx− hI)

We finally get the following theorem which gives an explicit formula of the polyhedral function
V .

Theorem 14 (Master formula). Assume that ξ = (T,W, h) is deterministic, and Assumption 1
holds, then V , defined by (5), is a polyhedral function. Further, for all distributions of c, V is
affine on each cell of C(P, π), the chamber complex of the coupling constraint polyhedron P along
the projection π on x.

Finally, we have, for all x ∈ Rn,

V (x) = Ix∈π(P ) + max
σ∈Cmax(P,π)

α>σ x+ βσ (16)

where ασ :=
∑

I∈Iσ T
>
I µ(I), βσ := −

∑
I∈Iσ h

>
I µ(I) and µ(I) satisfies Eq. (14).

Proof. By Eq. (15), for all x ∈ ri(σ), V (x) = α>σ x + βσ. Further as V is lower semicontinuous
and convex (e.g. see [SDR14, prop. 2.7]), V (x) = α>σ x + βσ, for all x ∈ σ. Suppose first
dim

(
π(P )

)
= m, then for σ ∈ Cmax(P, π), x→ α>σ x+βσ is a supporting affine function of V which

coincide with V on σ whose dimension is m. Since
⋃
σ∈Cmax(P,π) σ = supp(C(P, π)) = π(P ), V is

piecewise affine on the polyhedron π(P ) and equals to +∞ elsewhere. Together with convexity of
V , this yields Eq. (16). When π(P ) is not full dimensional, we get the same result by restraining
the ambient space to the affine hull Aff

(
π(P )

)
. Finally, since C(P, π) does not depend on c, for

all distributions of c satisfying Assumption 1, V is affine on each cell of C(P, π).

We note that the terms of the master formula depends on the distribution of the random cost
c only through the valuations E

[
c1c∈− riN

]
attached to the different cones N of the normal fan

Nσ.
We apply this master formula on an analytical example in Section 6. Note that when c admits

a density, we have ασ =
∑

I∈Imax
σ

T>I µ(I) and βσ = −
∑

I∈Imax
σ

h>I µ(I).

4 Polyhedral structure of MSLP

In this section, we show that the polyhedrality result established before for an expected cost-
go-function with general cost distribution and deterministic constraints carry over to the case of
stochastic constraints with finite support and then to multistage programming.

We denote by πx,yx for the projection from Rn × Rm to Rn defined by πx,yx (x′, y′) = x′. The
projections πx,y,zx,y , πx,y,zx , πy,zy , πxt−1,z

xt−1
are defined accordingly. Note that in the notation πx,y,zx , x, y

and z are part of the notation and not parameters.
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4.1 Propagating chamber complexes through Dynamic Programming

Before adapting Lemma 12 to include a recourse cost function, we start by a useful technical
remark.

Recall that, for a polyhedron P and vector ψ, we denote Pψ := arg minx∈P ψ
>x. Let f be a poly-

hedral function on Rd, with a slight abuse of notation we denote epi(f)ψ,1 = arg min(x,z)∈epi(f) ψ
>x+

z. We denote Flow

(
epi(f)

)
:= {epi(f)ψ,1 | ψ ∈ Rd} the set of lower faces of epi(f). The collection

of projections (on Rd) of lower faces of epi(f) is the coarsest polyhedral complex such that f is
affine on each of its cells (see [DLRS10, Chapter 2]). Moreover, we have

πRd
(
(epi(f)ψ,1

)
= arg min

x∈Rd
ψ>x+ f(x) (17)

Lemma 15. Let R be a polyhedral function on Rm and R := πy,zy

(
Flow

(
epi(R)

))
a coarsest

polyhedral complex such that R is affine on each element of R. Let ξ = (T,W, h) be fixed and
Assumption 1 holds. Define, for all x ∈ Rn

Q(x, y) := R(y) + ITx+Wy6h

V (x) := E
[

min
y∈Rm

c>y +Q(x, y)
]

Let V := C(F(P ) ∧ (Rn ×R), πx,yx ) ⊂ 2Rn with P := {(x, y) | Tx+Wy 6 h}.
Then, V 4 C(epi(Q), πx,y,zx ) and V is a polyhedral function which is affine on each element of

V.

Proof. We have epi(Q) =
(
Rn × epi(R)

)
∩ (P × R) ⊂ Rn+m+1. Since

V (x) = E
[

min
y∈Rm,z∈R

c>y + z + I(x,y,z)∈epi(Q)

]
,

by Theorem 14 applied to the problem with variables (y, z) and the coupling polyhedron epi(Q),
V is a polyhedral function affine on each element of C(epi(Q), πx,y,zx ). We now show that V 4
C(epi(Q), πx,y,zx ). As epi(Q) is the epigraph of a polyhedral function, Q := πx,y,zx,y

(
Flow(epi(Q))

)
⊂

2Rn+m is a polyhedral complex.
Let x0 ∈ πx,y,zx (epi(Q)), using notation of Definition 8,

σepi(Q),πx,y,zx
(x0) :=

⋂
F∈F(epi(Q)) s.t. x0∈πx,y,zx (F )

πx,y,zx (F )

=
⋂

F∈Flow(epi(Q)) s.t. x0∈πx,y,zx (F )

πx,y,zx (F )

=
⋂

F ′∈Q s.t. x0∈πx,yx (F ′)

πx,yx (F ′) =: σQ,πx,yx (x0)

Indeed, as epi(Q) is an epigraph of a polyhedral function, if F ∈ F(epi(Q)) such that x0 ∈
πx,y,zx (F ) then there exists G ∈ Flow(epi(Q)) such that G C F and x0 ∈ πx,y,zx (G), allowing us to go
from the first to second equality. The third equality is obtained by setting F ′ = πx,y,zx,y (F ). Thus,
C(epi(Q), πx,y,zx ) = C(Q, πx,yx ).

We now show that F(P ) ∧ (Rn × R) 4 Q. Let G ∈ F(P ) ∧
(
Rn × R

)
. There exist σ ∈ R

and F ∈ F(P ) such that G = F ∩ (Rn × σ). By definition of Flow , there exists ψ ∈ Rm such

14
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Figure 6: An illustration of the proof of Lemma 15 : the epigraph epi(Q) of the coupling function
in blue in the (x, y, z) space, the epigraph of R in yellow in the (y, z) plane, the affine regions R of
R in green on the y axis, the coupling polyhedron P in orange and brown in the (x, y) plane, the
polyhedral complex Q in red and brown in the (x, y) plane and the chamber complex V in violet
on the x axis.

that σ = πy,zy
(

epi(R)ψ,1
)
. We show that G ⊂ πx,y,zx,y (epi(Q)0,ψ,1) ∈ Q. Indeed, let (x, y) ∈ G =

F ∩
(
Rn × πy,zy (epi(R)ψ,1)

)
. We have (x, y) ∈ F ⊂ P such that y ∈ arg miny′∈Rm

{
ψ>y′ + R(y′)

}
.

Which implies that (x, y) ∈ arg min
{
ψ>y′ +R(y′) | (x′, y′) ∈ P

}
. This also reads, by Eq. (17), as

(x, y) ∈ πx,y,zx,y (epi(Q)0,ψ,1). Thus, G ⊂ πx,y,zx,y (epi(Q)0,ψ,1) ∈ Q leading to F(P ) ∧ (Rn × R) 4 Q.
Finally, by monotonicity, Lemma 9 ends the proof.

Remark 16. In Lemma 15, the complex V is independent of the distribution of c. However, for
special choices of c, V might be affine on each cell of a coarser complex than V. For instance, if
R = 0 and c = 0, we have that V = Iπx,yx (P ), V is affine on πx,yx (P ). Nevertheless, V = C(P, πx,yx )

is generally finer than F
(
πx,yx (P )

)
.

4.2 Exact quantization of MSLP

We next show that the multistage program with arbitrary cost distribution is equivalent to a
multistage program with independent, finitely distributed, cost distributions. Further, for all
step t, there exist affine regions, independent of the distributions of costs, where Vt is affine.
Assumption 1 is naturally extended to the multistage setting as follows

Assumption 2. We assume that the sequence (ct, ξt)t∈[tmax] is independent.4 Further, for each

4The results can be adapted to non-independent ξt as long as ct is independent of (cτ )τ<t conditionally on
(ξτ6t).
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t ∈ [tmax], ξt = (Tt,Wt,ht) is finitely supported, and ct ∈ L1(Ω,A,P;Rnt) is integrable with
P
[
ct ∈ −Cone(W>

t )
]

= 1.

Note that Assumption 2 does not require independence between ct and ξt. For t ∈ [tmax], and
ξ = (T,W, h) ∈ supp(ξt) we define the coupling polyhedron

Pt(T,W, h) := {(xt−1, xt) ∈ Rnt−1 × Rnt | Txt−1 +Wxt 6 h},

and consider, for xt−1 ∈ Rnt−1 ,

Ṽt(xt−1|ξ) := E
[

min
xt∈Rnt

c>t xt + Vt+1(xt) + ITxt−1+Wxt6h | ξt = ξ
]
. (19)

Then, the cost-to-go function Vt is obtained by

Vt(xt−1) =
∑

ξ∈supp(ξt)

P
[
ξt = ξ

]
Ṽt(xt−1|ξ) (20)

The next two theorems extend the quantization results of Lemma 12 to the multistage settings.

Theorem 17 (Affine regions independent of the cost). Assume that (ξt)t∈[tmax] is a sequence of
independent, finitely supported, random variables. We define by induction Ptmax+1 := {Rntmax} and
for t ∈ [tmax]

Pt,ξ := C(Rnt × Pt+1 ∧ F
(
Pt(ξ)

)
, πxt−1,xt

xt−1
)

Pt :=
∧

ξt∈supp ξt

Pt,ξ

Then, for all costs distributions (ct)t∈[tmax] such that (ct, ξt)t∈[tmax] satisfies Assumption 2 and all
t ∈ [tmax], we have supp(Pt) = dom(Vt), and Vt is polyhedral and affine on each cell of Pt.

Proof. We set for all t ∈ [tmax + 1], Vt := πxt−1,z
xt−1

(
Flow

(
epi(Vt)

))
the affine regions of Vt. As

Vtmax+1 ≡ 0 is polyhedral and affine on Rntmax , we have Ptmax+1 = Vtmax+1. Assume now that for
t ∈ [tmax], Vt+1 is polyhedral and Pt+1 refines Vt+1 (i.e. Vt+1 is affine on each cell σ ∈ Pt+1).

By Lemma 15, Ṽt(·|ξ), defined in Eq. (19), is affine on each cell of C(Rnt×Vt+1∧F
(
Pt(ξ)

)
, πxt−1,xt

xt−1
)

which is refined by Pt,ξ = C(Rnt×Pt+1∧F
(
Pt(ξ)

)
, πxt−1,xt

xt−1
) by induction hypothesis and Lemma 9.

Thus, by Eq. (20), Vt is affine on each cell of Pt. In particular, Vt is polyhedral and Pt :=∧
ξt∈supp ξt

Pt,ξ refines Vt. Backward induction ends the proof.

By Lemma 15, we have that Pt,ξ 4 C(epi
(
Qξ
t

)
, πxt−1,xt,z

xt−1
) where Qξ

t (xt−1, xt) := Vt+1(xt) +

ITxt−1+Wxt6ht . In particular, consider σ ∈ Pt,ξ, then for all xt−1 ∈ ri(σ), all fibers epi(Qξ
t )xt−1 are

normally equivalent. We can then define Nt,ξ,σ := N (epi(Qξ
t )xt−1) for an arbitrary xt−1 ∈ ri(σ).

The next result shows that we can replace the MSLP problem Eq. (1) by an equivalent problem
with a discrete cost distribution. We elaborate further on this interpretation in Remark 19.

Theorem 18 (Quantization of the cost distribution, Multistage case). Assume that (ξt)t∈[tmax] is a
sequence of independent, finitely supported, random variables. Then, for all costs distributions such
that (ct, ξt)t∈[tmax] satisfies Assumption 2, for all t ∈ [tmax], all xt−1 ∈ Rnt−1 and all ξ ∈ supp(ξt),
we have a quantized version of Eq. (19):

Ṽt(xt−1|ξ) =
∑

N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt

{
č>t,N |ξxt + Vt+1(xt) + ITxt−1+Wxt6h

}
16



where Nt,ξ :=
∧
σ∈Pt,ξ −Nt,ξ,σ and for all ξ ∈ supp(ξt) and N ∈ Nt,ξ we denote

p̌t,N |ξ := P
[
ct ∈ riN | ξt = ξ

]
čt,N |ξ :=

{
E
[
ct | ct ∈ riN, ξt = ξ

]
if P
[
ξt = ξ,x ∈ riN

]
6= 0

0 otherwise

Proof. Since Ṽt(xt−1|ξ) = E
[

minxt∈Rnt ,z∈R c
>xt+z+I(xt−1,xt,z)∈epi(Qξt )

]
and Pt,ξ refines C(epi

(
Qξ
t

)
, πxt−1,xt,z

xt−1
),

by applying Lemma 12 with variables (xt, z) and the coupling constraints polyhedron epi(Qξ
t ), we

deduce that the coefficients (p̌t,N |ξ)N∈Nt,ξ and (čt,N |ξ)N∈Nt,ξ satisfy

Ṽt(xt−1|ξ) =
∑

N∈Nt,ξ

p̌t,N |ξ min
xt∈Rnt ,z∈R

{
č>t,N |ξxt + z + I(xt−1,xt,z)∈epi(Qξt )

}
as the deterministic coefficient before z is equal to its conditional expectation.

Remark 19. Theorem 18 can be seen as an exact discretization of Problem (1) where we replace
the sequence of random cost (ct)t∈[tmax] by a finitely supported sequence of discrete independent
random variable (čt)t∈[tmax] whose law is given by

P
[
čt = čNt|ξ| ξt = ξ

]
= p̌Nt|ξ ∀Nt ∈ Pt,ξ, ∀ξ ∈ supp(ξt), ∀t ∈ [tmax] .

Indeed, define the cost-to-go functions V̌t as in Eq. (1) where the random costs ct are replaced by
čt. In particular V̌t(xt−1) is the value of a MSLP over a finite scenario tree where a node at time
t is given as a collection (Nτ , ξτ )τ6t where Nτ ∈ Nτ,ξτ and ξτ ∈ supp(ξτ ). Then we have, for all
t ∈ [tmax], Vt = V̌t. In particular, for any xt−1 ∈ Rnt−1, the optimal decision xt taken at time t as
solution of V̂t(xt−1, ct, ξt) given in (1), can also be obtained by solving

min
xt∈Rnt

c>t xt + V̌t+1(xt)

s.t. Ttxt−1 +Wtxt 6 ht

5 Computing the valuations appearing in the master for-

mula

In this section, we show that, for standard classes of distributions, we can evaluate the cost-to-go
function at any point x. We even determine the epigraph of the cost-to-go function. We show that
the explicit formulas of Theorem 11 can be expressed as valuations and centroids on the maximal
cells of this complex, as E

[
c1c∈E

]
= E

[
c | c ∈ E

]
P
[
c ∈ E

]
for all non-negligible subsets E of Rm.

The formulas for specific distributions are summed up in Table 1. These formulas are established
in Sections 5.1–5.3. We point out that these formulas are only valid for simplices or simplicial
cones S with dim(S) = dim(supp c).

So before computing µ(I), for I ∈ Iσ, as a preliminary stage, we need to compute a triangulation
of −Cone(W>

I ) ∩ supp(c). Then, when the cost has a uniform distribution on a polytope, we
can compute exactly volumes and centroids to obtain µ(I). When the cost has an exponential
distribution on a cone, we use Brion’s formula [Bri88] to obtain µ(I). We finally discuss the case
of Gaussian distributions (easily adaptable to distributions with rotational symmetry). In this
case we express µ(I) in terms of solid angles and spherical centroids.
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Distribution Uniform on polytope Exponential Gaussian

dP(c)
1c∈Q

Vold(Q)
dLAff(Q)(c)

eθ
>c1c∈K
ΦK(θ)

dLAff(K)c
e−

1
2 c
>M−2c

(2π)
m
2 detM

dc

Support Polytope : Q Cone : K Rm

P
[
c ∈ S

] Vold(S)

Vold(Q)

| det(Ray(S))|
ΦK(θ)

∏
r∈Ray(S)

1

−r>θ
Ang

(
M−1S

)
E
[
c | c ∈ S

]
1
d

∑
v∈Vert(S) v

(∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

√
2Γ(m+1

2
)

Γ(m
2

)
M Centr

(
S ∩ Sm−1

)
Table 1: Probabilities and expectations arising from different cost distributions over simplicial
cones or simplices S ⊂ supp(c) with dimS = dim(supp c), where LA is the Lebesgue measure on
an affine space A.

5.1 Uniform distributions on polytopes

•

•
•

•

••

•

•

•

••
•

(a) When 0 /∈ Q

•

•
•

•

•
•

•
•

•
•

•

•

•• •
•

(b) When 0 ∈ Q

Figure 7: The normal inner fan −Nσ in green the support Q in orange, the sets −W>
i R+ ∩ Q in

red and the triangulations of each −Cone(W>
I ) ∩Q in red, orange and black.

The volume of a polytope Q ⊂ Rm is the volume of P seen as a subset of the smallest affine
space Aff(Q) it lives in. The volume of a full dimensional simplex S in Rd with vertices v1, . . . , vd+1

(see for example [GK94] 3.1) is

Vol(S) =
1

n!
| det(v1 − vd+1, · · · , vd − vd+1)| (23)

The centroid of a non-empty polytope Q ⊂ Rm is

Centr
(
Q
)

:=
1

VolQ

∫
Q

ydLAff Q(y) (24)

For instance, the centroid of a simplex S of (non necessary full) dimension d is the equibarycenter
of its vertices : Centr

(
S
)

= 1
d+1

∑
v∈Vert(S) v.

Let Q be a polytope of dimension d. Assume that c is uniform on Q. Let S ⊂ Q be a simplex
with dim(S) = dim(Q), then we have

P
[
c ∈ S

]
=

Vold S

VoldQ
and E

[
c|c ∈ S

]
=

1

d+ 1

∑
v∈Vert(S)

v
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5.2 Exponential distributions on cones

Let P a (not necessarily bounded) polyhedron and θ ∈ ri
(
(rcP )◦

)
, we denote by ΦP (θ) the

exponential valuation of P with parameter θ, i.e.ΦP (θ) :=
∫
P
eθ
>cdLAff(P )(c).

Proposition 20 (Brion’s formula [Bri88]). Let S = Cone
(

Ray(S)
)

be a simplicial cone with
Ray(S) a matrix whose columns are representative rays of S. Then for any θ ∈ riS◦, the expo-
nential valuation of S is

ΦS(θ) = | det(Ray(S))|
∏

r∈Ray(S)

1

−θ>r
(25)

Let K be a (non necessarily simplicial) cone and θ ∈ riK◦ a vector. Assume that c has the
following exponential density :

dP(c) := eθ
>c1c∈K

1

ΦK(θ)
dLAff(K)(c) (26)

Let S ⊂ K be a simplicial cone with dimS = dimK, by Brion’s formula (25),

P
[
c ∈ S

]
=

ΦS(θ)

ΦK(θ)
=

1

ΦK(θ)
| det(Ray(S))|

∏
r∈Ray(S)

1

−r>θ

Further,

E
[
c1c∈S

]
=

1

ΦK(θ)

∫
S

ceθ
>cdc =

∇ΦS(θ)

ΦK(θ)

Computing gradient coordinates we get

∂ΦS(θ)

∂θi
= | det(Ray(S))|

∑
r∈Ray(S)

( ∏
r′∈Ray(S)\{r}

1

−r′>θ

) ri
(r>θ)2

= ΦS(θ)
∑

r∈Ray(S)

−ri
r>θ

Which finally yields

E
[
c | c ∈ S

]
=
( ∑
r∈Ray(S)

−ri
r>θ

)
i∈[m]

5.3 Gaussian distributions

The solid angle of a pointed cone K ⊂ Rd is the volume of its intersection with the unit ball Bd:
Ang

(
K
)

:= Vold(K∩Bd)
Vold Bd

. Recall that Vold Bd = π
d
2 /Γ(d

2
+ 1) with Γ the Euler gamma function.

Proposition 21 ([Rib06]). For any function f : Rm → R invariant under rotations around the
origin and any pointed cone K ⊂ Rm, we have Ang

(
K
) ∫

Rm f =
∫
K
f .

Let c be a non-degenerated, centered, Gaussian random variable of variance M2, where M is
a symmetric positive definite matrix. Then, if K is a cone, by Proposition 21, we have

P
[
c ∈ K

]
=

∫
M−1K

e−
1
2
‖c‖22

(2π)
m
2

dc = Ang
(
M−1K

)
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We shall still use the notion of centroid, defined by Eq. (24), when K is not a polytope, but a
subset of the sphere (then, the centroid generally does not belong to the sphere).

E
[
c1c∈K

]
=

∫
M−1K

Mc
e−

1
2
‖c‖22

(2π)
m
2

dc = M

∫
R+

rm
e−

r2

2

(2π)
m
2

dr

∫
M−1K∩Sm−1

ϕdϕ

= M
Γ(m+1

2
)

√
2π

m
2

Volm−1(Sm−1) Ang
(
M−1K

)
Centr

(
M−1K ∩ Sm−1

)
= M

√
2Γ(m+1

2
)

Γ(m
2

)
Ang

(
M−1K

)
Centr

(
M−1K ∩ Sm−1

)
This reasoning can easily be adapted to distributions which are symmetric by rotation around

the origin, up to a change of variable. For instance, we have formulas for uniform distributions on
the volume and surface of ellipsoids as summed up in Table 2 when K is a full dimensional cone.

Description P
[
c ∈ K

]
E
[
c | c ∈ K

]
Gaussian with variance M2 Ang

(
M−1K

) √
2Γ(m+1

2
)

Γ(m
2

)
M Centr

(
M−1K ∩ Sm−1

)
Uniform on ellipsoid volume MBm Ang

(
M−1K

)
m
m+1

M Centr
(
M−1K ∩ Sm−1

)
Uniform on ellipsoid surface MSm−1 Ang

(
M−1K

)
M Centr

(
M−1K ∩ Sm−1

)
Table 2: Synthesis of formulas for some rotation symmetric distributions up to a change of variable

6 An analytical example

We present in this section an illustrative example. We consider the following cost-to-go function,
with n = 1 and m = 2 :

V (x) = E

[
min
y∈R2

c>y

s.t. ‖y‖1 6 1, y1 6 x and y2 6 x

]
We show how to apply our results to compute an H-representation of epiV .

The coupling polyhedron is P = {(x, y) ∈ Rn × Rm | ‖y‖1 6 1, yi 6 x ∀i ∈ [m]} presented
in Fig. 8, and its V-representation is the collection of vertices (0,−1, 0), (−1

2
,−1

2
,−1

2
), (0, 0,−1),

(1, 1, 0), (1
2
, 1

2
, 1

2
), (1, 0, 1) and the ray (1, 0, 0). By projecting the different faces, we see that its

projection is the half-line, π(P ) = [−1
2
,+∞[ and its chamber complex is C(P, π) is the collection

of cells composed of {−1
2
}, [−1

2
, 0], {0}, [0, 1

2
], {1

2
}, [1

2
, 1], {1}, [1,+∞) as presented in Fig. 8.

As there are 4 different maximal chambers, there are 4 different classes of normally equivalent
fibers as shown in Fig. 9. For each chamber, we can determine the collection of active constraints,
for example I[− 1

2
,0] =

{
∅, {5}, {5, 6}, {6}, {6, 3}, {3}, {3, 5}

}
, with indices defined coherently with

Fig. 10. We compute the µ(I) thanks to the formulas in Table 1. For example, when c is uniform on
{y ∈ R2 | ‖y‖∞ 6 R}, Fig. 10 draws the regions whose areas and centroid need to be computed. We
then deduce the affine forms x→ ασx+βσ whose values are summed up in Table 3 and the graphs
of V are drawn in Fig. 11 for different distribution of c. We observe that the subdivision where V
is affine is independent of the choice of the distribution of c in accordance with Theorem 14.
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P x

y1

y2

x = −0.25 x = 0.25 x = 0.75
x = 1.5

• • • •x = −0.5 x = 0 x = 0.5 x = 1

C(P, π)

Figure 8: The coupling polyhedron P in blue, different cuts and fibers Px vertical in yellow, and
its chamber complex C(P, π) in red on the bottom.

y1

y2

(a) x = −0.25, σ = [−0.5, 0]

y1

y2

(b) x = 0.25, σ = [0, 0.5]

y1

y2

(c) x = 0.75, σ = [0.5, 1]

y1

y2

(d) x > 1, σ = [1,+∞)

Figure 9: Fibers Px in blue and their normal fan N (Px) = Nσ in green for different x ∈ R

dP(c) x < −1
2
−1

2
6 x 6 0 0 6 x 6 1

2
1
2
6 x 6 1 1 6 x

1‖c‖16R
2R2 dc +∞ −R

24
(7 + 14x) −R

24
(7 + 6x) −R

6
(2 + x) −R

2
θ2e−θ‖c‖1

4
dc +∞ −1

8θ
(7 + 14x) −1

8θ
(7 + 6x) −1

2θ
(2 + x) −3

2θ
1‖c‖∞6R

4R2 dc +∞ −R
12

(5 + 10x) −R
12

(5 + 4x) −R
6

(3 + x) −2R
3

e−‖c‖
2
2/2γ

2

2πγ2
dc +∞ −γ(2+

√
2)(1+2x)

2
√

2π

−γ(2+
√

2+2
√

2x)

2
√

2π

−2γ(1+(−1+
√

2)x)√
2π

− 2√
π
γ

1‖c‖26R
πR2 dc +∞ −R(2+

√
2)(1+2x)

3π
−R(2+

√
2+2
√

2x)
3π

−4R(1+(−1+
√

2)x)
3π

−4
√

2R
3π

Table 3: Different values of V (x) for different distribution of the cost c
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••

• •

N5

N6

N3

• ••

•

•

•

(a) σ = [−0.5, 0]

••

• •

N5

N6

N4

N3 N2

• ••

•

•

•

•

•

•

•

(b) σ = [0, 0.5]

••

• •

N5

N1

N6

N4

N3 N2

• ••

•

•

•

•

•

•

•

•

•

(c) σ = [0.5, 1]

••

• •

N1N4

N3 N2

N6

•

•

•

•

•

•

•

•

(d) σ = [1,+∞)

Figure 10: The normal fan Nσ in green with Ni = W>
i R+, c is uniform on the support Q = −Q =

B∞(0, R) in light orange, the sets W>
i R+ ∩Q in red. The polyhedral complex Rσ is composed of

the elements in red or orange. The barycenters E
[
c|c ∈ N

]
of the maximal cells are pink.

x

V (x)

-0.5 0 0.5 1

θ2e−θ‖c‖1
4

dc

uniform on norm 1 ball

uniform on norm ∞ ball
uniform on norm 2 ball

e
−
‖c‖22
2γ2

2πγ2
dc

Figure 11: Graph of the cost-to-go function V for different distribution of the cost c with R = θ =
γ = 1.

7 Complexity

Hanasusanto, Kuhn and Wiesemann showed in [HKW16] that 2-stage stochastic programming is
]P-hard, by reducing the computation of the volume of a polytope to the resolution of a 2-stage
stochastic program.

We, on the other hand, show that for a fixed dimension of the recourse space, and a cost
distribution uniform on a polytope, 2-stage programming is polynomial. Therefore, the status of
2-stage programming seems somehow comparable to the one of the computation of the volume
of a polytope – which is also both ]P-hard and polynomial when the dimension is fixed (see for
example [GK94, 3.1.1]).

Further, when both the dimensions of the first and second stage decision spaces are fixed, we can
not only evaluate, but compute an H-representation of V in polynomial time. These results also
holds for exponential distributions on a cone. To show this, we rely on McMullen’s and Stanley’s
upper bound theorems [McM70, Sta75]. The former theorem implies that number of vertices of a
polyhedron can be polynomially bounded in terms of the number of facets, and vice-versa, if the
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dimension is fixed. The latter theorem implies that computing a triangulation takes a time that
is polynomial in the number of vertices of the triangulation, still assuming that the dimension is
fixed.

In order to study the complexity of MSLP we rely on the Turing model of computation (a.k.a.
bit model) so we look for an exact solution, and all the computations are carried out with rational
numbers.

7.1 Rationality and size of the cost-to-go functions

Recall that a polyhedron can be given in two manners. The “H-representation” provides an
external description of the polyhedron, as the intersection of finitely many half-spaces. The “V -
representation” provides an internal representation, writing the polyhedron as a Minkowski sum of
a polytope (given as the convex hull of finitely many points) and of a polyhedral cone (generated
by finitely many vectors).

We say that a polyhedron is rational if the inequalities in its H-representation are rational or,
equivalently, the generators of its V -representation have rational coefficients. We shall say that a
(convex) polyhedral function V is rational if its epigraph is a rational polyhedron.

Recall that, in the Turing model, the size (or encoding length see [GLS12, 1.3]) of an integer
k ∈ Z is 〈k〉 := 1 + dlog2(|k|+ 1)e; the size of a rational r = p

q
∈ Q with p and q coprime integers,

is 〈r〉 := 〈p〉 + 〈q〉. The size of a rational matrix or a vector is the sum of the size of its entries.
The size of an inequality α>x 6 β is 〈α〉 + 〈β〉. The size of a H-representation of a polyhedron
is the sum of the sizes of its inequalities and the size of a V -representation of a polyhedron is the
sum of the sizes of its generators.

If the dimension of the ambient space is fixed, one can pass from a H-representation to a V -
representation in polynomial time, and vice versa. Indeed, the double description algorithm allows
one to get a V -representation from a H-representation, see the discussion at the end of section 3.1
in [FP95], and use McMullen’s upper bound theorem [McM70] and [GLS12, 6.2.4] to show that
the computation time is polynomially bounded in the size of the H-representation. (A fortiori, the
size of the V -representation is polynomially bounded in the size of the H-representation.) Dually,
the same method allows one to obtain a H-representation from a V -representation. Hence, in the
sequel, we shall use the term size of a polyhedron for the size of a V or H-representation: when
dealing with polynomial-time complexity results in fixed dimension, whichever representation is
used is irrelevant.

The following technical lemma yields a polynomial bound for the cardinalities of the collection of
active constraints Iσ of a chamber σ (see Eq. (10)) and the triangulation of −Cone(W>

I )∩supp(c)
arising in the representation of the cost-to-go function (15).

Lemma 22 (Polynomial cardinalities, for a fixed m). Assume that the recourse dimension m is
fixed, that P has an H-representation given by a deterministic ξ = (T,W, h) (as in (6)). Then,
for an arbitrary σ ∈ C(P, π) and x ∈ riσ,

1. ]Iσ is polynomial in 〈ξ〉;

2. Let Q ⊂ Rm be a polytope, then for every I ∈ Iσ, every triangulation of
−Cone(W>

I ) ∩Q has a polynomial cardinality in 〈Q〉 and 〈ξ〉;

3. Let K ⊂ Rm be a pointed cone, then for every I ∈ Iσ, every triangulation of −Cone(W>
I )∩K

has a polynomial cardinality in 〈K〉 and 〈ξ〉;.
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Proof. The McMullen upper-bound theorem [McM70], in its dual version, guarantee that a poly-
tope of dimension d with f facets has O(nbd/2c) faces. An easy proof of this asymptotic result is
found in [Sei95].

Recall that ξ = (T,W, h) ∈ Rq×n × Rq×m × Rq. Consider σ ∈ C(P, π) and x ∈ riσ. Observe
that the fiber Px (defined by Eq. (8)) is defined by q inequality and thus has at most q facets.
Consequently, when m is fixed, there exists a constant κM such that ]F(Px) 6 κMq

bm
2
c where

q 6 〈ξ〉. Moreover, there is a one to one correspondence between the faces of Px and the elements
of Iσ, which are sets of active constraints, see Proposition 7. This establishes the first assertion.

By the McMullen upper bound theorem, −Cone(W>
I ) has at most κM(]I)b

m
2
c facets. Thus,

since ]I 6 q 6 〈ξ〉, and as the intersection of two polyhedra is obtained as the aggregation of

their H-representations, −Cone(W>
I )∩Q has at most 〈Q〉+ 〈ξ〉 facets and thus κM(〈Q〉+ 〈ξ〉)b

m
2
c

vertices. By the Stanley upper bound theorem [Sta75], there exists κS such that the size of every

triangulation with k vertices in dimension m is at most κSk
dm+1

2
e, see [DLRS10, (2.6.3),(2.6.5)].

So every triangulation of −Cone(W>
I )∩Q has a cardinality of at most κS(κM(〈Q〉+〈ξ〉)bm2 c)dm+1

2
e.

The proof of the third assertion is similar: replace vertices by rays.

In the following lemmas we show that, in the uniform and exponential cost cases, the coefficients
ασ and βσ are rational with an a priori bounded size. In particular, the polyhedral cost function
V is rational.

Lemma 23 (Rationality and size of ασ and βσ in the exponential case). Let ξ = (T,W, h) have
rational coefficients and K be a rational cone. Assume that the distribution of the cost vector c
is of exponential type, as in (26), with a rational parameter θ. Then, for all σ ∈ C(P, π) the
coefficients ασ and βσ defined in Theorem 14 are rational. Further, we can compute in polynomial
time in 〈ξ〉, 〈K〉 and 〈θ〉 a bound ϕ, such that for all σ ∈ C(P, π), 〈ασ〉 6 ϕ and 〈βσ〉 6 ϕ.

Proof. We introduced in Theorem 14 the notation ασ :=
∑

I∈Iσ T
>
I µ(I) and βσ := −

∑
I∈Iσ h

>
I µ(I).

By Lemma 22, these sums have a number of terms that is polynomial in 〈ξ〉. It remains to show
that, for I ∈ Iσ, µ(I) can be chosen rational with a bounded size. Let T be a triangulation of
−Cone(W>

I ) ∩ K constructed from it’s V -representation. In particular, each S ∈ T max can be
V -represented by rational rays. Thus, by the formula of Table 1 for each S ∈ T max, E

[
c1c∈riS

]
is rational. Moreover, these formulas together with [GLS12, (1.3.3), (1.3.4)] give an algorithm to
compute, in polynomial time, a bound of 〈E

[
c1c∈riS

]
〉 which is polynomial in 〈ξ〉, 〈θ〉 and 〈K〉.

Since E
[
c1c∈− ri Cone(W>I )

]
=
∑

S∈T E
[
c1c∈riS

]
, by Lemma 22, we can also compute, in polynomial

time, a polynomial bound of 〈E
[
c1c∈− ri Cone(W>I )

]
〉. Note that µ(I) can be chosen as a vertex of the

rational polyhedron { µ ∈ RI | µ > 0, −W>
I µ = E

[
c1c∈− ri Cone(W>I )

]
}. Then, by a standard result

([GLS12, 6.2.4]), such a vertex is rational and its size is polynomial in the size of the inequalities
of the H-representation of the polyhedron.

Lemma 24 (Rationality and size of ασ and βσ in the uniform case). Let ξ have rational coefficients
and Q be a rational polyhedron such that Aff(Q) = {y ∈ Rm | ∀j ∈ J ⊂ [m], yj = qj ∈ Q} where J
is a subset of [m] and qj are rational numbers.(e.g. Q is full dimensional with J = ∅).

Then, for all σ ∈ C(P, π) the coefficients ασ and βσ defined in Theorem 14 are rational. Further,
we can compute in polynomial time in 〈ξ〉 and 〈Q〉 a bound ϕ, such that for all σ ∈ C(P, π),
〈ασ〉 6 ϕ and 〈βσ〉 6 ϕ.
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Proof. Let I ∈
⋃
σ∈C(P,π) Iσ. Following the proof of Lemma 23, we need to show the rationality of

E
[
c1c∈− ri Cone(W>I )

]
and also to compute in polynomial time a bound for its size. Let T be a trian-

gulation of −Cone(W>
I )∩Q. In particular, the vertices of T are vertices of −Cone(W>

I )∩Q, and
so, they have rational coefficients. If dim(−Cone(W>

I )∩Q) < dimQ, then E
[
c1c∈− ri Cone(W>I )

]
= 0.

Assume now that dim(−Cone(W>
I ) ∩Q) = dimQ.

Consider first, for simplicity, the special case in which Q thus −Cone(W>
I ) ∩Q is full dimen-

sional, so that every maximal simplex of T is full dimensional. By Eq. (23), the volume of a full
dimensional simplex with rational vertices is rational. Then, the formulas of Table 1 yield the
result. Assume now that Aff(Q) = {y ∈ Rm | ∀j ∈ J, yj = qj} is not full dimensional, so that
dim Aff(Q) = k := m− ]J . Every maximal simplices of T is full dimensional in Aff(Q). The same
conclusion is obtained by considering the projection of these maximal simplices onto the affine
space Aff(Q), and noting that this projection preserves the k-dimensional volume and the rational
character of coordinates5 , and does not increase the size. The formulas in Table 1 and Lemma 22
provides an algorithm to compute in polynomial time a bound for E

[
c1c∈− ri Cone(W>I )

]
.

For the Gaussian distribution, and the uniform distribution on an ellipsoid, the coefficients
µ(I) can be determined in terms of solid angles (see [Rib06]) arising in Table 2. These coefficients
are generally irrational.

Thus, to derive complexity results in the Turing model, we make the following assumption on
the cost:

Assumption 3. The random variable ξ = (T ,W ,h) is finitely supported with pξ := P
[
ξ = ξ

]
for

ξ ∈ supp(ξ). Further, for all ξ ∈ supp(ξ), c conditionally to {ξ = ξ} have a uniform distribution
on a rational polytope Qξ ⊂ −Cone(W>) satisfying the assumption of Lemma 24 or a distribution
exponential on a rational cone Kξ ⊂ −Cone(W>) with rational parameter θξ. We define 〈cξ〉 as
〈Qξ〉 or 〈Kξ〉+ 〈θξ〉 accordingly.

7.2 The 2-stage problem is polynomial-time with fixed dimension m

We start with a complexity result in the two-stage setting.

Lemma 25. Under Assumption 3, given ξ = (T,W, h) and Qξ or (Kξ, θξ) and consider V (x) =
E
[

miny∈Rm c+ ITx+Wy6h

]
. Then, when the dimension m is fixed, there exists an algorithm which

returns, for an input x ∈ π(P ), V (x) and α ∈ ∂V (x) in polynomial time in the size 〈x〉+〈cξ〉+〈ξ〉.

Proof. We first show that Algorithm 1 is polynomial. Line 1 takes a polynomial time by McMullen’s
theorem. The loop of Line 1 has a polynomial length by Lemma 22. Checking the conditions Line 1
is polynomial because computing a dimension of a polyhedron in H-representation is polynomial
by [Fuk16, Thm 8.8]. Line 1 takes a polynomial time by [GK94, p390] and Lemma 22: the
computation of the triangulation T with polynomial cardinality, takes a polynomial time. In
Line 1 computing the formulas of Table 1 takes a polynomial time. Computing µ(I) in Line 1
reduces to solving a linear feasibility problem, which can be done in polynomial-time.

5This conclusion does not carry over to a general affine space. Indeed, the k-dimensional volume is obtained
by applying Cayley Menger determinant formula (see for example [GK94, 3.6.1] ). The latter formula outputs
a number which is in a quadratic extension of the rationals numbers (i.e., generally, an irrational number). For

example, if ∆d is the canonical simplex {λ ∈ Rd+1
+ |

∑d+1
i=1 λi = 1} then Vol(∆d) =

√
d+1
d! .
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Data: An input x ∈ π(P ), ξ = (T,W, h) and Q or (K, θ) describing the distribution of c.
From the H-representation (W,h− Tx) of Px compute I(W,h− Tx) [FP95] ;
α← 0 ∈ Rn, β ← 0 ∈ R;
for I ∈ I(W,h− Tx) do

if dim
(
− Cone(W>

I ) ∩ supp(c)
)

= dim supp(c) then
E(I)← 0 ;
Compute a triangulation T of −Cone(W>

I ) ∩ supp(c);
for S ∈ T max do

E(I)← E(I) + P
[
c ∈ S

]
E
[
c | c ∈ S

]
thanks to Table 1 ;

end
Compute µ(I) by solving the system −W>

I µ(I) = E(I) and µ(I) > 0 (see Eq. (14));
α← α + T>I µ(I), β ← β − µ(I)>hI ;

end

end
Return α and β;

Algorithm 1: Oracle returning ασ and βσ defined in Theorem 14 with σ ∈ C(P, π) and
x ∈ ri(σ).

If there exists σ ∈ Cmax(P, π) such that x ∈ ri(σ) by Eq. (11), Algorithm 1 computes V (x) =
α>σ x + βσ and ασ ∈ ∂V (x). Indeed, if dimπ(P ) = dimσ = m, then by Eq. (15) for all x ∈ riσ,
V (x) = α>σ x + βσ, thus ασ is a gradient of V . Otherwise, by restraining to the ambient space to
Aff
(
π(P )

)
, we see that ασ is a subgradient of V . Therefore, for a generic x ∈ π(P ), Algorithm 1

allows us to compute the value and a subgradient of V in polynomial time. We next reduce to
the generic case by a perturbation argument. More precisely, instead of applying Algorithm 1 to
x, we perturb x to find a generic point x′, close to x, such that there exists σ ∈ Cmax(P, π) with
x′ ∈ ri(σ) and x ∈ σ.

Since x ∈ π(P ), we can find y ∈ Rmin polynomial time (by solving a linear system) such that
(x, y) ∈ P . By [GLS12, 6.5.5], we can also find, still in polynomial time, a point (x, y) ∈ ri(P ).
We define, for any ε ∈ R, x(ε) := x+ ε

(
x− x+ (ε, ε2, · · · , εn)

)
and y(ε) := y + ε(y − y).

Observe that there is ε0 > 0 such that, for all 0 < ε < ε0,
(
x(ε), y(ε)

)
does not cross any

hyperplane of Rn+m defined by Tix + Wiy = hi (supporting hyperplanes of P ) and x(ε) does not
cross any hyperplane defining the chamber complex C(P, π). Indeed, the values of ε for which such
a crossing occurs are roots of polynomials of degree at most n + 1. Moreover, since (x, y) is an
interior point of P , we have

(
x(ε), y(ε)

)
∈ P . It follows that x(ε) stays in a fixed cell σ of maximal

dimension, for all 0 6 ε < ε0.
Moreover, we can compute in polynomial time an explicit value of ε0 using a classical bound,

going back to Lagrange and Cauchy, for the smallest modulus of a non-zero root of a polynomial (see
e.g. Th. 8.1.4 and Prop. 8.1.6 in [RS02]). We conclude by applying Algorithm 1 to x′ := x(ε0/2).

Theorem 26 ((2SLP) is polynomial-time for fixed m). Consider the problem

min
x∈Rn

c>0 x+ IAx6b + E
[

min
y∈Rm

c>y + ITx+W y6h

]
(2SLP)

Suppose that the recourse dimension m is fixed, and Assumption 3 holds.
Then, there exists an algorithm that solves (2SLP) in polynomial time in the input size 〈c0〉+

〈A〉+ 〈b〉+
∑

ξ∈supp(ξ)〈cξ〉+ 〈ξ〉+ 〈pξ〉.
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Proof. We start with the case where ξ is deterministic. Recall that a separation oracle for a
convex set C ⊂ Rd takes as argument a vector x ∈ Rd, and either states that x ∈ C or returns an
hyperplane (strictly) separating x from C. We show that Algorithm 1 provides a polynomial-time
separation oracle for E := epi(V ) ∩ ({x |Ax 6 b} × R).

Let (x, z) ∈ Rn+1. Suppose that there exists i ∈ [q] such that Aix > bi then E is separated
from (x, z) by {(x′, z′) |Aix′ = bi+Aix

2
}. Otherwise we have Ax 6 b, and by solving the dual of

miny∈Rq{ 0 |Wy 6 h − Tx}, in polynomial time, we either find an unbounded ray generated by
λ ∈ Rq such that λ > 0, λ>W = 0 and λ>(h − Tx) < 0 or a y ∈ Rm such that Wy 6 h − Tx,

i.e. x ∈ π(P ), In the first case we have a feasibility cut {(x′, z′) ∈ Rn+1 |λ>Tx′ = λ>h+λ>Tx
2

}
separating E from (x, z). In the second case we have that x ∈ π(P ). By Lemma 25, we can
compute V (x) and a subgradient α ∈ ∂V (x) in polynomial time. If z > V (x), (x, z) ∈ E otherwise

{(x′, z′) |α>(x′ − x) + V (x)+z
2

= z′} separates (x, z) from E.
We use this separation oracle to optimize the linear program min(x,z)∈E c

>
0 x + z, which is

equivalent to (2SLP), in polynomial time through [GLS12, Theorem 6.4.9]. This theorem applies to
the class of “well described” polyhedra (see [GLS12, 6.2.2]), which are rational polyhedra equipped
with the dimension of the ambient space and an apriori bound on the encoding length of each facet-
defining inequality. In order to apply it here, it remains to show that we can bound apriori the
size of each inequalities in an H-representation of E.

Note that E = {(x, z) ∈ Rn+1 | Ax 6 b, x ∈ π(P ), ασx + βσ 6 z, ∀σ ∈ Cmax(P, π)}. By
Lemma 22, there exists ϕ such that for all σ ∈ Cmax(P, π). 〈ασ〉 6 ϕ and 〈βσ〉 6 ϕ. Thus
(E, n+m+ 1, 2ϕ) is a well-described polyhedron, by [GLS12, 6.4.9] , (2SLP), under Assumption 3
is oracle-polynomial-time, and thus, polynomial-time.

To extend this result to allow for stochastic constraints, for each of the ξ = (T,W, h) ∈ supp(ξ)

we can check if x ∈ π
(
P (ξ)

)
and then use Lemma 25 to compute Ṽ (x|ξ) := E

[
V̂ (x, c, ξ) | ξ = ξ

]
and αξ ∈ ∂Ṽ (x|ξ), then V (x) =

∑
ξ∈supp ξ pξṼ (x|ξ) and α =

∑
ξ∈supp ξ pξα

ξ ∈ ∂V (x). This yields
a polynomial time separation oracle for E := epi(V ) ∩ ({x |Ax 6 b} × R) and we conclude as
previously.

7.3 Determining V is polynomial-time with fixed dimensions n and m

In this section, we focus on the problem of computing a H-representation of the epigraph of the
cost-to-go function. We next show that this can still be done in polynomial time, but we now
need to fix both the dimensions n and m. This is a key step needed to extend our results to the
multistage case (Section 7.4 below).

Theorem 27 (Computing V is polynomial for fixed n, m and ] supp(ξ)). We consider the cost-
to-go function

V (x) := E
[

min
y∈Rm

c>y + ITx+W y6h +R(y)
]

where R is a rational polyhedral function. Assume that n, m and ] supp(ξ) are fixed integers and
(c, ξ) satisfies Assumption 3.

Then, there exists an algorithm that find an H-representation of epi(V ) in polynomial time in
the input size 〈epiR〉+

∑
ξ∈supp(ξ)〈cξ〉+ 〈ξ〉+ 〈pξ〉 .

Proof. We first focus on the case where ξ = ξ = (T,W, h) is deterministic and R ≡ 0. The “Master
formula” (15) provides a H-representation of V consisting of “vertical” halfspaces given by facets
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of π(P ) and halfspaces {(x, z) ∈ Rn×R |α>σ x+βσ 6 z}. We next show that this H-representation
can be computed in polynomial time.

The number of chambers in C(P, π) is polynomial when both n and m are fixed by [VWBC05,
3.9]. Thus computing the (maximal) chambers of the complex is polynomial in fixed dimension
thanks to the algorithm in [CL98, 3.2]. For each cell σ ∈ Cmax(P, π), we can compute6 in polynomial
time ασ and βσ, by adapting Algorithm 1 (for example by taking x ∈ riσ). Further, the generators
of a V -representation of π(P ) can be obtained by projecting the generators of a V -representation
of P . Then, the double description method yields, in polynomial-time, an H-representation of
π(P ).

Assume now that R is not necessarily equal to 0 and let E := {(x, y, z) |Tx+Wy 6 h,R(y) 6
z}. Since E

[
miny∈Rm c

>y+ ITx+Wy6h +R(y)
]

= E
[

miny∈Rm,z∈R c
>y+ z + I(x,y,z)∈E

]
we can apply

the previous result with the coupling constraint polyhedron E and the random variable (c, 1).
In order to extend this result to stochastic constraints, we compute, for each ξ ∈ supp ξ, the

epigraph of epi Ṽ (·| ξ) where Ṽ (x|ξ) := E
[
V̂ (x, c, ξ) | ξ = ξ

]
. We then compute V by intersecting

and projecting polyhedra of dimension n + m + ] supp(ξ) + 1 as epiV = {(x, z) | ∃(zξ)ξ∈supp ξ ∈
Rs,
∑

ξ∈supp ξ zξ = z, (x, zξ) ∈ epi
(
Ṽ (·|ξ)

)
}. Since, n, m and ] supp(ξ) are fixed this computation

is carried out in polynomial time.

7.4 Multistage programming with fixed horizon and dimensions is
polynomial-time

Theorem 28 (MSLP is polynomial for fixed dimensions). Consider the MSLP problem with value
V̂1(x0, c1, ξ1) as defined by (1). Assume that tmax > 3, n2, . . . , ntmax, ](supp ξ2), · · · ,](supp ξtmax)
are fixed integers and for all t ∈ [tmax], (ct, ξt) satisfies Assumption 3. Then, there exists an
algorithm that solves MSLP in polynomial time in the input size 〈x0〉 + 〈c1〉 + 〈ξ1〉 + 〈h1〉 +∑tmax

t=2

∑
ξ∈supp(ξt)

〈ct,ξ〉+ 〈ξ〉+ 〈pt,ξ〉.

Proof. The inequality z > 0 provides aH-representation of Vtmax+1. Assume that for t ∈ {3, . . . , tmax},
Vt+1 is a rational polyhedral function and we have computed a representation of Vt+1 whose size
is polynomially bounded in the size of the input. By Theorem 27, we compute Vt in polynomial
time and its size is polynomial in the input. We apply recursively this procedure, the total time
of computation and the size of V2 are then bounded by a composition of tmax − 2 polynomes. As
in the proof of Theorem 26, we leverage the theory of linear programming with oracle and obtain
that solving the MLSP problem takes a polynomial time in the size of the input when the horizon
and dimensions are fixed.

6 This algorithm is not the most efficient one. Instead, we may enumerate the active constraints sets I ∈⋃
σCmax(P,π) supp Iσ by looking at the n-faces of P (see algorithm [LW97, 4.2]), compute all the µ(I) and then

compute the Iσ (see algorithm [CL98, 3.2] ) and eventually compute the ασ and βσ.
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tic programming: modeling and theory. SIAM, 2014.

[Sei95] R Seidel. The upper bound theorem for polytopes: an easy proof of its asymptotic
version. Computational Geometry, 5(2):115 – 116, 1995.

[SN05] Alexander Shapiro and Arkadi Nemirovski. On complexity of stochastic programming
problems. In Continuous optimization, pages 111–146. Springer, 2005.

[Sta75] Richard P Stanley. The upper bound conjecture and cohen-macaulay rings. Studies
in Applied Mathematics, 54(2):135–142, 1975.

[VSW69] Richard M Van Slyke and Roger Wets. L-shaped linear programs with applications to
optimal control and stochastic programming. SIAM Journal on Applied Mathematics,
17(4):638–663, 1969.

30



[VWBC05] Sven Verdoolaege, Kevin M Woods, Maurice Bruynooghe, and Ronald Cools. Compu-
tation and manipulation of enumerators of integer projections of parametric polytopes.
CW Reports, pages 104–104, 2005.

[WZ05] Stein W Wallace and William T Ziemba. Applications of stochastic programming.
SIAM, 2005.

[Zie12] Günter M Ziegler. Lectures on polytopes, volume 152. Springer Science & Business
Media, 2012.

31


	Introduction
	Polyhedrality of cost-to-go function
	Contribution and literature review
	Notation

	Polyhedral tools
	Polyhedral complexes
	Normal fan
	Active constraints
	Chamber complex

	Preserving polyhedrality with general cost distribution
	Conditions for a well defined cost-to-go function
	Reduction to a finite number of scenarios
	Explicit formula with barycentric coordinates

	Polyhedral structure of MSLP
	Propagating chamber complexes through Dynamic Programming
	Exact quantization of MSLP

	Computing the valuations appearing in the master formula
	Uniform distributions on polytopes
	Exponential distributions on cones
	Gaussian distributions

	An analytical example 
	Complexity
	Rationality and size of the cost-to-go functions
	The 2-stage problem is polynomial-time with fixed dimension m
	Determining V is polynomial-time with fixed dimensions n and m
	Multistage programming with fixed horizon and dimensions is polynomial-time


